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INTRODUCTION

Viruses are pervasive molecular parasites that influence 
the ecology and evolution of all life forms. Studies of di-
verse viruses infecting multiple strains of a host organ-
ism often document complex patterns of cross-infection 
(e.g., Baudoux et al., 2015; Clerissi et al., 2012). The dis-
tinct but overlapping host ranges among a set of viruses 
can be analysed as an infection network, where the virus 
and host strains are the network nodes and the network 
edges represent successful infection of a host strain by a 
viral strain (Weitz et al., 2013). The structure of infection 
networks is predicted to affect the population dynam-
ics and diversity of virus and host genotypes (Beckett & 
Williams, 2013; Jover et al., 2013; Pilosof et al., 2020; Poisot 
et al., 2011). In addition, the structure of these networks 
presumably derives from the (co)evolutionary processes 
between viruses and their hosts, such as arms races or 
fluctuating selection dynamics, and analysis of network 
structure should help reveal how these processes oper-
ate (Beckett & Williams, 2013; Pilosof et al., 2020; Weitz 

et al., 2013). At the same time, multiple types of coevo-
lutionary dynamics may be associated with similar net-
work structures (Gupta et al., 2022; Gurney et al., 2017), 
which challenges our ability to derive mechanistic insight 
from network patterns. Nonetheless, better understand-
ing network structure and how it varies across different 
virus and host taxa should help illuminate virus-host co-
evolution and the ecological consequences.

Studies of virus-bacteria infection networks have 
quantified statistical evidence for network nested-
ness and modularity (e.g., Flores et  al.,  2011; Gurney 
et  al.,  2017; Pilosof et  al.,  2020; Poisot et  al.,  2013). 
Nestedness can emerge when the host ranges of viruses 
with narrower ranges are a subset of the host ranges of 
viruses with broader ranges, and statistically significant 
nestedness is common in virus-bacteria networks (Flores 
et al., 2011). A variety of mechanisms could produce nest-
edness (Mariani et al. 2019), such as tradeoffs between 
viral host range breadth and infection efficiency, which 
can permit stable coexistence of viruses with nested host 
ranges (Jover et al., 2013), and coevolutionary arms races 
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that cause successively broader host ranges to evolve, 
as earlier viral lineages with narrower host ranges are 
driven extinct (Brockhurst & Koskella, 2013). Infection 
networks can also possess signals of modularity, where 
nodes in modules of the network interact with each other 
at a higher frequency than they interact with nodes in 
other modules. Modularity may be more common when 
the network being analysed includes a relatively broad 
phylogenetic diversity of hosts, such that the modules 
represent different host clades and the sets of viruses 
capable of infecting them (Beckett & Williams,  2013; 
Flores et al., 2013).

A measure of network structure that has not yet been 
explored in viral infection networks is dimensionality. 
Eklöf et al. (2013) quantified the dimensionality of eco-
logical networks in terms of a multivariate embedding 
space, where dimensionality is the minimum number of 
dimensions needed to order nodes in the network such 
that pairs of nodes are linked if they fall within a certain 
volume of this space. Infection networks can be analysed 
in terms of dimensionality from either the host or virus 
point of view, because infection networks are bipartite: 
each edge in the network connects a node in one group 
(the viruses) to a node in the other group (the hosts). For 
example, a network could be one-dimensional from the 
host direction, if hosts can be ordered along an axis such 
that the host range of each virus consists of a continu-
ous interval along the axis (Figure 1a,c,e,g,h). Likewise, 
a network could be one-dimensional from the virus di-
rection, if viruses can be ordered along an axis such that 
each host is infected by a contiguous set of viruses. A 
two-dimensional network would need two dimensions to 
order the hosts, such that the host range of each virus 
includes all hosts within a box in those dimensions 
(Figure 1b,d,f), and so on. Even if an observed infection 
network is relatively high dimensional, it may be possible 
to arrange the network in 1–2 dimensions with relatively 
few errors, and visualization/analysis of the network 
in this low-dimensional space may yield significant in-
sights, analogous to other dimensionality reduction 
techniques such as principal component analysis.

