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This paper introduces a sharp-interface approach to simulating fluid-structure interaction 
(FSI) involving flexible bodies described by general nonlinear material models and across a 
broad range of mass density ratios. This new flexible-body immersed Lagrangian-Eulerian 
(ILE) scheme extends our prior work on integrating partitioned and immersed approaches 
to rigid-body FSI. Our numerical approach incorporates the geometrical and domain 
solution flexibility of the immersed boundary (IB) method with an accuracy comparable 
to body-fitted approaches that sharply resolve flows and stresses up to the fluid-structure 
interface. Unlike many IB methods, our ILE formulation uses distinct momentum equations 
for the fluid and solid subregions with a Dirichlet-Neumann coupling strategy that connects 
fluid and solid subproblems through simple interface conditions. As in earlier work, we use 
approximate Lagrange multiplier forces to treat the kinematic interface conditions along 
the fluid-structure interface. This penalty approach simplifies the linear solvers needed by 
our formulation by introducing two representations of the fluid-structure interface, one 
that moves with the fluid and another that moves with the structure, that are connected 
by stiff springs. This approach also enables the use of multi-rate time stepping, which 
allows us to use different time step sizes for the fluid and structure subproblems. Our fluid 
solver relies on an immersed interface method (IIM) for discrete surfaces to impose stress 
jump conditions along complex interfaces while enabling the use of fast structured-grid 
solvers for the incompressible Navier-Stokes equations. The dynamics of the volumetric 
structural mesh are determined using a standard finite element approach to large-
deformation nonlinear elasticity via a nearly incompressible solid mechanics formulation. 
This formulation also readily accommodates compressible structures with a constant 
total volume, and it can handle fully compressible solid structures for cases in which 
at least part of the solid boundary does not contact the incompressible fluid. Selected 
grid convergence studies demonstrate second-order convergence in volume conservation 
and in the pointwise discrepancies between corresponding positions of the two interface 
representations as well as between first and second-order convergence in the structural 
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displacements. The time stepping scheme is also demonstrated to yield second-order 
convergence. To assess and validate the robustness and accuracy of the new algorithm, 
comparisons are made with computational and experimental FSI benchmarks. Test cases 
include both smooth and sharp geometries in various flow conditions. We also demonstrate 
the capabilities of this methodology by applying it to model the transport and capture of 
a geometrically realistic, deformable blood clot in an inferior vena cava filter.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Computer modeling and simulation are powerful tools for analyzing nonlinear fluid-structure interaction (FSI) that can 
include large deformations and displacements of flexible bodies immersed in fluid. Well-known approaches to FSI include 
partitioned formulations that use separate descriptions of the fluid and solid subregions. One common discretization ap-
proach for such formulations is to use non-overlapping, body-fitted domain discretizations [1,2]. Body-fitted discretizations 
facilitate the specification of precise boundary conditions, which can resolve flow features up to the fluid-structure inter-
face. However, body-fitted approaches require complex and potentially expensive mesh manipulations via grid generation, 
regeneration, and mesh morphing [3]. Further, grid regeneration generally requires interpolating the computed solution to 
a new mesh [4,5], which can introduce errors and instabilities. Immersed formulations, such as Peskin’s immersed boundary 
(IB) method [6–8], are alternatives to body-fitted approaches that avoid the need to use conforming discretizations of the 
fluid and structure. Immersed methods thereby can circumvent the mesh generation difficulties of body-fitted approaches 
and facilitate very large structural deformations. Immersed methods also can simplify developing efficient structured-grid 
solvers. The key challenge in these methods, however, is related to developing effective and accurate coupling operators and 
boundary conditions that link the Eulerian and Lagrangian variables; see a recent review by Griffith and Patankar [9] along 
with those by Peskin [8], Mittal and Iaccarino [10], and Sotiropoulos and Yang [11]. This paper extends our earlier work to 
integrate partitioned and immersed approaches to FSI by generalizing our recently developed immersed Lagrangian-Eulerian 
formulation for fluid-rigid structure interaction [12] to problems involving flexible structures described by nonlinear elas-
tic material models. To do so, in this work, the equations of motion for the rigid body are replaced by the equations of 
elastodynamics. We introduce mathematical formulations for both incompressible and compressible structures. Numerical 
methods for the incompressible case adopt a nearly incompressible formulation as a penalty method for exactly incom-
pressible structural models.

The immersed boundary method was created to treat FSI problems involving thin flexible interfaces. Subsequent exten-
sions were developed to treat structures of finite thickness, most of which use integral transforms with regularized Dirac 
delta function kernels to connect the Eulerian and Lagrangian variables [8,13–16]. In the original IB method, fiber-based 
elasticity models describe the elasticity of the immersed structure. Regularized delta functions specialized to Cartesian grids 
[8] are commonly used with this methodology. These regularized delta functions prolong structural forces to the Cartesian 
grid and restrict Cartesian grid velocities onto the Lagrangian mesh [6]. The immersed finite element (IFE) method is an 
extension of the IB method that uses finite element approximations for both the Lagrangian and the Eulerian equations 
with a class of kernel functions based on reproducing kernel particle methods (RKPM) for the fluid-solid coupling [17,18]. 
Boffi et al. [19] presented a fully variational IB formulation that allows for a nonlinear mechanics-based description of the 
Lagrangian structure within the framework of large-deformation continuum mechanics. Regularization in this formulation 
is achieved implicitly through the finite element (FE) basis functions. The immersed structural potential method of Gil et 
al. [20,21] uses a meshless method for the description of hyperelastic immersed structure and a family of spline-based 
kernel functions for interaction between fluid and solid. Devendran and Peskin [22] developed an energy-based IB method 
that allows for a nodal approximation of elastic forces directly calculated from an energy functional without the use of 
stress tensors, though in the process, analytical calculations of the strain energy functional derivatives with respect to the 
coefficients of the discretized displacement field in the FE space are required. Griffith and Luo introduced a hybrid finite 
difference/finite element approach that uses a FE discretization of the solid structure while retaining a finite difference 
scheme for the Eulerian variables on the Cartesian grid [23]. As in the conventional IB method, a regularized delta function 
is used in approximations to the integral transforms, but the nodal velocity of the immersed structure is obtained by pro-
jecting an intermediate Lagrangian velocity field onto the finite element space. Recent work demonstrated that this method 
is equivalent to the method of Devendran and Peskin for specific choices of FE basis functions and quadrature rules [24]. 
Mortar methods have also been used to treat interface conditions in immersed formulations [25–27]. In such approaches, 
information transfer between fluid and solid subdomains is done in a weak sense, by using an L2-projection operator. Meth-
ods based on distributed Lagrange multipliers (DLM) form another class of immersed formulations, and since their original 
development by Glowinski et al. [28,29], different variations of this approach have been reported for fluid-flexible structure 
interaction [30–34]. To our knowledge, except for our earlier work on rigid-body FSI [12], all existing DLM formulations 
use volumetric coupling schemes to connect the fluid and solid variables. Other immersed formulations for FSI include the 
moving least square direct forcing immersed boundary method [35–37] and fully Eulerian approaches based on finite dif-
ference [38–40] or finite element [41,42] techniques. In all of these approaches, the equations of fluid dynamics are solved 
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throughout the computational domain, including in the solid subregion. Formulations that use a Cartesian grid for the fluid 
domain but do not extend the fluid solution to the interior of the solid domain have been developed based on the extended 
finite element method (XFEM) [43–45], overlapping Chimera-like methods [46–49], cut-cell methods [50], and the cut-finite 
element method [51,52]. These methods can be considered immersed in that they use a fixed Eulerian grid, although to 
increase accuracy near the fluid-structure interface, they typically adopt approaches such as local modifications to the finite 
difference stencils that make them similar to body-fitted discretizations.

As in our earlier work [12], our goal is to create a numerical scheme with the geometrical and domain solution flexibility 
of the IB method and an accuracy comparable to body-fitted approaches for which sharp resolution of flows and stresses 
is achieved up to the fluid-structure interface. Unlike many IB methods, our ILE approach uses distinct momentum equa-
tions for the fluid and solid subregions, and it uses a Dirichlet-Neumann coupling strategy that connects fluid and solid 
subproblems through interface conditions. Our mathematical formulation can treat exactly incompressible structures, as in 
conventional IB methods. Unlike standard IB methods, however, it also can readily handle compressible structures with a 
constant total volume. Further, it can model fully compressible structures that are only partially immersed in fluid, such as 
if the elastic structure fully encloses an incompressible fluid. To avoid solving monolithic systems of equations that involve 
both fluid and solid variables, however, we use two distinct representations of the fluid-structure interface: one that moves 
with the fluid and a second that moves with the structure. These two representations are connected by approximate La-
grange multiplier forces that account for the kinematic interface conditions. Results demonstrate that this simple approach 
can control discrepancies between the two interface configurations effectively. The deformations of the structure are de-
termined as a result of interplay between the forces of intrinsic stresses associated with the solid constitutive model and 
the exterior fluid traction forces that are imposed as boundary conditions to the solid domain. Consequently, our approach 
can be viewed as a DLM scheme that uses interfacial, rather than volumetric, FSI coupling. The dynamics of the volumetric 
structural mesh are determined using a standard Lagrangian finite element method for large-deformation nonlinear elastic-
ity. We adopt a nearly incompressible solid mechanics formulation for most of the test cases considered in this work. We 
also demonstrate the method’s ability to model fully compressible structures for cases in which part of the solid boundary 
does not contact the fluid, such as when the elastic structure fully encloses an incompressible fluid. Our fluid solver relies 
on an immersed interface method (IIM) for discrete surfaces [53] to impose stress jump conditions along complex interfaces 
and allows for the use of fast structured-grid solvers for the incompressible Navier-Stokes equations. Previous studies using 
the IIM have primarily focused on interfaces with prescribed motion [53–56] or on FSI models involving thin elastic mem-
branes [56–60] with simple material descriptions. Our IIM formulation enables us to evaluate exterior fluid traction along 
fluid-structure interfaces described by C0 surface representations, which facilitates its application to FE models of complex 
geometries and structural mechanics.

We use both computational and experimental flexible-body FSI benchmarks to assess and validate the robustness and 
accuracy of the new algorithm. Test cases include two dimensional cases of a soft disk in a lid driven cavity [23,61], a 
version of the Turek-Hron benchmark problem [62], and the damped structural instability of a fully enclosed fluid reservoir 
[63]. We also present results from three-dimensional cases, including a horizontal flexible plate inside a flow phantom 
based on experimental results proposed by Hessenthaler et al. [64], and a demonstration case applying our methodology 
to model the transport and capture of a geometrically realistic, deformable blood clot in an inferior vena cava (IVC) filter 
[65]. IVC filters are cardiovascular devices that are placed in the IVC, a large vein in the abdomen through which blood 
from the lower extremities returns to the heart. IVC filters capture clots shed from the lower extremities, as can occur in 
deep vein thrombosis, before they are transported to the lungs and cause a pulmonary embolism. Modeling the transport 
and fluid-structure interaction of flexible blood clots in the venous vasculature is critical to computationally predicting the 
performance of embolic protection devices like IVC blood clot filters.

