ﬁ Sensors

Article

Anomaly Detection and Inter-Sensor Transfer Learning on
Smart Manufacturing Datasets

Mustafa Abdallah *, Byung-Gun Joung 2, Wo Jae Lee 3*(, Charilaos Mousoulis ?, Nithin Raghunathan 2,

Ali Shakouri 2, John W. Sutherland 3

check for
updates

Citation: Abdallah, M.; Joung, B.-G.;
Lee, W.J.; Mousoulis, C.;
Raghunathan, N.; Shakouri, A.;
Sutherland, ].W.; Bagchi, S. Anomaly
Detection and Inter-Sensor Transfer
Learning on Smart Manufacturing
Datasets. Sensors 2023, 23, 486.
https:/ /doi.org/10.3390/523010486

Academic Editor: Chunhua Yang

Received: 8 December 2022
Revised: 27 December 2022
Accepted: 30 December 2022
Published: 2 January 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Saurabh Bagchi 2

Computer and Information Technology, Indiana University-Purdue University Indianapolis,
Indianapolis, IN 46202, USA

Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
Environmental and Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA
Correspondence: mabdall@iu.edu

1 Current address: Amazon, Seattle, WA 98108, USA.

Abstract:
applications. One important goal of the smart manufacturing system is to rapidly detect and

Smart manufacturing systems are considered the next generation of manufacturing

anticipate failures to reduce maintenance cost and minimize machine downtime. This often boils
down to detecting anomalies within the sensor data acquired from the system which has different
characteristics with respect to the operating point of the environment or machines, such as, the
RPM of the motor. In this paper, we analyze four datasets from sensors deployed in manufacturing
testbeds. We detect the level of defect for each sensor data leveraging deep learning techniques. We
also evaluate the performance of several traditional and ML-based forecasting models for predicting
the time series of sensor data. We show that careful selection of training data by aggregating multiple
predictive RPM values is beneficial. Then, considering the sparse data from one kind of sensor, we
perform transfer learning from a high data rate sensor to perform defect type classification. We
release our manufacturing database corpus (4 datasets) and codes for anomaly detection and defect
type classification for the community to build on it. Taken together, we show that predictive failure
classification can be achieved, paving the way for predictive maintenance.

Keywords: smart manufacturing; predictive maintenance; transfer learning; vibration sensors;
manufacturing dataset; defect classification; piezoelectric sensor; mems sensor; rpm; autoencoder

1. Introduction

The smart manufacturing application domain poses certain salient technical challenges
for the use of ML-based models for anomaly detection. First, in the smart manufacturing
domain, there are multiple types of sensors concurrently generating data about the same
(or overlapping) events. These sensors are of varying capabilities and costs. Second, the
sensor data characteristics change with the operating point of the machines, such as, the
RPM of the motor. The inference and the anomaly detection processes therefore have to
be calibrated for the operating point. Thus, we need case studies of anomaly detection
deployments on such systems — the need for such deployments and resultant analyses
have been made for smart manufacturing systems [1,2] (see also the survey [3] on the
usage and challenges of deep learning in smart manufacturing systems). Most of the
existing work has relied on classical models for anomaly detection and failure detection in
such systems [4-7], while there is a rich literature on anomaly detection in many IoT-based
systems [8,9], there are few existing works that document the use of ML models for anomaly
detection in smart manufacturing systems [10] (see [11] for a survey). In particular, most of
the existing work is focused on categorizing anomalies in the semiconductor industry [12],
windmill monitoring [13], and laser-based manufacturing [14].

Sensors 2023, 23, 486. https:/ /doi.org/10.3390/523010486

https:/ /www.mdpi.com/journal/sensors


https://doi.org/10.3390/s23010486
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9554-9260
https://orcid.org/0000-0002-2465-6296
https://orcid.org/0000-0002-2118-0907
https://doi.org/10.3390/s23010486
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23010486?type=check_update&version=2

Sensors 2023, 23, 486

20f22

There is also important economic impetus for this kind of deployment and analysis.
In a smart manufacturing system, various sensors (e.g., vibration, ultrasonic, pressure
sensors) are applied for process control, automation, production planning, and equipment
maintenance. For example, in equipment maintenance, the condition of operating
equipment is continuously monitored using proxy measures (e.g., vibration and sound)
to prevent unplanned downtime and to save maintenance costs [15]. The data from these
sensors can be analyzed in a real-time manner to fill a critical role in predictive maintenance
tasks, through the anomaly detection process [16-18]. Thus, we propose our anomaly
detection technique for smart manufacturing systems [19]. Two notable exceptions to the
lack of prior work in this domain are the recent works [20,21]. In [20], the authors proposed
a kernel principal component analysis (KPCA)-based anomaly detection system to detect a
cutting tool failure in a machining process. The work [21] provided a deep-learning based
anomaly detection approach. However, they did not address the domain-specific challenges
introduced above, did not propose any transfer learning across different manufacturing
sensors as we propose here, and did not benchmark the performance of diverse forecasting
models for the anomaly detection task.

In this paper, we study the maintenance problem of smart manufacturing systems
by detecting failures and anomalies that would have an impact on the reliability and
safety of these systems. In such systems, the data are collected from different sensors
via intermediate data collection points and finally aggregated to a server to further store,
process, and perform useful data-analytics on the sensor readings [22,23]. We propose a
temporal anomaly detection model, in which the temporal relationships between the readings
of the sensors are captured via a time-series prediction model. Specifically, we consider two
classes of time-series prediction models which are classical forecasting models (including
Autoregressive Integrated Moving Average model (ARIMA) [24], Seasonal Naive [25], and
Random Forest [26]) and new ML-based models (including Long Short-Term memory
(LSTM) [27], AutoEncoder [28], and DeepAR [29]). These models are used to predict the
expected future samples in certain time-frame given the near history of the readings. We
first test our models on real data collected from deployed manufacturing sensors to detect
anomalous data readings. We then analyze the performance of our models, and compare
the algorithms of these time-series predictors for different testbeds. We observe that the best
forecasting model is dataset-dependent with ML-based models giving better performance
in the anomaly detection task.

Another problem in this domain is the prediction from models using sparse data,
which is often the case because of limitations of the sensors or the cost of collecting data.
One mitigating factor is that plentiful data may exist in a slightly different context, such as,
from a different kind of sensor on the same equipment or the equipment being operated
under a somewhat different operating condition in a different facility (such as a different
RPM). Thus, the interesting research question in this context is: can we use a model
trained on data from one kind of sensor (such as, a piezoelectric sensor, which has a high
sampling frequency) to perform anomaly detection on data from a different kind of sensor
(such as, a MEMS sensor, which has a low sampling frequency but is much cheaper). In
this regard, we propose an approach that transfers learning across different instances of
manufacturing vibration sensors. This transfer-learning model is based on sharing weights
and feature transformations from a deep neural network (DNN) trained with data from
the sensor that has a high sampling frequency. These features and weights are used in
the classification problem of another sensor data (By classification problem here, we mean
doing both re-training on the new sensor using the shared neural weights and the feature
representation and then doing the defect type classification.) (the one with lower sampling
frequency). We show that the transfer-learning idea gives a relative improvement of 11.6%
in the accuracy of classifying the defect type over the regular DNN model. We built variants
of DNN models for the defect classification task, i.e., using a single RPM data for training
and for testing across the entire operating environment, and using aggregations of data
across multiple RPMs for training with interpolation within RPMs. One may wonder why



Sensors 2023, 23, 486

30f22

we need to use sensors with much lower sampling rate; the reason is the significant price
difference between the MEMS sensor and piezoelectric sensor. The former has much lower
resolution (and also cost [30,31]—%$8 versus $1305). Therefore, the goal is to build a predictive
maintenance model from the piezoelectric sensor and use it for the MEMS sensor.

In this paper, we test the following hypotheses related to anomaly detection in smart
manufacturing.

Hypothesis 1. Deep learning-based anomaly detection technique is effective for smart
manufacturing.

Hypothesis 2. Learning process for classifying failures is transferable across different
sensor types.

Our Contribution: Based on our analysis with real data, we have the following
contributions:

1. Anomaly Detection: We adapt two classes for time series prediction models for
temporal anomaly detection in a smart manufacturing system. Such anomaly
detection aims at detecting anomaly readings collected from the deployed sensors.
We test our models for temporal anomaly detection through four real-world datasets
collected from manufacturing sensors (e.g., vibration data). We observe that the
ML-based models outperform the classical models in the anomaly detection task.

2. Defect Type Classification: We detect the level of defect (i.e., normal operation,
near-failure, failure) for each RPM data using deep learning (i.e., deep neural
network multi-class classifier) and we transfer the learning across different instances
of manufacturing sensors. We analyze the different parameters that affect the
performance of prediction and classification models, such as the number of epochs,
network size, prediction model, failure level, and sensor type.

3. RPM Selection and Aggregation: We show that training at some specific RPMs,
for testing under a variety of operating conditions gives better accuracy of defect
prediction. The takeaway is that careful selection of training data by aggregating
multiple predictive RPM values is beneficial.

4.  Benchmark Data: We release our database corpus (4 datasets) and codes for
the community to access it for anomaly detection and defect type classification
and to build on it with new datasets and models. (URL for our database and
codes is: https:/ /drive.google.com/drive/u/2/folders/1QX3chnSTKO3PsEhi5kBdf9
WwMBmOriJ8 (accessed on 12 December 2022). The dataset details are provided in
Appendix A, the dataset collection process is described in Appendix B, the dataset
usage is described in Appendix C, and the main codes are presented in Appendix E).
We are unveiling real failures of a pharmaceutical packaging manufacturer company.

