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Shape is a primary determinant of consumer preference for many horticultural
crops and it is also associated with many aspects of marketing, harvest
mechanics, and postharvest handling. Perceptions of quality and preference
often map to specific shapes of fruits, tubers, leaves, flowers, roots, and other
plant organs. As a result, humans have greatly expanded the palette of shapes
available for horticultural crops, in many cases creating a series of market classes
where particular shapes predominate. Crop wild relatives possess organs shaped
by natural selection, while domesticated species possess organs shaped by
human desires. Selection for visually-pleasing shapes in vegetable crops
resulted from a number of opportunistic factors, including modification of
supernumerary cambia, allelic variation at loci that control fundamental
processes such as cell division, cell elongation, transposon-mediated variation,
and partitioning of photosynthate. Genes that control cell division patterning
may be universal shape regulators in horticultural crops, influencing the form of
fruits, tubers, and grains in disparate species. Crop wild relatives are often
considered less relevant for modern breeding efforts when it comes to
characteristics such as shape, however this view may be unnecessarily limiting.
Useful allelic variation in wild species may not have been examined or exploited
with respect to shape modifications, and newly emergent information on key
genes and proteins may provide additional opportunities to regulate the form
and contour of vegetable crops.
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1 From plant organs shaped by natural
selection, humans have selected a
diverse array of shapes in vegetable
crops to satisfy consumer preferences

Shape is a primary determinant of consumer preference for
many vegetable crops and it is associated with aspects of marketing,
harvest mechanics, and postharvest handling (Peirce, 1991; Funk
and Marshall, 2012). Perceptions of quality and preference often
map to specific shapes for fruits, tubers, leaves, flowers, roots, and
other plant organs, while certain crop shape abnormalities are
signals of concern to vegetable consumers (Moser et al., 2011;
Loebnitz and Grunert, 2018; Wiedmann et al., 2020). From crop
wild relatives where fruits, tubers, and roots are the product of
natural selection, humans have dramatically expanded the palette of
shapes and sizes available for vegetable crops. In many cases,
humans have created a series of market classes where particular
shapes predominate (Luby et al., 2016). These shapes are funneled
into market niches, where consumer preferences are specific and
particular cultivars are recognized. To take but one example, the
plethora of cultivars developed in recent centuries from non-
pungent Capsicum annuum includes a wide range of market
classes known as cherry, pimiento, sport, pepperoncini, Anaheim,
banana, bell, cubanelle, and poblano types. These in turn represent a
diverse array of shapes including round, cherry, blocky, bell, and
berry, which are in widespread use in a variety of cuisines.

The human desire to use geometry to describe where we are and
what things look like is primal (Ellenberg, 2021). Assessing the size,
shape, and orientation of our surroundings is a constant draw on
our conscious mind. And, when consciousness is altered by
psychoactive substances, our minds conjure geometric shapes in
startling colors and configurations (Bressloff et al., 2002). It appears
that our desire to describe the shape and contour of our
surroundings is a hard-wired part of our visual cortex (Bressloff
et al., 2001). Food choices fit into these patterns, affirming the often-
cited aphorism that “we eat with our eyes.” This adage has been
experimentally verified, solidifying the relationship between visual
stimuli and food shape (Delwiche, 2012). Experimental evidence
from functional magnetic resonance imaging demonstrated that
humans described curvilinear spaces as more beautiful than
rectilinear spaces (Vartanian et al., 2013), and that the
contemplation of curvilinear shapes exclusively activated the
anterior cingulate cortex, a part of the brain associated with
reward. Furthermore, activation of a neural network that
underlies aesthetic evaluation of visual stimuli covaried with the
perception of beauty. Munar et al. (2015) examined whether
nonhuman great apes and humans exhibit visual preferences for
curved contours using a forced choice experiment. They showed
that humans’ preference for curved contours evolved from earlier
primate species’ visual preferences, and suggest that it strengthened
during human evolution as it became influenced by other cognitive
processes. Although brain imaging studies on vegetable crop
preferences have not yet been conducted, there is reason to
suspect that food shape preferences are dictated to some degree
by brain circuitry activated by visual stimuli.

Many horticultural crops have been selected with a specific focus
on the shape of the organ that is most sought by humans. As can be
expected, crop domestication has resulted in traits that have
disadvantages in a natural selection context (Dwivedi et al., 2023);
shape and size among them. Here, we focus on vegetable crops where
the shape of the organ that is consumed has been substantially
modified from its wild progenitors, including our understanding of
its regulation at the morphological, genetic, and molecular level. As
the mutations arose during domestication and ensuing selection over
thousands of years, alleles were repurposed to create a set of market
classes. For horticultural crops, market class is perhaps best defined as
a grouping of similar types that are available in the marketplace, such
as russet potatoes, cut and peel carrots, or cherry or beefsteak
tomatoes. Within each of these market classes, many cultivars may
be available, each with different breeding programs focusing on
specific production and aesthetic features (Figure 1).

A hallmark of artificial selection of crop wild relatives is the
extreme modification of those plant organs that are of greatest
interest to humans (Harlan, 1992). The profusion of modifications
in leaves, roots, axillary buds, and floral organs in Brassica oleracea
crops, resulting in cabbage, kohlrabi, Brussels sprouts, broccoli,
cauliflower, and collards are an example of how particular plant
organs have been targeted during domestication to create modern
crops. Selection under domestication tends to exaggerate those
traits of greatest interest to humans (Darwin, 1875). While the
fruit-frugivore co-evolutionary relationship is well established (Lim
et al., 2020), roots and tubers are less likely to be targets of
herbivores. Nevertheless, roots and tubers in nature are likewise
the product of natural selection and are therefore naturally selected
for fitness traits such as water and nutrient uptake, carbohydrate
storage, and physical support. Hominid evolution is characterized
by an enhanced ability to digest starches, including seeds, roots, and
tubers (Hardy and Brand-Miller, 2015; Fellows Yates et al., 2021),
suggesting that these plant organs were among the earliest plant
parts to be subjected to artificial selection. Artificial selection to
modify these plant organs into vegetable crops is an example of how
visual cues have driven crop evolution.

A parallel development by humans is selection for shape
preferences in domesticated animals. Animal domestication followed
many of the same pathways as plant domestication, satisfying human
desires and heightening human preferences for particular traits. In a
classic example, anatomical features of canines were shaped by artificial
selection such that the muscle controlling raising of the inner eyebrow
and widening the eyes is present in dogs but not wolves (Kaminski
et al., 2019). Wolves possess only a small tendon for this purpose, and
the movements that animate this muscle or tendon are of much greater
intensity in dogs when they are in the presence of humans. Selection for
these anatomical and behavioral modifications changed the contour of
dog’s faces, making them more like human faces expressing sad
emotions, and may therefore have promoted a nurturing response.
Selection for body conformation in dairy cattle, including a suite of
shape traits that were thought to predict productivity, has been
practiced and studied for more than a century (Miglior et al., 2017).
Charles Darwin famously used his understanding of the power of
artificial selection on the shape of pigeons to develop his key ideas on
evolution via natural selection (Desmond and Moore, 1991).
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Modifications to form and contour are among the most significant
outcomes of artificial selection in both plants and animals.

1.1 Carrot and sweet potato

The genusDaucus in the Apiaceae family is native to central Asia.
Wild carrot, Daucus carota var. carota, is a ubiquitous weed and the
source of the domesticated vegetable. The wild carrot possesses only a
very slightly swollen root that is often highly branched (Figure 2). In
addition to modifications in life cycle, the most notable change in
carrot domestication is the dramatic change in the size and shape of
the root. Carrot is an example of a root crop where a large number of
market classes- based primarily on shape- have been developed
through breeding efforts (Mou, 2022). Examples of these include
slim and elongated Imperator types for the cut and peel market, bulky
Chantenay types for dicing, processing Danvers types for slicing and
canning, cylindrical Nantes types for fresh eating, and Parisienne
types for ball-shaped novelty carrots (Luby et al., 2016). There are
between 10 to 15 recognized root shapes (types or market classes) in
carrots today (Simon and Grezebelus, 2020). The different shapes
often respond to different market needs and consumer preferences.

Sweet potato (Ipomea batatas) was domesticated in
Mesoamerica from the wild progenitor Ipomea trifida, which is
native to Central America and parts of South America. This wild
relative possesses fibrous roots and, in certain cases, small,
thickened roots (Komaki and Katayama, 1999), which were likely
exploited during domestication. Root primordia may form
adventitious roots, which have the potential to form storage roots
under certain growing conditions. Adventitious roots may also
become fibrous roots or pencil roots, the latter of which are only
very slightly thickened and are not consumed. The storage root that
is characteristic of the modern sweet potato forms when the

cambium expands and the starch storage tissue proliferates
(Eserman et al., 2018). This in turn dramatically expands the root
and modifies the root shape. The modern sweet potato is an
important starchy root vegetable in global diets, and the key step
in its development approximately 4,000 years ago was selection for
starch storage and corresponding swollen rootedness. The crop has
not generally been selected into market classes defined by shape,
although there are some generalized market classes recognized in
certain markets. A few examples include garnet (elongated with
orange flesh), Japanese (tapered with white flesh), Jewel (less
elongated with orange flesh), and Beauregard (elongated with
yellow flesh). In general, sweet potato market classes may be
described by exterior and interior flesh colors, which range from
white to yellow, orange, and purple, and culinary uses. Root shape is
typically prolate spheroid, which is the shape of a football where the
middle is large and the two ends are tapered. It is also possible to
find cultivars that are more tubular in shape, with significantly less
swelling in the middle region.