Eklöf et  al.  (2013) analysed the dimensionality of 
200 ecological networks, including food webs, plant-
pollinator networks, and host–parasite networks. They 
found that dimensionality increased with the number of 
links, but on average dimensionality was fairly low (mean 
2.7). Low or moderate dimensionality of ecological net-
works may occur if the interactions, such as who-eats-
whom in a food web, are determined by a small number 
of traits (Eklöf et  al.,  2013). For example, if predator–
prey interactions are determined solely by body size then 
all feeding links can be ordered along a dimension rep-
resenting size (e.g., Ward et al., 2012). An implication of 
low dimensionality is that explaining and modelling net-
work structure and its dynamics may be relatively trac-
table, if the key structuring traits can be identified. Eklöf 
et al. (2013) did not analyse viral infection networks, and 

for viruses, it may be less likely that a small number of 
traits determines network patterns, due to the complex-
ity of host-virus interactions. For example, in Escherichia 
coli a variety of single nucleotide changes can confer host 
resistance to phage λ (Chatterjee & Rothenberg,  2012), 
and hosts can employ multiple resistance mechanisms, 
leading to multifaceted coevolutionary arms races 
(Burmeister et al., 2021). However, whether the potential 
complexity of host-virus coevolution leads to complex, 
high-dimensional networks in natural populations is 
currently unknown. Quantifying the dimensionality of 
infection networks, and how viral host ranges are orga-
nized along different dimensions, should yield import-
ant insights into how these networks are structured and 
guide investigations into the underlying mechanisms.

Combining analyses of dimensionality with other 
metrics such as nestedness and modularity may be par-
ticularly helpful for understanding the mechanisms un-
derlying dimensionality. For example, strong nestedness 
may lead to low dimensionality (Figure 1a,b), but alter-
native patterns of network structure could also under-
lie low-dimensional infection networks. In particular, 
competition among viruses for hosts could select for re-
source partitioning of hosts based on the host traits that 
affect successful viral infection; we will refer to this as 
‘host partitioning’. Host partitioning could lead to low-
dimensional network structure without strong patterns 
of nestedness or modularity, if the key axes of host phe-
notypic variation are small in number (Figure 1c,d). This 
form of host range evolution has been modelled as an im-
perfect lock-and-key, intended to represent the evolution 
of specificity in receptor-binding proteins (Beckett & 
Williams, 2013; Weitz et al., 2005), although host ranges 
could also be partitioned based on infection processes 
downstream of receptor binding. Host partitioning 
among viruses could occur simultaneously with other 
forms of viral diversity, such as generalist/specialist host 
range tradeoffs, or transient diversity associated with 
arms race dynamics, leading to host range patterns that 
combine nestedness with host partitioning (Figure 1e,f). 
Modularity may also emerge along axes of host parti-
tioning as initially overlapping clusters of hosts and vi-
ruses diverge over time (Figure 1g,h).

Viruses are extremely diverse, with genome types 
and replication modes not found in cellular life, and 
many major viral lineages likely arose independently, 
some before the last universal cellular ancestor (Koonin 
et al., 2023). It is not clear whether viruses that infect 
different domains of life, or viruses from different an-
cient lineages, tend to have distinct eco-evolutionary 
features. For example, infection network structure may 
vary across host domains and the distinct virus lin-
eages infecting them, reflecting different mechanisms 
of host-virus interaction, or network structure may 
be generally similar, reflecting common constraints 
that guide diverse viruses down comparable evolu-
tionary paths. In this study, we compile and analyse 
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11 infection networks of viruses infecting marine eu-
karyotic phytoplankton, including dsDNA, ssDNA, 
and ssRNA viruses. Eukaryotic phytoplankton are 

the dominant primary producers in the ocean, and 
their viruses greatly influence mortality, diversity and 
biogeochemistry (Suttle,  2005). We also reanalyse 26 

F I G U R E  1   Examples of how different viral host range patterns can lead to one- or two-dimensional infection networks. In the 1D cases, 
the axis represents host phenotypic differences that are ordered in one dimension, and the coloured segments represent viral host ranges, such 
that a host strain with a phenotype that falls within a particular segment will be infected by that virus. In the 2D cases, the axes represent two 
distinct aspects of the host phenotype, and the coloured boxes represent viral host ranges, such that a host strain with a phenotype that falls 
within a particular box can be infected by that virus. (a) Host ranges exhibiting nestedness in 1D, such that smaller host ranges are always 
nested within broader host ranges. (b) Host ranges in 2D where range positions along each axis are nested. (c) Host partitioning in 1D, such 
that host ranges are distinct and may overlap, but do not exhibit nestedness. (d) Host partitioning in 2D. (e) Host ranges that can be arranged in 
1D and exhibit a combination of partitioning and nestedness. (f) Combined host partitioning and nestedness in 2D. (g) Host ranges in 1D that 
combine modularity (two non-overlapping pairs of host ranges) and nestedness (within modules, the narrower host range is nested within the 
broader). (h) Host ranges in 1D that combine modularity and partitioning (within modules, host ranges are distinct but not nested).