Numerical tests demonstrate that approximate Lagrange multiplier forces can be constructed to achieve pointwise 
second-order convergence for the discrepancy between the positions of the two interface representations in our algorithm. 
We also report at least second-order accuracy in structural volume representing the incompressibility error of the Lagrangian 
domain. Our time integration scheme is demonstrated to yield second-order accuracy for the structural displacement, and 
the overall scheme yields between first- and second-order accuracy in a full spatio-temporal convergence study. Addition-
ally, our simulations demonstrate that structures with low and near-equal density ratios are successfully modeled with 
reasonable time step sizes with no apparent restrictions caused by artificial added mass instabilities. Instabilities due to 
the artificial added mass effect have been previously reported for weakly coupled FSI schemes with explicit time stepping 
schemes for systems with low or nearly equal structure-to-fluid density ratios [66–68]. Though no theoretical proof is pro-
vided in this work, we hypothesize that the evident robustness of the method to artificial added mass instabilities stems 
from its consistent treatment of the momentum of the fluid near the fluid-structure interface. Finally, the partitioned for-
mulation also provides the flexibility of using multi-rate time-stepping, which can relax time-step restrictions and boost 
the computational performance by allowing separate choices of time-step sizes in the fluid and solid mechanics solvers. We 
demonstrate this capability of the present approach for the simulations of the modified Turek-Hron benchmark and damped 
structural instability of an enclosed fluid reservoir.
3



E.M. Kolahdouz, D.R. Wells, S. Rossi et al. Journal of Computational Physics 488 (2023) 112174
2. Continuous equations of motion

This section presents the partitioned and ILE forms of the equations describing fluid-structure interaction with an im-
mersed elastic body. A conventional partitioned formulation for FSI is outlined in Sec. 2.1 followed by the general ILE 
formulation in Sec. 2.2. Secs. 2.2.1 and 2.2.2 introduce penalty methods for the ILE formulation that are used in practical 
computations of incompressible and compressible solid structures, respectively. Sec. 2.3 details the weak formulation of the 
structural mechanics along with specific material constitutive models used in our numerical tests.

2.1. The partitioned formulation

We consider a physical domain � subdivided into time-dependent fluid and structure subdomains, �f
t and �s

t , indexed by 
time t , so that � = �

f
t ∪ �

s
t , with x ∈ � indicating fixed physical coordinates. We first outline the partitioned formulation for 

an incompressible structure that is fully immersed in an incompressible fluid within a fixed physical domain; see Fig. 1(a). 
We describe the fluid dynamics in Eulerian form and assume an incompressible Newtonian fluid with uniform density ρf

and viscosity μf . The fluid stress tensor σf is

σf(x, t) = −p(x, t) I + μf
(
∇u(x, t) + ∇uT (x, t)

)
, x ∈ �f

t, (1)

in which p(x, t) is the fluid pressure and u(x, t) is the fluid velocity. The structural kinematics are described in Lagrangian 
form using reference coordinates X ∈ �s

0 attached to the structure. We use the motion map ξ : (�s
0, t) �→ �s

t to determine 
the current position of material point X at time t . The regions meet along the fluid-structure interface, �fs

t = �
f
t ∩ �

s
t . The 

equations of motion for the coupled fluid-structure system are

ρf Du

Dt
(x, t) = ∇ · σf(x, t), x ∈ �f

t, (2)

∇ · u(x, t) = 0, x ∈ �f
t, (3)

ρs
0

∂2ξ

∂t2
(X, t) = ∇X · Ps(X, t), X ∈ �s

0, (4)

J (X, t) = 1, X ∈ �s
0, (5)

∂ξ

∂t
(X, t) = u(ξ(X, t), t), X ∈ �fs

0 , (6)

j−1(X, t)Ps(X, t) N(X) = σf(ξ(X, t), t)n(ξ(X, t), t), X ∈ �fs
0 , (7)

in which ρs
0 is the structural mass density in the reference configuration (constant in time for an incompressible struc-

ture) and J = det(F) is the (volumetric) Jacobian determinant associated with the structural deformation, in which 
F(X, t) = ∂ξ/∂X is the deformation gradient tensor. In Eq. (7), n(ξ(X, t), t) is the outward unit normal vector pointing 
into �f

t along �fs
t , N(X) is the outward normal vector in the reference configuration along �fs

0 , and j(X, t) is the surface 
Jacobian determinant that converts the surface force density from force per unit area in the current configuration to force 
per unit area in the reference configuration. j(X, t) is related to the volumetric Jacobian determinant J (X, t) through Nan-
son’s formula, j(X, t)/ J (X, t) = ‖F−T (X, t)N(X)‖. Ps(X, t) is the first Piola-Kirchhoff stress tensor, which is defined for an 
incompressible a hyperelastic material by

Ps(X, t) = ∂ψ

∂F
(X, t) − �(X, t)F−T (X, t), X ∈ �s

0. (8)

Here, ψ(X, t) is the strain-energy functional and �(X, t) is the hydrostatic pressure that enforces the incompressibility of 
the structure. In the aforementioned governing equations, Eqs. (2) and (3) describe the momentum and incompressibility 
of the fluid, whereas Eqs. (4) and (5) describe the momentum and incompressibility of the structure. Eqs. (6) and (7)
respectively account for the kinematic and dynamic conditions at the fluid-structure interface. Eq. (6) describes the no-slip 
and no-penetration condition at the FSI interface, whereas Eq. (7) describes the force balance along the fluid-solid interface.

It is also possible to consider a partitioned fluid-structure formulation for a system in which the solid domain is only 
partially in contact with the fluid, as depicted for the non-simply connected ring-shaped solid domain in Fig. 1(b). Note that 
in this case, the physical domain � ≡ �t ≡ �

f
t ∪ �

s
t may be time dependent. In the following section, we will demonstrate 

how in this case, our ILE coupling scheme allows us to use a fully compressible structural model. For compressible struc-
tures, the constraint in Eq. (5) is no longer enforced, and the density of the solid in the current configuration is ρs = ρs

0/ J . 
Although not considered here, it is also straightforward to relax the incompressibility constraint in the fully immersed case 
and allow the structure to experience local volume changes so long as the total volume of the structure is constant.
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Fig. 1. (a) Schematic of the domain � including time-dependent fluid and immersed solid subdomains, �f
t and �s

t , in a partitioned formulation. The solid 
is described using reference coordinates X ∈ �s

0 . Reference and current coordinates are connected by the mapping ξ : (�s
0, t) �→ �s

t . (b) Schematic of the 
partitioned formulation for a model in which the solid structure is not fully immersed in the fluid. In the specific case shown here, the solid structure is 
a thick shell that encloses the fluid region, but its outer boundary does not come in contact with the fluid. Notice that in this case, the physical domain 
itself will generally be time dependent (� ≡ �t ).

2.2. The ILE formulation

The fundamental difference between the partitioned formulation detailed in Sec. 2.1 and the ILE formulation is that the 
ILE formulation solves the incompressible Navier-Stokes equations on an extended computational domain �ext that incorpo-
rates both fluid and solid subregions. To be more specific, we split the computational domain �ext into a physical fluid region 
�

f,phys
t and a non-physical fluid region �f,non-phys

t , each parameterized by time t , with superscripts “phys” (“non-phys”) indi-
cating physical (non-physical) fluid regions on either side of the fluid-structure interface; see Fig. 2. Using this notation, we 
have �fs

t = �
f,phys
t ∩ �

f,non-phys
t . In the case of fully immersed solid structure, as in Fig. 2(a), we have �s

t ≡ �
f,non-phys
t . For 

the case shown in Fig. 2(b), the structure is only in contact with the physical fluid region on the inner side of its boundary, 
corresponding to the same physical problem as in Fig. 1(b). In this case, �s

t ⊂ �
f,non-phys
t , but the non-physical domain is 

further extended beyond the solid domain, allowing us to use a fixed computational domain. Note that in both Figs. 2(a) 
and (b), the extended computational domain is fixed, i.e. �ext ≡ �ext

0 ≡ �ext
t . We also extend the fluid velocity u, pressure 

p, viscosity μf , and stress σf to be defined in the entire computational domain �ext , and define the extended fluid stress 
tensor σf as

σf(x, t) = −p(x, t) I + μf
(
∇u(x, t) + ∇uT (x, t)

)
, x ∈ �ext ≡ �

f,phys
t ∪ �

f,non-phys
t . (9)

The kinematic constraint, which requires that the fluid and solid move together along the fluid-structure interface, is im-
posed through an interfacial force density applied along �fs

t . This singular force density implies a discontinuity or jump 
in the traction associated with the extended fluid stress along �fs

t . We denote a jump in a scalar field ψ(x, t) at position 
x = ξ(X, t) along the interface as �ψ(x, t)� = ψphys(x, t) −ψnon-phys(x, t), in which ψphys(x, t) and ψnon-phys(x, t) are respec-
tively the limiting values approaching the interface position x from the physical fluid region �f,phys

t and the non-physical 
fluid region �f,non-phys

t in the normal direction. The resulting ILE formulation is

ρf Du

Dt
(x, t) = ∇ · σf(x, t), x ∈ �ext, (10)

∇ · u(x, t) = 0, x ∈ �ext, (11)

�σf(ξ(X, t), t) · n(ξ(X, t), t)� = − j−1(X, t) F (X, t), X ∈ �fs
0 , (12)

ρs
0

∂2ξ
2
(X, t) = ∇X · Ps(X, t), X ∈ �s

0, (13)

∂t

5
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Fig. 2. In the immersed Lagrangian-Eulerian method, the incompressible Navier-Stokes equations are solved on an extended computational domain �ext

that incorporates both fluid and solid subregions, and is split into a physical �f,phys
t and a non-physical �f,non-phys

t fluid regions. (a) In this configuration a 
simply connected domain represents the volumetric structure that is immersed in the fluid. The non-physical fluid region in this case is the region occupied 
by the solid and shown by wavy stripes. (b) In this case, the physical fluid region is enclosed by the thick shell-like structure of the solid. The non-physical 
domain (shown by wavy stripes) includes the solid domain in addition to an extended region to obtain a fixed Cartesian computational domain.

J (X, t) = 1, X ∈ �s
0, (14)

∂ξ

∂t
(X, t) = u(ξ(X, t), t), X ∈ �fs

0 , (15)

j−1(X, t)Ps(X, t) N(X) = σf,phys(ξ(X, t), t)n(ξ(X, t), t), X ∈ �fs
0 , (16)

in which F (X, t) is an interfacial surface force density that is the Lagrange multiplier for the kinematic condition in Eq. (15). 
Eq. (12) describes discontinuities in the extended fluid pressure and viscous stress that are related to the normal and 
tangential components of the interfacial Lagrange multiplier force, respectively. Additionally, the right hand side of Eq. (16)
is the exterior fluid traction in current coordinates

τ f,phys(x, t) = σf,phys(x, t)n(x, t), x ∈ �fs
t . (17)

This equation accounts for the dynamic interface condition, which is the “Neumann part” of our Dirichlet-Neumann coupling 
approach, in which the exterior fluid traction forces are imposed as boundary conditions to the solid domain. Note that this 
equation also implies that only the physical fluid stresses from within �f,phys

t are able to drive the dynamics of the structure.