2. Related Work
2.1. Failure Detection Models

There have been several works to study a failure detection in manufacturing processes
using single or multi-sensor data [20,32,33]. Specifically, the recent work [20], in which
the kernel principal component analysis based anomaly detection system was proposed to
detect a cutting tool failure in a machining process. In the study, multi-sensor signals were
used to estimate the condition of a cutting tool, but a transfer learning between different
sensor types was not considered. Furthermore, in another recent study [33], the fault
detection monitoring system was proposed to detect various failures in a DC motor such as
a gear defect, misalignment, and looseness. In the study, a single sensor, i.e., accelerometer,
was used to obtain machine condition data, and several convolutional neural network
architectures were used to detect the targeted failures. However, different rotational speeds
and sensors were not considered. Thus, these techniques must be applied again for each new


https://drive.google.com/drive/u/2/folders/1QX3chnSTKO3PsEhi5kBdf9WwMBmOriJ8
https://drive.google.com/drive/u/2/folders/1QX3chnSTKO3PsEhi5kBdf9WwMBmOriJ8

Sensors 2023, 23, 486

40f22

sensor type. On the other hand, we consider the transfer learning between different sensor
types. We also compare traditional and ML-based models for our anomaly detection task.

2.2. Learning Transfer

Transfer learning has been proposed to extract knowledge from one or more source
tasks and apply the knowledge to a target task [34-37] with the advantage of intelligently
applying knowledge learned previously to solve new problems faster. In the literature,
transfer learning techniques have been applied successfully in many real-world data
processing applications, such as cross-domain text classification, constructing informative
priors, and large-scale document classification [38,39]. However, these works did not
tackle the transfer learning across different instances of sensors that we consider here
in the context of smart manufacturing. In smart manufacturing systems, the existing
works only considered calibration of sensors using neural network regression models [40]
and multi-fault bearing classification [41]. Again, these works did not tackle the transfer
learning across different instances of sensors.

2.3. Datasets and Benchmarks for Anomaly Detection in Smart Manufacturing

There exist a few papers that focused on releasing datasets for anomaly detection in
smart manufacturing, with focusing on unsupervised anomaly detection process [42,43].
In particular, the work [42] shows the benchmark results of the DCASE 2020 Challenge
Task for unsupervised detection of anomalous sounds for machine condition monitoring.
The main goal of such anomalous sound detection (ASD) is to identify whether the sound
emitted from a target machine is normal or anomalous. The work [43] also proposed an
unsupervised real-time anomaly detection algorithm for smart manufacturing. On the
other hand, the work [44] explores learning techniques for failure prediction for several
imbalanced smart manufacturing datasets. However, all of these works did not tackle the
transfer of the learning across different instances of sensors that we consider here.

3. Materials and Methods

We now describe our proposed algorithms for the anomaly detection, defect type
classification, and learning transfer across sensors.

3.1. Temporal Anomaly Detection

Here, we describe our proposed algorithm for detecting anomalies from the sensor
readings. First, we build time-series forecasting models, using different time-series
predictor variants in our algorithm. We compare several state-of-the-art time-series
forecasting models for our anomaly detection task on our manufacturing testbeds. They
can be classified into the following two classes:

¢  Classical forecasting models: In this category, we included Autoregressive Integrated
Moving Average model (ARIMA) [24], Seasonal Naive [25] (in which each forecast
equals the last observed value from the same season), Random Forest (RF) [26] (which
is a tree ensemble that combines the predictions made by many decision trees into a
single model), and Auto-regression [45].

*  MlL-based forecasting models: We selected six popular time series forecasting models,
including Recurrent Neural Network (RNN) [46], LSTM [47] (which captures time
dependency in a better fashion compared to RNN) and has been used in different
applications [48]), Deep Neural Network (DNN) [49], AutoEncoder [50], and the
recent works DeepAR [29], DeepFactors [51].

For each model, we generated multiple variants by changing the values of
hyperparameters. We then chose the model variant with the best performance for each
dataset. We describe the hyper-parameters and the libraries used for all forecasting models
in Appendix E (in the Appendix).

Anomaly Detection Rule: After using any of the above proposed time-series predictors,
for each sample under test, we would have two values: the actual value (measured by the



Sensors 2023, 23, 486

50f22

sensor) and the predicted value (predicted by our model). To flag an anomaly, we consider that
predicted value—actual value
predicted value

the predicted value is more than A. In our experimental results, based on the training data,
we set A = 200% (2X relative error). We emphasize that such value can be chosen based
on the dataset characteristics depending on the application. We also used classifier-based
model for anomaly detection of test samples (see Appendix E).

> A. In other words, the relative error between the actual value and

3.2. Transfer Learning across Sensor Types

We show our proposed model in Figure 1 which has two modes: In offline training,
the sensor with large amount of data (let us call it sensor type I) has its data entered to the
feature extraction module that performs encoding and normalization of the input signals
into numerical features. Second, a deep neural network (DNN) model is trained and tuned
using these features and labels of the data (normal, near-failure or failure). We use the
DNN as a multi-class classifier due to its discriminative power that is leveraged in different
classification applications [52-55]. Moreover, DNN is useful for both tasks of learning the
level of defect for the same sensor type and for transfer learning across the different sensor
types that we consider here. In online mode, any new sensor data under test (here, sensor
type II) would have the same feature extraction process where the saved feature encoders
are shared. Then, the classifier (after retraining) predicts the defect type (one of the three
states mentioned earlier) given the trained model, and giving as output the probability of
each class.

It is worth noting that sensor types I and II should be measuring the same physical
quantity but can be from different manufacturers and with different characteristics. For
instance, in our smart manufacturing domain, sensor type I is a piezoelectric sensor (of
high cost but with high sampling resolution) while type II is a MEMS sensor (of lower
cost but with lower sampling resolution). We propose the transfer learning for predictive
maintenance, i.e., predicting the level of defect with the MEMS sensor and whether the
machine is in normal operation, near-failure (and needs maintenance), or failure (and needs
replacement). We emphasize that although the two sensor types we consider for that task
in our work generate different data distribution and have different sampling frequency, our
transfer learning is efficient (see our evaluation in Section 4.2).

Sensor Type | -— Feature Feature
Raw Data Extraction Embedding
Motor - Labels Training Data
Testbed Collection Labels H Deep Neural
: Output Model

Parameters

Features
Vector

Network Train
(DNN)

(Offline) Defect C|assifier Training O P.e.f.e.c.t.T.ly.E?.cil?.s.S!f.l?r. cemenned

|(0n|ine) Classification + Transfer Learning
I Feature Feature S Performance
Extraction Embedding Inference Evaluation

Figure 1. The proposed learning-transfer model has two modes: offline DNN sub-model training

Sensor Type
Raw Data

and online-mode for classifying the sensor under test after sharing knowledge (i.e., DNN’s weights
and features).

Having introduced the background and the high-level proposed models, we next
detail the anomaly detection and the transfer learning tasks on our manufacturing testbeds.



Sensors 2023, 23, 486

6 of 22

4. Results
4.1. Anomaly Detection with Manufacturing Sensors

Anomalous data generally needs to be separated from machine failure as abnormal
patterns of data do not necessarily imply machine or process failure [3]. We perform
anomaly detection using vibration and process data to identify anomalous events and then
attempt to label/link these events with machine failure information. This way, we aim to
identify abnormal data and correlate the abnormal data to machine failure coming from
manufacturing sensors. To achieve such goal, we build time-series models to predict (and
detect) anomalies in the sensors. We first detail our datasets.

4.1.1. Deployment Details and Datasets Explanation

(1) Piezoelectric and MEMS datasets: To build these datasets, an experiment was
conducted in the motor testbed (shown in Figure 2) to collect machine condition data
(i.e., acceleration) for different health conditions. During the experiment, the acceleration
signals were collected from both piezoelectric and MEMS sensors (Figure 3) at the same
time with the sampling rate of 3.2 kHz and 10 Hz, respectively, for X, Y, and Z axes.
Different levels of machine health condition can be induced by mounting a mass on the
balancing disk (shown in Figure 4), thus different levels of mechanical imbalance are used
to trigger failures. Failure condition can be classified as one of three possible states - normal,
near-failure, and failure. Acceleration data were collected at the ten rotational speeds (100,
200, 300, 320, 340, 360, 380, 400, 500, and 600 RPM) for each condition, while the motor is
running, 50 samples were collected at 10 s interval, for each of the ten rotational speeds.
We use this same data for defect-type classification and learning transfer tasks (Section 4.2).

(2) Process and Pharmaceutical Packaging datasets: In the production of injection
molded plastic components, molten material is injected into a die. To increase the
production rate (i.e., speed up the process), a coolant is circulated through a piping system
embedded within the die to remove heat from the system. This accelerates the rate at which
the die and plastic components cool and solidify, and reduces the cycle time. Of course,
the coolant within this system must then have heat removed from it; this is often achieved
with the aid of a chiller. Discussions with our company partner indicated that there might
be concerns with the vibration of the chiller. Therefore, data were collected on the chiller
vibration. We were also able to collect process related data that can potentially indicate
the condition of machine operation. Such process data is being collected as part of the
company’s standard statistical process control (SPC) activities; 49,706 samples of process
data were collected for the period from August 2021-May 2022. One type of process data
collected was the internal temperature of the chiller for the injection molding machines. In
this paper, the chiller temperature was used for anomaly detection task. The chiller in the
pharmaceutical process is designed to maintain the temperature of the cooling water used
in the manufacturing process to around 53 degrees Fahrenheit. When the chiller operation
is down, the temperature of the process water varies with the ambient temperature. The
sampling rate of the process data is 1 data point per 5 min when the SPC system is on
service. When the chiller is failed, supply temperature can vary and goes up to 65 degrees.