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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infection networks of phage-infecting bacteria from 
diverse environments (Flores et  al.,  2011). Our anal-
ysis has several goals: assess the dimensionality of 
viral infection networks; consider what insights can be 
gleaned by comparing dimensionality, nestedness, and 
modularity; and compare network structure between 
virus-bacteria and virus-eukaryote networks. In total, 
these comparisons allow us to ask whether network di-
mensionality yields new insights into infection network 
structure and whether networks are structured in sim-
ilar ways across viral lineages and domains of cellular 
life.

M ETHODS

Network compilation

We surveyed the literature for cross-infection matrices 
reported for viruses of eukaryotic phytoplankton. We 
found 11 matrices, including 3 involving prasinophytes 
(1 Micromonas, 1 Ostreococcus, and 1 both), 3 involv-
ing the raphidophyte Heterosigma, 3 involving diatoms 
(2 Chaetoceros, 1 Rhizosolenia), and 2 involving hapto-
phytes (1 Emiliania, 1 Phaeocystis) (File S2; Table  S1). 
Most of the viruses in these studies were dsDNA viruses, 
but the three diatom studies included one on ssDNA 
viruses (Tomaru et  al. 2008), one on ssRNA viruses 
(Nagasaki et al., 2004), and one with both ssDNA and 
ssRNA viruses (Tomaru et al., 2011). The number of host 
strains in these studies varied from 6 to 79, the number 
of virus strains varied from 9 to 44, and the number of 
virus-host links varied from 29 to 784. The strain diver-
sity in all of these studies represents natural diversity, 
i.e., the strains did not result from laboratory (co)evolu-
tion experiments.

To compare network structure between eukaryote-
infecting and bacteria-infecting viruses we re-analysed 
the phage-bacteria infection matrices previously com-
piled by Flores et al. (2011). We excluded matrices that 
did not have at least 15 total strains (virus + host), or 
that did not have at least 4 strains of both virus and 
host. These were excluded because preliminary analy-
ses indicated that low strain diversity led to low statis-
tical power for distinguishing network patterns from 
a null model. The number of included matrices from 
Flores et  al.  (2011) is 26. For all matrices we coded 
whether the matrix included multiple kinds of virus—
for the phage networks this meant multiple of the tra-
ditionally defined ‘families’ Myoviridae, Siphoviridae, 
and Podoviridae; for the eukaryote-infecting viruses, 
this meant the one study that included both ssDNA 
and ssRNA viruses. Finally, all networks were coded 
as to whether the strain diversity represented natural 
diversity, or experimentally generated diversity (6 of 
the phage networks included strains that were exper-
imentally evolved).

Dimensionality algorithm

Following Eklöf et al. (2013), we used an iterative algo-
rithm to sort the 37 infection matrices, with the goal of 
defining the minimum dimensionality of each infection 
network, and quantifying how well each network can 
be described by a single dimension. Infection networks 
are bipartite, because each edge in the matrix connects 
one part of the network (the set of viruses) to the second 
part of the network (the set of hosts). Therefore, when 
analysing network dimensionality the network can be 
sorted from the host direction or from the virus direc-
tion. To describe the algorithm, we will focus on the one-
dimensional case where hosts are sorted. At the start, 
an infection matrix possesses an initial arrangement 
such that there are N total hosts arranged at positions 
1:N along the host axis of the matrix. For each virus, we 
can define an interval [i,j] such that all hosts infected by 
that virus are between positions i and j (including hosts i 
and j). However, there may be hosts between i and j that 
are not infected by the virus, and we refer to the non-
infected hosts in [i,j] as errors. The goal of the algorithm 
is to rearrange the positions of the hosts to minimize the 
number of errors. The algorithm proceeds by choosing 
two hosts and swapping their positions on the host axis. 
If the new host arrangement results in fewer total errors, 
the new arrangement is kept; otherwise, the previous ar-
rangement is retained. The algorithm alternates between 
choosing two adjacent hosts to swap, and choosing two 
hosts at random positions to swap—this provides both 
small and large changes in overall host arrangement. If 
an arrangement with zero errors is found, the algorithm 
stops. If there are zero errors, then the interval [i,j] of 
each virus includes all hosts in its host range and no 
hosts that are not in its host range. A network that can 
be perfectly sorted in one dimension is referred to as an 
‘interval’ network in graph theory (Eklöf et al., 2013).