1.2 Beet and onion

The genus Beta in the family Amaranthaceae contains several
important biennial Beta vulgaris crop species, including sugar beet,
Swiss chard, mangel or fodder beet, and table beet. Wild Beta
species (Beta vulgaris subsp. maritima) from the Mediterranean
region possess roots with supernumerary cambia that expand
during growth, but they are only slightly swollen and often
fibrous (Figure 2). It appears that the first cultivated forms of this
species were leaf vegetables, as described by the Romans, followed
by swollen rooted forms that exhibited a biennial life cycle (Ford-
Lloyd, 2005). The beet storage shapes include cylindrical, globe-
shape, flat or Egyptian shape, round, and baby beets. Growth in the

FIGURE 1

Clockwise from upper left: market classes in carrot (Goldman, I.), carrot (Source: Ernst Benary seed catalog, Erfurt, Germany, 1876), beet (Source: Oravec, M.),
onion (Source: Boyhan, 1198), pepper (Source: Naegele et al., 2016), melon (Source: Monforte et al., 2014), tomato (Source: Monforte et al., 2014).
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girth of beet and carrot roots is due to meristematic activity in the
vascular cambium, producing xylem on the inner side and phloem
on the outer side of the stem (Robert et al., 2011). Thus, the growth
of this crop is due to secondary growth produced by secondary
xylem and phloem, which represents a distinct growth form. Many
vegetables are derived from extensive growth in leaf, stem, petiole,
ovary, and fruit tissues, whereas storage roots are characterized by
this unique form of secondary growth in the root and hypocotyl.

Bulb onion originated from progenitors in the Irano-Turanian
region in Central Asia. Onion progenitor species are found in rocky
sites with shallow soils, and typically have very long juvenile phases of
3-10 years prior to flowering (Brewster, 2008). The progenitor of bulb
onion was rhizomatous, and evolution within the subgenus Cepa, to
which bulb onion belongs, resulted in the formation of a vertical
rhizome. This feature appears as a disc-like stem from which leaves
originate. Onion bulbs are comprised largely of swollen leaf bases,
some of which terminate in bladed leaves and some of which do not,
that are attached to a highly compressed stem. Shapes range from

globular to round to ovate to flat; presumably due to the growth
patterns of the swollen leaf bases (Figure 3).

1.3 Tomato and pepper

The wild tomato species Solanum pimpinellifolium possesses
fruits that are round and weigh approximately 1 g, whereas fruits
from S. lycopersicum var. cerasiforme, the progenitor type from
which tomatoes were domesticated, weigh 10–30 g and may possess
oval or flat shapes in addition to the traditional round wild-type
shape. Cultivated tomato fruits may reach 1 kg and beyond, and are
found in a wide variety of shapes. Tomatoes have likewise been
selected for a variety of fruit shapes, including globe, blocky,
flattened, elongated, pear, heart, round, and cylindrical types
(Sacco et al., 2015), or visually classified into eight fruit shape
categories: flat, round, rectangular, ellipsoid, heart, long, obovoid,
and oxheart (Rodriguez et al., 2010). References to shape in tomato

FIGURE 2

Roots of wild relative versus cultivated carrot and beet. (A) Typical roots from wild carrot Daucus carota var carota, also known as wild carrot or
Queen Anne’s Lace (left) and a modern breeding line of a carrot cultivar (right) derived from a cross of between Imperator and Chantenay market
classes. (B) Typical roots from cultivated beet, Beta vulgaris (right), and wild relative, Beta vulgaris subsp. maritima (left), and the range of roots
shapes present in (C) wild and (D) modern table beet. Root cross sections showing supernumerary cambia apparent in (E) wild relative, Beta vulgaris
subsp. maritima (PI 546509), and (F) cultivated beet and (G) the same cross sections of wild (left) and cultivated (right) beet with a penny for scale.
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go back at least as early as the 19th century. The Statistica
murattiana (1811), a statistical report of agriculture and trade by
mathematician Napoleone Sinibaldo Piaggio, reports that tomatoes
were cultivated in a variety of shapes on the outskirts of Naples.
Another agricultural treatise of the same year, L’ortolano dirozzato
describes the shape of the varieties grown: schiacciato (squashed or
flattened), globoso (spherical), and peretto (pear shape). This is
likely the first mention of the pear-shaped tomato (Gentilcore,
2010), which became very popular in Italy and beyond.

Although round tomato fruits are in heavy demand globally, it
is a given that humans also display preferences for non-wild-type
shaped fruit. The Plant Genetic Resources Unit (PGRU) of the
United States Department of Agriculture (USDA) has collected and
preserved more than 6,600 accessions of tomato and its wild
relatives. According to the morphological descriptors for fruit
shape that have been characterized in about half of the collection,
the predominant classes are slightly flattened, round, flat, high
rounded, long, blocky, plum, pear, long oblong, and heart (Table 1).
Only approximately 20% of these accessions display the round wild-
type fruit shape. Data from the Economic Research Service (ERS) of
the USDA indicate that tomatoes with round, plum/roma, or oval
shapes are the predominant fruit shapes found in import and export
markets for fresh tomatoes over the last several years. Notable

among these data are the profusion of accessions and market classes
that feature non wild-type fruits.

Five distinct species of domesticated peppers exist, which were
developed from wild species native to the Americas (Cao et al.,
2022). Wild pepper fruits were erect, in contrast to domesticated
fruits, which are pendent. Pendent fruit position allows for greater
fruit size and protection from both predators and sun (Paran and
van der Knaap, 2007). Selection for larger, blocky-shaped fruit
took place more recently, with evidence of sweet-fruited types
emerging in the last several centuries. The greatest variation in
fruit shape and size occurs in the species Capsicum annuum. Some
examples from this species include large, non-pungent, blocky-
fruited types such as the bell pepper; poblano or ancho peppers
with very dark green fruit and concave shoulders, rich flavors, and
moderate pungency; long, slender, mild Anaheim or NuMex types
used for roasting and for fresh eating; cayenne types, which are
very thin and often ground into powder, to be used as an
ingredient in soup, chili, and other dishes; Jalapeno types, which
are small and dark green and a common ingredient in Mexican
cuisine; pimiento or cherry types, which are small, red and round;
and banana types, which are long, mild, tapered, and possess waxy
fruit. Habanero types, which come from the species Capcisum
chinense, are extremely pungent and have small, dimpled fruits.

FIGURE 3

Common fruit, root, and bulb shapes in tomato, carrot, and onion. Sources: virtualherbarium.org, Virtual Herbarium, 2007; Simon, 2007; University
of Georgia Onion Production Guide.
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The species Capscium baccatum contains Aji peppers, which are
smaller and more berry like. The species Capsicum frutescens
contains the tabasco pepper, which has small, pendent fruit and is
quite pungent.

1.4 Melon and watermelon

Wild relatives of melon (Cucumis melo) exhibit a range of
phenotypic diversity in southern Asia, Australia, Africa, and India.
Recent studies suggest that the crop may have been domesticated
multiple times in both Africa and Asia (Endl et al., 2018). Wild melon
fruits are round and typically weigh less than 50 g (Monforte et al.,
2014). The initial domesticates may have been selected primarily for
their lipid and protein-rich seeds, rather than for their fruits. Selection
for an expanded mesocarp, resulting in fleshy domesticated melons,
took place later. This diversifying selection developed dozens of
melon types, including fruits that weigh more than 10 kg. Some of
the primary melon types include cantaloupensis, which have deeply
grooved exteriors and hard, scaly rinds; reticulatus, which have netted
exteriors; inodorous, which can be round to oval and include fruits
that have pointy shapes; and flexuosus, which is also known as the
snake melon and may have slender, cucumber-like fruit. Western
shipping melons, which are often referred to as cantaloupe, are round
to oval in shape and typically netted and without sutures on the
exterior. Eastern melons are round to overall, netted, and typically
sutured. Casaba melons may be acorn-shaped with bright yellow
exteriors. Honey Dew melons are round to oval with green-white
exteriors. Crenshaw and canary melons have elongated acorn-shaped
fruits with flattened stem ends. Charentais melons are globe to
elongated in shape with netted or smooth exteriors. Mediterranean,
Hami, and Rochet types have oval fruits, although there are Hami
types that exhibit globe-shaped fruits. Persian and Japanese types
have round to slightly oval fruits.

Watermelon belongs to the genus Citrullus. In addition to C.
lanatus, the sweet watermelon consumed around the world, the
genus also contains C. mucosospermus, C. amarus, C. colocynthis, C.
rehmii, C. ecirrhosus and C. naudinianus (Chomicki and Renner,
2015). Northeast Africa, specifically the Darfur region of Sudan, is
the likely region of domestication for the crop (Paris, 2015; Renner
et al., 2017; Guo et al., 2019). Fruits may be round, oval, elongate, or
spherical, and the fruit’s surface may be sutured or smooth.
Recently, small-fruited types have surged in popularity in certain
markets, but round and elongated melons remain popular in many
world regions.