Sensors 2023, 23, 486

7 of 22

i

Figure 2. Motor Testbed.

Figure 4. Balancing disk to make different levels of imbalance.

Experimental Setup: The goal is to measure the performance of our time-series
regression model to detect anomalies for the vibration sensors. We show the performance
of our models in terms of the accuracy of detecting anomalies (measured by precision,
recall, and F-1 score). We also use the root mean square error (RMSE) for evaluating
the performance of different forecasting models on the four datasets. The goal of these
time-series regression models is to extract the anomaly measures that are typically far from
the predicted value of the regression model. For each proposed model, the training size
was 66% of the total collected data while the testing size was 34%. We also varied the
proportion of data used for training as a parameter and tested the performance of our
model to check the least amount of data needed (which which was 30% of the data in our
experiments) for the time-series regression model to predict acceptable values (within 10%
error from the actual values). We trained the ten predictive models on specific RPM and
tested on same RPM. The data contains different levels of defects (i.e., different labels for
indicating normal operation, near-failure, and failure). These labels would be used in next
section. In time-series prediction models, all data that have different levels of defects were



Sensors 2023, 23, 486

8 of 22

tested. Specifically, the data was divided between training and testing equally. We stopped
after 5 epochs as the total loss on training samples saturates.

Computing Resources: We performed anomaly detection experiments on an Intel i7
@2.60 GHz, 16 GB RAM, 8-core workstation. The transfer learning experiments were
performed on Dell Precision T3500 Workstation, with 8 CPU cores, each running at
3.2 GHZ, 12 GB RAM, and Ubuntu 16.04 OS.

4.1.2. Results and Insights

Performance: We first do benchmarking of the ten time-series forecasting models for
each of the four datasets (described above in Section 4.1.1). Table 1 shows such comparison
in terms of the RMSE. We first observe that each dataset has a different best model (e.g.,
LSTM gave the best performance for Piezoelectric dataset while AutoEncoder was the
best for Process data). Second, most of the ML-based forecasting models perform better
than the traditional models. This is due to the fact that the deployments generate enough
data for accurate training and due to the complex dependencies among the features of the
datasets. Third, the linear models such as ARIMA and Auto-Regression were worse due to
the non-linear nature of sensors’ data. We compare the anomaly detection performance of
our approach under the different forecasting models (represented by the typical metrics:
Precision, Recall, and F-1 Score [56]). Table 2 shows the average performance for each
metric across our four datasets. We observe that Random Forest and AutoEncoder give the
first and second best anomaly detection performances, respectively, (i..e., highest precision
and recall). Furthermore, Seasonal Naive and Auto Regression gave the worst performance.

Table 1. Results for forecasting (RMSE; the lower the better) for every testbed. For each forecasting
model, we choose the model with the best performance from all its model variants. We observe
that the best forecasting model is task-dependent (i.e., the best model is varying depending on each
dataset type). The values with bold text are those with the best performances.

Dataset Seasonal Naive DeepAR Deep Factors Random Forest AutoEncoder Auto-Regression ARIMA LSTM RNN DNN
Piezoelectric 0.0834 0.0849 0.0813 0.0554 0.0931 0.3804 0.0954  0.0340 0.0352 0.0390
MEMS 0.1442 0.1346 0.2510 0.2295 0.2431 0.3865 0.2569  0.1450 0.1501 0.1554
Process Data 0.8943 0.8262 6.6468 0.5357 0.0560 1.1645 1.8840  0.6001 0.5811 0.769
Pharmac. Packaging 0.5673 0.3654 0.3628 0.1597 0.1510 0.3962 1.3069  0.7031 0.7612 1.5820

Table 2. Anomaly detection Results (Precision, Recall, and F-1 Score; the higher the better) for each
forecasting model. Random Forest and AutoEncoder give the best anomaly detection performances.

Metric Seasonal Naive DeepAR  Deep Factors Random Forest AutoEncoder Auto-Regression ARIMA LSTM RNN DNN
Precision 0.4285 0.5609 0.5409 0.8333 0.7833 0.5116 0.7419 0.5135  0.5961  0.6305
Recall 0.4502 0.6571 0.6071 0.7813 0.7705 0.5945 06216  0.5938 0.6818  0.6744
F-1 Score 0.4391 0.6052 0.5721 0.8064 0.7769 0.5499 0.6764 0.5507  0.6361  0.6517

4.2. Transfer Learning across Vibration Sensors

In this section, we use our transfer-learning proposed model to detect the level of
defect of the readings from the manufacturing sensors. In this context, we evaluate the
performance of the model on two real datasets from our manufacturing sensors which are
piezoelectric and MEMS vibration sensors. In other words, we perform data analytics on
the data from the vibration sensors and infer one of three operational states (mentioned in
Section 4.1) for the motor. We show the performance of our model in terms of the accuracy
of detecting defect level as measured by the classification accuracy of the deep-learning
prediction model on the test dataset which is the defined as the number of correctly
classified samples to the total number of samples. We study different parameters and
setups that affect the performance.

We seek to answer the following two research questions in this section:

*  Can we detect the operational state effectively (i.e., with high accuracy)?
e Can we transfer the learned model across the two different types of sensors?



Sensors 2023, 23, 486

9 of 22

4.2.1. DNN Model Results

Experimental Setup and Results: We collected the data from 2 deployed sensors, i.e.,
piezoelectric and MEMS sensors mentioned earlier. Then, two DNN models were built on
these two datasets. First, a normal model for each RPM was built where we train a DNN
model on around 480 K samples for the RPM. We have a sampling rate of 3.2 KHz (i.e.,
collect 3.2 K data during 1 s) and we collect 50 samples and we have 3 axes. So, total data for
one experiment is 3200 x 50 x 3 = 480 K data points. For testing on same RPM, the training
size was 70% of the total collected data while the testing size was 30%. The baseline DNN
model consists of 50 neurons per layer, 2 hidden layers (with ReLU activation function
for each hidden layer) and output layer with Softmax activation function. Following
standard tuning of the model, we created different variants of the models to choose the
best parameters (by comparing the performance of the multi-class classification problem).
We built upon the Keras library [57] which is Python-based for creating the variants of
our models. In our results, we call the two models DNN-R and DNN-TL where the first
refer to training DNN regularly and testing on the same sensor while the latter means
transfer learning model where training was performed on one sensor and classification
was performed on a different sensor (using the design of shared weights and learned
representations as described in Section 3.2). Specifically, for the DNN-TL, training was
done on the plentiful sensor data from the piezoelectric sensor and the prediction was done
based on the MEMS sensor data. The comparison between regular DNN model and our
transfer-learning DNN model on MEMS sensors in terms of the best achieved accuracy is
shown in Table 3. We notice that the transfer-learning model gives a relative gain of 11.6%
over the model trained only on the lower resolution MEMS sensor data. The intuition here
is that the MEMS sensor data is only 2000 samples, due to very low sampling rate (10 Hz
as opposed to 3.2 kHz with the piezoelectric sensor) and thus it cannot fit a good DNN-R
model. On the other hand, we can train a DNN-TL model with sensor of different type (but
still with vibration readings) with huge data and classify the failure of the sensor under
test (i.e., MEMS with less data) with accuracy 71.71%.

Table 3. A comparison between regular DNN model and our transfer-learning DNN model on MEMS
sensors. The transfer-learning model gives an absolute gain of 7.48% over regulard DNN model.

Model Type Sensor Tested Accuracy (%)
DNN-R MEMS 64.23%
DNN-TL MEMS 71.71%
DNN-R Piezoelectric 80.01%

Moreover, we show the effect of parameter-tuning on the performance of the models in
Table 4. The parameter tuning gives an absolute gain of 13.71% over the baseline DNN-TL
model. Delving into the specifics, the most effective tuning steps were feature-selection and
normalization which give absolute increase of 10.66% in the accuracy over non-normalized
features and increasing number of hidden layers and batch size which gave around 3.05%
each on the performance. Note that increasing the epochs to 200 and hidden layers to more
than 3 decreases the accuracy, due to over-fitting.

Table 4. The effect of parameter tuning on the accuracy of DNN-TL model. The parameter tuning
gave an absolute gain of 13.71% over the baseline model. The best accuracy is shown in bold.

Tuning Factor Accuracy Tuning Factor Accuracy
None 58.00% Feature Selection 64.08%
Feature-normalization 68.66% Neurons per layer (50-80-100) 69.41%
Number of Hidden layers (2-3) 70.32% Number of Epochs (50-100) 70.75%
Batch Size (50-100) 71.71%

Feature Selection: We validate one idea that the vibration data in certain axis will not
carry different information in normal and failure cases. The circular movement around the



Sensors 2023, 23, 486

10 of 22

center of the motor is on X and Z axes so that they have vibration values that change with
motor condition while the Y-axis has smaller vibration (the direction of the shaft). Thus, we
compare the result of the model when the features are the three data axes in one setup (i.e.,
default setup) and the proposed idea when the features are extracted only from X-axis and
Z-axis data vectors. According to the experimental setup shown in Figure 2, as the motor
rotates with the disk, which is imbalanced by the mounted mass, i.e., eccentric weight, the
centripetal forces become unbalanced, and this causes repeated vibrations along multiple
directions. Considering the circular movement around the center of the motor, the two
directions, which are x-axis and z-axis in our case, are mainly vibrated while the y-axis
(the direction along the shaft) show relatively smaller vibration, which may not show a
distinguishable variation in the data pattern as machine health varies. We find that this
feature selection process gave us a relative increase of 10.5% over the baseline model with
all three features. Specifically, the accuracy is 58% using the model trained on default
features compared to 64.08% using the model with feature selection. This kind of feature
selection requires domain knowledge, specifically about the way the motor vibrates and
the relative placement of the sensors. The intuition here is that redundant data features
are affecting the model’s learning and therefore selecting the most discriminating features
helps the neural network learning.