2.2.1. The penalty ILE formulation
We first describe our penalty ILE formulation for a solid structure fully immersed in a fluid domain. Exactly imposing 

the kinematic constraint, Eq. (6), in the formulation detailed in Sec. 2.2 requires solving a saddle-point system that couples 
the Eulerian and Lagrangian variables. As in our earlier work on rigid-body FSI [12], we develop a numerical method that 
avoids the need to solve such systems by relaxing the kinematic constraint. We do so by introducing two representations 
of the fluid-structure interface and applying forces that act to penalize displacements between the two representations. 
This penalty method thereby determines an approximate Lagrange multiplier force instead of solving for the exact Lagrange 
multiplier to impose the kinematic matching condition. Specifically, along with the mapping ξ (X, t) that determines the 
kinematics of the structure, we introduce an explicit representation of the fluid-structure interface that is parameterized by 
the deformation mapping χ (X, t) and that moves with the fluid, so that ∂χ (X, t)/∂t = u(χ(X, t), t); see Fig. 3(c).

The approximate Lagrange multiplier force is determined by linear spring and dampers,

F (X, t) = κ (ξ(X, t) − χ(X, t)) + η

(
∂ξ

∂t
(X, t) − ∂χ(X, t)

∂t

)
, X ∈ �fs

0 , (18)

in which κ is a tethering penalty parameter and η is a damping penalty parameter. This force penalizes deviations from the 
constraint ξ (X, t) = χ(X, t) and, in the discretized equations, acts to ensure that the two interface representations are at 
least approximately conformal in their motion. It is possible to control the discrepancy between the two configurations, and 
as κ → ∞, the formulation exactly imposes the constraint that the two interface representations move together. Although 
kinematic constraints can be imposed through spring forces alone, we have found that including a small amount of damping 
can reduce spurious numerical oscillations. We demonstrate in Sec. 4.1 that including damping can reduce the value of κ
required to achieve a given displacement tolerance, which, in turn, can allow for larger time step sizes.
6
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Fig. 3. Aspects of (a) partitioned and (b) immersed FSI formulations are integrated in the (c) penalty-ILE coupling. The fluid-structure interface repre-
sentation (determined by χ ) conforms to the boundary of the structure (determined by ξ ) in an approximate sense. The discrepancy between the two 
representations is exaggerated here for illustration purposes. In practice, we ensure that this maximum displacement is no greater than 0.1 of the Cartesian 
grid spacing. The local fluid velocity determines the motion of the surface representation �fs

t , whereas the no-slip condition is satisfied in an approximate 
sense by spring-like forces that penalize displacements between the two representations of the fluid-structure interface.

Fig. 4. The coupling for the compressible structure combines (a) the partitioned formulation and (b) immersed FSI formulations to create (c) the penalty-ILE 
coupling. The fluid-structure interface representation in this case (determined by χ ) conforms to the inner boundary of the structure (determined by ξ ) in 
an approximate sense. The displacement between the two representations is exaggerated here for illustration purposes.

Additionally, note that in the penalty ILE formulation the incompressibility of the fluid is discretely imposed through 
the solution of the Navier-Stokes equations. Therefore, for consistency, a structure that is fully immersed in fluid must also 
be incompressible in the present formulation. Exactly imposing this constraint in a Lagrangian framework is challenging. 
To simplify the implementation, we relax this condition and use a nearly incompressible structural model that is char-
acterized by a Poisson’s ratio ν approaching 0.5 and a corresponding bulk modulus K s approaching infinity. This implies 
that J (X, t) → 1. Our numerical tests demonstrate that the resulting volume conservation is superior to an immersed finite 
element-finite difference scheme that treats the structure as exactly incompressible [23].

2.2.2. The penalty ILE formulation for fully compressible solid structures
It is straightforward to use our penalty ILE formulation to model fully compressible solid structures so long as the 

structure is not fully immersed in fluid (i.e., part of the solid boundary is not in contact with the fluid). We enforce the 
kinematic constraint through the same penalty strategy as in the incompressible model, except in this case, the additional 
representation of the fluid-structure interface is only a subset of the total solid boundary; see Fig. 4. Because part of the 
solid boundary does not contact the physical fluid subregion, the incompressibility of the extended fluid region does not 
constrain the volume of the structure. An example of such a model is flow through an enclosed tube or a reservoir for 
which the FSI coupling is enabled only at the inner surface of the tube while the outer side is handled through suitable 
boundary conditions for the structural model.
7



E.M. Kolahdouz, D.R. Wells, S. Rossi et al. Journal of Computational Physics 488 (2023) 112174
2.3. The structural mechanics formulation

We use a standard Galerkin finite element approach to model the structural deformation. Such methods rely on a weak 
form of the equations of elastodynamics. Briefly, by assuming that the immersed solid structure has uniform density and 
integrating Eq. (4) for all smooth test functions ψ(X) ∈ V and V ⊆ (H1(�s

0))
3, we obtain

ρs
0

∫
�s

0

(
∂2ξ

∂t2
(X, t)

)
· ψ(X)dX =

∫
�s

0

(∇X · Ps(X, t)
) · ψ(X)dX . (19)

(We remark that it is straightforward to consider nonuniform density structural models.) Integrating by parts yields

ρs
0

∫
�s

0

(
∂2ξ

∂t2
(X, t)

)
· ψ(X)dX = −

∫
�s

0

Ps(X, t) : ∇X ψ(X)dX +
∫
�fs
0

(
Ps(X, t) N(X)

) · ψ(X)dA. (20)

Note that the second term on the right-hand-side of Eq. (20) also appears in the force balance equation, Eq. (7), and can be 
replaced by exterior fluid traction forces as

ρs
0

∫
�s

0

(
∂2ξ

∂t2
(X, t)

)
· ψ(X)dX = −

∫
�s

0

Ps(X, t) : ∇X ψ(X)dX

+
∫
�fs
0

j(X, t)τ f,phys(χ (X, t), t) · ψ(X)dA.

(21)

Notice that in the surface integral in Eq. (21), we use j(X, t) to obtain the fluid traction forces per unit reference area. We 
directly discretize this equation in our numerical scheme.

In this paper, we use hyperelastic structural models, for which the first Piola-Kirchoff stress tensor Ps is related to the 
strain energy functional as in Eq. (8), and we use a nearly incompressible structural formulation as a penalty method for the 
exactly incompressible case. For nearly incompressible large-deformation elasticity, we relax the incompressibility constraint 
by re-expressing Ps in Eq. (8) via Ps = ∂ψ/∂F and assuming an additive splitting of the elastic energies associated with 
volume changing and volume preserving motions. This splitting is motivated by the assumption that a uniform pressure 
should produce changes in size but not in shape [69,70]. We first write ψ for an isotropic material as a function of the 
scalar invariants ψ = ψ(I1, I2, I3) in which

I1 = tr(C) =
3∑

i=1

Cii, (22)

I2 = 1

2

(
tr(C)2 − tr(C2)

)
, (23)

I3 = det(C), (24)

with C = FTF being the right Cauchy-Green deformation tensor. To achieve the desired split satisfying material frame invari-
ance, we use a standard approach based on the Flory decomposition [71] to reformulate the strain energy with the modified 
strain invariants, through multiplicatively decomposing F into dilatational and deviatoric parts, F = J1/3F̄. This also results 
in a modified right Cauchy-Green strain tensor, C̄ = J−2/3C. Similarly, the first modified invariant of C̄ is Ī1 = J−2/3 I1. The 
specific model used in this work is of the form

ψ = W ( Ī1) + U ( J ), (25)

in which W ( Ī1) ≡ W̄ ≡ W (F̄) characterizes the response of the material to shearing deformation in terms of the first 
modified invariant, and U ( J ) is a volumetric energy that penalizes compression or expansion. It is preferred for U to satisfy 
U (1) = U ′(1) = 0. Unless otherwise noted, we use a neo-Hookean material model for the elastic structure,

ψ(F) = Gs

2
( Ī1 − 3) + K s ( J log J − J + 1). (26)

Taking the derivative with respect to the deformation gradient tensor F yields

Ps = ∂ψ = Ps
dev + Ps

dil, (27)

∂F

8
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in which Ps
dev = ∂W

∂ Ī1

∂ Ī1
∂F and Ps

dil = ∂U
∂ J

∂ J
∂F are the deviatoric and dilatational stresses, respectively. Using Eq. (26), these 

stresses are,

Ps
dev = Gs J−2/3 (F − I1

3
F−T ), (28)

Ps
dil = K s J log( J )F−T , (29)

in which Gs and K s are the shear and bulk moduli, which are related by the Poisson’s ratio via K s = 2Gs(1+ν)
3(1−2ν)

. The above 
stress formulation can be easily extended to other isotropic and anisotropic constitutive laws. In fact, the present ILE formu-
lation is not restricted to neo-Hookean material models, and alternative hyperelastic or even inelastic material models can 
be readily used.

3. Numerical discretization

We use a standard H1-conforming Lagrangian finite element method to discretize the elastodynamics equations and a 
finite difference method to discretize the Navier-Stokes equations. Further details of the discretization for each sub-problem 
are given below.

3.1. Structural discretization

Let Th be a triangulation of �s
0, the reference configuration of a three-dimensional solid structure, with m nodes. Let

Sh = {ϕl(X)}ml=1 (30)

be the standard interpolatory nodal basis functions in which each ϕl(X) is nonzero at exactly one node of the triangulation. 
We let {X l}ml=1 and 

{
ξ l(t)

}m
l=1 be the coordinates of the triangulation’s nodes in the reference and current configurations, 

respectively. A continuous description of the configuration of the structure is defined by

ξh(X, t) =
m∑
l=1

ξ l(t)ϕl(X), X ∈ �s
0. (31)

Using the same FE basis functions, the deformation gradient is approximated as

Fh(X, t) = ∂ξh

∂X
(X, t) =

m∑
l=1

ξ l(t)
∂ϕl

∂X
(X), X ∈ �s

0. (32)

This FE approximation to the deformation gradient tensor is used to compute the approximation to the first Piola-Kirchhoff 
stress tensor Ps

h(X, t) along with critical geometrical quantities.
Similarly, we construct the fluid-structure interface configuration described by the mapping χ : (�fs

0 , t) �→ �fs
t by extract-

ing the portion of the surface of the solid mesh that interacts with the fluid. Let m� be the number of nodes on the surface 
of the triangulation and let

S�
h = {ϕ�

l (X)}m�

l=1 (33)

be the subset of Sh , the volumetric finite element space, which is nonzero on �fs
0 . Hence we define the configuration of the 

surface as

χh(X, t) =
m�∑
l=1

χ l(t)ϕ
�
l (X), X ∈ �fs

0 . (34)

For each k = 1, ..., m shape function in Sh , the standard Galerkin approach for the structural subproblem based on Eq. (21)
leads to the following evolution equation for the displacement of a single node:

ρs
0

m∑
l=1

⎛
⎜⎝∫

�s
0

ϕl(X)ϕk(X)dX

⎞
⎟⎠ ∂2ξ l

∂t2
(X, t) = −

∫
�s

0

Ps
h(X, t) · ∇X ϕk(X)dX

+
∫
�fs

jh(X, t)τ f,phys
h (χh(X, t), t)ϕk(X)dA,

(35)
0

9
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in which Ps
h is a nonlinear function of Fh(X, t) through the constitutive relation as a function of the deformation gradient. 