2 Assessment of organ shape in
vegetable crops

Market class differences may represent subtle shifts in contour
and shape, which have historically been classified visually. Because of
the subjectivity of such assessments, precision is often lacking in
describing differences in shape among representatives of different
market classes. For example, European Union marketing standards
for tomato list four market classes: round, ribbed, elongated/oblong,
and cherry/cocktail (Commission implementing regulation (EU),
2011). No specific guidelines for the fruit shape in these market
classes are provided, however the regulations do specify allowable size
variation within a particular market class for marketing purposes.
Regulations also describe restrictions and permission on certain
aspects of shape such as “no excessive protuberances” and the
allowability of a “small umbilicus,” but few specific details on shape
per se are prescribed. United States marketing standards are similar in
that no particular shape parameters are offered for tomato and only
size grades must be marked. Furthermore, “Cerasiforme types”
(cherry) and “Pyriforme types” (pear shaped) are exempt from
marketing requirements entirely (United States Standards for
Grades of Fresh Tomatoes, 1991). A similar situation exists for
carrot, where the U.S. marketing requirements specify size grades
but do not regulate shape (United States Standards for Grades of
Carrot, 2020). Despite the lack of standardization in the commercial
realm, tomatoes are classified scientifically based on contour points,
followed by elliptical Fourier modeling (Visa et al., 2014). This type of
classification allowed for the detection of 9 shape categories in tomato
that are also discernable by growers. The contour measurements
shape categories are round, rectangular, ellipsoid, flat, obovoid,
oxheart, long rectangular, heart and long (Visa et al., 2014).

Carrot can be classified into a range of market classes, including
Imperator/Cut-and-Peel (longest type), Danvers and Chantenay
(large U.S. processing types), Nantes (fresh market type),
Parisienne (shortest type), Amsterdam, Kuroda, Flakee, Belgian
and Berlicum (Simon, 2000) and more. The difference among
many of these types might be found in the characteristics of the
shoulders and tips. For instance, Nantes and Danvers might differ in
the tip, where Nantes types of exhibit tips with a greater degree of
bluntness, and in the shoulder, where Danvers may have greater
shoulder width. Imperator and Parisienne exhibit large differences
in length, where Imperator types are used for “cut and peel” carrot

TABLE 1 Primary fruit shapes among 2,979 accessions of tomato and its
wild relatives in the USDA-NPGS collection.

Tomato Fruit Shape Number of Accessions

SLIGHTLY FLATTENED 771

ROUND 599

FLAT 477

OTHER 396

HIGH ROUNDED 225

LONG 141

BLOCKY 109

PLUM 100

PEAR 78

LONG OBLONG 59

HEART 24

Total 2979
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products and Parisienne is primarily a specialty market small,
round carrot. Kuroda and Chantenay both exhibit shoulders with
prominent angles, but Chantenay types are typically much bulkier.
Regardless of these differences, the fact that visual assessment is the
only means for assignment to a market class means a greater level of
subjectivity associated with shape.

Prior to the advent of digital imaging systems, hand
measurements such as the ratio of crown diameter to root length,
were used to assess root shape (Bradley et al., 1967). Bleasdale and
Thompson (1963) proposed cylindricality (C), as defined as

C =
w

pr2l

where w is root fresh weight, r is the radius of the crown and l is
the root length. The values of C lie between 0.33 for a cone and 1.0
for a cylinder. They also proposed that length of the roots was
proportional to the logarithm of crown diameter. They further
proposed two simple relationships: (i) that logarithm of diameter is
linearly related to logarithm of weight; and (ii) length is linearly
related to diameter. These relationships provided realistic
predictions of yields of carrot and beet in diameter grades from
observed weights in independent datasets. Stanhill (1977) reviewed
the factors that influenced carrot shape. He summarized that
besides large genetic-based differences, roots become more
cylindrical with increasing plant density, at air temperatures
below 18°C, in drier soils, when the shoots have been defoliated
and when the plants are younger. Benjamin (1987) speculated that
the shape of the storage root might relate to the spatial pattern of
cross-linking of hydroxyproline-rich glycoproteins of cell walls
(Stafstrom and Staehelin, 1988). Luby et al. (2016) found that
while carrot market classes demonstrate some phenotypic and
some genetic differences, they are largely a construct of breeders
and are therefore malleable. For example, while cultivars from a
single market class are more genetically similar than cultivars from
different classes, principal component analysis of genotyping by
sequencing (GBS) data showed that the first two principal
components explained only 10% of the total variation among a
collection of 140 US carrot cultivars, and only 12.5% of the variation
within the USDA-Plant Introduction collection of carrot accessions
collected from around the world.

Plant phenotyping has advanced substantially in the past several
decades, and digital imaging has facilitated sophisticated
approaches to contour and shape analysis of plant organs
(Horgan et al., 2001; Brewer et al., 2007; Hameed et al., 2018;
Brainard et al., 2021). Such approaches have made shape
quantification quite precise. Imaging platforms allow for the
quantification of contours such as shoulder and tip curvature in
roots or the roundness of fruits that are not simply the product of
length and width (Iwata et al., 1998; Miller et al., 2017; Turner et al.,
2018). Other traits such as distal and proximal angles, and various
degrees of obovoid, round and ellipsoid can now be quantified as
well (Brewer et al., 2006; Rodriguez et al., 2010). Typically, these
attributes are more intuitive to growers than analyses based on
contour measurements.

Brainard et al. (2021) demonstrated a digital imaging platform
for carrot that involves a three-stage workflow: image acquisition,

image pre-processing, and image analysis. Images are staged to
include a QR matrix barcode that contains identifying
information for the sample as well as a scale bar for converting
pixel measurements to physical distances. Images are acquired
with a digital camera, and processed using a set of custom Python
scripts which first convert RGB images to grayscale. These images
are then smoothed and used to generate binary masks; which are
black and white images in which the white pixels indicate the plant
organ and black pixels the background. The tip of the root is
identified through an algorithm that identifies points of maximum
curvature along the root contour. A straightening procedure was
then developed that uses Euclidean distance transformation to
trace a root’s midline from the tip to the top of the root, and then
samples the binary mask along vectors normal to the tangent of
this midline. Curvature values of the straightened root are
estimated by fitting splines to segments of the contour. Root size
is measured as the total area of the binary mask. Tip angle is
measured as the interior angle formed by the line segments
connecting the tip of the carrot to contour points located 10%
up the length of the carrot toward its top, while shoulder hull area
is the area encompassed by background pixels in the rectangular
region bounding the top 10% of the carrot. Principal component
analysis of the root profile is also utilized to provide more agnostic
measures of variability in shape and size.

Other approaches to assessing the shape of plant organs have
been developed. Turner et al. (2018) developed a digital imaging
platform for quantifying shoot and root shapes in carrot. They
developed binary masks that were evaluated in a manner similar to
that of Brainard et al. (2022). The software tool they developed is
available through the CyVerse Discovery Environment web
interface. This platform allowed for the assessment of shoot
height, root length, root width, convex hull, eccentricity,
equivalent diameter, Euler number, perimeter, solidity, petiole
width, petiole number, and petiole length. Turner et al. used this
platform to identify numerous quantitative trait loci (QTL) for
shoot and root traits in carrot. Paulus (2019) pioneered the use of
3D sensing to image plant organs. Paulus describes techniques like
laser triangulation, time-of-fight, terrestrial laser scanning for
measuring traits like leaf width and length, plant size, and
characteristics of plant organs. One approach with this platform
is to use machine learning for shape assessment. Miller et al. (2017)
developed a high-throughput method for assessing maize ear and
kernel attributes from digital images. In their platform, an
algorithm determines the average space each kernel occupies
along the cob axis using a sliding-window Fourier transform
analysis, while a second counts individual kernels. Another
algorithm assesses the axes of each kernel following a Bayesian
analysis of contour points, which finds the tip of the kernel. Ear and
shape traits are then assessed via principal component analysis of
contour points.

Elliptic Fourier Descriptors have also been developed as a tool
for capturing and analyzing complex shape characteristics of plant
organs. This technique employs a mathematical function to
decompose curvatures into coefficients, representing frequencies
or harmonics. These coefficients provide quantitative
representations of shape, which can be further analyzed using
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principal component analysis. Elliptic Fourier Descriptors have
been successfully applied to measure the shape of plant organs in
various crops, including tomato, strawberry, radish, soybean, and
buckwheat (Furuta et al., 1995; Iwata et al., 1998; Ohsawa et al.,
1998; Visa et al., 2014; Nagamatsu et al., 2021).