The algorithm proceeds for 10,000 steps (if a zero-error 
solution is not found) before stopping. The procedure is 
repeated, with 25 total initial host configurations. The 
first configuration sorts host by degree (the total num-
ber of viruses that can infect the host), while the remain-
ing 24 configurations are chosen at random. Extensive 
preliminary tests with diverse networks found that using 
more than 25 initial states, or more than 10,000 steps, 
did not improve the best solution (i.e., the host arrange-
ment with the fewest number of errors). We also tested a 
stochastic algorithm that occasionally accepts worse ar-
rangements (i.e., an increase in errors), in order to avoid 
local optima, but this did not lead to better solutions. 
Therefore, although the nature of the algorithm pre-
cludes us from being certain that the best solution in one 
dimension has been found, it is likely that the solutions 
we report are the best possible. It should be noted that 
there may be more than one solution with the same num-
ber of errors, particularly if the network contains true 
modules. For example, if there is a set A of hosts that can 
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only be infected by set α of viruses and a set B of hosts 
that can only be infected by a set β of viruses, then host 
set A could be placed to the left or the right of host set B 
without changing the number of errors.

Each network was sorted from both the host and 
virus directions, with results recorded separately. If the 
network is sorted from the virus direction the goal is to 
obtain an arrangement of viruses such that each host is 
infected by all viruses in its interval [i,j]. In other words, 
each host has a susceptibility range that is represented by 
a contiguous set of viruses along the sorted virus axis. 
An infection network can be one-dimensional (interval) 
from the host direction, the virus direction, or both.

If a network could not be perfectly sorted in one di-
mension, from either the host or virus direction, we re-
peated the algorithm using two dimensions, and so on 
with an increasing number of dimensions until the min-
imum dimensionality was found. To illustrate the pro-
cedure in >1 dimension, we describe host sorting in two 
dimensions. At the start, each host is given a location 
from 1:N along two axes; these coordinates can be de-
noted (xn, yn) for host n along the two axes x and y. Each 
virus possesses a box, [xi,yi] × [xj,yj], the smallest box 
containing all hosts that a virus can infect. Any hosts 
within this box that the virus cannot infect are defined 
as errors. The algorithm proceeds by randomly picking 
the first or second axis, swapping host positions along 
the chosen axis, and calculating the # errors of the new 
arrangement, as described above for a single dimension. 
To conceptualize the meaning of >1 dimensional net-
work structure, it can be helpful to think of the axes as 
putative host traits (or virus traits, when sorting viruses). 
If a network can be sorted in two host dimensions with 
zero errors, it means that each virus has a box such that 
it only infects hosts with traits that meet two conditions: 
trait values between xi and xj on the first trait axis, and 
values between yi and yj on the second trait axis. R code 
for finding the minimum dimensionality of an infection 
matrix is provided in File S1.

Null model analysis

Networks that are relatively small or have low con-
nectance may be sortable into one dimension even if  the 
edges are randomly arranged. Therefore, we used a null 
model to ask whether the ‘fit’ of  each network to 1D is 
better than expected by chance. We used a probabilistic 
degree network (Flores et  al.,  2013) where the ability 
of  virus m to infect host n is assigned with probability 
pmn =

1

2

(

kn

V
+

dm

H

)