4.2.2. Data-Augmentation Model Results

Experimental Setup: We used data-augmentation techniques (by both augmenting
data from different RPMs and generating samples with interpolation within each RPM)
and train DNN-R model on each sensor. For piezoelectric sensor, the data-augmentation
model consists of 5 M samples (480 K samples collected from each rotational speed data
for the available ten rotational speeds and 20 K generated samples by interpolation within
each RPM). For MEMS sensor, the data augmentation model consists of 15,120 samples.
We compare the average accuracy of the model over all RPMs under the regular model
(DNN-R) and the augmented model. The absolute increase in the accuracy using the
augmentation techniques over the regular model is 9.76% for piezoelectric and 8.99% for
MEMS, respectively. The data-augmentation techniques are useful for both piezoelectric
and MEMS vibration sensors. Data-augmentation is useful for transfer learning across
different RPMs.

Confusion Matrices Comparison: Here, we show the confusion matrix which
compares the performance of our DNN-R models for each operational state separately.
Table 5a shows such metric using data-augmentation. The best performance is for
near-failure which exceeds 96%. This is good in practice since it gives early alarm (or
warning) about the expected failure in future. Moreover, the model has good performance
in normal operation which exceeds 70%. Finally, the failure accuracy is a little lower which
is 61.67% however the confusion is with near-failure state which also gives alarm under
such prediction. On the other hand, DNN-R model without data-augmentation has worse
prediction in both normal and near-failure modes as shown in Table 5b (normal operation
detection around 60.4% and near-failure is 93.86%) while much better for detecting
failures where the accuracy is 75.00%. The intuition here is that detecting near-failure
and normal-operation modes can be enhanced using data-augmentation techniques. On
the contrary, detecting failure operational state is better without data-augmentation as
failure nature can be specific for each RPM and thus creating single model for each RPM
can be useful in that sense.



Sensors 2023, 23, 486

11 0f 22

Table 5. Confusion matrices for classifying operational conditions using DNN-R, where we have the
following cases (a) with data-augmentation and (b) no data-augmentation.

(a) Data Augmentation (b) No Data Augmentation
Normal Near-Failure Failure Normal Near-Failure Failure
Normal 70.22% 28.40% 1.38% 60.38% 18.52% 21.09%
Near-failure 3.82% 96.05% 0.13% 6.08% 93.86% 0.06%
Failure 0% 38.33% 61.67% 0% 25.00% 75.00%

4.2.3. Effect of Variation of RPMs Results

Here, we show the details of each RPM-single model and the details of the
data-augmented model. First, we train a single-RPM model and test that model on all
RPMs. Then, we build a data-augmented model as explained earlier. Table 6 shows
such comparison where the single-RPM model cannot transfer the knowledge to another
RPMs. An interesting note is that at the slowest RPMs (here, RPM-100 and RPM-200) the
separation is harder at the boundary between failure, near-failure, and normal operational
states. On the other hand, data-augmented model has such merit since it is trained on
different samples from all RPMs with adding data-augmentation techniques. In details, the
absolute enhancement in the average accuracy across all RPMs is 6% while it is 13% over
the worst single-RPM model (i.e., RPM-600). In the data-augmented model, 70% from each
RPM'’s samples were selected for training that model as mentioned earlier.

Table 6. Comparison on the performance of failure detection model where the trained model is
using one RPM and the tested data is from another RPM. The data-augmentation model is useful
for transfer the learning across different RPMs. The absolute enhancement in the average accuracy
across all RPMs is 6% while it is 13% over the worst single-RPM model.

Trained RPM RPM-100 RPM-200 RPM-300 RPM-400 RPM-500 RPM-600 Average (%)
RPM-100 68.80% 66.64% 65.83% 73.61% 67.29% 42.90% 64.18%
RPM-200 63.54% 73.71% 58.11% 74.67% 67.68% 45.93% 63.94%
RPM-300 57.99% 55.00% 95.20% 66.09% 71.32% 45.14% 65.12%
RPM-400 66.37% 69.68% 54.79% 87.38% 69.52% 32.62% 63.39%
RPM-500 65.37% 64.94% 80.12% 80.20% 75.61% 42.59% 68.06%
RPM-600 49.16% 51.12% 63.44% 44.23% 55.02% 75.16% 56.35%

Augmented-data model 67.94% 71.31% 62.61% 80.06% 69.06% 65.88% 69.48%

4.2.4. Relaxation of the Classification Problem

In some applications of the sensor data, the goal can be to detect only if the data from
the deployed sensor is normal or not. Thus, we relax the defect classification problem into
binary classification problem to test such application. In this subsection, the experimental
data obtained under five rotation speeds, i.e., 300, 320, 340, 360, and 380 RPMs were
considered to classify between normal and not-normal states. For the deep learning
model, we use neural network, which consists of two layers. The models” performances
are summarized in Table 7. Compared to the original defect classification problem, the
performance here is better due to the following reasons. First, the confusion is less in binary
classification problem (with the existence of only two classes). Second, the variation in the
range between RPMS is less in this experiment.



Sensors 2023, 23, 486

12 of 22

Table 7. Comparison on the performance of binary classifier detection model where the trained
model is using one RPM and the tested data is from another RPM. The average accuracy is higher,
compared to the three classes defect classification models.

Trained RPM RPM-300 RPM-320 RPM-340 RPM-360 RPM-380  Average (%)
RPM-300 100% 65.17% 58.17% 51.50% 50.63% 65.09%
RPM-320 99.75% 100% 97.58% 78.63% 68.17% 88.82%
RPM-340 96.60% 99.27% 100% 97.33% 82.43% 95.12%
RPM-360 96.60% 99.27% 97.33% 99.67% 84.43% 95.46%
RPM-380 61.05% 87.75% 96.93% 99.83% 99.77% 89.07%

4.3. Autoencoder for Anomaly Detection

For some manufacturing sensors (such as process data in our paper), the classification
is changed from normal, failure, and near-failure (warning) to running, stopped, and
abnormal due to working hours for such manufacturing facilities. Thus, in this section,
we use autoencoder classification for such operation state on process data. The details are
provided in Appendix D.

5. Discussion
5.1. Comparative Analysis with Prior Related Work

We now provide a comparative analysis between our current work and developed
techniques with similar solutions by other scientists in anomaly detection and defect
classification for smart manufacturing domain. Table 8 shows such a comparison where it
shows the main differences between our work and those prior works.

Table 8. A comparative analysis of the available features between the prior related works in
smart manufacturing and our framework. Our work provides a failure detection framework that
incorporates transfer learning between different sensor types. Our framework also considers RPM
aggregation and defect type classification.

Framework Sensor Failure Transfer Learning Benchmarking Defect Type Different RPM Dataset Release
Detection Support ML Models Classification Aggregation (Opensource)
Alfeo [21] v X X X X X
Lee [20] v X 4 X X X
Teng [32] v X X v X X
Wang [40] X v v X X X
Udmale [41] X v X v X X
Fathi [42] v X v X X v/
Lewis [43] v X X X X v
Kevin [58] X v X X X v
Ours 4 v 4 v v v

5.2. Ethical Concerns

We do not see significant risks of security threats or human rights violations in our
work or its potential applications. However, we do foresee that our work contributes to
the field of smart manufacturing and anomaly detection fields overall. These efforts might
eventually automate the detection process, leading to changes in the workforce structure.
Hence, there is a general concern that automation may significantly reduce the demand for
manufacturing human workers, and the industries would need to act proactively to avoid
the social impact of such changes.

5.3. Transfer Learning under Different Features

In our transfer learning task, the sensor types I and II should be measuring the same
physical quantity but can be from different manufacturers and with different characteristics.
Another interesting question would be what happens if the two sensor types have
overlapping but not identical features in the data that they generate? This requires more



Sensors 2023, 23, 486

13 of 22

complex models which can do feature transformations, using possibly domain knowledge,
and we leave such investigation for future work.

5.4. Reproducibility

We have publicly released our source codes and benchmark data to enable others
reproduce our work. We are publicly releasing, with this submission, our smart
manufacturing database corpus of 4 datasets. This resource will encourage the community
to standardize efforts at benchmarking anomaly detection in this important domain. We
encourage the community to expand this resource by contributing their new datasets and
models. The website with our database and source codes is: https://drive.google.com/
drive/u/2/folders/1QX3chnSTKO3PsEhi5kBdf9OWwMBmOTri]8 (accessed on 12 December
2022). The details of each dataset and the different categories of models are in Section 4.1.
We provide the datasheet for the datasets in Appendix A. The hyper-parameter selections
and the libraries used are presented in Appendix E. A preprint preliminary version of
this work shows such reproducible nature for our work for other smart IoT applications,
including smart agriculture systems [59].