Van der Knaap and colleagues developed a digital tool called
Tomato Analyzer for analyzing the shape of fruits, including flat,
ellipsoid, rectangular, oxheart, heart, long, obovoid, and round
(Darrigues et al., 2008; Gonzalo and van der Knaap, 2008;
Gonzalo et al., 2009; Rodriguez et al., 2010). The software
automatically quantifies 37 shape attributes with unique
mathematical descriptors. This platform is capable of assessing
eccentricity, which relates to the position of the seed cavity inside
of the fruit; asymmetry in fruit shape, which relates to the degree to
which the fruit is top or bottom heavy; latitudinal section, which
relates to the degree of uneven shape of the fruit or lobedness;
thickness of the pericarp, septum, and placenta; and distal end
protrusion and proximal end angle, which relate to the area of the
protruded end of the fruit and the angle of the proximal end,
respectively. Five different progeny populations derived from
crosses between cultivated tomato Solanum lycopersicum and the
wild relative Solanum pimpinellifolium were analyzed for fruit shape
using this platform and numerous shape QTL distributed across the
tomato genome were identified (Brewer et al., 2007; Gonzalo and
van der Knaap, 2008). The platform has since been used by
numerous researchers throughout the world to assess shape
characteristics in horticultural crops.

3 Genetic and molecular mechanisms
underlying shape and size

As laid out above, the selection for visually-pleasing shapes in
vegetable crop fruits, roots, leaves, stems, tubers, and other organs has
taken advantage of a number of opportunistic factors, including
modification of supernumerary cambia, allelic variation at loci that
control fundamental processes such as cell division and cell
expansion, hormonal regulation, and partitioning of photosynthate

(Figure 4). Some of the key genes associated with these shape
modifications are presented in Table 2.

3.1 Tomato

OVATE is the founding member of the OVATE Family
Proteins (OFPs) class, and encodes a negative regulator of growth
which reduces fruit length (Liu et al., 2002; Hackbusch et al., 2005;
Wang et al., 2007). Pyriform fruit in tomato, which is associated
with an obovoid shape, was shown to be associated with a single
recessive allele more than 100 years ago (Hedrick and Booth, 1907).
Oval-shaped fruit co-segregated with pear-shaped fruit, and this
locus eventually became known as ovate, O. Liu et al. (2002)
identified a SNP in one of the ORFs which was associated with an
early stop codon in ovate, and a 75-amino acid truncation in the C-
terminus of the predicted protein. A conserved domain in the
OVATE gene was largely eliminated by this truncation.

Today, it is recognized that many plants contain OFPs and that
these OFPs have multiple roles in plant development, in particular in
organ shape not only in tomato but also in pepper, melon and potato
(Liu et al., 2002; Wu et al., 2018; Lee et al., 2020; Borovsky et al., 2022;
Martıńez-Martıńez et al., 2022). For example, a major QTL associated
with fruit shape index and distal fruit end angle in pepper contains an
ortholog of SlOFP20 (Borovsky et al., 2022; Lopez-Moreno et al.,
2023). In tomato, the ovate mutation is not associated with a single
type of change in fruit shape, but instead it appears that ovate
interacts with modifiers to produce an array of fruit shapes
(Rodriguez et al., 2013; Wang et al., 2016a; Wu et al., 2018).

The ovate allele is a result of a premature stop codon and
relieves the inhibition on fruit growth resulting in elongated fruits
(Liu et al., 2002). The naturally occurring ovatemutation is found in
elongated tomato accessions with obovoid/pear-shaped fruits, as
well as rectangular, ellipsoid and heart shaped fruits. The OVATE
gene was cloned from the S. lycopersicum subspecies cerasiforme
variety ‘Yellow Pear’, which implies that this mutation arose in the
progenitor species and was maintained in the cultivated germplasm
pool (Paran and van der Knaap, 2007; Rodrıǵuez et al., 2011).

FIGURE 4

Modes of expansion and shape formation in carrot, potato, tomato, and onion.
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Another fruit shape gene originally found in tomato is SUN,
encoding one of the members of the plant-specific gene families
IQ67 domain protein/SUN-like (IQD/SUN). In tomato, the SUN
locus contains a QTL that was originally revealed from a cross
between the wild round-fruited S. pimpinellifolium and the cultivar
‘Sun1642’, which exhibits elongated fruit (Xiao et al., 2008). A 25 kb
insertion present in ‘Sun1642’ but not in the wild species is
associated with this fruit shape QTL. The locus arose from an
interchromosomal gene duplication event mediated by a
retrotransposon, Rider. This insertion provided an opportunity
for increasing the expression of the gene relative to the ancestral
version, leading to elongated fruit shape. In this case, the mutation
resulted in a gain-of-function event. Subsequently, SUN family
members have been shown in other crops to underlie shape
variation such as rice, cucumber and watermelon (Duan et al.,
2017; Pan et al., 2017; Dou et al., 2018; Legendre et al., 2020). Thus,
like OFPs, SUN members are also often associated with produce
shape in agricultural crops.

A highly conserved set of genes across plant species are
WUSCHEL and CLAVATA3. IN tomato, fruit locule number and
flat shape is controlled by FASCIATED (FAS, ie, CLAVATA3;

Barrero and Tanksley, 2004; Xu et al., 2015) and LOCULE
NUMBER (LC, ie, WUSCHEL). These genes control meristem
organization and when mis-expressed, larger fruits ensue. None
of the wild relatives of tomato carry mutations in these genes with
the exception of lc (Blanca et al., 2015; Rodrıǵuez et al., 2011; Wu
et al., 2018). The LC, FAS, and SUNmutations appear to have arisen
in the same ancestral population, while the OVATE mutation arose
in a separate lineage (Rodriguez et al., 2010). For as long as humans
have been selecting crops, such traits reflect human desires and
preferences rather than those influenced only by natural selection.

Another gene that controls shape are members of the
TONNEAU1 Recruiting Motif (TRM) family. TRMs interact with
TONNEAU1 (TON1) which is a plant-specific protein that
nevertheless shares protein domains with the animal centrosomal
proteins (Camilleri et al., 2002; Azimzadeh et al., 2008). FASS/
TON2 encodes the regulatory subunit of a Protein Phosphatase2A,
and together with TON1 and TRM proteins forms the TTP (TON1-
TRM-PP2A) complex (Spinner et al., 2013). TRMs recruit TON1 to
the cytoskeleton through the M2 domain (Drevensek et al., 2012)
and the TTP complex is required for the formation of the PPB and
cell division (Spinner et al., 2013). Many members of the TRM

TABLE 2 Examples of genes and proteins with influence on organ shape in vegetable crops.

Plant species Gene or protein Effect Reference

Fruit

Solanum lycopersicon ovate Elongated fruit, pear shaped fruit Liu et al., 2002

Solanum lycopersicon, Cucumis melo,
Solanum tuberosum

OVATE Family
Protein-20, OFP20,
OFP13

Obovoid shaped tomato and melon fruit when combined with
ovate, root shape regulation in radish, altered tuber shape from
round to oval

Wu et al., 2018; Wang et al.,
2022a

Solanum lycopersicon, Cucumis melo,
Capsicum annuum, Oryza sativa

TRM, TRM5, TRM25,
GW7

Interact with OFP, rescues obovoid shape Wu et al., 2018

Solanum lycopersicon, Citrullus lunatus,
Cucumis melo, Cucumis sativus, Oryza
sativa

SUN, Cla011257,
Csa1G575000,
CmFS2.1, IQD21

Elongated fruit shape, oxheart fruit shape Xiao et al., 2008; Liu et al.,
2014; Pan et al., 2017; Dou
et al., 2018

Solanum lycopersicon ERECTA Blocky fruit shape Sun et al., 2015

Root and tubers

Ipomea batatas KNOX genes
SRF1, SRF5, SRF6

Root development Ravi et al., 2014; Tanaka
et al., 2008

Ipomea batatas IbEXP1 Root thickening Noh et al., 2013

Solanum lycopersicon LONELY GUY 1 Promotes minituber / storage organ formation Eviatar-Ribak et al., 2013

Solanum tuberosum StCDF1 Tuber development Kloosterman et al., 2013

Daucus carota DCv3_Chr5.21023,
terminal ear1

Root development Wang et al., 2018; Mousavi
et al., 2021; Brainard et al.,
2022

Brassica rapa Bra-CYP735A2 Root-hypocotyl development Liu et al., 2019

Raphanus sativus RsOFP2.3 Involvement in root shape Wang et al., 2020a.