, where the degree kn is the number of  vi-
ruses that infect host n, the degree dm is the number of 
hosts infected by virus m, V is the total number of  viruses 
in the network, and H is the total number of  hosts in the 
network. This model maintains, on average, the degree 
for each host and virus in the network, while allowing the 
arrangement of  host-virus interactions to vary randomly 

within those constraints. For each empirical network, 500 
random networks were generated, and the sorting algo-
rithm defined above was run for each network. This gen-
erated a null distribution of  the # of  errors when sorting 
random networks in one dimension. The null distribution 
was used to calculate the probability of  observing the # of 
errors in the empirical network, as well as the mean, SD, 
and 95% interval of  # errors in the null distribution. We 
also implemented the ‘EE’ null model that maintains the 
total number of  species occurrences in the matrix, but al-
lows both row and column totals to vary freely (Ulrich & 
Gotelli, 2007). This model produced qualitatively similar 
results to the probabilistic degree network, but we report 
only the results from the latter model here because the EE 
model is known to have inflated type I error when testing 
nestedness on random matrices (Ulrich & Gotelli, 2007). 
Finally, we did not implement the commonly used ‘FF’ 
model that maintains fixed row and column totals, be-
cause some of  the networks in our compilation are per-
fectly nested, while others are nearly perfectedly nested, 
and it is not possible to permute perfectly nested matrices 
using swap operations (Kallio, 2016).

Nestedness and modularity

To compare network dimensionality to other aspects 
of network structure, and compare network structure 
between eukaryote-infecting and bacteria-infecting vi-
ruses, we quantified nestedness and modularity for each 
network. Nestedness was quantified using stable NODF 
(sNODF), which is a modification of the common 
NODF metric that avoids penalizing rows or columns 
with the same degree, making the metric more stable to 
small perturbations of the data (Mariani et al. 2019). We 
also calculated nestedness using network temperature 
(Atmar and Patterson 1993), but we report sNODF re-
sults here, as the results were qualitatively highly simi-
lar for the two metrics. Modularity was quantified using 
Newman's modularity measure as implemented by the 
function computeModules in the R package ‘bipartite’ 
v2.17 (Dormann et al. 2008). Nestedness and modular-
ity were compared to the same probabilistic degree null 
model used for dimensionality analysis.

Comparative network analysis

To investigate potential drivers of dimensionality across 
networks, we used multiple regression, where network 
dimensionality was the response variable and the pre-
dictors included host taxonomy (bacteria or eukaryote), 
whether the network included multiple viral taxa (yes/
no), whether the strains in the network represent natu-
ral diversity or experimentally derived diversity, network 
connectance, total richness (total number of virus and 
host strains), minimum richness (defined as min(virus 
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richness, host richness)), and number of links in the 
network. We fit separate models using total richness, 
minimum richness, or number of links as predictors, to 
compare their explanatory power, because these metrics 
are correlated with one another.

RESU LTS

We first discuss some qualitative insights gained from 
sorting infection networks to minimize dimensionality, 
before reporting quantitative comparisons of all net-
works. Throughout the results, we will focus on sorting 
networks from the host direction, but highly similar re-
sults are obtained when sorting from the virus direc-
tion (Table S1). Many networks can be sorted along a 
single dimension with zero or few errors, where an error 
means that the host range of a virus includes a host 
that it cannot actually infect (Figure 2). Some of these 
(nearly) one-dimensional networks exhibit a strong sig-
nal of host partitioning (similar to Figure 1c,h), such 
that viral host ranges are spread out along the axis of 
sorted hosts, with partial overlap in host range among 
neighbouring viruses (e.g., Figure  2a-e). Many net-
works display substantial evidence of both host par-
titioning and nestedness (similar to Figure 1e,g), such 
that the host ranges of viruses with narrower ranges 
are often included within the host ranges of viruses 
with broader ranges, while at the same time the nest-
edness is not perfect and there is clear segregation of 
host ranges along the sorted host axis (e.g., Figure 2f-o).  
Finally, three networks are perfectly nested along a 
single host axis (similar to Figures 1a and 2p-r).

Sorting networks to minimize dimensionality can 
help reveal multiscale network patterns, such as mod-
ules and partitioning or nestedness within modules 
(Figure 1g,h), which is exemplified by the network from 
Baudoux et al. (2015), which incorporates three clades 
of the picoeukaryote Micromonas and viruses that in-
fect them. The sorted host axis separates clade C from 
clades A + B, as these two groups are infected by dis-
tinct sets of viruses (Figure 3). The axis also captures 
host partitioning between clades A and B, with these 
two clades separated along the axis, although some vi-
ruses can infect both clades (Figure 3). There is also ev-
idence of partitioning within clade C and some nested 
host ranges in both modules (Figure  3). Remarkably, 
the phylogeny of host isolates based on 18S rRNA se-
quences maps very closely to the sorted host axis, with 
only one pair of isolates swapped in terms of order be-
tween the two arrangements (Figure 3). This network 
also illustrates the utility of a null model for interpret-
ing dimensionality. The one-dimensional sort of this 
network contains seven errors, and two dimensions are 
required to perfectly sort the network with zero errors 
(Table S1). At the same time, a null model of this net-
work contains 130 errors on average when sorted in 