6. Conclusions

This paper explored several interesting challenges to an important application area,
smart manufacturing. We studied anomaly detection and failure classification for the predictive
maintenance problem of smart manufacturing. We proposed a temporal anomaly detection
technique and an efficient defect-type classification technique for such application domain.
We compared the traditional and ML-based models for anomaly detection. The ML-based
models lead to better anomaly detection prediction. We tested our findings on four
real-world data-sets. We then proposed a transfer learning model for classifying failure
on sensors with lower sampling rate (MEMS) using learning from sensors with huge
data (piezoelectric) where the model can detect anomalies across operating regimes. Our
findings indicate that the transfer learning model can considerably increase the accuracy of
failure detection. We also studied the effects of several tuning parameters to enhance the
failure classification. We release our database corpus and codes for the community to build
on it with new datasets and models. We believe that the proposed transfer learning scheme
is useful in smart manufacturing domain, especially when large anomaly detection datasets
can be costly to collect and are normally thought to be very specific to a single application.
Future avenues of research include leveraging the data from multiple sensors and detecting
the device health by merging information from multiple, potentially different, sensors.

Author Contributions: Conceptualization, M.A., JW.S. and S.B.; methodology, M.A. and W.J.L.;
software, B.-G.].; validation, M.A., B.-G.]. and W.J.L.; formal analysis, S.B.; investigation, N.R. and
C.M.; resources, A.S. and S.B.; data curation, W.J.L.; writing—original draft preparation, M.A;
writing—review and editing, S.B.; visualization, M.A. and W.J.L.; supervision, A.S.,].W.S. and S.B.;
project administration, A.S., J.W.S. and S.B.; funding acquisition, A.S., ].W.S. and S.B. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by Lilly Endowment grant number “Wabash Heartland
Innovation Network (WHIN)”. The opinions expressed in this publication are those of the authors of
the article and they do not reflect the opinions or views of sponsor.

Data Availability Statement: The authors share the database corbus and codes along with this
submission. The URL for our database and codes is: https://drive.google.com/drive/u/2/folders/
10X3chnSTKO3PsEhi5kBdfOWwMBmMOTri]8 (accessed on 12 December 2022) The dataset details are
provided in Appendix A, the dataset collection process is described in Appendix B, the dataset usage
is described in Appendix C, and the main codes are presented in Appendix E.

Acknowledgments: We thank Xiaofan Jiang and Dimitrios Peroulis for their valuable feedback and
suggestions on the work.

Conflicts of Interest: The authors declare no conflict of interest.


https://drive.google.com/drive/u/2/folders/1QX3chnSTKO3PsEhi5kBdf9WwMBmOriJ8
https://drive.google.com/drive/u/2/folders/1QX3chnSTKO3PsEhi5kBdf9WwMBmOriJ8
https://drive.google.com/drive/u/2/folders/1QX3chnSTKO3PsEhi5kBdf9WwMBmOriJ8
https://drive.google.com/drive/u/2/folders/1QX3chnSTKO3PsEhi5kBdf9WwMBmOriJ8

Sensors 2023, 23, 486

14 of 22

Appendix A. Explaining Datasets: Highlights, and How Can It Be Read
Appendix A.1. Datset Categories

We have four categories. The data collected from MEMS sensor (350 instances), the
data collected from piezoelectric sensor (166 K instances), the data collected from process
data (39 K instances), and the data shared from pharmaceutical packaging manufacturer
company (9.5 K instances).

Appendix A.2. MEMS and Piezoelectric Datasets

Highlights of the datasets: To build these datasets, an experiment was conducted in
the motor testbed to collect machine condition data for different health conditions. During
the experiment, the acceleration signals were collected from both piezoelectric and MEMS
sensors at the same time with the sampling rate of 3.2 kHz and 10 Hz, respectively, for
X,Y, and Z axes. Different levels of machine health condition was induced by mounting
a mass on the balancing disk, thus different levels of mechanical imbalance are used to
trigger failures. Failure conditions were classified as one of three possible states—normal,
near-failure, and failure. In this experiment, three levels of mechanical imbalance (i.e.,
normal, near-failure, failure) were considered acceleration data were collected at the ten
rotational speeds (100, 200, 300, 320, 340, 360, 380, 400, 500, and 600 RPM) for each condition,
while the motor is running, 50 samples were collected at a 10 s interval, for each of the ten
rotational speeds.

Reading the dataset: Both Piezoelectric and MEMS databases are in CSV format. For
Anomaly detection, we have a single RPM (CSV file) while for transfer learning we have
several rpms for each RPM (where all CSV files are compressed in .zip format). The CSV
file for Piezoelectric has many more samples (due to higher sampling rate). For each CSV
file, each data instance (row) contains the following columns: X, Y, Z where each one has
the corresponding vibration sensor reading.

Appendix A.3. Process Data
Highlights of the dataset:

s Startdate: 27 July 2021

*  End date: 1 May 2022

*  Measurement Columns: Air Pressure 1, Air Pressure 2, Chiller 1 Supply Tmp, Chiller 2
Supply Tmp, Outside Air Temp, Outside Humidity, and Outside Dewpoint.

*  Measurement interval: 5 min (1 data point per 5 min)

*  Description: We were also able to collect process related data that can potentially
indicate the condition of machine operation. We call it process data and the process
data has been collected with the Statistical Process Control (SPC) system. The
measurement started from August 2021 until May 2022.

Reading the dataset: The Process data is in CSV format. The CSV file has around
49K instances where each data instance (row) contains the following columns: Timestamp,
Air Pressure 1, Air Pressure 2, Chiller 1 Supply Tmp, Chiller 2 Supply Tmp, Outside Air
Temp, Outside Humidity, and Outside Dewpoint. We applied our anomaly detection
techniques on chiller supply temperature. Figure A1 shows one of the process data, chiller
supply temperature.

Abnormal Dates: We observed abnormal operations of the machine which occurred
on 1 February 2022 and 8 March 2022.



Sensors 2023, 23, 486 15 of 22

TEmperature (F)
b b & a

=

Figure A1. Chiller supply temperature in the process data.

Appendix A.4. Pharmaceutical Packaging
Highlights of the dataset:

e Start date: 13 November 2021, some data loss between December and January.

e End date: May 2022

*  Measurement location: Air Compressor, Chiller 1, Chiller 2, and Jomar moulding machine
*  Sample rate for each axis: 3.2 kHz

®  Measurement interval: 30 min

e Measurement duration: 1 s

Reading the dataset The dataset have several months where each month is represented
by a “.txt” file that indicates vibration data for each period. In particular, the vibration data
for one measurement is written into 5 lines as follows:

e 1stline: date and time that the measurement started
*  2nd line: x-axis vibration data (3200 data points)

*  3rd line: y-axis vibration data (3200 data points)

*  4thline: z-axis vibration data (3200 data points)

*  5thline: time difference between each data point

Appendix A.5. Instances Nature

The instances represent the different readings of manufacturing sensors which are
deployed in real-world motor testbeds.

Appendix B. Dataset Collection

Raw data was collected from the real-world sensors from August 2021-May 2022.
Hardware (sensors mounted on motor testbeds) and software (code to collect the data from
the sensors and save them to a desktop machine).

Appendix B.1. Hardware Cost

(i) We used one MEMS sensor and one Piezoelectric sensor to monitor the vibration of
a manufacturing equipment. The breakdown cost of sensors and other processing devices
including Raspberry Pi is: $75 (raspberry pi) + $15 (micro SD card) + $4 (power cable) +
$17.5 (MEMS sensor) + $1305 (Piezoelectric sensor) = $1415.

(ii) For the data for chiller and compressor, the estimated hardware cost is $111.5 ($75
(raspberry pi) + $15 (micro SD card) + $4 (power cable) + $17.5 (chiller sensor)).

Appendix B.2. Required Software Resources

VNC viewer for remote access (free) + Python (free) + cloud data storage service
(about $120/year).



Sensors 2023, 23, 486

16 of 22

Appendix B.3. Required Computational Resources

We performed anomaly detection experiments on an Intel i7 @2.60 GHz, 16 GB RAM,
8-core workstation. our transfer learning experiments were performed on Dell Precision
T3500 Workstation, with 8 CPU cores, each running at 3.2 GHZ, 12 GB RAM, and Ubuntu
16.04 OS. We have been using a GPU (NVIDIA Geforce GTX 1060) in one of the student’s
laptop for autoencoder training.

Appendix C. Uses of Datasets
Appendix C.1. Main Dataset Usage

The dataset can be used for research purposes (anomaly detection benchmarking). The
following repository links to systems that use the dataset https:/ /drive.google.com/drive/
u/2/folders/1QX3chnSTKO3PsEhi5kBAdf9OWwMBmMOTri]8 (accessed 12 December 2022).

Appendix C.2. Other Data Usage

Anomaly detection and transfer learning across the manufacturing sensors from which
data was collected. Any other research usage is welcomed as well.

Appendix C.3. Hosting and Maintenance

To ensure accessibility and future maintenance of the datasets and the codes, we created
also a Github repository with the following URL: https://github.com/submission-2022
/Smart-Manufacturing-Testbed-for- Anomaly-Detection.git. It contains all the codes, datasets,
and most of the instructions. We chose a creative common Zero 1.0 Universal license for the
repository. We will use that github repository to update the code and datasets.

Appendix C.4. Motivation for Data Release

The main motivation for releasing our datasets is for performing ML-based anomaly
detection and transfer learning for smart manufacturing systems. The manufacturing of
discrete products typically involves the use of equipment termed machine tools. Examples
of machine tools include lathes, milling machines, grinders, drill presses, molding machines,
and forging presses. Almost always, these specialized pieces of equipment are reliant on
electric motors that power gearing systems, pumps, actuators, etc. The health of a machine is
often directly related to the health of the motors being used to drive the process. Given this
dependence, health studies of manufacturing equipment may work directly with equipment
in a production environment or in a more controlled environment on a “motor testbed”.