Bulbs

Allium cepa AcFT1, AcFT4 Bulb development Ar Rashid et al., 2019
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protein family decorate microtubules in Nicotiana benthamiana
cells (Drevensek et al., 2012; Wu et al., 2018; Zhang et al., 2023).
IQD/SUNs interact with microtubules (Bürstenbinder et al., 2013;
Bürstenbinder et al., 2017; Wendrich et al., 2018; Yang et al., 2019,
Li et al., 2021) and regulate cell division pattern for organ shape
regulation probably by facilitating PPB formation and division-
plane orientation (Kumari et al., 2021). In tomato, OVATE interacts
with a subset of the TRM family that contains the M8 motif and
functions in organ shape regulation (Wu et al., 2018; Zhang et al.,
2023). A knockout mutation in TRM5 partially rescued the
elongated fruit shape caused by ovate and ofp20 (ovate/sov1) (Wu
et al., 2018), while mutation in SlTRM19 further elongates the fruit
shape in ovate/sov1 (Zhang et al., 2023). SUN/IQD also genetically
interact with OVATE, OFP20, and TRM5 in tomato fruit shape
regulation (van der Knaap et al., 2014; Snouffer et al., 2020). What is
less well understood is how OFPs complicate the interaction of
TRMs and IQD/SUNs at the microtubules, and the resulting effect
on plant organ shape. Subcellularly, co-expression of tomato TRM5
and OVATE results in re-localization of TRM5 from the
microtubules to the cytosol in Nicotiana benthamiana cells. On
the other hand, co-expression of tomato TRM5 and OFP20 results
in relocalization of OFP20 from the cytosol to the microtubules, and
their interaction is OFP and M8 domains dependent as well as gene
co-expression dependent (Wu et al., 2018; Zhang et al., 2023). These
results suggest that specific OFP-TRM interaction may dictate the
localization of the TTP complex and microtubule organization.
Snouffer et al. (2020) have proposed a model for the interaction
among OFPs, TRMs and IQDs in microtubule organization to
impact cell division and, ultimately, organ shape. The expression of
different OFPs over developmental time and space may also serve to
coordinate cellular response and microtubule organization during
organ outgrowth. Similar to OFP and SUNs, TRMs are also found
to regulate shape in other crops such as pepper, rice and cucumber
(Wang et al., 2015c; Wang et al., 2015d; Wu et al., 2018; Taitano,
2020; Xie et al., 2023).

3.2 Sweet potato and potato

Sweet potato is currently among the best models for the study of
storage root formation. The cultivated sweet potato evolved from
the wild tetraploid I. trifida and diploid I. trifida/I. tabascana
species, which do not form storage roots (Ponniah et al., 2015).
In sweet potato, the differentiation of vascular cambia causes cell
division and expansion of parenchyma cells for storage of starch
granules, which leads to rapid bulking and starchy root formation.
Theory suggests that storage root initiation is influenced by
cambium propagation and lignification. Three class I knotted-like
homeobox (KNOX1) genes—SRF1, SRF5, and SRF6 modulate
carbohydrate metabolism and cell division in sweet potato and
play a primary role in storage root development (Ravi et al., 2014).
Tanaka et al. (2008) suggested that KNOX1 genes may regulate
cytokinin levels and therefore be involved in storage
root development.

Several genes have been identified as controlling tuber
formation in potato. Potato was domesticated in the Andes and

adaptation to long days in Europe, North America, and parts of
South America was associated with regulation at the StCDF1 locus.
This locus affects tuberization via CONSTANS (Abelenda et al.,
2016). Truncated alleles at this locus, mediated by transposable
elements, deregulate the circadian clock and allow for tuberization
under long days. Hardigan et al. (2017) found truncated alleles of
StCDF1 from wild species were introgressed into adapted long-day
cultivars at the main locus controlling maturity. Pandey et al. (2022)
genotyped a diversity panel of 214 advanced clones and phenotyped
it in three field environments in Texas. A genome wide association
study (GWAS) revealed QTL for tuber shape and eye depth on
chromosomes 5 and 10, one of which was located near this same
StCDF1 locus.

Another important aspect of their findings concerns QTL for cell
cycle and endoreduplication effects. Endoreduplication is associated
with an absence of cytokinesis and successive rounds of DNA
replication. Ploidy levels increase, along with cell size and volume.
Endoreduplication has been associated with other storage tissues in
domesticated species, such as maize. In this case, it appears that genes
associated with modifications to the cell cycle may have been
important regulators of size and shape of potato tubers. Hardigan
et al. (2017) suggest that selection of endoreduplication promoting
alleles during domestication may have been important contributors
to size differences in domesticated potato.

Potato tubers vary in shape from flat/compressed to spindle
shaped/elongated, and substantial variation exists in the wild
diploid relatives of cultivated potato (Fan et al., 2022). Shape
behaves as a quantitative trait, with the Ro locus on chromosome
10 as one of the primary QTL associated with shape traits. The
potato tuber shape gene is controlled by the ortholog of tomato
OFP20, located in the same syntenic region of the genome as
tomato (Wu et al., 2018). Round is dominant to elongated when
genotypes at the Ro locus alone are considered. Huang et al. (2022)
identified a novel QTL for tuber shape in a population derived from
a wild species, Solanum chacoense. They identified a QTL, TScha6,
for tuber shape on chromosome 6. Four SSR markers and 20 CAPS
markers near this QTL were used to screen a set of cultivars and
breeding lines. One of the markers, C6-58.27_665, was significantly
associated with tuber length/width ratio. The authors proposed the
use of this marker in breeding for shape traits in potato.

StOFP20 has recently been shown to have a function in tuber
shape. In potato, StOPF20 is highly expressed in the tuber initiation
stage. Null mutation in StOFP20 turns round tuber shape into oval
(Ju et al., 2023). Similar to tomato, StOFP20 can directly interact
with three TRM proteins (StTRM5, StTRM19 and StTRM20),
which was shown by yeast two-hybrid (Y2H) and firefly luciferase
complementation assays (Ju et al, 2023). Engineering StOFP20 by
modulating gene expression level also causes altered tuber shape in
several potato varieties (Van Eyck et al., 2022).

3.3 Beet, carrot, parsnip, and turnip

Beet, carrot, parsnip, and turnip are all examples of biennial
root crops domesticated from annual species, all of which had non-
succulent roots, in an effort to produce a succulent vegetable. The
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vegetable in each case is largely composed of supernumerary
cambia, possessing additional swollen and expanded xylem and
phloem tissues beyond their primary xylem and phloem. It is this
unique feature that allows for their girth and therefore their success
as vegetables (Goldman, 2020). Photosynthate produced in the
leaves and destined for fibrous roots and the shoot apical
meristem are translocated via the storage organ. Similarly, water
and nutrients are translocated from the fibrous roots to the storage
root and eventually to the leaves. In species without swollen storage
organs, photosynthate, water, and nutrients are transferred directly
from root to stem. It is possible that the carbohydrates contained by
underground storage organs were important energy sources during
hominid evolution when other foods were scarce (Abelenda and
Prat, 2013), which would have driven the domestication and
evolution of root and tuber crops.

One of the primary differences associated with the contrast
between fruit and root shape is related to cell division. Storage roots
are characterized by cell division and expansion throughout their
development (Milford, 1973; Ting and Wren, 1980; Hole et al.,
1984; Benjamin, 1987). In contrast, fruit storage organs are
characterized by an initial phase predominated by cell division,
followed by a phase of cell expansion with no cell division. The
storage organs of all four of these root crops develop by the
formation of supernumerary cambia. In all four of these species,
there is no distinct limit to the distance down the tap root these
cambia can extend.

The storage of carbohydrate in these roots is made possible by
storage parenchyma cells that are living, allowing the root to
accumulate carbohydrate throughout its growth period. In all
storage root crops like beet, carrot, parsnip, and turnip, the
storage parenchyma cells are produced by secondary tissues,
which arise from division of the vascular cambium. We might
refer to these growth processes as anomalous growth, or growth that
does not follow recognizable patterns that occur commonly in the
majority of vascular plants. Growth in the girth of beet, carrot,
parsnip, and turnip is due to meristematic activity in the vascular
cambium, producing xylem on the inner side and phloem on the
outer side of the stem (Robert et al., 2011). Robert et al. (2011) argue
that growth via successive cambia provides an advantage to plants
under water stressed conditions, and that species with successive
cambia were common in drought or salt conditions.

More than 75 plant genera form successive cambial layers, each of
which produce secondary xylem and phloem (Spicer and Groover,
2010). Wild relatives of the root/hypocotyl crops beet, carrot, parsnip,
and turnip exhibit at least one additional cambial layer beyond the
primary xylem and phloem, and the existence of these additional
tissue layers were likely a key reason for the success of the
domesticated forms. These forms exhibit growth along both a
vertical plane perpendicular to the soil and a horizontal plane
parallel with the soil. The relative degree of vertical and horizontal
growth, as well as the portions of these cambial strips that swell, are
some of the primary determinants of root/hypocotyl shape.

Among certain species in the genus Beta, the first cambial layer
forms between the primary xylem and phloem and produces
secondary xylem and phloem. The second cambial layer forms
from the parenchyma tissue within the stem cortex and produces

conjunctive tissue to the inside. Sometimes this cambial tissue
produces secondary xylem and phloem directly, with new cambia
coming from the oldest phloem tissue. Sometimes it functions as a
master cambium, producing conjunctive tissue and new cambia on
the inside. Regardless, there are repeating increments of secondary
xylem and phloem in between conjunctive tissue. These repeating
layers of supernumerary cambia are clearly apparent in both the
wild relative, Beta vulgaris subsp. maritima, and cultivated table
beet, Beta vulgaris (Figure 2). These tissues are of functional
significance because the additional parenchyma can assist with
both carbohydrate and water storage. The existence of these
layers in wild predecessors allowed for relatively simple human
selection for swelling and expansion, giving rise to the many root
shape variants of cultivated beets today (Figure 2).