one dimension, with a 95% interval of [108,152], indi-
cating that the one-dimensional sort of the observed 
network is ca. 95% closer to perfect than expected by 
chance (i.e., 7/130 = 0.053). It should also be noted that 
networks can show a significant ‘fit’ to one dimension 
while still containing many errors. As described fur-
ther below, nearly all networks in the dataset can be 
fit to one dimension better than expected by chance, 
but in ~half of the networks many errors are still pres-
ent (File S3). In addition, many networks that are not 
one-dimensional can be perfectly sorted in two dimen-
sions. Host ranges in two or more dimensions are more 
challenging to visualize, but could help reveal multiple 
mechanisms driving host range evolution. For exam-
ple, the network reported by Flores et  al.  (2011), de-
rived from a coevolution experiment with Escherichia 
coli and phage λ, is suggestive of an arms race caus-
ing host ranges to expand in two dimensions over time 
(Figure S1).

When comparing all 37 compiled networks, 11 
can be perfectly sorted in one dimension, while 13 
are two-dimensional, 9 are three-dimensional, 3 are 
four-dimensional, and 1 is five-dimensional (Table S1; 
Figure 4a). Nine of the two-dimensional networks can 
be sorted in one dimension with 5 or fewer errors. 
Therefore, roughly two-thirds of the networks are 
one- or two-dimensional, and roughly half are either 
perfectly one-dimensional or nearly so. Thirty-three 
of the networks can be fit to one dimension better 
than expected by chance, and the median fit of these 
networks to one dimension is 86% closer to perfect 
than expected by chance (Table  S1). Two of the non-
significant networks can actually be perfectly sorted 
in one dimension, indicating that a one-dimensional 
network is not significantly different than the null 
expectation for these networks, likely because these 
are smaller networks with lower statistical power 
(Table  S1). A multiple regression with dimensionality 
as the response variable shows that dimensionality 
tends to increase with network richness (i.e., the total 
number of virus and host strains; p = 0.006, F1,30 = 8.8, 
partial R2 = 0.23). However, there is a stronger relation-
ship when the total richness predictor is replaced with 
the minimum richness, defined as min(virus richness, 
host richness) (p < 10−4, F1,30 = 22, partial R2 = 0.36; 
Figure  4b). Dimensionality is also correlated with 
number of links in the network (p < 10−3, F1,30 = 16, par-
tial R2 = 0.26). Dimensionality is not affected by net-
work connectance (p = 0.19, F1,30 = 1.8), the presence of 
multiple viral clades (p = 0.54, F2,30 = 0.62), or whether 
the strains represent natural or experimentally derived 
diversity (p = 0.18, F1,30 = 1.9). Dimensionality does not 
differ between networks with bacterial and eukaryotic 
hosts (p = 0.86, F1,30 = 0.03). There is also no evidence 
that dimensionality differs between bacterial and eu-
karyotic networks when comparing the distribution of 
dimensionalities between these groups (Fisher's exact 
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test, p = 0.94), or the average number of errors when 
sorted in one dimension (permutation test, p = 0.55). 
Figure  4c,d compares dimensionality vs. minimum 
richness and vs. number of links.

Statistically significant nestedness is common in the 
compiled infection networks, consistent with the pre-
vious analysis of phage-bacteria networks by Flores 
et al. (2011). Of the 37 total networks, 26 are significantly 
nested, while 2 are significantly anti-nested (Table  S1). 
These results were obtained using sNODF as the metric 
of nestedness, but the results are very similar when using 
network temperature (Table  S1). 17 out of 26 bacterial 
networks are nested and 2 are anti-nested, while 9 out of 
11 eukaryote networks are nested and 0 are anti-nested. 
The frequency of nested, non-nested, and anti-nested 
networks does not differ significantly between networks 
with bacterial and eukaryotic hosts (Fisher's exact test, 

p = 0.85). Although most of the 37 networks are signifi-
cantly nested, and most are relatively low-dimensional, 
there is no evidence for a relationship between nested-
ness and dimensionality. Networks that are significantly 
nested do not tend to have lower dimensionality than 
those that are not (permutation test, p = 0.40), and do not 
tend to have fewer errors when sorted in one dimension 
(permutation test, p = 0.36). Finally, in contrast to the 
commonness of nestedness, only a minority of the net-
works (8) are significantly modular, while 2 are signifi-
cantly anti-modular (Table S1).

