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Abstract

Diverse viruses and their hosts are interconnected through complex networks of
infection, which are thought to influence ecological and evolutionary processes,
but the principles underlying infection network structure are not well understood.
Here we focus on network dimensionality and how it varies across 37 networks
of viruses infecting eukaryotic phytoplankton and bacteria. We find that
dimensionality is often strikingly low, with most networks being one- or two-
dimensional, although dimensionality increases with network richness, suggesting
that the true dimensionality of natural systemsis higher. Low-dimensional networks
generally exhibit a mixture of host partitioning among viruses and nestededness
of host ranges. Networks of bacteria-infecting and eukaryote-infecting viruses
possess comparable distributions of dimensionality and prevalence of nestedness,
indicating that fundamentals of network structure are similar among domains of
life and different viral lineages. The relative simplicity of many infection networks
suggests that coevolutionary dynamics are often driven by a modest number of
underlying mechanisms.
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INTRODUCTION

Viruses are pervasive molecular parasites that influence
the ecology and evolution of all life forms. Studies of di-
verse viruses infecting multiple strains of a host organ-
ism often document complex patterns of cross-infection
(e.g., Baudoux et al., 2015; Clerissi et al., 2012). The dis-
tinct but overlapping host ranges among a set of viruses
can be analysed as an infection network, where the virus
and host strains are the network nodes and the network
edges represent successful infection of a host strain by a
viral strain (Weitz et al., 2013). The structure of infection
networks is predicted to affect the population dynam-
ics and diversity of virus and host genotypes (Beckett &
Williams, 2013; Joveretal., 2013; Pilosof et al., 2020; Poisot
et al., 2011). In addition, the structure of these networks
presumably derives from the (co)evolutionary processes
between viruses and their hosts, such as arms races or
fluctuating selection dynamics, and analysis of network
structure should help reveal how these processes oper-
ate (Beckett & Williams, 2013; Pilosof et al., 2020; Weitz

coevolution, host range, modularity, nestedness, phage, phytoplankton, prasinovirus, resource

et al., 2013). At the same time, multiple types of coevo-
lutionary dynamics may be associated with similar net-
work structures (Gupta et al., 2022; Gurney et al., 2017),
which challenges our ability to derive mechanistic insight
from network patterns. Nonetheless, better understand-
ing network structure and how it varies across different
virus and host taxa should help illuminate virus-host co-
evolution and the ecological consequences.

Studies of virus-bacteria infection networks have
quantified statistical evidence for network nested-
ness and modularity (e.g., Flores et al., 2011; Gurney
et al., 2017; Pilosof et al., 2020; Poisot et al., 2013).
Nestedness can emerge when the host ranges of viruses
with narrower ranges are a subset of the host ranges of
viruses with broader ranges, and statistically significant
nestedness is common in virus-bacteria networks (Flores
etal., 2011). A variety of mechanisms could produce nest-
edness (Mariani et al. 2019), such as tradeoffs between
viral host range breadth and infection efficiency, which
can permit stable coexistence of viruses with nested host
ranges (Jover et al., 2013), and coevolutionary arms races
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that cause successively broader host ranges to evolve,
as earlier viral lineages with narrower host ranges are
driven extinct (Brockhurst & Koskella, 2013). Infection
networks can also possess signals of modularity, where
nodes in modules of the network interact with each other
at a higher frequency than they interact with nodes in
other modules. Modularity may be more common when
the network being analysed includes a relatively broad
phylogenetic diversity of hosts, such that the modules
represent different host clades and the sets of viruses
capable of infecting them (Beckett & Williams, 2013;
Flores et al., 2013).