In our numerical scheme, we also compute the projection of the normal and tangential components of the surface force 
in Eq. (18) per unit current area, j−1

h F h(X, t), along the Lagrangian surface mesh. This is needed to specify the conditions 
for the pressure and the viscous stress and calculate the resulting exterior fluid traction τ f,phys

h . Eq. (35) corresponds to a 
system of linear equations for the nodal accelerations, which we write as

[M] [ξ̈ ] = [B] (36)

in which M is the mass matrix with entries Mi, j = ρs
0

∫
�s

0
ϕi(X)ϕ j(X) dX , and B is the applied load vector, which here 

includes the exterior fluid traction supported on fluid-structure interface and the internal force density supported on the in-
terior of the structure. Gaussian quadrature rules are used to approximate the integrals. We use selective reduced integration 
[72] to avoid volumetric locking for nearly incompressible structural models.

3.2. Fluid discretization

We discretize the incompressible Navier-Stokes equations using a finite difference approximation on an adaptively refined 
marker-and-cell (MAC) staggered Cartesian grid [73,74]. An unsplit, linearly-implicit discretization of the incompressible 
Navier-Stokes equations that solves time-dependent incompressible Stokes equations with the projection method used only 
as a preconditioner for the flexible generalized minimal residual method (FGMRES) solver applied to the Stokes operator. 
This allows for imposing physical boundary conditions along the boundaries of the Eulerian computational domain using 
methods detailed previously [73,74]. The divergence, gradient, and Laplace operators are discretized using compact second-
order accurate differencing schemes. The nonlinear advection terms in the Eulerian momentum equation are treated by a 
staggered-grid variant of the piecewise parabolic method (PPM) [73–75].

3.3. Fluid-structure coupling

We leverage a coupling scheme based on the immersed interface method for discrete surfaces [53] that accounts for the 
physical jump conditions in the extended fluid stress along the fluid-solid interface and allows for the accurate evaluation 
of the exterior fluid traction. To impose the jump in the stress, we first construct a continuous representation to the jump 
conditions in Eq. (12) obtained by the L2 projection along the surface mesh using the S�

h space defined by Eq. (33). Geomet-
rical quantities, including the surface normals and surface Jacobian determinant, that are needed by the IIM discretization 
are obtained by directly differentiating the discrete representation [12,53]. Briefly, given a scalar function ψ ∈ L2(�fs

0 ), its L2
projection Phψ onto the subspace S�

h is defined by requiring Phψ to satisfy∫
�fs
0

(
ψ(X) − Phψ(X)

)
ϕl(X)dA = 0, ∀l = 1, . . . ,m�. (37)

Because the L2 projection is defined via integration, the function ψ does not need to be continuous or even to have well-
defined nodal values. By construction, however, Phψ will inherit any smoothness provided by the subspace S�

h . In particular, 
for H1-conforming Lagrangian basis functions, Phψ will be at least continuous. To solve for the projected jump conditions, 
linear systems of equations involving the boundary mass matrix M� need to be solved, in which M� has components 
M�

i, j =
∫
�fs
0
ϕi(X)ϕ j(X) dA. The integral in Eq. (37) is evaluated using seventh-order Gaussian quadrature. Notice that these 

projections are computed only along the fluid-solid interface and involve only surface degrees of freedom. Consequently, the 
computational cost of evaluating these projections is asymptotically smaller than the solution of either the fluid or structure 
sub-problem. Furthermore, this process can be repeated for each component of a vector-valued function independently.

To interpolate the discretized Eulerian velocity field u(x, t) to the Lagrangian surface mesh, we use a corrected trilinear 
(or, in two spatial dimensions, bilinear) interpolation scheme that accounts for the known discontinuities of ∂u/∂n at 
intersection points with Cartesian finite difference stencils. The interpolated velocity field at intersection points is then 
projected onto the space spanned by the nodal basis functions using Gaussian quadrature. A surface-restricted L2 projection 
is also used to obtain nodal values of the exterior fluid traction in Eq. (35), including the exterior fluid pressure and exterior 
viscous shear stress, see Kolahdouz et al. [12,53] for more details of these calculations.

In the Eulerian discretization, we account for the jump conditions in the pressure and the first normal derivatives of the 
velocity along the fluid-structure interface that occur in the ILE formulation by modifying the definitions of the pressure 
gradient and the viscous terms for those finite-difference stencils that cross the immersed interface using generalized Taylor 
series expansions; implementation details are discussed in prior work [12,53].

3.4. Time integration

We define a vector ϒ that includes all of the Eulerian and Lagrangian quantities that need to be updated as ϒ =
[u, p, χ , ξ ]. We denote by �tf and �ts the time step sizes associated with the fluid and solid mechanics solvers, respectively, 
10
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for which we assume �tf = Ncycle�ts with an integer value of Ncycle ≥ 1. Starting from time step n at time t to time step 
n + 1 at time t + �tf , we use the second-order Strang splitting scheme [76], in which within three steps we: 1) update 
the structure by solving the elastodynamic equations advancing over Ncycle steps, each time solving with the time step size 
�ts/2 and treating the fluid traction that loads the structure along �fs

t as fixed in time; 2) solve the IIM/FSI subproblem 
over a full time step �tf , treating the structural configuration as constant in time; and 3) solve the elastodynamic equations 
over another Ncycle steps each with the time step size �ts/2, treating the fluid traction as fixed in time. As described above, 
in this multirate approach, for each half-time advancement of the structural solution in steps 1 and 3, the time integration 
of the elastodynamics solver can be subdivided into Ncycle sub-steps. This capability is particularly appealing for problems 
in which the stiffness of the structural model requires structural time step sizes that are substantially smaller than the 
time steps required to resolve the fluid dynamics. We remark that unless otherwise mentioned, we set Ncycle = 1 for results 
presented in Sec. 4.

3.4.1. Time integration of the elastodynamics equations
The solution approach for a structural time step �ts is detailed here. Denote by L�ts the action of the elastodynamics 

solver over the time increment �ts that acts on a solution vector ϒ. This solution vector includes all of the Eulerian and 
Lagrangian variables, but only advances the volumetric structural variables ξ and Ps while keeping the remaining variables 
fixed. The discretized equation, Eq. (35), is solved over the time increment �ts to obtain ξn+1 using a modified trapezoidal 
scheme. Defining U = ∂ξ/∂t , the time-integration is performed in two steps. In the first step, we use a modified Euler 
method and obtain predicted values

[Ũn+1] = [Un] + �ts [M−1] [Bn], (38)

[ξ̃n+1] = [ξn] + �ts [Ũn+1]. (39)

Using [Ũn+1] and [ξ̃n+1], we calculate B̃n+1
(recall B includes the terms on the right-hand-side of Eq. (35)). In the second 

(corrector) step, we use a modified (explicit) trapezoidal rule, so that

[Un+1] = [Un] + �ts

2
[M−1 ] ([Bn] + [B̃n+1]), (40)

[ξn+1] = [ξn] + �ts

2
([Un] + [Un+1]). (41)

Note that in practice, we never directly evaluate [M−1], but instead approximately evaluate its action via a Krylov solver. 
In particular, we use the symmetric iterative solver MINRES, given the positive definiteness of the mass matrix.

3.4.2. IIM time integration scheme
Denote by E�tf the action of the IIM solver over a full time step that acts on the solution vector ϒ that includes all of 

the Eulerian and Lagrangian variables but only advances u , p, and χ . Starting from χn and un at time tn and pn− 1
2 at time 

tn− 1
2 , we compute χn+1, un+1, and pn+ 1

2 . Briefly, using the discrete velocity restriction operator J n = J [χn, Fn], we first 
obtain initial approximations to the interface position at time tn+ 1

2 via

χn+ 1
2 = χn + �tf

2
J nun. (42)

Next, we solve for χn+1, un+1, and pn+ 1
2 in Eqs. (10)–(12) and (15) via

ρ

(
un+1 − un

�tf
+ An+ 1

2

)
= −G pn+ 1

2 + μf L
(
un+1 + un

2

)
+Sn+ 1

2 Fn+ 1
2 , (43)

D · un+1 = 0, (44)

χn+1 − χn

�tf
= Un+ 1

2 =J n+ 1
2

(
un+1 + un

2

)
, (45)

in which An+ 1
2 = 3

2 A
n − 1

2 A
n−1 is obtained from a high-order upwind spatial discretization of the nonlinear convective 

term u · ∇u [73]. In Eq. (43), Sn+ 1
2 is the force-spreading operator at the half time step configuration and Sn+ 1

2 Fn+ 1
2 is the 

discrete Eulerian body force on the Cartesian grid that corresponds to the sum of all the correction terms due to physical 
jump conditions computed using the Lagrangian force F n+ 1

2 = F [χn+ 1
2 , Un, tn+ 1

2 ]. In Eq. (45), J n+ 1
2 = J [χn+ 1

2 , Fn+ 1
2 ] is 

the velocity restriction operator at the half time step configuration. G , L, and D · respectively represent discrete gradient, 
Laplacian, and divergence operators. This time stepping scheme requires only linear solvers for the time-dependent incom-
pressible Stokes equations. We solve this system of equations by the FGMRES algorithm with a preconditioner based on 
11
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the projection method that uses inexact subsolvers for the velocity and pressure [73]. In the initial time step, a two-step 
predictor-corrector method is used to determine the velocity, deformation, and pressure; see Griffith and Luo [23] for further 
details.

3.4.3. Fluid-structure interaction time stepping scheme
A loosely coupled scheme is considered for the time integration of the equations. For the solution vector ϒ over a fluid 

time step �tf using the Strang splitting scheme we have,

ϒn+1 = L�tf/2E�tfL�tf/2ϒ
n. (46)

With this time-staggered approach, the overall algorithm to solve the fluid-structure problem is

Step I: Use the latest exterior fluid traction force τ f,phys to solve the elastodynamic equation Eq. (36) over a half time 
step �tf/2 = Ncycle�ts/2 with the modified trapezoidal scheme in Eqs. (40) and (41) to advance from step n to 
n + 1

2 and obtain ξn+ 1
2 . If multi-rate time-stepping is used, the elastodynamic equation is advanced over the time 

increment �ts/2 via Ncycle > 1 substeps, with Ncycle = �tf/�ts.
Step II: Calculate the penalty force in Eq. (18) using the most recent position of the volumetric structural mesh and initial 

approximations to the surface mesh that moves with the fluid based on Eq. (42).
Step III: Solve for the IIM subsystem in Eqs. (43)–(45) over a full time step and obtain the updated Eulerian velocity field 

un+1 and pressure pn+ 1
2 as well as the Lagrangian velocity Un+ 1

2 and positions χn+1 of the surface mesh and the 
new exterior fluid traction forces τ f,phys.

Step IV: Using the exterior fluid traction force τ f,phys from Step III, solve the elastodynamic equation Eq. (36) over a half 
time step �tf/2 = Ncycle�ts/2 with the modified trapezoidal scheme in Eqs. (40) and (41) to advance from step 
n + 1

2 to n + 1 and obtain ξn+1. If multi-rate time-stepping is used, the elastodynamic equation is advanced over 
the time increment �ts/2 via Ncycle > 1 substeps, with Ncycle = �tf/�ts.