Appendix D. Extended Evaluation
Appendix D.1. Anomaly Detection Using Autoencoder Classification

For some manufacturing sensors (such as process data in our paper), the classification
is changed from normal, failure, and near-failure (warning) to running, stopped, and
abnormal due to working hours for such manufacturing facilities. Thus, in this section, we
will use autoencoder classification for such operation state on process data (described in
Appendix A.3).

Autoencoder Classifier: An autoencoder is used for the classification of machine
operation states (running, stopped, abnormal). We employed a simple autoencoder of
which the encoder and the decoder are consisting of a single hidden layer and an output
layer with an additional classification layer. As shown in Figure A2, the encoder consists of
two linear layers (128, 64) and the decoder consists of another two linear layers (64, 128).
The classification layer also has two linear layers (128, 3) that outputs the predicted label.
Here, the output of the classification layer is one of the three different operation conditions.
The autoencoder can have two different losses (reconstruction loss and classification loss)
during the training. Thus, the loss function minimizes a weighted sum of the two losses.
The best number of layers in the autoencoder has been determined to be 2. We also have
observed that the depth of the autoencoder does not improve the prediction accuracy.


https://drive.google.com/drive/u/2/folders/1QX3chnSTKO3PsEhi5kBdf9WwMBmOriJ8
https://drive.google.com/drive/u/2/folders/1QX3chnSTKO3PsEhi5kBdf9WwMBmOriJ8
https://github.com/submission-2022/Smart-Manufacturing-Testbed-for-Anomaly-Detection.git
https://github.com/submission-2022/Smart-Manufacturing-Testbed-for-Anomaly-Detection.git

Sensors 2023, 23, 486

17 of 22

o g
2 B
= 2
£ —_— 128 x 64 =
5 g
5 9
=
Encoder Decoder

Dense Predicted

| L
layer label

bd x 128 128x 3

Figure A2. Proposed autoencoder model with an additional classification layer.

Appendix D.2. Experimental Setup and Results

An autoencoder was developed to perform experiments for the anomaly detection
on tri-axial vibration data and process data. The vibration data and process data were
not lined up as they are measured from different sources. We performed label imputation
to line up the timestamp of both vibration and process data. Here, median values are
utilized. Then, we extracted time domain features from the vibration data to construct
the autoencoder’s input. The main features used for that task were: mean, standard
deviation, root mean square, peak, and crest factor in the feature extraction. The final
input consists of the extracted time domain features and process data which indicates the
operation of the manufacturing equipment. Then, we performed labeling task based on
the machine operation information as follows. As the pharmaceutical company operates
non-stop from Sunday 11 p.m. to Friday 7 p.m. and shuts down from Friday 7 p.m. to
Sunday 11 p.m. When the chiller is failed, supply temperature can vary with the ambient
temperature and goes up to 65 degrees. When the machine is off, the data is labeled as ‘0
whereas the label is determined as “1” when the machine is on. When there are abnormal
operation of the machine, the data is labeled as ‘2’. During the data collection, we observed
two abnormal operations of the machine which are occurred on 1 February 2022 and
8 March 2022. When the abnormal operations were detected, maintenance was performed
to lubricate the machine. Data collection was being conducted when the machine was
under the maintenance service. We aim to detect such abnormal operations using the
vibration and process data with our proposed model. The proposed model achieved 84%
of test accuracy. The limited number of abnormal labels affected the accuracy.

Appendix E. Benchmarks: Models, Hyper-Parameter Selection, and Code Details
Appendix E.1. Models and Hyper-Parameter Selection

We now provide details on the models used to study the anomaly detection problem
in our work. We explain the time-series forecasting algorithm and the hyperparameters
used and the libraries used for each forecasting model. This can help reproducing our
results for the future related works.

DeepAR [29]: DeepAR experiments are using the model implementation provided
by GluonTS version 1.7. We did grid search on different values of number of cells and the
number of RNN layers hyperparameters of DeepAR since the defaults provided in GluonTS
would often lead to apparently suboptimal performance on many of the datasets. The best



Sensors 2023, 23, 486

18 of 22

values for our parameters are number of cells equals 30 and number of layers equals 3. All
other parameters are defaults of gluonts.model.deepar.Deep AREstimator.

Deep Factors [51]: Deep Factors experiments are using the model implementation
provided by GluonTS version 1.7. We did grid search over the number of units per hidden
layer for the global RNN model and the number of global factors hyperparameters of Deep
Factors. The best values for our parameters are 30 (for the number of units per hidden
layer) and 10 (for the number of global factors). All other parameters are defaults of
gluonts.model.deep_factor.DeepFactorEstimator.

Seasonal Naive [25]: Seasonal Naive experiments are using the model implementation
provided by GluonTS version 1.7. We did grid search over the length of seasonality pattern, since it
is different unknown for each dataset. The best parameter was either 1 or 10 for all datasets. All
other parameters are defaults of gluonts.model.seasonal_naive.SeasonalNaivePredictor.

Auto Regression [45]: Auto Regression experiments are using the model
implementation provided by statsmodels python library version 0.12.2. We did grid
search over the loss covariance type and the trend hyperparameter of Vector Auto Regression.
The best parameters are "HCO’ (for loss covariance type) and ‘t’ (for trend hyper-parameter).
All other parameters are defaults of statsmodels.tsa.var_model.

Random Forest [26]: Random Forest models” experiments are using the model
implementation provided by sklearn python library version 0.24.2. We did grid search over
the number of estimators (trees) and the max_depth (i.e., the longest path between the root node and
the leaf node in a tree) hyperparameter of Random Forest. The best parameters are 500 (for
the number of estimators) and 10 (for the max_depth). All other parameters are defaults of
sklearn.ensemble.RandomForestRegressor.

ARIMA [24]: ARIMA model experiments are using the model implementation
provided by the statsmodels python library version 0.12.2. A typical ARIMA model can
be represented as a function ARIMA(p,d,q) where p is the the number of lag observations
included in the regression model, d is the number of times that the raw observations are
differenced, and g is the size of the moving average window. Then, we use this trained
ARIMA model to detect the anomaly in the sensor’s test (future) readings. In practice,
p = 0 or g = 0 as they may cancel each other. The best parameters in our experiments
were g = 0,d = 1 and p = 10 after tuning trials. All other parameters are defaults of
statsmodels.tsa.arima.model. The reason for our choice of ARIMA is that if the data has a
moving average linear relation (which we estimated the data does have), ARIMA would
be better to model such data. Moreover, ARIMA is a simple and computationally efficient
model.

Simple RNN [46]: Simple Recurrent Neural Network (RNN) models experiments are
using the model implementation provided by keras python library version 2.9.0. We did
grid search over several parameters. The best parameters are 100 neurons per layer with
‘ReLU’ activation function. We have two hidden layers with also ‘ReLU” activation. We
used batch size of 10. All other parameters are defaults of keras.layers.SimpleRNN.

LSTM [27]: Long-short Term Memory (LSTM) models experiments are using the
model implementation provided by keras python library version 2.9.0. LSTM better models
data that has non-linear relationships, which is suitable for manufacturing sensors’ readings
and, thus, LSTM can be a more expressive model for our anomaly detection task. We did
grid search over several parameters. The best parameters are 100 neurons per layer with
‘ReLU’ activation function. We have two hidden layers with also ‘ReLU” activation. We
used batch size of 10. We used 4 LSTM blocks and one dense LSTM layer with 10 units and
the training algorithm used is Stochastic Gradient Descent (SGD). All other parameters are
defaults of keras.layers.LSTM.

AutoEncoder [50]: AutoEncoder models’ experiments are using the model
implementation provided by keras python library version 2.9.0. We did grid search over
several parameters. The best parameters we have are: using 3 convolutional layers where
each layer has 32 filters, 2 strides, kernel size of 7, and ‘ReLU’ activation. The dropout rate



Sensors 2023, 23, 486

19 of 22

is 0.2. We used batch size of 10. All other parameters are defaults of keras.layers.Sequential
and keras.layers.Conv1D.

DNN [49]: Deep Neural Network (DNN) models experiments are using the model
implementation provided by keras python library version 2.9.0. We did grid search over
the number of layers, batch size, and number of neurons per layer. The best parameters are
50 neurons per layer with ‘ReLU’ activation function. We have three hidden layers with
also ‘ReLU’ activation. We used batch size of 10. All other parameters are defaults of
keras.layers.Dense.

Appendix E.2. Code Details and Prerequisites

We share our codes along with database corpus. In particular, the code’s link is https:
//drive.google.com/drive/u/2/folders/14eY8tsr-PALnifSQpEqIXgr_RVstaicd (accessed
on 12 December 2022). The codes folder is divided into two sub-folders: (1) Anomaly
Detection Codes and (2) Transfer Learning Codes.

Appendix E.2.1. Anomaly Detection Code
Under Anomaly detection folder, we have the following source codes:

*  Arima.py: Training and testing ARIMA forecasting model

e LSTM.py: Training and testing LSTM forecasting model

¢ AutoEncoder.py: Training and testing AutoEncoder forecasting model

*  DNN.py: Training and testing DNN forecasting model

*  RNN.py: Training and testing RNN forecasting model

*  GluonTModels.py: That file contains the rest of the forecasting models along with
the required functions and hyper-parameters.

*  Autoencoder_classifier.py: Training and Testing a classifier-based model for anomaly
detection (see Appendix E.2).