DISCUSSION

Our results show that viral infection networks are 
often low-dimensional, and the success in sorting these 

F I G U R E  2   Empirical infection networks that can be sorted in one dimension with 0–4 errors. In each panel, hosts are arranged along 
the x-axis and viruses along the y-axis. Filled circles represent viruses that can successfully infect hosts at that position. Viral host ranges 
are represented by series of filled circles connected with lines, and red crosses represent errors (hosts within a viral host range that cannot 
be infected by that virus). Circles are not visible in panel (j) because of the large number of hosts in that study. Source publications for the 
networks: (a) Miklič & Rogelj, 2003; (b) DePaola et al., 1998; (c) Krylov et al. 2006; (d) Zinno et al., 2010; (e) Duplessis & Moineau, 2001; (f) Doi 
et al., 2003; (g) Nagasaki et al., 2005; (h) Nagasaki et al., 2004; (i) Kankila & Lindström, 1994; (j) Pantuček et al., 1998; (k) Seed & Dennis, 2005; 
(l) Synnott et al., 2009; (m) Capparelli et al. 2010; (n) Rybniker et al., 2006; (o) Tomaru et al., 2011; (p) Baudoux & Brussaard, 2005; (q) 
Middelboe et al., 2009; (r) Ceyssens et al., 2009.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r)
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networks along a single dimension is generally much 
better than expected by chance. This simplicity in net-
work structure is noteworthy, considering that the in-
tricacy and complexity of host-virus interactions could 
conceivably lead to high-dimensional coevolutionary 
dynamics. The finding that dimensionality increases 
with network richness (Figure  4b) suggests that low 
dimensionality of observed networks may be driven 
in part by undersampling of the full diversity of host 
and virus populations. Nonetheless, even if true net-
work dimensionality is underestimated, the relatively 
low dimensionality of the observed networks suggests 
it may be possible to explain most of network struc-
ture with a small number of underlying mechanisms 

that determine which viruses can infect which hosts. 
Likewise, host-virus coevolution may often play out 
primarily along a small number of dimensions. Testing 
the validity of these speculations will require further 
research that integrates analyses of network structure 
with detailed study of the mechanisms determining 
viral host range and host resistance.

The similar distributions of dimensionality and nest-
edness among bacterial and eukaryotic infection net-
works suggest that the processes underlying network 
structure are comparable across domains of life and dis-
tinct viral lineages that infect them. Because most (8/11) 
eukaryotic networks in the dataset include known or 
suspected dsDNA viruses, and all 26 bacterial networks 

F I G U R E  3   Infection network of 14 Micromonas and 44 virus strains, from Baudoux et al. (2015). The network is sorted from the host 
direction in one dimension with 7 errors. Host ranges and errors are represented in Figure 2. Below the host strain labels on the x-axis is a 
phylogeny of the host strains, estimated using FastTree v2.1.11 in Geneious v11.1.5, from a 1493 bp alignment (MAFFT v7.45) of 18S rRNA 
sequences. Support values for nodes are omitted for clarity. Red lines indicate two strains whose position on the phylogeny is flipped relative to 
their position in the 1D sorted network.
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include known or suspected dsDNA viruses, it will be 
important to study network structure of viruses with 
other genome types, to assess whether other genome 
types are associated with alternative network patterns. 
It is noteworthy that the networks in the current study 
exhibit similar scaling of dimensionality vs. minimum 
richness and dimensionality vs. number of links, when 
compared to the diverse ecological networks compiled 
by Eklöf et  al.  (2013; Figure  4c,d). This suggests that 
networks composed of different kinds of ecological in-
teractions are constrained to similar distributions of di-
mensionality, conditional on network diversity. It may 
be the case that common processes such as competitive 
resource partitioning and coevolution among interactors 
ultimately lead to similar dimensionalities for different 
network types.