A measure of network structure that has not yet been
explored in viral infection networks is dimensionality.
Eklof et al. (2013) quantified the dimensionality of eco-
logical networks in terms of a multivariate embedding
space, where dimensionality is the minimum number of
dimensions needed to order nodes in the network such
that pairs of nodes are linked if they fall within a certain
volume of this space. Infection networks can be analysed
in terms of dimensionality from either the host or virus
point of view, because infection networks are bipartite:
each edge in the network connects a node in one group
(the viruses) to a node in the other group (the hosts). For
example, a network could be one-dimensional from the
host direction, if hosts can be ordered along an axis such
that the host range of each virus consists of a continu-
ous interval along the axis (Figure la,c,e,g,h). Likewise,
a network could be one-dimensional from the virus di-
rection, if viruses can be ordered along an axis such that
each host is infected by a contiguous set of viruses. A
two-dimensional network would need two dimensions to
order the hosts, such that the host range of each virus
includes all hosts within a box in those dimensions
(Figure 1b,d,f), and so on. Even if an observed infection
network is relatively high dimensional, it may be possible
to arrange the network in 1-2 dimensions with relatively
few errors, and visualization/analysis of the network
in this low-dimensional space may yield significant in-
sights, analogous to other dimensionality reduction
techniques such as principal component analysis.

Eklof et al. (2013) analysed the dimensionality of
200 ecological networks, including food webs, plant-
pollinator networks, and host—parasite networks. They
found that dimensionality increased with the number of
links, but on average dimensionality was fairly low (mean
2.7). Low or moderate dimensionality of ecological net-
works may occur if the interactions, such as who-eats-
whom in a food web, are determined by a small number
of traits (Eklof et al., 2013). For example, if predator—
prey interactions are determined solely by body size then
all feeding links can be ordered along a dimension rep-
resenting size (e.g., Ward et al., 2012). An implication of
low dimensionality is that explaining and modelling net-
work structure and its dynamics may be relatively trac-
table, if the key structuring traits can be identified. Ek16f
et al. (2013) did not analyse viral infection networks, and

for viruses, it may be less likely that a small number of
traits determines network patterns, due to the complex-
ity of host-virus interactions. For example, in Escherichia
coli a variety of single nucleotide changes can confer host
resistance to phage 1 (Chatterjee & Rothenberg, 2012),
and hosts can employ multiple resistance mechanisms,
leading to multifaceted coevolutionary arms races
(Burmeister et al., 2021). However, whether the potential
complexity of host-virus coevolution leads to complex,
high-dimensional networks in natural populations is
currently unknown. Quantifying the dimensionality of
infection networks, and how viral host ranges are orga-
nized along different dimensions, should yield import-
ant insights into how these networks are structured and
guide investigations into the underlying mechanisms.

Combining analyses of dimensionality with other
metrics such as nestedness and modularity may be par-
ticularly helpful for understanding the mechanisms un-
derlying dimensionality. For example, strong nestedness
may lead to low dimensionality (Figure la,b), but alter-
native patterns of network structure could also under-
lie low-dimensional infection networks. In particular,
competition among viruses for hosts could select for re-
source partitioning of hosts based on the host traits that
affect successful viral infection; we will refer to this as
‘host partitioning’. Host partitioning could lead to low-
dimensional network structure without strong patterns
of nestedness or modularity, if the key axes of host phe-
notypic variation are small in number (Figure 1c,d). This
form of host range evolution has been modelled as an im-
perfect lock-and-key, intended to represent the evolution
of specificity in receptor-binding proteins (Beckett &
Williams, 2013; Weitz et al., 2005), although host ranges
could also be partitioned based on infection processes
downstream of receptor binding. Host partitioning
among viruses could occur simultaneously with other
forms of viral diversity, such as generalist/specialist host
range tradeoffs, or transient diversity associated with
arms race dynamics, leading to host range patterns that
combine nestedness with host partitioning (Figure le,f).
Modularity may also emerge along axes of host parti-
tioning as initially overlapping clusters of hosts and vi-
ruses diverge over time (Figure 1g,h).