In particular, “GluonTModels.py” contains the codes to train and examine
performance for the following models: DeepAR, DeepFactors, Seasonal Naive, Random
Forest, and Auto-Regression.

Appendix E.2.2. Transfer Learning Code
Under Transfer learning folder, we have the following source codes:

e  Transfer Learning Pre_processing.py: This code prepares the CSV files used for
training defect type classifiers and transfer learning.

*  Transfer_Learning_ Train.py: This code trains and tests the defect type classifier,
including feature encoding, defect classifier building, testing, and performance reporting.

Appendix E.2.3. Running the Codes

To run any code, we need just to run the command “python code_name.py”, where
“code_name” is the required anomaly detection or transfer learning model. The user would
need to change the datafile name inside the code to the dataset of choice.

Appendix E.2.4. Prerequisites (Libraries and Modules)

Our codes have the following libraries that need to be installed (which can be installed
using apt-get install or conda):

*  numpy, scipy, pandas, keras, statsmodels, and sklearn
*  GluonTS, matplotlib and simplejson, re, random, and csv


https://drive.google.com/drive/u/2/folders/14eY8tsr-PALnifSQpEqlXgr_RVstaicd
https://drive.google.com/drive/u/2/folders/14eY8tsr-PALnifSQpEqlXgr_RVstaicd

Sensors 2023, 23, 486 20 of 22

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.
27.

Thomas, T.E.; Koo, J.; Chaterji, S.; Bagchi, S. Minerva: A reinforcement learning-based technique for optimal scheduling
and bottleneck detection in distributed factory operations. In Proceedings of the 2018 10th International Conference on
Communication Systems & Networks (COMSNETS), Bengaluru, India, 3-7 January 2018; pp. 129-136.

Scime, L.; Beuth, ]. Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained
computer vision algorithm. Addit. Manuf. 2018, 19, 114-126. [CrossRef]

Wang, J.; Ma, Y.; Zhang, L.; Gao, R X.; Wu, D. Deep learning for smart manufacturing: Methods and applications. J. Manuf. Syst.
2018, 48, 144-156. [CrossRef]

Ukil, A; Bandyoapdhyay, S.; Puri, C.; Pal, A. IoT Healthcare Analytics: The Importance of Anomaly Detection. In Proceedings of
the 2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA), Crans-Montana,
Switzerland, 23-25 March 2016; pp. 994-997. [CrossRef]

Shahzad, G.; Yang, H.; Ahmad, A.W.; Lee, C. Energy-efficient intelligent street lighting system using traffic-adaptive control.
IEEE Sens. ]. 2016, 16, 5397-5405. [CrossRef]

Mitchell, R.; Chen, LR. A survey of intrusion detection techniques for cyber-physical systems. ACM Comput. Surv. (CSUR) 2014,
46, 55. [CrossRef]

Chatterjee, B.; Seo, D.H.; Chakraborty, S.; Avlani, S.; Jiang, X.; Zhang, H.; Abdallah, M.; Raghunathan, N.; Mousoulis, C.; Shakouri,
A.; et al. Context-Aware Collaborative Intelligence with Spatio-Temporal In-Sensor-Analytics for Efficient Communication in a
Large-Area IoT Testbed. IEEE Internet Things J. 2020. [CrossRef]

Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. (CSUR) 2009, 41, 15. [CrossRef]
Sabahi, F.; Movaghar, A. Intrusion detection: A survey. In Proceedings of the 2008 Third International Conference on Systems
and Networks Communications, Sliema, Malta, 26-31 October 2008; pp. 23-26.

Bowler, A.L.; Bakalis, S.; Watson, N.J. Monitoring Mixing Processes Using Ultrasonic Sensors and Machine Learning. Sensors
2020, 20, 1813. [CrossRef]

Lopez, E; Saez, M.; Shao, Y.; Balta, E.C.; Moyne, ]J.; Mao, Z.M.; Barton, K,; Tilbury, D. Categorization of anomalies in smart
manufacturing systems to support the selection of detection mechanisms. IEEE Robot. Autom. Lett. 2017, 2, 1885-1892. [CrossRef]
Susto, G.A.; Terzi, M.; Beghi, A. Anomaly detection approaches for semiconductor manufacturing. Procedia Manuf. 2017,
11,2018-2024. [CrossRef]

Leahy, K.; Hu, R.L.; Konstantakopoulos, I.C.; Spanos, C.].; Agogino, A.M. Diagnosing wind turbine faults using machine learning
techniques applied to operational data. In Proceedings of the 2016 Ieee International Conference On Prognostics Furthermore,
Health Management (ICPHM), Ottawa, ON, Canada, 20-22 June 2016; pp. 1-8.

Francis, J.; Bian, L. Deep Learning for Distortion Prediction in Laser-Based Additive Manufacturing using Big Data. Manuf. Lett.
2019, 20, 10-14. [CrossRef]

Lee, WJ.; Mendis, G.P,; Sutherland, ]JW. Development of an Intelligent Tool Condition Monitoring System to Identify
Manufacturing Tradeoffs and Optimal Machining Conditions. In Proceedings of the 16th Global Conference on Sustainable
Manufacturing. Procedia Manufacturing, Buenos Aires, Argentina, 4-6 December 2019; Volume 33, pp. 256-263. [CrossRef]
Garcia, M.C.; Sanz-Bobi, M.A; Del Pico, ]. SIMAP: Intelligent System for Predictive Maintenance: Application to the health
condition monitoring of a windturbine gearbox. Comput. Ind. 2006, 57, 552-568. [CrossRef]

Kroll, B.; Schaffranek, D.; Schriegel, S.; Niggemann, O. System modeling based on machine learning for anomaly detection and
predictive maintenance in industrial plants. In Proceedings of the 2014 IEEE Emerging Technology and Factory Automation
(ETFA), Barcelona, Spain, 16-19 September 2014; pp. 1-7.

De Benedetti, M.; Leonardi, F.; Messina, F; Santoro, C.; Vasilakos, A. Anomaly detection and predictive maintenance for
photovoltaic systems. Neurocomputing 2018, 310, 59-68. [CrossRef]

Kusiak, A. Smart manufacturing. Int. |. Prod. Res. 2018, 56, 508-517. [CrossRef]

Lee, WJ.; Mendis, G.P,; Triebe, M.].; Sutherland, ].W. Monitoring of a machining process using kernel principal component
analysis and kernel density estimation. J. Intell. Manuf. 2019. [CrossRef]

Alfeo, A.L.; Cimino, M.G.; Manco, G.; Ritacco, E.; Vaglini, G. Using an autoencoder in the design of an anomaly detector for
smart manufacturing. Pattern Recognit. Lett. 2020, 136, 272-278. [CrossRef]

Marjani, M.; Nasaruddin, F.; Gani, A.; Karim, A.; Hashem, .A.T.; Siddiqa, A.; Yaqoob, I. Big IoT data analytics: Architecture,
opportunities, and open research challenges. IEEE Access 2017, 5, 5247-5261.

He, ].; Wei, J.; Chen, K,; Tang, Z.; Zhou, Y.; Zhang, Y. Multitier fog computing with large-scale iot data analytics for smart cities.
IEEE Internet Things ]. 2017, 5, 677-686. [CrossRef]

Contreras, J.; Espinola, R.; Nogales, EJ.; Conejo, A.]. ARIMA models to predict next-day electricity prices. IEEE Trans. Power Syst.
2003, 18, 1014-1020. [CrossRef]

Montero-Manso, P.; Athanasopoulos, G.; Hyndman, R.J.; Talagala, T.S. FFORMA: Feature-based forecast model averaging. Int. ].
Forecast. 2020, 36, 86-92. [CrossRef]

Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18-22.

Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735-1780. [CrossRef] [PubMed]


http://doi.org/10.1016/j.addma.2017.11.009
http://dx.doi.org/10.1016/j.jmsy.2018.01.003
http://dx.doi.org/10.1109/AINA.2016.158
http://dx.doi.org/10.1109/JSEN.2016.2557345
http://dx.doi.org/10.1145/2542049
http://dx.doi.org/10.1109/JIOT.2020.3036087
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.3390/s20071813
http://dx.doi.org/10.1109/LRA.2017.2714135
http://dx.doi.org/10.1016/j.promfg.2017.07.353
http://dx.doi.org/10.1016/j.mfglet.2019.02.001
http://dx.doi.org/10.1016/j.promfg.2019.04.031
http://dx.doi.org/10.1016/j.compind.2006.02.011
http://dx.doi.org/10.1016/j.neucom.2018.05.017
http://dx.doi.org/10.1080/00207543.2017.1351644
http://dx.doi.org/10.1007/s10845-019-01504-w
http://dx.doi.org/10.1016/j.patrec.2020.06.008
http://dx.doi.org/10.1109/JIOT.2017.2724845
http://dx.doi.org/10.1109/TPWRS.2002.804943
http://dx.doi.org/10.1016/j.ijforecast.2019.02.011
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276

Sensors 2023, 23, 486 21 of 22

28.
29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.
40.
41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Ballard, D.H. Modular learning in neural networks. Aaai 1987, 647, 279-284.