In carrot and parsnip, the vascular cambium produces a large
amount of storage parenchyma in its secondary phloem tissue. This
is where carbohydrates will be stored. This tissue also contains
normal conducting cells typical of phloem, but they represent a
small amount of this secondary phloem. Beet forms many
concentric cambial layers, each of which produces xylem inwardly
and phloem outwardly. Groups of lignified cells in the phloem give
rise to the zoning or rings typical in a cross section of a beet root
(Forbes and Watson, 1996). The red-pigmented rings consist of
storage parenchyma, whereas the lighter colored rings are
composed of xylem and phloem (Figure 2). The alternation of the
lighter and darker bands shows how successive cambia represent a
successful mechanism for the interspersing of vascular tissue (which
input and remove stored sugars) between cylinders of storage tissue.
In turnip, a small amount of secondary phloem is formed initially,
but the secondary cambia in the xylem parenchyma divide to give
rise to secondary phloem that are scattered through the xylem, and
this helps distribute carbohydrate throughout the vegetable (Forbes
and Watson, 1996).

Many key transcriptional regulators of developmental processes
associated with the shoot apical meristem are also expressed in the
cambial zone during secondary growth (Schrader et al., 2004).
Groover (2005) hypothesized that genes involved in shoot apical
meristem growth were co-opted during the evolution of cambia and
secondary vascular growth. Despite the potential source for the
origin of these genes, there are fundamental differences between the
radially organized cambial zone and the three-dimensional
organization of the shoot apical meristem.

Brainard et al. (2022) used a digital imaging system to perform a
GWAS and calculated genomic-estimated breeding values (GEBVs)
in segregating populations of carrot that had been developed by
crossing parents from different market classes that possessed
different shapes. They showed that the components of market
class -and thus root shape- are polygenic traits, likely under the
influence of many small effect QTL. High predictive ability of
GEBVs were noted, reflecting high levels of additive genetic
variance for shape traits. Multiple QTL were identified for length,
aspect ratio, maximum width, and root fill. Root fill was described
as a size-independent aspect of carrot root shape referring to the
degree of maintenance of width along the length of the carrot root.
In this sense, root fill is related to yield and biomass (Brainard et al.,
2021). The root fill QTL was the first genetic characterization of the
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control of the vast majority of the variance in carrot root shape. In
the diversity panel they used, QTL with relatively small effects were
detected for some of the other shape parameters, although
heritabilities associated with these traits were calculated as
relatively high (Turner et al., 2018; Brainard et al., 2021). It is
possible that selection for root shape occurred for numerous
accessions in the diversity panel they studied, potentially
complicating the search for common QTL controlling shape.

Brainard et al. (2022) reported several candidate genes for key
QTL associated with shape in carrot, including the gene of
DCv3_Chr5.21023, which has previously been shown to play a
role in root development. This gene is a predicted piezo-type
mechanosensitive ion channel, which may be associated with the
ability of roots to penetrate through the soil profile (Mousavi et al.,
2021). The DCv3_Chr9.36166 gene was found in region of a QTL
associated with aspect ratio. This gene is a homolog of protein
terminal ear1, which has been associated with abscisic acid-
mediated root growth (Wang et al., 2018; Brainard et al., 2022).
Three genes were found in linkage disequilibrium with a QTL on
chromosome 2 associated with root fill. DCv3_Chr2.08059 encodes
a homodomain-leucine zipper (HD-Zip) protein that has been
linked to root development (Elhiti and Stasolla, 2009).
DCv3_Chr2.08061 is a homolog of non-DNA-binding bHLH
transcription factors that are involved in lateral root formation
(Castelain et al., 2012). DCv3_Chr2.08063 is homologous to a
AAA-ATPase protein found in Arabidopsis thaliana that has been
found to drive adventitious root formation (Xu et al., 2018).

Wang et al. (2020a) found that RsOFP2.3 was the top candidate
gene for the involvement of tuberous root shape in radish as its
expression was negatively correlated with tuberous root elongation
after the cortex splitting stage, and ectopic overexpression of the
gene in Arabidopsis led to shorter but wider hypocotyl and siliques.
This gene is another example of an OFP that regulates organ shape.
Mitsui et al. (2015) performed transcriptomic analysis in radish that
revealed genes in carbohydrate metabolism played an important
role in root thickening.

Turnip is often considered a root crop, but the storage organ
that comprises the crop is actually a hypocotyl plus a compressed
stem and a root. It is, however, possible to see leaf scars toward the
tops of the turnip (Liu et al., 2019), which can allow for the
development of side shoots and to some extent parallels the
situation in tuberous crops that are formed from underground
stolons. Liu et al. (2019) have identified QTL for the production of
side shoots in turnip. They have also pointed out the potential for
adventitious root formation on the bottom of the root, which can
result in a forked or fanged like appearance. They use the descriptor
“hypocotyl-tuber” to more accurately describe the turnip. Liu et al.
(2019) found that morphological changes occurred in the xylem of
turnips 16 days after sowing that were predictive of eventual
hypocotyl/root size and shape. The Bra-FLOR1 paralogue
exhibited increased expression 16 days after sowing, at the point
when the hypocotyl starts swelling. Since this gene is associated with
flowering, the authors suspected a possible dual role of this gene in
both reproductive growth and hypocotyl/root formation. The Bra-
CYP735A2 gene was identified for its possible role in hypocotyl/root
growth via trans-zeatin. Wu et al. (2021) crossed turnip with

Chinese cabbage and identified QTL for swollen rootedness. Two
of these QTL, FR1.1 and FR7.21, were confirmed in multiple
populations. QTL FR7.1 was circumscribed to a 220 kb region
containing 47 putative genes, one of which, Bra003652, is a
homolog of AT1G78240 that plays a role in cell adhesion and
tumor-like formation in Arabidopsis thaliana.

Iwata et al. (1998) used elliptic Fourier descriptors to describe
radish root shape. The coefficients of these Fourier descriptors were
associated with the shape characteristics of market classes for
radish, and could be used for breeding shape related traits. Iwata
et al. (2004) conducted a diallel analysis on root shape parameters
measured over time in radish and concluded that length to width
ratio is predictable at a very early growth stage, whereas tip
bluntness and roundness of the middle portion of the root may
only be accurately selected at harvest time. Wei et al. (2022) describe
that the root shape of radish is measured with the ration of root
length to root diameter at the maximum root diameter. The
diameter of radish roots and the length of radish roots range
from 1 to 30 cm and 3 to 200 cm, respectively. Radish roots are
divided into 15 main shapes, including cylindrical, conical, oval,
oblate, pear-shaped and round. Many QTL have been identified as
responsible for variation in root shape. Wei et al. (2022) found
seven QTL for root shape on five chromosomes (R1, R2, R4,
R5 andR7).

3.4 Onion and related Alliums:
carbohydrate storage in leaf bases

The onion bulb is comprised of overlapping swollen leaf bases
that have accumulated water and carbohydrates as a result of the
bulbing process. The stem upon which leaves are formed is
compressed, but it expands radially to accommodate new leaves
and roots forming during the early stages of plant growth (Brewster,
1990; Goldman, 2023b). At the top of the stem, a region of cell
division known as the primary thickening meristem, is formed
around the apical meristem. These cells contain starch granules. As
leaves are added, the bases of older leaves are pushed away from the
stem apex, travel down the side of the stem, and end up near the
bottom of the stem. The primary thickening meristem’s lateral
growth causes the apical meristem to sink below the shoulder of the
stem (Brewster, 1990). The older bases of leaves split and decay.

During the bulbing process, the youngest leaves do not form leaf
blades and instead develop into bladeless leaves. In all other leaves
in the onion plant except these younger leaves, the length from the
base of the leaf sheath to the pore from which the next leaf develops
is less than the blade length. A ratio of the blade length/sheath
length of less than one is associated with bulbing (Brewster, 1990;
Brewster, 1997. Because these inner leaves do not have blades, they
help to form a pseudostem, which is hollow. As bulb formation
progresses, the outermost leaves develop into dry, thin skins to
protect the bulb. A typical onion at maturity has 2-3 dry outer skins,
enclosing 4-5 swollen sheaths from bladed leaves, which enclose 3-4
swollen bladeless leaves (Brewster, 1990). At the center of the bub
are small leaf initials that contain blades, which emerge when the
bulb breaks dormancy and sprouts. The degree to which the bladed

Goldman et al. 10.3389/fpls.2023.1257707

Frontiers in Plant Science frontiersin.org12

https://doi.org/10.3389/fpls.2023.1257707
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


and bladeless leaf bases swell is a primary determinant of bulb shape
(Goldman, 2023b).

Lee et al. (2013) demonstrated that FLOWERING LOCUS T
(FT) produces a mobile protein that regulates both flowering and
bulb formation. Bulb formation is regulated by two antagonistic FT-
like genes known as AcFT1 and AcFT4. The former promotes the
formation of bulbs while the latter prevents the up-regulation of the
former and inhibits bulbing. Long-day photoperiods downregulate
AcFT4 and upregulate AcFT1, which results in bulb formation. It
was later demonstrated that AcFT4 inhibits bulbing in short-day
photoperiods. Ar Rashid et al. (2019) showed that AcFT, AcLFY,
and GA3ox1 genes exhibited distinctive patterns of tissue specific
expression in onion, with AcFT genes located at sites of perception
in the leaf blade, and LFY genes at sites of response in the leaf base,
where the bulbing response occurs.