Our numerical experiments indicate that we can find values of �tf that are small enough so that the scheme is stable, as 
was also suggested in a recent analysis by Hua and Peskin [77] for the standard immersed boundary method that uses the 
same form of spring-like approximate Lagrange multiplier force. Additionally, notice that the ILE formulation easily allows 
for taking smaller solid time-step in the explicit finite element solid mechanics solver. This will be an important feature 
for problems that pose larger stiffness in the solid domain than the fluid and is achieved through increasing the Ncycle
parameter without changing the overall fluid time-step or penalty parameters.

3.5. Software implementation

The ILE approach has been implemented in the open-source IBAMR software [78], a C++ framework for FSI modeling 
using immersed formulations. IBAMR provides support for large-scale simulations through the use of distributed-memory 
parallelism and adaptive mesh refinement (AMR). IBAMR relies on other open-source software libraries, including SAMRAI 
[79,80], PETSc [81], hypre [82,83], and libMesh [84]. For example, mesh handling tools in libMesh allow for the use of sep-
arate data structures for the volumetric and the corresponding surface structural meshes throughout the entire computation 
by storing the so-called interior parent elements. All the capabilities of the present approach and benchmark examples are 
included in the IBAMR software framework, version 0.11.0.

4. Numerical results

We use Q1 structural elements in our computational tests (bilinear elements in two spatial dimensions and trilinear 
elements in three spatial dimensions). The grid spacing on the finest level of the hierarchical, locally refined Cartesian 
grid is hfinest = r−(N−1)hcoarsest, in which hcoarsest is the coarsest level grid spacing, r is the refinement ratio, and N is 
the number of refinement levels. Unless otherwise noted, the initial ratio of the Lagrangian element size of the structural 
meshes to the Eulerian grid spacing, denoted by Mfac, is approximately Mfac ≈ 2 along the fluid-structure interface. In all 
computations, we require that the maximum absolute displacement between the two representations of the fluid-structure 
interface is no greater than 0.1 of the Eulerian meshwidth. Note that to achieve ‖ξ(X, t) − χ(X, t)‖ = O (h2), the spring 
penalty parameter needs to satisfy κ = O (1/h2). Additionally, we take the damping parameter to satisfy η = O (1/h). Under 
grid refinement, we expect that the penalty force F = κ (ξ(X, t) − χ(X, t)) + η (

∂ξ
∂t (X, t) − ∂χ

∂t (X, t)) will converge to the 
physical loading forces and satisfy ‖F ‖ = O (1). In particular, for our convergence tests, we maintain �t = O (h) to keep the 
advective Courant-Friedrichs-Lewy (CFL) number fixed under grid refinement. It is then convenient to choose κ = κ0/�t2

and also optionally choose η = η0/�t . κ0 is determined by, first, choosing the finest grid spacing to be considered, say 
hmin, along with the corresponding time step size �tmin. We then empirically determine approximately the largest value 
of κ0 that allows the scheme to remain stable with h = hmin and �t = �tmin. We then use the prescribed relationship 
between κ and �t to determine κ (and η) for all coarser cases. This ensures that the numerical parameters are stable for 
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all grid spacings considered in the convergence test while using scalings that ensure that the method achieves its targeted 
convergence rate. Note that in our explicit time stepping approach to coupling the fluid and solid degrees of freedom, we 
expect a largest stable value of spring penalty parameter κ for fixed spatial and temporal discretization parameters. In a 
given problem, if there is already a physical estimate for the total fluid forces acting on the fluid-structure interface, this 
estimate along with a targeted discrepancy tolerance εtol = ||ξ(X, t) − χ(X, t)||∞ can help to determine an initial guess for 
the spring stiffness, e.g., via κ ≈ ‖F‖/εtol. Regardless of whether a reasonable estimate is available, however, in practice, we 
choose κ close to the stability limit using the method of bisection. Damping appears to be optional, and a slight amount 
of damping can be added while finalizing the tuning of κ . All computations use a tight relative convergence threshold of 
εrel = 1e-10 for all iterative linear solvers. To avoid volumetric locking in incompressible cases, we use selective reduced 
integration [72], in which third-order Gaussian quadrature is used to integrate the deviatoric stress Ps

dev and first-order 
Gaussian quadrature is used for the dilatational stress Ps

dil . For simplicity, in the rest of the paper, we drop the superscript 
“f” from the fluid time step and use the general notation �t ≡ �tf and Ncycle = 1, unless otherwise mentioned. Tests include 
two dimensional cases in Secs. 4.1, 4.2, and 4.3 and three dimensional cases in Secs. 4.4 and 4.5.

4.1. Soft disk in a lid driven cavity 1

This benchmark test involves a soft structure in a lid-driven cavity flow. Slightly different versions of this example have 
been adapted in previous studies [23,85,86]. The computational domain is � = [0.0 cm, 1.0 cm] ×[0.0 cm, 1.0 cm], a square of 
size Lx = L y = 1.0 cm. The immersed structure is initially a disk of radius R = 0.2 cm, centered at (0.5 cm, 0.6 cm). A uniform 
velocity u = (u∞ = 1 cm · s−1, 0 cm · s−1) is imposed along the top boundary and zero-velocity conditions are imposed at 
all other boundaries. The fluid has a uniform density ρf = 1.0 g · cm−3 and dynamic viscosity μf = 0.01 g · (cm · s)−1. 
The soft structure has a shear modulus Gs = 0.1 dyn · cm−2 and Poisson’s ratio ν = 0.499. The density ratio is set to 
ρs
0/ρ

f = 1. We consider the time span 0.0 s ≤ t ≤ 10.0 s, during which the disk goes through slightly more than one rotation 
inside the cavity. The Eulerian domain is discretized using a refinement ratio of r = 2 with N = 2 Cartesian grid levels 
with a grid spacing of hcoarsest = Lx

48 on the coarsest level and hfinest = Lx
48×2 on the finest level. The time step size is �t =

(0.05 s ·cm−1) hfinest, and the force penalty parameters are set to κ = (1 ×10−2 g ·cm−2)/�t2 and η = (5 ×10−2 g ·cm−2)/�t . 
Unless otherwise noted, these forms of penalty parameters are used for all the following tests related to the soft disk in a 
lid driven cavity.

Fig. 5 shows the snapshots and the corresponding velocity fields at six different times. The mesh deformation of the 
volumetric solid structure is plotted along with the surface representation (colored in pink), which clearly shows that the 
two are conformal in their motion. Additionally, notice that the induced flow by the driven lid brings the structure into 
near contact with the upper boundary of the domain. Starting from approximately time t = 3.5 s in Fig. 5(c) to Fig. 5(e), 
the entrained structure undergoes very large deformation in a near-contact condition with the domain’s boundary. Fig. 5(d) 
shows how the near-contact dynamics are captured using the ILE algorithm.

To investigate how our use of a nearly incompressible structural formulation as a penalty method for the exactly incom-
pressible case affects volume conservation, we consider two additional Poisson’s ratios ν = 0.49 and 0.4999. Fig. 6 shows 
the trajectory of the centroid of the soft disk along with the percentage of volume change over time. For comparison of the 
volume conservation, we compare against a solution based on the immersed finite element/difference method reported by 
Griffith and Luo [23] using a three-point regularized delta function kernel and the same time step size and grid spacing as 
the ILE cases. Notice in Fig. 6(a) that there is an excellent agreement between the trajectories of the case with ν = 0.499
and ν = 0.4999, whereas slight differences are observed for the case with ν = 0.49. However, as depicted in Fig. 6(b), even 
for ν = 0.49, the ILE formulation yields substantially improved volume conservation compared to the immersed finite ele-
ment/difference method, generating volume conversation errors that are at least two orders of magnitude smaller. Volume 
conservation further improves as ν → 0.5. Given these observations, it appears that a choice of ν = 0.499 is a good com-
promise for our FSI simulations considering both the convergence of the centroid’s trajectory, overall volume conservation, 
and time step size restrictions associated with increased bulk moduli. (Because we use a fully explicit time stepping scheme 
for the structural dynamics, as ν → 0, �ts ↓ 0.)

As a further verification, a mesh refinement study using a series of three grid resolutions is conducted. The grid re-
finement is performed by changing the number of AMR levels. The case considered thus far, with N = 2, is used as an 
intermediate resolution, along with locally refined grids with N = 1, 3, and 4 levels. The Lagrangian meshes are consistently 
refined (or, for N = 1 case, coarsened) with the Eulerian grid to maintain Mfac ≈ 2. The same grid-dependent time step size 
and penalty parameters are used as detailed above. Fig. 7(a) shows the trajectories of the centroid of the soft disk for all 
the four grid sizes. The trajectory clearly converges under grid refinement. Further, for the choice of penalty parameters 
used here, we expect pointwise second-order convergence for the discrepancy between the positions of the two interface 
representations. Fig. 7(b) shows ||ξ(X, t) − χ(X, t)||∞ , at the final time t = 10 s. Second-order convergence in the maximum 
norm is apparent. Fig. 7(c) further details the change of the L∞ norm of the discrepancy over time,

In addition to the pointwise Lagrangian displacement, we have computed empirical L∞ convergence rates for the struc-
tural volume of the soft disk over the entire course of the simulation. Because there is no exact solution available for the 

1 This benchmark test is provided in IBAMR version within the directory examples/IIM/ex7.
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Fig. 5. The computed velocity field and motion of the soft disk in a lid driven cavity flow at times (a) t = 0.0 s, (b) t = 2.0 s, (c) t = 3.5 s, (d) t = 5.25 s, (e) 
t = 6.5 s, and (f) t = 9.0 s. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 6. (a) Trajectory of the centroid of the soft disk over time for three different values of the Poisson’s ratio ν . (b) The percentage of volume change over 
time for three values of the Poisson’s ratio ν along with the percentage of volume change using the immersed finite element/difference method [23].

full dynamics of this problem, we use a Richardson extrapolation procedure to estimate the convergence rate q∞ in the L∞
norm of the error in the soft disk’s centroid χ c ,

q∞[χ c;Ncoarse] = log2

(
e∞[χ c;Ncoarse]

e∞[χ c;Nintermediate]
)

(47)

in which e∞[χ c; Ncoarse] and e∞[χ c; Nintermediate] are defined as

e∞[χ c;Ncoarse] = max
0s≤t≤10 s

|χNcoarse
c − χNintermediate

c |, (48)

e∞[χ c;Nintermediate] = max
0s≤t≤10 s

|χNintermediate
c − χNfine

c |. (49)

The convergence rates of the centroid of the soft disk along with the volume of the disk are reported in Fig. 8(a), clearly 
showing second-order convergence in volume conservation and between first and second-order convergence for the cen-
14



Fig. 7. (a) The trajectory of the soft disk’s centroid for a series of grid resolutions. (b) Norm of the discrepancy in the fluid-structure interface configurations 
at the final time t = 10 s. (c) Time history of the L∞ difference between the positions of the two representations of the fluid-structure interface over time.