Viruses are extremely diverse, with genome types
and replication modes not found in cellular life, and
many major viral lineages likely arose independently,
some before the last universal cellular ancestor (Koonin
et al., 2023). It is not clear whether viruses that infect
different domains of life, or viruses from different an-
cient lineages, tend to have distinct eco-evolutionary
features. For example, infection network structure may
vary across host domains and the distinct virus lin-
eages infecting them, reflecting different mechanisms
of host-virus interaction, or network structure may
be generally similar, reflecting common constraints
that guide diverse viruses down comparable evolu-
tionary paths. In this study, we compile and analyse
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FIGURE 1 Examples of how different viral host range patterns can lead to one- or two-dimensional infection networks. In the 1D cases,
the axis represents host phenotypic differences that are ordered in one dimension, and the coloured segments represent viral host ranges, such
that a host strain with a phenotype that falls within a particular segment will be infected by that virus. In the 2D cases, the axes represent two
distinct aspects of the host phenotype, and the coloured boxes represent viral host ranges, such that a host strain with a phenotype that falls
within a particular box can be infected by that virus. (a) Host ranges exhibiting nestedness in 1D, such that smaller host ranges are always
nested within broader host ranges. (b) Host ranges in 2D where range positions along each axis are nested. (c) Host partitioning in 1D, such
that host ranges are distinct and may overlap, but do not exhibit nestedness. (d) Host partitioning in 2D. (¢) Host ranges that can be arranged in
1D and exhibit a combination of partitioning and nestedness. (f) Combined host partitioning and nestedness in 2D. (g) Host ranges in 1D that
combine modularity (two non-overlapping pairs of host ranges) and nestedness (within modules, the narrower host range is nested within the
broader). (h) Host ranges in 1D that combine modularity and partitioning (within modules, host ranges are distinct but not nested).

11 infection networks of viruses infecting marine eu- the dominant primary producers in the ocean, and
karyotic phytoplankton, including dsDNA, ssDNA, their viruses greatly influence mortality, diversity and
and ssRNA viruses. Eukaryotic phytoplankton are biogeochemistry (Suttle, 2005). We also reanalyse 26
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infection networks of phage-infecting bacteria from
diverse environments (Flores et al., 2011). Our anal-
ysis has several goals: assess the dimensionality of
viral infection networks; consider what insights can be
gleaned by comparing dimensionality, nestedness, and
modularity; and compare network structure between
virus-bacteria and virus-eukaryote networks. In total,
these comparisons allow us to ask whether network di-
mensionality yields new insights into infection network
structure and whether networks are structured in sim-
ilar ways across viral lineages and domains of cellular
life.

METHODS
Network compilation

We surveyed the literature for cross-infection matrices
reported for viruses of eukaryotic phytoplankton. We
found 11 matrices, including 3 involving prasinophytes
(I Micromonas, 1 Ostreococcus, and 1 both), 3 involv-
ing the raphidophyte Heterosigma, 3 involving diatoms
(2 Chaetoceros, 1 Rhizosolenia), and 2 involving hapto-
phytes (1 Emiliania, 1 Phaeocystis) (File S2; Table S1).
Most of the viruses in these studies were dsDNA viruses,
but the three diatom studies included one on ssDNA
viruses (Tomaru et al. 2008), one on ssRNA viruses
(Nagasaki et al., 2004), and one with both ssDNA and
ssRNA viruses (Tomaru et al., 2011). The number of host
strains in these studies varied from 6 to 79, the number
of virus strains varied from 9 to 44, and the number of
virus-host links varied from 29 to 784. The strain diver-
sity in all of these studies represents natural diversity,
i.e., the strains did not result from laboratory (co)evolu-
tion experiments.