During the growth of the onion plant, cells move through the
basal region of the meristem into a transition zone and then into the
leaf blade. Ar Rashid et al. (2019) describe the photosynthesizing
leaf blade and basal portions of the leaf as the sites of perception and
response, respectively. They examined gene expression at different
points along the leaf and found that the genes AcFT1 and ACFT4
were produced in the same leaf tissue but exhibited different tissue
specific expression patterns under long day or short-day
photoperiods. Substantial gaps still exist in our understanding of
how these genes regulate the formation of the bulb. Presumably, the
greater the area of the leaf blade that swells during bulb formation,
the more globe-shaped the bulb. Flatter bulbs shapes may be
determined by smaller sections of leaf blade swelling in response
to hormonal signals. That is, the site of response for leaf bases may
vary in differentially-shaped onion cultivars. Pinpointing the
specific sites responsible for swelling in leaf bases will be
important in understanding how shape is regulated in onion bulbs.

3.5 Genetic control of hormonal regulation
in root and fruit shape

Many studies have proposed that hormones play an important
role in the elongation, formation, and thickening of storage roots;
however, little is known about the determinants of root elongation
in crops such as carrot and table beet. Roots contain a zone of cell
division near the root cap, which also houses the root apical
meristem. The zone of elongation of the root is located just above
the area of cell division. The zone of elongation is where newly-
developed cells begin to lengthen, resulting in a lengthening of the
root itself. During early taproot development in sugar beet, genes
involved in cell division and water and non-electrolyte small
molecule transport, are preferentially expressed (Bellin et al.,
2007). During the rapid growth stage of sugar beet taproots,
genes controlled by hormones are up-regulated (Trebbi and
McGrath, 2009). Zhang et al. (2017a) determined that several
transcription factor family members were up-regulated during the
rapid elongation phase of sugar beet taproot growth. In general,
they found an antagonistic expression of brassinosteroid and auxin
related genes during this phase; however, one of the sugar beet
genotypes demonstrated up-regulation of cytokinin, auxin, and

brassinosteroid signaling. Clearly, hormonal control is important
in root elongation; however significant gaps exist in our knowledge
of the genes associated with these processes in many root crops.

Cytokinins and auxins appear to be important in the early
stages of sweet potato storage root development, while cytokinins
and ABA) seem to be important in secondary thickening of these
roots (Li et al., 2015; Huang et al., 2017). Eviatar-Ribak et al. (2013)
found that the cytokinin biosynthesis gene LONELY GUY 1 changes
axillary meristems into aerial minitubers in tomato. Transcriptomic
analysis revealed that the minitubers have an altered hormonal
balance. Eviatar-Ribak et al. (2013) concluded that cytokinins may
function as universal regulators of storage organ formation in
plants. In the system they studied, tuber-forming potential was
suppressed within the axillary meristem. Unlocking the potential
for storage organ formation through genetic mechanisms such as
this may provide clues regarding the formation of root and
tuber crops.

Cai et al. (2022) analyzed the transcriptome of fibrous roots and
tuberous roots in three developmental stages in two sweet potato
varieties. They found differentially expressed genes involved in
signal transduction and carbohydrate metabolism, and proposed
the trihelix transcription factor (Tai6.25300) as instrumental in
tuberous root enlargement. The MADS box gene IbMADS1
(Ipomoea batatas MADS-box 1) has been implicated in hormonal
regulation of tuberization in sweet potato (Ku et al., 2008).
Transcriptomic profiling has been used to assess differences
between wild type and cultivated sweet potato (Manoharan,
2017). The MADS box gene SRD1 has also been implicated in
thickening of storage roots. Noh et al. (2010) found that SRD1 was
involved in the auxin-mediated thickening of storage roots by
affecting cell growth in the cambium and metaxlyem. The
occurrence of SRD1 transcripts is mainly in the actively dividing
cells, including the vascular and cambium cells, and the increase in
endogenous indole-3-acetic acid (IAA) content and three auxin-
inducible AUX/IAA gene transcripts concomitantly with SRD1
transcripts suggest the involvement of SRD1 during the early
stage of storage root development. Ravi et al. (2014) described
that the genes Ibkn1 and Ibkn2 activate cytokinin biosynthesis,
which are involved in storage root development. Transcription
factors derived from MADS box genes IbMADS1, IbMADS3,
IbMADS4, and IbAGL17 induce a signal transduction pathway
leading to storage root formation and development.

Wang et al. (2015a) examined the role of gibberellins in carrot
root growth and development. They found that gibberellin levels in
the roots initially increased and then decreased, but these levels
were lower than those in the petioles and leaves. They found that
gibberellin level may play a vital role in carrot elongation and
expansion, and that carrot growth and development may be
influenced by gibberellin biosynthetic genes. Ebener et al. (1993)
examined a gene DcPRP1 and found it was associated with the
formation of storage roots in carrot, particularly in response to
wounding. They found that DcPRP1 is linked to secondary root
growth and that it can be induced in carrot roots by auxin. Wang
et al. (2015b) found 87 hormone-related differentially expressed
genes at different stages of carrot root growth. Their findings
suggest that hormones may regulate carrot root growth in a
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phase-dependent manner. Despite these results, much more work
must be conducted in carrot and table beet to identify key regulators
of storage root elongation; indeed, this is one of the major research
gaps for these crops.

Not only in root crops, hormones including auxin, cytokinin,
gibberellin, ethylene, and ABA have also been reported to affect fruit
shape in diverse crops, the most recent review of which can be
found in Wang et al. (2022a). In addition, one of the candidate
genes, Solyc08g061930, of the fs8.1 locus for the elongated and
blocky tomato fruit (Grandillo et al., 1996), encodes a protein that
regulates cytokinin degradation (Sun et al., 2015), suggesting a
function of cytokinin in the tomato fruit shape regulation.
Furthermore, recent studies show that CLASS-II KNOX (TKN-II)
genes regulate tomato fruit shape via gibberellin (Shtern et al.,
2023), and CsTRM5 regulates cucumber fruit shape by affecting cell
division direction and cell expansion with the involvement of ABA
(Xie et al., 2023). In Cucurbits, ethylene regulates transcription
factors (E2F-DP), OVATE, and TRM5 to determine a round or
elongated fruit shape (Boualem et al., 2022). It has been long known
that flower sex determination (female vs. bisexual flowers) affects
fruit shape in Cucurbits (Rosa, 1928; Poole and Grimball, 1945;
Kubicki, 1962; Wall, 1967). Generally, fruits from bisexual flowers
are rounder than fruit originating from female flowers, although
there are some exceptions (Tan et al., 2015). Ethelene is the key
hormone in Cucurbit sex determination. Mutations in orthologs of
a 1-aminocyclopropane-1-carboxylic acid synthase (ACS) gene is a
key regulator of flower sex determination in watermelon (CitACS4/
ClACS7), cucumber (CsACS2), melon (CmACS7) and squash
(CpACS27A) (Boualem et al., 2008; Boualem et al., 2009; Li et al.,
2009; Martıńez et al., 2014; Boualem et al., 2015; Ji et al., 2015;
Boualem et al., 2016; Ji et al., 2016; Manzano et al., 2016; Zhang
et al., 2017b). Mutations that lower ACS expression or lead to a
reduction in enzyme activity that results in reduced ethylene
production promote development of bisexual flowers and thus
rounder fruit. In strawberry, differential auxin content and
expression of auxin-related genes probably contribute to an
elongated fruit mutant (Li et al., 2023). In tomato, a crosstalk
between miR319-targeted TCP4/LANCEOLATE, and OVATE and
auxin has been proposed as the factor that establishes fruit shape
(Carvalho et al., 2022).

4 Developmental aspects of
shape regulation and common
genetic mechanisms

The shape and size of organs is controlled by coordination of
cell growth, cell division, patterning and differentiation (van der
Knaap et al., 2014; Sablowski, 2016). The cell wall prevents cellular
motility within plant tissues, and thus the direction in which plant
cells divide is essential to determine the overall shape. Therefore,
plant cells must tightly regulate the frequency and orientation of cell
divisions to ensure precise organ growth. Organ shape can be
further regulated through directional cell expansion. The timing
of gene expression and the spatio-temporal regulation of protein

function involved in these processes are essential in growth and
morphogenesis, and alterations to expression or function can
significantly impact the organ size and shape.

The centrosome in animals organizes the microtubules during
different phases of the cell cycle. However, plants don’t have
centrosomes and thus microtubules undergo a complex
rearrangement during cell division, including the formation of a
ring of microtubules encircling the cortex at the onset of mitosis
during late G2 called the preprophase band (PPB). The PPB is a
cytological landmark of the final division plane and distinguishes
the site where the new cell plate will attach at cytokinesis (Müller
et al., 2009; Duroc et al., 2010).

In recent years, three plant-specific families of proteins have
emerged for their role in regulating fruit, seed, tuber, and leaf
morphology. They are the OFPs, including the founding member
OVATE in tomato; the OFP-interacting TRMs that are known to
associate with a complex that regulate plant cell division; and the SUNs
which are members of the IQD family, named after the sun locus in
tomato (Snouffer et al., 2020). The ubiquity of these protein families
indicates a commonmechanism that appears to be modular to regulate
plant organ shape in many if not all plant organs (Wu et al., 2018).