Fig. 8. (a) The spatio-temporal convergence rates of the volume and centroid of the soft disk in the lid driven cavity test case over the time interval 
0 s ≤ t ≤ 10 s. (b) The temporal convergence of the disk’s centroid for a fixed grid with N = 3 at t = 10 s. Second-order convergence is apparent.

troid’s position. To further examine the contribution to the displacement error due to the time-integration algorithms in the 
FSI system, we analyze the temporal convergence of the disk’s centroid at the final time t = 10 s. The grid-spacing is fixed 
in this case, corresponding to N = 3 refinement levels. We use the solution from a very small time-step of �t = 1 × 10−5 s 
as the reference solution. As shown in Fig. 8(b), full second-order convergence is evident. This indicates that the reduction 
in the accuracy of the disk’s centroid in Fig. 8(a) can be attributed to the spatial discretization error and not the temporal 
part.

As our last investigation for the soft disk moving in a lid driven cavity, we study the sensitivity and stability of our 
simulations for the choice of κ and the impact of damping. Once again, we consider the case with N = 2 grid levels, 
ν = 0.499, and the same time step size as before to study the sensitivity of the numerical algorithm to penalty parameters 
based on changes in the spatio-temporal discretization. Fig. 9(a) examines the sensitivity of the numerical algorithm to 
damping η and its influence on the accuracy of the computed solution by varying κ and η to obtain a table demarcating cells 
with stable vs. unstable behavior. The numbers reported for cells with stable pairs are the maximum discrepancy between 
the two Lagrangian representations at time t = 10 s, shown as a factor of h ≡ hfinest. Stable results are obtained for κ ≤ 570, 
without using any damping. The narrower range 200 ≤ κ ≤ 570 includes results with an acceptable accuracy based on the 
maximum tolerance, i.e. ||ξ(X, t) − χ(X, t)||∞ ≤ 0.1 hfinest. On the other hand, choosing η > 0 can reduce the displacement 
error and broaden the range of effective κ value. Additionally, using a very large damping parameter η leads to instability, 
regardless of the choice for κ . Green-colored cells are the ones that satisfy the condition ||ξ(X, t) − χ(X, t)||∞ ≤ 0.1 hfinest. 
Yellow cells are stable cases with a maximum discrepancy larger than hfinest . Fig. 9(b) shows the maximum discrepancy 
between the two Lagrangian representations over time for three acceptable cases (maximum discrepancy equal or smaller 
than 0.1 hfinest) from the table with a fixed κ = 300 and different choices of η. Non-zero damping values reduce spurious 
numerical oscillations. Finally, Fig. 10(a) and Fig. 10(b) assess the sensitivity of the result to stable choices of (κ, η), the 
centroid’s trajectory and the deformation at t = 10 s for three distinctive and selected choices of (κ, η). Results obtained for 
different choices of penalty parameters appear to be virtually identical and are largely insensitive to the values of κ and η
within the acceptable region, i.e., the region with the maximum discrepancy equal or smaller than 0.1 hfinest .
E.M. Kolahdouz, D.R. Wells, S. Rossi et al. Journal of Computational Physics 488 (2023) 112174
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Fig. 9. (a) A table of stable vs. unstable penalty pairs (κ, η) with red color cells marked by ✗ symbol showing unstable cases. The numbers reported for 
stable pairs are the maximum discrepancy between the two Lagrangian representations ||ξ(X, t) − χ(X, t)||∞ at t = 10 s, shown as a factor of h ≡ hfinest . 
Green cells are the acceptable cells with the additional condition of ||ξ(X, t) − χ(X, t)||∞ ≤ 0.1 hfinest imposed in our simulations. Yellow cells show stable 
cases with maximum discrepancy larger than 0.1 hfinest . A non-zero damping parameter does not seem to be required to achieve a stable result with 
an acceptable maximum discrepancy. Additionally, note that there can always be a small enough time-step for which the currently unstable pairs would 
become stable. (b) The maximum discrepancy between the two Lagrangian representations over time for 3 cases from the table with fixed κ = 300 and 
different choices of η. Although the oscillations are all smaller than 0.1 h, a small amount of non-zero damping is shown to further reduce spurious 
numerical oscillations.

Fig. 10. (a) The trajectory of the centroid of the soft disk for three selected pairs of (κ, η) within the stable cells in Fig. 9(b), including a case with η = 0. (b) 
Nodal positions of the surface of the structure for the same pairs of (κ, η) at t = 10 s. The results are largely insensitive to the values of penalty parameter 
values considered here.

Fig. 11. Schematic of the modified Turek-Hron benchmark including the geometry and boundary conditions.
16



E.M. Kolahdouz, D.R. Wells, S. Rossi et al. Journal of Computational Physics 488 (2023) 112174
Table 1
Parameters for the modified Turek-Hron benchmark (Sec. 4.2).

Case ū [ ms ] μf [ kg
m·s ] ρf [103 × kg

m3 ] ρs
0 [103 × kg

m3 ] Gs [106 × kg
m·s2 ] ν

1 (FSI2 of Turek & Hron [62]) 1.0 1.0 1.0 10.0 0.5 0.499
2 (FSI3 of Turek & Hron [62]) 2.0 1.0 1.0 1.0 2.0 0.499

Table 2
Comparison of computational values for the modified Turek-Hron benchmark for case 1 & 2 described in Table 1. Other simulation parameters include 
hfinest = 0.0293, �t = (0.05 s ·m−1) hfinest , and Mfac = 2.

Case 1 (FSI2 in [62]) Case 2 (FSI3 in [62])

y-disp. of A [10−3 ×m] St y-disp. of A [10−3 ×m] St

Turek & Hron [62] 0.123± 8.06 0.19 0.148± 3.438 0.265
Zhang et al. [87] 0.1± 8.3 0.192 0.1± 3.6 0.263
Lee & Griffith [88] – – 0.145± 3.33 0.25
Present method 0.12± 8.18 0.193 0.146± 3.41 0.265

4.2. Modified Turek-Hron benchmark 2

This test was originally proposed by Turek and Hron [62] for benchmarking fluid-structure interaction algorithms. We 
examine the performance of our methodology for models with large added effects and large deformation resulting from 
the presence of a light structure. The structure is composed of a stationary circular disk of radius r = 0.05 m centered 
at (0.2 m, 0.2 m) and an elastic tail that has a length of 0.35 m and thickness 0.02 m, see the schematic in Fig. 11. The 
rectangular domain surrounding the structure has a height H = 0.41 m and length L = 6 H = 2.46 m extending over � =
[0.0 m, 2.46 m] × [0.0 m, 0.41 m]. A horizontal parabolic velocity profile of ux = 1.5 ̄u y(y − H)/(H2/4) is imposed upstream 
of the structure in which ū is the mean velocity. Zero normal traction and zero tangential velocity are imposed at the 
outlet (x = L). Zero velocity conditions are imposed at y = 0.0 m and y = 0.41 m. The Eulerian domain is discretized 
using a refinement ratio of r = 4 with N = 3 Cartesian grid levels with a grid spacing of hcoarsest = L

24 on the coarsest 
level. Note that given the dimensions of the computational domain and the center position of the circular disk as in the 
original study, the immersed body is positioned asymmetrically in the y-direction. The circular disk is described by a nearly 
rigid material. The left end of the tail is fixed and attached to the cylinder. We consider two cases with different density 
ratios, shear moduli, and mean entrance velocities. The associated parameter sets including physical properties of both 
fluid and solid are reported in Table 1. In the original specification, a compressible St. Venant-Kirchhoff model was used 
to describe the elastic tail with Poisson’s ratio ν = 0.4, but in this example we instead consider a nearly incompressible 
neo-Hookean material with Poisson’s ratio ν = 0.499. The time step size is �t = (0.05 s · m−1) hfinest, and the force penalty 
parameters are set to κ = (2 × 10−2 kg ·m−2)/�t2 and η = (4 × 10−2 kg ·m−2)/�t with Ncycle = 4 for case 1 and Ncycle = 8
for case 2 described in Table 1. Table 2 compares the y-displacement of point A and the Strouhal number (St) to previous 
studies [62,87–90] for the two cases reported in the original work by Turek & Hron. The Strouhal number is St = f D/ū, 
in which f is the oscillation frequency for the y-displacement of point A and D is the diameter of the circular disk. We 
observe good agreement between values produced by the present method and previous work, reflected also in the periodic 
vertical (yA) and horizontal (xA) positions of point A at the tip of the tail. Note that the study by Lee and Griffith [88]
uses an exactly incompressible material for the beam. Fig. 12 shows the dynamics of the beam and its deformation in the 
interaction with surrounding fluid with density ratio ρs

0/ρ
f = 10 and the Reynolds number Re = 100. Vorticity magnitudes 

and pressure contours are respectively shown in panels (a)–(b) and (c)–(d) for times after self induced periodic oscillations 
have developed in the structure and flow. Both vorticity and pressure contours indicate the periodic behavior downstream 
of the flow.

As an additional verification test, we have explored the sensitivity of our results in the limit of the Poisson’s ratio 
approaching ν → 5. Similar to the soft disk example in Sec. 4.1, we choose two additional Poisson’s ratios, ν = 0.49 and 
ν = 0.4999 along with the default ν = 0.499 and study the tip of the tail’s position (point A in Fig. 11) over time. For 
the case of ν = 0.4999, we maintain stability for the overall scheme by using a smaller �ts , which is achieved by taking 
Ncycle = 12. Notice that the fluid time step size �tf does not need to be reduced to accommodate this increase in the 
bulk modulus. As shown in Fig. 13, there is very little difference between all the three cases and in particular, there is an 
excellent agreement between the tip’s position for ν = 0.499 and ν = 0.4999.

Next, we perform a grid refinement study for case 2 in Table 1. In our AMR framework, we vary the number of refine-
ment levels by taking two additional grid spacings with levels N = 2 and N = 4 along with the default N = 3. We use the 
same time step size and penalty parameters as before and examine the vertical and horizontal position of the tip of the tail 
(point A in Fig. 11). Figs. 14(a) and (b) show the vertical and horizontal position of point A over time, respectively. There is 
a good agreement across all grid spacings for the magnitudes of both vertical and horizontal variations. Additionally, there 

2 This benchmark test is provided in IBAMR version 0.11.0 within the directory examples/IIM/ex6.
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Fig. 12. Dynamics of modified Turek-Hron benchmark corresponding to case 1 (FSI2 in [62]) (a) vorticity field at t = 28.4 s, (b) vorticity field at t = 28.6 s, 
(c) pressure field at t = 28.4 s, (d) pressure field at t = 28.6 s, (e) time history of horizontal displacement of point A at the tail and (f) vertical displacement 
of point A at the tail.

Fig. 13. Time histories of the vertical (top) and horizontal (bottom) displacements of the flexible tail in the modified Turek-Hron benchmark (case 2) for 
three different values of the Poisson’s ratio ν approaching the fully incompressible limit ν → 0.5.

is a much smaller phase lag between the positions for N = 3 and N = 4 than the case with N = 2. The same trend is also 
apparent in the convergence of the trajectory of point A under grid refinement, as shown in Fig. 14(c).