To compare network structure between eukaryote-
infecting and bacteria-infecting viruses we re-analysed
the phage-bacteria infection matrices previously com-
piled by Flores et al. (2011). We excluded matrices that
did not have at least 15 total strains (virus + host), or
that did not have at least 4 strains of both virus and
host. These were excluded because preliminary analy-
ses indicated that low strain diversity led to low statis-
tical power for distinguishing network patterns from
a null model. The number of included matrices from
Flores et al. (2011) is 26. For all matrices we coded
whether the matrix included multiple kinds of virus—
for the phage networks this meant multiple of the tra-
ditionally defined ‘families’ Myoviridae, Siphoviridae,
and Podoviridae; for the eukaryote-infecting viruses,
this meant the one study that included both ssDNA
and ssRNA viruses. Finally, all networks were coded
as to whether the strain diversity represented natural
diversity, or experimentally generated diversity (6 of
the phage networks included strains that were exper-
imentally evolved).

Dimensionality algorithm

Following EkIo6f et al. (2013), we used an iterative algo-
rithm to sort the 37 infection matrices, with the goal of
defining the minimum dimensionality of each infection
network, and quantifying how well each network can
be described by a single dimension. Infection networks
are bipartite, because each edge in the matrix connects
one part of the network (the set of viruses) to the second
part of the network (the set of hosts). Therefore, when
analysing network dimensionality the network can be
sorted from the host direction or from the virus direc-
tion. To describe the algorithm, we will focus on the one-
dimensional case where hosts are sorted. At the start,
an infection matrix possesses an initial arrangement
such that there are N total hosts arranged at positions
1:N along the host axis of the matrix. For each virus, we
can define an interval [i,j] such that all hosts infected by
that virus are between positions i and j (including hosts i
and j). However, there may be hosts between i and j that
are not infected by the virus, and we refer to the non-
infected hosts in [i,/] as errors. The goal of the algorithm
is to rearrange the positions of the hosts to minimize the
number of errors. The algorithm proceeds by choosing
two hosts and swapping their positions on the host axis.
If the new host arrangement results in fewer total errors,
the new arrangement is kept; otherwise, the previous ar-
rangement is retained. The algorithm alternates between
choosing two adjacent hosts to swap, and choosing two
hosts at random positions to swap—this provides both
small and large changes in overall host arrangement. If
an arrangement with zero errors is found, the algorithm
stops. If there are zero errors, then the interval [i,j] of
each virus includes all hosts in its host range and no
hosts that are not in its host range. A network that can
be perfectly sorted in one dimension is referred to as an
‘interval’ network in graph theory (Eklof et al., 2013).
Thealgorithm proceeds for 10,000 steps (if a zero-error
solution is not found) before stopping. The procedure is
repeated, with 25 total initial host configurations. The
first configuration sorts host by degree (the total num-
ber of viruses that can infect the host), while the remain-
ing 24 configurations are chosen at random. Extensive
preliminary tests with diverse networks found that using
more than 25 initial states, or more than 10,000 steps,
did not improve the best solution (i.e., the host arrange-
ment with the fewest number of errors). We also tested a
stochastic algorithm that occasionally accepts worse ar-
rangements (i.e., an increase in errors), in order to avoid
local optima, but this did not lead to better solutions.
Therefore, although the nature of the algorithm pre-
cludes us from being certain that the best solution in one
dimension has been found, it is likely that the solutions
we report are the best possible. It should be noted that
there may be more than one solution with the same num-
ber of errors, particularly if the network contains true
modules. For example, if there is a set 4 of hosts that can



EDWARDS and HAYWARD

| 50f 11

only be infected by set a of viruses and a set B of hosts
that can only be infected by a set g of viruses, then host
set A could be placed to the left or the right of host set B
without changing the number of errors.

Each network was sorted from both the host and
virus directions, with results recorded separately. If the
network is sorted from the virus direction the goal is to
obtain an arrangement of viruses such that each host is
infected by all viruses in its interval [i,j]. In other words,
each host has a susceptibility range that is represented by
a contiguous set of viruses along the sorted virus axis.
An infection network can be one-dimensional (interval)
from the host direction, the virus direction, or both.