Salinas, D.; Flunkert, V.; Gasthaus, J.; Januschowski, T. DeepAR: Probabilistic forecasting with autoregressive recurrent networks.
Int. J. Forecast. 2020, 36, 1181-1191. [CrossRef]

Jeff, R. Considerations For Accelerometer Selection When Monitoring Complex Machinery Vibration. Available online: http:
/ /www.vibration.org/Presentation/IMI%20Sensors%20Accel %20Presentation%200116.pdf (accessed on 30 September 2019).
Albarbar, A.; Mekid, S.; Starr, A.; Pietruszkiewicz, R. Suitability of MEMS Accelerometers for Condition Monitoring: An
experimental study. Sensors 2008, 8, 784-799. [CrossRef]

Teng, S.H.G.; Ho, S.Y.M. Failure mode and effects analysis. Int. J. Qual. Reliab. Manag. 1996, 13, 8-26. [CrossRef]

Lee, WJ.; Wu, H.; Huang, A.; Sutherland, ].W. Learning via acceleration spectrograms of a DC motor system with application to
condition monitoring. Int. J. Adv. Manuf. Technol. 2019. [CrossRef]

Xiang, E.W.; Cao, B.; Hu, D.H.; Yang, Q. Bridging domains using world wide knowledge for transfer learning. IEEE Trans. Knowl.
Data Eng. 2010, 22, 770-783. [CrossRef]

Qiu, J.; Wu, Q.; Ding, G.; Xu, Y,; Feng, S. A survey of machine learning for big data processing. EURASIP . Adv. Signal Process.
2016, 2016, 67. [CrossRef]

Torrey, L.; Shavlik, J. Transfer learning. In Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods,
and Techniques; IGI Global: Hershey, PA, USA, 2010; pp. 242-264.

Abdallah, M.; Rossi, R.; Mahadik, K.; Kim, S.; Zhao, H.; Bagchi, S. AutoForecast: Automatic Time-Series Forecasting Model
Selection. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management (CIKM'22),
Atlanta, GA, USA, 17-21 October 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 5-14. [CrossRef]
Ling, X.; Dai, W.; Xue, G.R;; Yang, Q.; Yu, Y. Spectral domain-transfer learning. In Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Las Vegas, NV, USA, 24-27 August 2008; ACM: New York,
NY, USA, 2008; pp. 488-496.

Chen, T.; Goodfellow, L; Shlens, ]. Net2net: Accelerating learning via knowledge transfer. arXiv 2015, arXiv:1511.05641.

Wang, S.; Xi, N. Calibration of Haptic Sensors Using Transfer Learning. IEEE Sens. ]. 2021, 21, 2003-2012. [CrossRef]

Udmale, S.S.; Singh, S.K.; Singh, R.; Sangaiah, A.K. Multi-Fault Bearing Classification Using Sensors and ConvNet-Based Transfer
Learning Approach. IEEE Sens. J. 2020, 20, 1433-1444. [CrossRef]

Koizumi, Y.; Kawaguchi, Y.; Imoto, K.; Nakamura, T.; Nikaido, Y.; Tanabe, R.; Purohit, H.; Suefusa, K.; Endo, T.; Yasuda, M.; et al.
Description and discussion on DCASE2020 challenge task2: Unsupervised anomalous sound detection for machine condition
monitoring. arXiv 2020, arXiv:2006.05822.

Hsieh, R.J.; Chou, J.; Ho, C.H. Unsupervised Online Anomaly Detection on Multivariate Sensing Time Series Data for Smart
Manufacturing. In Proceedings of the 2019 IEEE 12th Conference on Service-Oriented Computing and Applications (SOCA),
Kaohsiung, Taiwan, 18-21 November 2019; pp. 90-97. [CrossRef]

Fathy, Y.; Jaber, M.; Brintrup, A. Learning With Imbalanced Data in Smart Manufacturing: A Comparative Analysis. IEEE Access
2021, 9, 2734-2757. [CrossRef]

Lewis, R.; Reinsel, G.C. Prediction of multivariate time series by autoregressive model fitting. |. Multivar. Anal. 1985, 16, 393—411.
[CrossRef]

Tokgoz, A.; Unal, G. A RNN based time series approach for forecasting turkish electricity load. In Proceedings of the 2018 26th
Signal Processing and Communications Applications Conference (SIU), Izmir, Turkey, 2-5 May 2018; pp. 1-4.

Gers, E; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. In Proceedings of the 1999 Ninth
International Conference on Artificial Neural Networks ICANN 99, (Conf. Publ. No. 470), Edinburgh, UK, 7-10 September 1999;
Volume 2, pp. 850-855. [CrossRef]

Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures.
Neural Netw. 2005, 18, 602-610. [CrossRef]

Sen, R.; Yu, H.E; Dhillon, I.S. Think globally, act locally: A deep neural network approach to high-dimensional time series
forecasting. Adv. Neural Inf. Process. Syst. 2019, 32, 1-10.

Chollet, F. Building autoencoders in keras. Keras Blog 2016, 14. Available online: https:/ /blog.keras.io/building-autoencoders-
in-keras.html (accessed on 30 September 2019).

Wang, Y.; Smola, A.; Maddix, D.; Gasthaus, ].; Foster, D.; Januschowski, T. Deep factors for forecasting. In Proceedings of the
International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 10-15 June 2019; pp. 6607-6617.

Yuan, Y.; Shi, Y; Li, C.; Kim, ].; Cai, W.; Han, Z.; Feng, D.D. DeepGene: An advanced cancer type classifier based on deep learning
and somatic point mutations. BMC Bioinform. 2016, 17, 476. [CrossRef]

Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84-90. [CrossRef]

Al-Marri, M.; Raafat, H.; Abdallah, M.; Abdou, S.; Rashwan, M. Computer Aided Qur’an Pronunciation using DNN. J. Intell.
Fuzzy Syst. 2018, 34, 3257-3271. [CrossRef]

Elaraby, M.S.; Abdallah, M.; Abdou, S.; Rashwan, M. A Deep Neural Networks (DNN) Based Models for a Computer Aided
Pronunciation Learning System. In Proceedings of the International Conference on Speech and Computer, Budapest, Hungary,
23-27 August 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 51-58.


http://dx.doi.org/10.1016/j.ijforecast.2019.07.001
http://www.vibration.org/Presentation/IMI%20Sensors%20Accel%20Presentation%200116.pdf
http://www.vibration.org/Presentation/IMI%20Sensors%20Accel%20Presentation%200116.pdf
http://dx.doi.org/10.3390/s8020784
http://dx.doi.org/10.1108/02656719610118151
http://dx.doi.org/10.1007/s00170-019-04563-8
http://dx.doi.org/10.1109/TKDE.2010.31
http://dx.doi.org/10.1186/s13634-016-0355-x
http://dx.doi.org/10.1145/3511808.3557241
http://dx.doi.org/10.1109/JSEN.2020.3020573
http://dx.doi.org/10.1109/JSEN.2019.2947026
http://dx.doi.org/10.1109/SOCA.2019.00021
http://dx.doi.org/10.1109/ACCESS.2020.3047838
http://dx.doi.org/10.1016/0047-259X(85)90027-2
http://dx.doi.org/10.1049/cp:19991218
http://dx.doi.org/10.1016/j.neunet.2005.06.042
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
http://dx.doi.org/10.1186/s12859-016-1334-9
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.3233/JIFS-169508

Sensors 2023, 23, 486 22 of 22

56. Campos, G.O.; Zimek, A.; Sander, J.; Campello, R.J.; Micenkova, B.; Schubert, E.; Assent, I.; Houle, M.E. On the evaluation
of unsupervised outlier detection: Measures, datasets, and an empirical study. Data Min. Knowl. Discov. 2016, 30, 891-927.
[CrossRef]

57.  Gulli, A.; Pal, S. Deep Learning with Keras; Packt Publishing: Birmingham, UK, 2017.

58. Wang, KI1K.; Zhou, X,; Liang, W.; Yan, Z.; She, J. Federated Transfer Learning Based Cross-Domain Prediction for Smart
Manufacturing. IEEE Trans. Ind. Inform. 2022, 18, 4088-4096. [CrossRef]

59. Abdallah, M.; Lee, W].; Raghunathan, N.; Mousoulis, C.; Sutherland, J.W.; Bagchi, S. Anomaly detection through transfer learning
in agriculture and manufacturing IoT systems. arXiv 2021, arXiv:2102.05814.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.1007/s10618-015-0444-8
http://dx.doi.org/10.1109/TII.2021.3088057

	Introduction
	Related Work
	Failure Detection Models
	Learning Transfer
	Datasets and Benchmarks for Anomaly Detection in Smart Manufacturing

	Materials and Methods
	Temporal Anomaly Detection
	Transfer Learning across Sensor Types

	Results
	Anomaly Detection with Manufacturing Sensors
	Deployment Details and Datasets Explanation
	Results and Insights

	Transfer Learning across Vibration Sensors
	DNN Model Results
	Data-Augmentation Model Results
	Effect of Variation of RPMs Results
	Relaxation of the Classification Problem

	Autoencoder for Anomaly Detection

	Discussion
	Comparative Analysis with Prior Related Work
	Ethical Concerns
	Transfer Learning under Different Features
	Reproducibility

	Conclusions
	Explaining Datasets: Highlights, and How Can It Be Read
	Datset Categories
	MEMS and Piezoelectric Datasets
	Process Data
	Pharmaceutical Packaging
	Instances Nature

	Dataset Collection
	Hardware Cost
	Required Software Resources
	Required Computational Resources

	Uses of Datasets
	Main Dataset Usage
	Other Data Usage
	Hosting and Maintenance
	Motivation for Data Release

	Extended Evaluation
	Anomaly Detection Using Autoencoder Classification
	Experimental Setup and Results

	Benchmarks: Models, Hyper-Parameter Selection, and Code Details
	Models and Hyper-Parameter Selection
	Code Details and Prerequisites
	Anomaly Detection Code
	Transfer Learning Code
	Running the Codes
	Prerequisites (Libraries and Modules)


	References