Finally, we study the effect of changes in the fluid dynamics parameters and solid structure properties on the vertical 
oscillation amplitude of point A at the flexible tail. To study the fluid dynamics parameters, we fix the solid properties 
based on case 2 in Table 1 and vary the fluid viscosity μf and inlet mean velocity ū. Fig. 15(a) shows the vertical amplitude 
as circles with different diameters. The amplitude of 3.41 × 10−3 m associated with case 2 of Table 2 (shown as a red 
circle) is used as a reference size for comparison. Clearly, as we increase the viscosity the vertical amplitude decreases. 
Similarly, Fig. 15(b) indicates the vertical amplitudes of point A at the tail for a range of shear modulus Gs and solid density 
ρs of the solid structure. This time, fluid dynamics properties are fixed corresponding to the reference point of case 2 in 
Table 2. Increasing the shear modulus tends to damp the vertical amplitude of the periodic oscillation of the tail while 
larger density ratios result in larger vertical amplitude. The pairs shown by “✕” correspond to cases for which no apparent 
periodical oscillations are observed. Regarding the influence of material properties on penalty parameters, our numerical 
experiments show that the penalty parameters are largely insensitive to changes in the shear modulus. Additionally, we 
noticed weak dependencies on the density ratio, fluid viscosity, and the mean inlet flow that are readily resolved by slightly 
adjusting the penalty parameters.
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Fig. 14. (a) Time histories of the vertical and (b) horizontal displacements of point A at the flexible tail in the modified Turek-Hron benchmark (case 2) 
under grid refinement. (c) The trajectory of point A at the flexible tail under grid refinement for multiple cycles.

Fig. 15. (a) The vertical oscillation amplitude of point A at the flexible tail shown for a range of fluid viscosity μf and inlet mean velocity ū using case 2 of 
Table 1 as the default case with fixed values of ρs

0 = 103 kg · m−3 and Gs = 2 × 106 kg · m−1 · s−2. The vertical amplitude sizes are depicted as blue circles 
of different diameters. The amplitude of 3.41 × 10−3 m given for case 2 of Table 2 is shown in color red as a reference size for comparison. (b) The vertical 
displacement of point A at the flexible tail shown for a range of solid density ρs and shear modulus Gs using case 2 of Table 1 as the default case with 
fixed values of ū = 2 m · s, ρf = 103 kg · m−3 and μf = 1 kg · m−1 · s−1. As in panel (a), the amplitude of 3.41 × 10−3 m corresponding to case 2 of Table 2
(shown in color red) is used as a reference size for comparison. The (μf, ̄u) pairs shown by “✕” correspond to cases for which no apparent oscillations are 
observed.

4.3. Damped structural instability of a fully enclosed fluid reservoir 3

To test our ILE formulation for compressible solid material interacting with an enclosed fluid domain, we consider a 
banded fluid domain that is surrounded by two rigid inlet channels and two thin curved structures with neo-Hookean 
material and different stiffness. This benchmark was introduced by Küttler et al. [63]. Here we consider a version of the 
problem with connecting inlet channels extended twice as long to ensure that the deformed configuration of the lower band 
will not fall outside of the computational domain. The schematic of the system, boundary conditions and the dimensions 
are shown in Fig. 16. The full computational domain is � = [−7.0 m, 7.0 m] × [0.0 m, 6.0 m], and is discretized using a 

3 This benchmark test is provided in IBAMR version 0.11.0 within the directory examples/IIM/ex8.
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Fig. 16. The problem description and boundary conditions of the fully enclosed fluid reservoir.

Fig. 17. The contours of pressure (top) and velocity magnitudes (bottom) for the damped structural instability of the enclosed fluid reservoir at times (a) 
t = 0.5 s, (b) t = 1.2 s, (c) t = 2.2 s, (d) t = 2.4 s, and (e) t = 2.6 s.

refinement ratio of r = 4 with N = 3 Cartesian grid levels with a grid spacing of hcoarsest = Lx
16 on the coarsest level. As 

usual, we use Q1 elements for the solid structure with Mfac ≈ 2. The time step size is �t = 0.04 ms, and the force penalty 
parameters are set to κ = 106 kg · m−2 · s−2 and η = 2.0 kg · m−2 · s−1 with Ncycle = 4. At both inflow boundaries a fully 
developed velocity profile is prescribed with the right inlet having a slightly larger maximum velocity than the left inlet 
(Umax = 10.1 m/s vs. Umax = 10 m/s). Zero normal traction and tangential velocity conditions are imposed at remaining 
sides of the embedding Cartesian domain. The fluid domain is loaded with the body force f = (0, −1) N/m2. A Saint 
Venant-Kirchhoff constitutive model for the undamped shell is assumed using Young moduli Etop = 9 × 105 N/m2 and 
Ebottom = 9 × 108 N/m2 for the top and bottom bands, respectively. It is important to note that in this example, fluid-
structure interaction only takes place between the inner fluid region within the reservoir and the interior sides of flexible 
bands. Zero displacement conditions are imposed at the tails of both bands. Traction-free conditions are imposed on the 
exterior sides of both bands. In other words, although the reservoir is embedded in a larger computational domain, in 
practice, the flexible structures do not “feel” the effect of the nonphysical fluid region that is present in the computation 
but outside of the reservoir. Because the FSI coupling only takes place on one side of the structures, this also makes it 
possible to model compressible structures, as detailed in Sec. 2.2.2.

Because of the injected inflow at both inlets, the fluid pressure gradually increases inside the reservoir. It is expected 
that the softer top band first deforms to create space for the entering fluid. Once a critical pressure builds inside the 
reservoir, the stiffer bottom band collapses, and from that point forward the pressure rapidly increases in the domain. Fig. 17
shows the pressure field and velocity magnitudes for multiple snapshots of the simulation. It is important to note that our 
ILE formulations naturally handles the solution for the fluid pressure within the reservoir as part of the solution in the 
larger computational domain. Typical partitioned formulations with Dirichlet-Neumann coupling require special treatments 
to handle an undetermined pressure that lies in the null space of the pressure solver for a fluid region fully embedded 
within a solid structure [63,91]. Around time t = 2.2 s, it is clear that the onset of the lower band collapsing is observed. 
This is concurrent with large pressure built-up in the reservoir prior to that shown in Fig. 17. We observe that despite 
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Fig. 18. The displacement magnitude of the bottom band’s mid-point over time. The sudden collapse of the lower band after some time is apparent. Results 
show two choices with two Ncycle values showing the multirate time-stepping capability of the algorithm in predicting essentially identical results.

minor differences in the problem setup, our results are qualitatively in good agreement with Küttler et al. [63], which uses 
an augmented Dirichlet-Neumann approach; specifically, the collapse of the lower band and the structural instability have 
been captured in our results. We note that the time at which the bottom band starts to buckle was not explicitly reported in 
the original study by Küttler et al. [63], but in a later work by Fernández et al. [92] using a fully decoupled time-marching 
scheme, the midpoint deformation of the lower band revealed a buckling time closer to t = 3 s. A more recent study by 
Akbay et al. [91] using a partitioned boundary pressure projection method reported t ≈ 2 s for the onset of the bottom band 
buckling.

In addition, we have tested the multirate time-stepping feature of our ILE formulation for this problem. Fig. 18 shows 
the magnitude of the displacement vector for a material point located at the mid-point of the lower flexible band over 
time. The first simulation uses a time step of �t = 0.04 ms and Ncycle = 2 as before, but in the second simulation, we have 
increased the fluid time step to �t = 0.08 ms while keeping the structural time step size fixed by using Ncycle = 4. The 
displacement magnitude of the midpoint at the lower flexible band is recorded over time and plotted for both simulations. 
There is an excellent agreement between the cases. The sudden collapse of the lower band after inaction time of resistance 
against the pressure load is clearly observed. The maximum deformation of the mid-point around 3.5 m appears to match 
the maximum deformation previously reported by Fernández et al. [92].

4.4. Horizontal flexible plate inside a flow phantom 4

This section considers a three-dimensional FSI benchmark based on experimental results originally proposed by Hes-
senthaler et al. [64]. This test involves an elastic beam clamped inside a flow phantom on one end and free on the other 
end moving inside the enclosure; see Fig. 19 for the geometrical dimensions of the setup. Two inlet pipes of diameter 
D in = 2.19 cm merge into one large outlet with diameter Dout = 7.62 cm. The housing is a stationary surface structure teth-
ered in place by spring forces. The filament (shown in red in Fig. 19) has dimensions Lx × L y × Lz = 0.2 cm×1.1 cm×6.5 cm. 
The computational domain is � = [−6.0 cm, 6.0 cm] × [−6.0 cm, 6.0 cm] × [0.0 cm, 12.0 cm], a cuboid of size Lx × L y × Lz =
12.0 cm × 12.0 cm × 12.0 cm. This Eulerian domain is discretized using a refinement ratio of r = 4 with N = 3 Cartesian 
grid levels yielding a grid spacing of hcoarsest = Lx

12 on the coarsest level. The time step size is �t = 0.1 ms with Ncycle = 1. 
The rigid housing is described using our underlying immersed interface formulation for discrete surfaces [53] with a spring 
penalty parameter of κ = 3.50 × 105 g · cm−2 · s−2. The penalty parameters for the filament are κ = 3.75 × 104 g · cm−2 · s−2

and η = 5.0 g · cm−2 · s−1. The physical parameters of the test are given in Table 3. fr is the frequency of the applied velocity 
field. Note that in the original work the Poisson’s ratio is ν = 0.3151, but here we use ν = 0.499 in our nearly incompress-
ible formulation. The numerical tests are performed in three stages: the hydrostatic; a steady phase I; and a transient phase 
II.

Fig. 20(a) shows the hydrostatic equilibrium solution under gravity with g = 980.665 cm/s2. The solution at t = 10 s 
has reached the equilibrium state matching the measurements from the experiment. For the phase I experiment, fully 
developed parabolic inflow boundary conditions are used with zero velocity in the x and y directions and peak velocity in 
the z direction given as,

4 This benchmark test is provided in IBAMR version 0.11.0 within the directory examples/IIM/ex9.
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Fig. 19. (a) Geometrical dimensions and (b) mesh for the flexible plate inside a flow phantom. The gravitational force is directed towards the negative 
y-axis.

Table 3
Physical parameters for the horizontal flexible plate inside a flow phantom benchmark (Sec. 4.4). We use a nearly incompressible material unlike the 
original work that uses ν = 0.3151.