If a network could not be perfectly sorted in one di-
mension, from either the host or virus direction, we re-
peated the algorithm using two dimensions, and so on
with an increasing number of dimensions until the min-
imum dimensionality was found. To illustrate the pro-
cedure in >1 dimension, we describe host sorting in two
dimensions. At the start, each host is given a location
from 1:N along two axes; these coordinates can be de-
noted (x_, y,) for host n along the two axes x and y. Each
virus possesses a box, [x,y]* [xj,yj], the smallest box
containing all hosts that a virus can infect. Any hosts
within this box that the virus cannot infect are defined
as errors. The algorithm proceeds by randomly picking
the first or second axis, swapping host positions along
the chosen axis, and calculating the # errors of the new
arrangement, as described above for a single dimension.
To conceptualize the meaning of >1 dimensional net-
work structure, it can be helpful to think of the axes as
putative host traits (or virus traits, when sorting viruses).
If a network can be sorted in two host dimensions with
zero errors, it means that each virus has a box such that
it only infects hosts with traits that meet two conditions:
trait values between x, and x. on the first trait axis, and
values between y, and y;on the second trait axis. R code
for finding the minimum dimensionality of an infection
matrix is provided in File S1.

Null model analysis

Networks that are relatively small or have low con-
nectance may be sortable into one dimension even if the
edges are randomly arranged. Therefore, we used a null
model to ask whether the ‘fit” of each network to 1D is
better than expected by chance. We used a probabilistic
degree network (Flores et al., 2013) where the ability
of virus m to infect host n is assigned with probability
Pon = %(k; + %), where the degree k_ is the number of vi-
ruses that infect host n, the degree d is the number of
hosts infected by virus m, V'is the total number of viruses
in the network, and H is the total number of hosts in the
network. This model maintains, on average, the degree
for each host and virus in the network, while allowing the
arrangement of host-virus interactions to vary randomly

within those constraints. For each empirical network, 500
random networks were generated, and the sorting algo-
rithm defined above was run for each network. This gen-
erated a null distribution of the # of errors when sorting
random networks in one dimension. The null distribution
was used to calculate the probability of observing the # of
errors in the empirical network, as well as the mean, SD,
and 95% interval of # errors in the null distribution. We
also implemented the ‘EE’ null model that maintains the
total number of species occurrences in the matrix, but al-
lows both row and column totals to vary freely (Ulrich &
Gotelli, 2007). This model produced qualitatively similar
results to the probabilistic degree network, but we report
only the results from the latter model here because the EE
model is known to have inflated type I error when testing
nestedness on random matrices (Ulrich & Gotelli, 2007).
Finally, we did not implement the commonly used ‘FF’
model that maintains fixed row and column totals, be-
cause some of the networks in our compilation are per-
fectly nested, while others are nearly perfectedly nested,
and it is not possible to permute perfectly nested matrices
using swap operations (Kallio, 2016).

Nestedness and modularity

To compare network dimensionality to other aspects
of network structure, and compare network structure
between eukaryote-infecting and bacteria-infecting vi-
ruses, we quantified nestedness and modularity for each
network. Nestedness was quantified using stable NODF
(SNODF), which is a modification of the common
NODF metric that avoids penalizing rows or columns
with the same degree, making the metric more stable to
small perturbations of the data (Mariani et al. 2019). We
also calculated nestedness using network temperature
(Atmar and Patterson 1993), but we report sNODF re-
sults here, as the results were qualitatively highly simi-
lar for the two metrics. Modularity was quantified using
Newman's modularity measure as implemented by the
function computeModules in the R package ‘bipartite’
v2.17 (Dormann et al. 2008). Nestedness and modular-
ity were compared to the same probabilistic degree null
model used for dimensionality analysis.

Comparative network analysis

To investigate potential drivers of dimensionality across
networks, we used multiple regression, where network
dimensionality was the response variable and the pre-
dictors included host taxonomy (bacteria or eukaryote),
whether the network included multiple viral taxa (yes/
no), whether the strains in the network represent natu-
ral diversity or experimentally derived diversity, network
connectance, total richness (total number of virus and
host strains), minimum richness (defined as min(virus
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richness, host richness)), and number of links in the
network. We fit separate models using total richness,
minimum richness, or number of links as predictors, to
compare their explanatory power, because these metrics
are correlated with one another.