Asmentioned above, perhaps themost convincing evidence to date
for universal shape regulation in crops comes from Wu et al. (2018),
who showed that OFPs and TRMs are important in controlling fruit,
tuber, vegetable, and grain shapes in a variety of crop species including
tomato, melon, cucumber, rice, and potato. They suggest that the
relative expression and interaction of OFPs and TRMs are critical to the
shape of plant organs such as leaves, flowers, fruits, tubers, and roots.
They propose that the subcellular localization of these proteins, either
as associated with microtubules or in the cytoplasm, can ultimately
determine the growth and shape of particular organs. Furthermore,
they demonstrate that the relocalization of OFPs and TRMs after their
proteins interact implies a regulatory effect of these complexes in the
early development of plant organs.

Tomato produces perfect flowers that exhibit five sepals, petals,
and stamen each and two to four carpels which fuse during their
initiation to form the seed cavities or locules in the ovary. In tomato,
carpel primordia emerge from the floral center after the sepal, petal
and stamen primordia, approximately 6 days after floral bud
initiation. The carpel walls continue to enlarge and elongate while
the central portion, comprised of the septum and the central
column, results in the formation of the locular cavities (Xiao
et al., 2009). Ovule development completes when the flower
opens. Ovary shape regulated by OFP-TRM in tomato becomes
visible during the earliest stages of carpel development (Kraus,
2019). SUN is highly expressed before and immediately after
anthesis and begins impacting shape at this stage. While the exact
developmental timing of OFP, TRM, and SUN in fruit shape
determination is still under investigation, it is evident that they
act early in floral development to regulate cell patterning in the
proximo-distal and medio-lateral direction to control ovary shape
well before anthesis (Wu et al., 2011; Wu et al., 2018).

Since cell division patterning influences organ shape under
the control of OFP-TRM-SUN (Snouffer et al., 2020), it is possible
that shape is similarly regulated in other organs, namely at the onset
of primordia growth when patterned cell division is most critical.
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This cellular mechanism of shape explains why the morphology of
disparate organs such as tubers and grains are controlled by genes of
the same three families. As highlighted above, natural variation of
organ shape in diverse crops including rice (GW7/GL7 (orthologue
of AtTRM1, Wang et al., 2015c; Wang et al., 2015d), maize (maize
ZmLNG1, homolog of Arabidopsis TRMs; Wang et al., 2022b),
potato tuber (StOFP20 (Wu et al., 2018), cucumber CsTRM5 (Wu
et al., 2018; Wang et al., 2020a, b), CsSun (Pan et al., 2017, Wang et
al., 2020a, b), pepper CaOvate (Tsaballa et al., 2011), CaOFP20
(Borovsky et al. 2022), CaTRM25 (Taitano, 2020), melon
CmOFP13 (Wu et al., 2018, Ma et al., 2022a, Martıńez-Martıńez
et al., 2022), watermelon ClSUN25-26-27a (Dou et al., 2018;
Legendre et al., 2020), pummelo CitOFP19 (Wu et al., 2022) and
peach PpOFP2 (Guan et al., 2021).

Studies from genome editing or modification of gene expression of
members from these three gene families also support their common
function in organ shape regulation. For instance, loss of SlTRM5 leads
to a rounder tomato fruit shape (Wu et al., 2018), which is also true of
the knockout of CsTRM5 in suppressing cucumber fruit elongation
(Xie et al., 2023). Knockout of SlTRM19 causes an elongated tomato
fruit shape, and combination of the null mutants SlTRM19 and
SlTRM17/20a further elongates the fruit shape (Zhang et al., 2023).
Dysfunction of CsOVATE results in a longer cucumber fruit neck
(Wang, 2022c). A null mutation in StOFP20 turns round potato tubers
into oval shaped tubers (Ju et al., 2023), and modulating the expression
level of this gene alters tuber shape potato (Van Eyck et al., 2022).
Ectopic overexpression of peach PpOFP2 flattens tomato fruit shape
(Guan et al., 2021). Overexpression of bottle gourd LsOVATE1 in
tomatoes changes fruit shape (Feng et al., 2023). Overexpression of
radish tuberous root shape candidate gene RsOFP2.3 in Arabidopsis
results in shorter but wider hypocotyl and siliques (Wang et al., 2020a).
Higher expression of CitOFP19 leads to pear-shaped ovary and fruit
shape in tomato (Wu et al., 2022). Overexpression of watermelon
ClIQD24 in tomato causes an elongated tomato fruit shape (Dou et al.,
2022a). Overexpression of melon IQD/SUN genes (CmSUN23-24 or
CmSUN25-26-27c) leads to an elongated fruit shape, while
overexpression of GhIQD10 inhibits cotton fiber length (Ma et al.,
2022b; Xu et al., 2023). CsSUN-expressed tomato shows elongated fruit
shape with increased length and decreased diameter (Li et al., 2022).
Paralogs of OFPs have been identified in apple and pear (Li et al., 2019;
Ding et al., 2020), although no evidence has yet to associate these genes
with shape regulation in these fruit crops. The continuous discovery of
the involvement of TRMs, OFPs, and SUNs highlights the ubiquity of
this pathway in controlling plant organ shapes.

5 Future prospects

Crop wild relatives are considered less relevant for modern
breeding efforts with respect to characteristics such as shape,
however this view may be unnecessarily limiting. Although they
possess obvious utility in providing a point of comparison when
studying how shape modifications have proceeded under
domestication, crop wild relatives may provide even more value
for future shape modifications. Useful allelic variation in wild
species has not been fully examined with respect to its potential

to support shape modifications. For example, wild populations of
Daucus and Beta species possess supernumerary cambia but have
only been selectively subjected to domesticating selection. This
suggests that substantial variation may exist in wild populations
that have remained untapped (deBock, 1986). Similar scenarios may
exist for other root crops such as sweet potato and carrot. Since
domestication was not conducted in a systematic way where wild
populations were fully sampled for their diversity, wild species
populations may contain useful variation for shape modifications
that have not yet been tested. Rong et al. (2014) have shown that
continued introgression of genes from wild species into
domesticated populations may be in part responsible for the
modern carrot.

Although traits from crop wild relatives have been mined to
improve levels of disease and pest resistance in modern crops,
breeders have not typically used these genetic resources for
productivity traits (Goldman, 2023a). This is often because wild
species chromosome segments may possess unfavorable alleles that
can reduce crop productivity. However, this is not necessarily a
universal phenomenon: Tanksley and McCouch (1997) crossed
wild rice accessions to cultivated inbred lines. They found yield
increases in progeny from these crosses, suggesting wild species
might be more important contributors to productivity traits than
previously thought. Gur and Zamir (2004) reported on traits from
wild species of tomato that could increase yield in cultivated tomato
even under water deficit conditions. Eshed and Zamir (1995)
created an introgression population of Solanum pennelli
chromosome segments in an elite Lycopersicon esculentum
background, and found certain introgression lines with high yield
and productivity. Johal et al. (2008) developed an approach called
MAGIC (mutant-assisted gene identification and characterization)
that makes use of mutants or variants in a trait of interest to identify
novel variants for the trait. This technique may be able to identify
naturally occurring variation that can be incorporated into breeding
populations. Naturally occurring variation remains of interest to
breeders (Zamir, 2008) not only for disease and pest resistance, but
for productivity traits as well.

This research into the potential for yield increases following wide
crosses with crop wild relatives suggests that for numerous other
quality-associated traits – such as shape – the assumption that wild
populations can have only negative impacts is almost certainly not the
case. Given the relatively limited sampling of species-wide genetic
diversity which has occurred thus far in domestication efforts, it is
almost certainly the case that additional diversity at loci associated with
the development processes driving shape determination remain
unexplored. Furthermore, as concluded by Dohm et al. (2014), the
breeding of sugar beet began only in the late 1700’s, with
“domesticated” varieties being produced within only a few
generations of selection. Redeveloping commercial varieties from
wide crosses, particularly when equipped with modern selection and
genetic methods, should therefore not be considered an
insurmountable task. As such, these populations represent a valuable
resource, both as objects of study in their own right, and as material for
future crosses aiming at the development of novel shapes and novel
genetic backgrounds, to support diversification of existing
market classes.
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Once orthologs of key shape genes from the gene families OFP,
SUN, TRM, and others are identified and markers for these genes are
developed, it should be possible to design precision breeding strategies
that focus on shape traits. For example, a carrot breeding strategy to
modify only the shoulder or tip of the root to a different shape may
involve selection in a segregating population based on genotypes of
markers known to be associated with particular shoulder or tip shapes.
Furthermore, such breeding strategies might not require crosses of very
divergent parents. Instead, variants may be identified from within-
market class crosses, thereby shortening the time to cultivar
development. In addition, identification of marker-shape associations
should allow breeders to make inter-market class crosses and precisely
select particular shapes while eliminating undesirable segregants. In this
way, an important future benefit of defining the genetic control of
vegetable crop shapemay be both improved breeding efficiency and the
use of a wider cross-section of germplasm in breeding efforts.
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Martıńez-Martıńez, C., Gonzalo, M. J., Sipowicz, P., Campos, M., Martıńez-
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