Case umax [ cms ] ubottom
max [ cms ] fr [ 1s ] μf [ g

cm·s ] ρf [ g
cm3 ] ρs

0 [ g
cm3 ] Gs [ dyn

cm2 ] ν

Hydrostatic (0, 0, 0) (0, 0, 0) – 0.1250 1.1633 1.0583 6.1× 105 0.499
Phase I (0, 0, 61.5) (0, 0, 63.0) – 0.1250 1.1633 1.0583 6.1× 105 0.499
Phase II See Fig. 22(a) See Fig. 22(a) 1/6 0.1337 1.1640 1.0583 6.1× 105 0.499

Fig. 20. (a) The hydrostatic response for the y-position of the silicone filament centerline inside the flow phantom, and (b) the displacement of the silicone 
filament center-line in the Phase I experiment. Red circles show measured experimental data by Hessenthaler et al. [64].

umax
z (top) =

{
61.5 (12 [ cm

s3
], t2 − 16 [ cm

s4
] t3), t < 0.5 [s],

61.5 [ cms ], t ≥ 0.5 [s], (50)

umax
z (bottom) =

{
63.0 (12 [ cm

s3
], t2 − 16 [ cm

s4
] t3), t < 0.5 [s],

63.0 [ cms ], t ≥ 0.5 [s]. (51)

Zero fluid traction is applied at the outflow and the boundary conditions at the remaining sides of the Eulerian domain’s 
boundary is set to zero velocity. The simulation is run until a steady-state condition is reached. Fig. 20(b) shows the steady-
state solution for the displacement of the center-line of the silicon beam at t = 25 s. Overall, there is a good agreement 
with the experimental data reported by Hessenthaler et al. [64]. Some discrepancies could be attributed to the fact that the 
outflow condition is imposed at an outlet that is not far enough from the filament. In Fig. 21(a) the velocity magnitudes of 
the steady-state solution at x = 0 are shown along with the equilibrium position of the silicon beam in Fig. 21(b) colored 
by the magnitude of the steady-state wall shear stress.

To perform phase II of the benchmark, a pulsatile inflow, according to the peak velocity values in Fig. 22(a), is imposed 
at the inlets except that the y component of the velocity at the bottom inlet is set to uy = 0. The frequency of the pulsatile 
velocity is fr = 1/6 and we run the simulation for two periods up to t = 12 s. Fig. 22(b) shows sample displacements 
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Fig. 21. Simulation results of the horizontal flexible plate inside a flow phantom including (a) steady-state velocity magnitudes at x = 0 and (b) equilibrium 
position of the silicon beam including contour of steady-state wall shear stress (WSS) magnitudes.

Fig. 22. The Phase II benchmark of the flexible plate inside a flow phantom: (a) Measured peak inflow velocity of the parabolic profiles based on data from 
Hessenthaler et al. [64] used as boundary conditions of the top inlet. The bottom inlet uses the same velocity profile as the top inlet except using vmax

y = 0
for the y-component. (b) Sample results of the deformation of the flexible plate including the centerline’s y-position at t = 1.58 s (top) and t = 2.88 s 
(bottom). Red stars show measured data by Hessenthaler et al. [64]. (c) z velocity component magnitudes at z = 9.3 cm at the time t = 2.02 s for the 
present simulation (top) and the MRI measurements [64] (bottom).

of the filament’s centerline for two separate times and their comparisons with experimental data. Additional qualitative 
comparison of the magnitude of the z component velocity with MRI measurement obtained by Hessenthaler et al. [64] on 
z = 9.3 cm plane at time t = 2.02 s is shown Fig. 22(c). Although some discrepancies can be observed in the details of the 
velocity distribution, the overall magnitude and peak locations are generally in good agreement.

4.5. Clot trapping of the FDA generic IVC filter

IVC filters are medical devices implanted in the IVC to capture blood clots from the lower extremities before they 
are transported to a patient’s lungs and cause a pulmonary embolism. Here we perform simulations to demonstrate the 
capability of using the present method to model the migration and trapping of a realistic flexible blood clot by an IVC filter. 
The challenging aspects of this model result from the relatively large size of the clot that affects the local fluid dynamics, 
the large deformations that occur, and contact between the clot and the IVC filter. In principle, the ILE formulation will 
naturally handle contact between immersed structures given sufficient spatial resolution. However, resolving contact for 
thin structures like the IVC filter is challenging because of the practical difficulties of resolving not just the thin struts, 
which have a width and thickness of approximately 300 μm, but also the fluid boundary layers in the vicinity of the struts. 
For this case, we implemented a simple penalty-based contact model [93] to prevent interpenetration. This was done by 
locally adding opposing concentrated loads on nodes of the boundary of the volumetric solid structure where the fronts of 
two nearby structures come in close contact. In our computations, this force is added along with the interface forces of the 
exterior fluid in Eq. (21). The weak formulation takes the form
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ρs
0

∫
�s

0

(
∂2ξ

∂t2
(X, t)

)
· ψ(X)dX = −

∫
�s

0

Ps(X, t) : ∇X ψ(X)dX

+
∫
�fs
0

j(X, t)τ f,phys(χ (X, t), t) · ψ(X)dA

+
∫
�fs
0

F ct(X, t) · ψ(X)dA,

(52)

in which F ct(X, t) is the surface force density obtained from the simple penalty-based contact model by Kamensky et al. 
[93].

The IVC filter used in this study is a new generic conical-type filter, referred to as the GENI (GEneric NItinol) filter, 
that was designed for research purposes by U.S. Food and Drug Administration (FDA) scientists and collaborators [65]. It 
resembles a cage with support structure of an umbrella consisting of a central hub with 16 evenly spaced radial struts. We 
simulate the dynamics of clot transport and capture with the filter deployed in a rigid circular tube that is representative of 
the IVC. Blood is modeled as a Newtonian fluid with the density ρf = 1.0 g · cm−3 and dynamic viscosity μf = 0.03 g · (cm ·
s)−1. A realistic cylindrical blood clot with length 2.0 cm and diameter 2.5 mm is considered. The blood clot is modeled as a 
nearly incompressible hyperelastic material with Poisson’s ratio ν = 0.499, shear modulus Gs = 2000 dyn ·cm−2, and density 
ρs
0 = 1.2 ρf . Here we ignore the influence of gravity. The clot and the filter are deployed in a circular tube of length 6.4 cm 

and diameter 2.8 cm. A fully developed parabolic velocity profile with the maximum velocity of Umax = 15.0 cm · s−1 is 
imposed at the inlet of the tube at the bottom boundary (y = −3.2 cm), yielding a total flow rate of 2.77 L/min. Zero normal 
traction and tangential velocity conditions are imposed at the outlet of the tube at the top boundary. No-slip conditions 
are imposed along all the other parts of the Cartesian domain boundary. The computational domain is a cuboid of size 
Lx × L y × Lz = 3.2 cm × 6.4 cm × 3.2 cm. This Eulerian domain is discretized using mixed refinement ratios, including two 
Cartesian grid levels with a refinement ratio of four and additional three Cartesian grid levels with refinement ratios of two, 
resulting effective Cartesian grid spacings of hcoarsest = 3.2

12 cm on the coarsest level and hfinest = 3.2
12×4×23

cm on the finest 
level. Note that while it is not necessary to use a mixed refinement ratio, our numerical experiments show that in some 
large scale simulations a mixed refinement ratio provides a reasonable compromise between the overall computational cost 
and additional refinement in regions where higher accuracy is desired. Both the IVC filter and the circular tube are assumed 
to be rigid, stationary structures that are modeled using penalty methods [53]. The time step size is �t = 0.04 ms and the 
force penalty parameters for the clot are set to κ = 105 g · cm−2 · s−2 and η = 1.0 g · cm−2 · s−1 with Ncycle = 4.

Fig. 23(a) shows the initial setup of the problem including the geometries of the clot, filter, and the circular tube. The 
clot is positioned at an initial angle of θ0 = 20◦ with respect to the y axis, and its center of mass is initially located at 
(0.7 cm, 2.15 cm, 0.0 cm).

For this case, the dynamics of the clot deformation along with the velocity distribution in the x-z mid-plane are shown 
in Fig. 23(b)–(d) at three different times. The clot is captured by the filter at t ≈ 0.35 s. As the simulation proceeds, the 
clot continues to contact the filter while undergoing deformations caused as a result of the clot interaction with the local 
fluid field. The dynamics of the clot’s deformation follow similar patterns as experimental observations from recent in vitro 
experiments using the GENI filter [65].

5. Summary and conclusions

This paper introduces a partitioned sharp interface immersed approach for modeling flexible structures interacting with a 
Newtonian fluid. It extends our recently developed rigid body immersed Lagrangian-Eulerian method for FSI [12] to models 
involving immersed flexible structures. The partitioned aspect of our formulation provides the flexibility of taking a broad 
range of solid to fluid density ratios and using multi-rate time-stepping that allows for separate choices of time-step sizes 
in the fluid and solid mechanics solvers. These features are in addition to general advantages of immersed formulations, 
including geometrical flexibility and fast domain solution capability for large deformation FSI. The Dirichlet-Neumann cou-
pling strategy only connects fluid and solid subproblems through interface conditions, unlike alternative fictitious domain 
approaches that use distributed Lagrange multiplier to hold the constraint in the entire space occupied by the structure. The 
deformations of the structure are determined as a result of interplay between the forces of intrinsic stresses associated with 
the solid constitutive model and the exterior fluid traction forces that are computed from the fluid solver using physical 
jump conditions and imposed as boundary conditions to the solid domain. We then use the deformation of the flexible 
structure to determine the motion of the fluid along the fluid-structure interface via a penalty method. The dynamics of the 
volumetric structural mesh are determined using a standard finite element approach to large-deformation nonlinear elas-
ticity via a nearly incompressible solid mechanics formulation. We also demonstrate the method’s capability for modeling 
compressible solid structures if the fluid subdomain is completely enclosed within the structure. Pointwise second-order 
accuracy of the difference norm between the positions of the two representations of the fluid-structure interface as well 
as a second-order accuracy for the structural volume of the soft disk in a lid driven cavity are achieved. For the structural 
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Fig. 23. Simulations of the capture of a geometrically realistic, deformable blood clot in an IVC filter deployed in a rigid circular tube showing (a) the initial 
clot-filter-tube configuration. Dynamics of the clot deformation along with contours of velocity magnitude and vectors on the x-z plane are shown for 
times: (b) t = 0.3 s, (c) t = 1.45 s, and (d) t = 1.8 s. (e) Image sequence from high-speed videography of an experiment using a similar cylindrical blood 
clot trapped in the same IVC filter [65] showing similar clot trapping dynamics.

position of the disk’s centroid, between first and second-order spatio-temporal convergence is observed in the L∞ norm 
over the entire simulation. To assess and validate the robustness and accuracy of the new algorithm, comparisons are made 
with computational and experimental FSI benchmarks in two and three dimensions. Through our benchmark test cases, we 
demonstrate test cases with different density ratios including smaller, equal and larger than one. We previously reported 
the ability of the method in modeling problems with various density ratios for rigid-body FSI [12]. Though rigorous sta-
bility analyses and analytical investigations still remain to be done and are beyond the aim of the current extension of 
the method, our numerical experiments herein demonstrate that the ILE formulation can handle flexible-body FSI problems 
with large added mass effects. A rigorous mathematical analysis of the stability of the methodology could be the subject 
of future investigation. Finally, we show representative results from applications of this methodology to the transport and 
capture of a geometrically realistic, deformable blood clot in the GENI inferior vena cava filter model.

Future work could address further applications of this method to more challenging problems in biomedical fluid-structure 
interaction. Numerical approaches that use fully incompressible structural formulations, including a more sophisticated ex-
actly incompressible and implicit elasticity formulation, can be developed. Additionally, the current formulation requires the 
structure to have a finite thickness. A surface representation with higher regularity can be considered in future work that 
allows for imposing higher order jump conditions, more accurate traction calculations on the solid boundary and higher 
order structural deformation. Further extensions on the fluid solver for more accurate simulation of large Reynolds number 
phenomena could consider higher-order spatial discretizations and large-eddy simulation (LES) turbulence modeling.
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