One of the most useful outcomes of analysing net-
work dimensionality is that the networks are sorted 
in a way that better reveals patterns of host partition-
ing (Figures 2, 3). The resulting axis (or axes) could be 
utilized in further analyses to test underlying mech-
anisms. For example, one can ask whether viral geno-
types or traits are correlated with the location of their 

host ranges along the axis of sorted hosts. Likewise, host 
genotypes or traits can be compared to the location of 
host susceptibility ranges along an axis of sorted viruses, 
to test causes of susceptibility and resistance. We have 
focused on one-dimensional patterns here because they 
are easiest to visualize, but sorting networks in two or 
more dimensions would allow one to test whether dif-
ferent network dimensions are associated with different 
host and virus traits. One or more network axes could 
also be compared to phylogenies, to test whether there 
is a strong phylogenetic signal to network structure (as 
is evident in Figure 3), and axes could also be compared 
to environmental data describing the niches of isolates, 
to test whether host partitioning is associated with host 
niche differentiation.

Low dimensionality and nestedness are both frequent 
in the compiled networks, and nestedness is a network 
pattern that should be associated with low dimensionality. 
At the same time, many low-dimensional networks in this 
compilation do not show strongly nested structures, and 
there is no statistical relationship between dimensionality 
and nestedness. This suggests that a combination of host 
partitioning and nestedness, with their relative importance 

F I G U R E  4   (a) Distribution of dimensionalities among the 37 compiled infection networks. (b) Relationship between dimensionality and 
minimum network richness (i.e., min(virus richness, host richness)). ‘bact’ = networks with bacterial hosts, ‘euk’ = networks with eukaryotic 
hosts. (c) Comparison of dimensionality vs. minimum richness in virus-host networks (‘this study’) and other ecological networks (‘Eklöf’; 
data from Eklöf et al., 2013). (d) Comparison of dimensionality vs. number of links in virus-host networks (‘this study’) and other ecological 
networks (‘Eklöf'; data from Eklöf et al., 2013). In (b-d) points are slightly jittered on the y-axis to better display overlapping points.
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varying among networks, maybe the most accurate para-
digm for how infection networks are typically structured 
(Figure 1e,f), at least when focusing on networks that do 
not have great enough phylogenetic diversity to encompass 
true modules (Figure 1g,h). This conclusion has implica-
tions for understanding and modelling the dynamics of 
coevolution and the tradeoffs that constrain it. Host par-
titioning is most consistent with ‘matching alleles’ or ‘im-
perfect lock and key’ conceptual models of host–parasite 
coevolution (Beckett & Williams,  2013;Dennehy,  2012; 
Weitz et  al.,  2013), and its occurrence implies that viral 
diversity is structured by tradeoffs that cause viruses to 
specialize on different host phenotypes. It has also been 
noted that modularity in network structure may be driven 
by matching alleles coevolution (Weitz et  al.,  2013). 
Host partitioning and modularity are related patterns 
potentially driven by the same mechanism, because a 
continuous host axis with overlapping viral host ranges 
(Figure  1c) can ultimately form distinct modules, given 
sufficient host and virus divergence (Figure 1g,h) (Beckett 
& Williams, 2013). In contrast, nested network structure 
may be more consistent with ‘gene for gene’ coevolution, 
whereby a virus evolves a broader host range by possessing 
a set of genes needed to infect each host (Dennehy, 2012; 
Weitz et  al.,  2013). The apparent mix of host partition-
ing and nestedness in most low-dimensional networks 
(Figure 2) suggests that host-virus coevolution generally 
involves a mix of coevolutionary mechanisms (Agrawal & 
Lively, 2002). Combining analyses of dimensionality, nest-
edness, and modularity with genetic and phenotypic data 
will promote a better understanding of how this mixture 
of mechanisms operates in different microbial systems. 
Furthermore, the number of eukaryote-virus systems for 
which cross-infection data from diverse isolates has been 
collected is relatively modest, and additional research in 
this area will aid understanding of the distribution and 
drivers of network structure. Finally, understanding the 
causes of low or high dimensionality will benefit from in-
depth studies of particular systems that attempt to disen-
tangle the potential roles of strain richness, phylogenetic 
diversity, and spatiotemporal scale.
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