RESULTS

We first discuss some qualitative insights gained from
sorting infection networks to minimize dimensionality,
before reporting quantitative comparisons of all net-
works. Throughout the results, we will focus on sorting
networks from the host direction, but highly similar re-
sults are obtained when sorting from the virus direc-
tion (Table S1). Many networks can be sorted along a
single dimension with zero or few errors, where an error
means that the host range of a virus includes a host
that it cannot actually infect (Figure 2). Some of these
(nearly) one-dimensional networks exhibit a strong sig-
nal of host partitioning (similar to Figure Ic,h), such
that viral host ranges are spread out along the axis of
sorted hosts, with partial overlap in host range among
neighbouring viruses (e.g., Figure 2a-e). Many net-
works display substantial evidence of both host par-
titioning and nestedness (similar to Figure le,g), such
that the host ranges of viruses with narrower ranges
are often included within the host ranges of viruses
with broader ranges, while at the same time the nest-
edness is not perfect and there is clear segregation of
host ranges along the sorted host axis (e.g., Figure 2f-0).
Finally, three networks are perfectly nested along a
single host axis (similar to Figures la and 2p-r).
Sorting networks to minimize dimensionality can
help reveal multiscale network patterns, such as mod-
ules and partitioning or nestedness within modules
(Figure 1g,h), which is exemplified by the network from
Baudoux et al. (2015), which incorporates three clades
of the picoeukaryote Micromonas and viruses that in-
fect them. The sorted host axis separates clade C from
clades A+B, as these two groups are infected by dis-
tinct sets of viruses (Figure 3). The axis also captures
host partitioning between clades A and B, with these
two clades separated along the axis, although some vi-
ruses can infect both clades (Figure 3). There is also ev-
idence of partitioning within clade C and some nested
host ranges in both modules (Figure 3). Remarkably,
the phylogeny of host isolates based on 18S rRNA se-
quences maps very closely to the sorted host axis, with
only one pair of isolates swapped in terms of order be-
tween the two arrangements (Figure 3). This network
also illustrates the utility of a null model for interpret-
ing dimensionality. The one-dimensional sort of this
network contains seven errors, and two dimensions are
required to perfectly sort the network with zero errors
(Table S1). At the same time, a null model of this net-
work contains 130 errors on average when sorted in

one dimension, with a 95% interval of [108,152], indi-
cating that the one-dimensional sort of the observed
network is ca. 95% closer to perfect than expected by
chance (i.e., 7/130=0.053). It should also be noted that
networks can show a significant ‘fit’ to one dimension
while still containing many errors. As described fur-
ther below, nearly all networks in the dataset can be
fit to one dimension better than expected by chance,
but in ~half of the networks many errors are still pres-
ent (File S3). In addition, many networks that are not
one-dimensional can be perfectly sorted in two dimen-
sions. Host ranges in two or more dimensions are more
challenging to visualize, but could help reveal multiple
mechanisms driving host range evolution. For exam-
ple, the network reported by Flores et al. (2011), de-
rived from a coevolution experiment with Escherichia
coli and phage A, is suggestive of an arms race caus-
ing host ranges to expand in two dimensions over time
(Figure S1).

When comparing all 37 compiled networks, 11
can be perfectly sorted in one dimension, while 13
are two-dimensional, 9 are three-dimensional, 3 are
four-dimensional, and 1 is five-dimensional (Table S1;
Figure 4a). Nine of the two-dimensional networks can
be sorted in one dimension with 5 or fewer errors.
Therefore, roughly two-thirds of the networks are
one- or two-dimensional, and roughly half are either
perfectly one-dimensional or nearly so. Thirty-three
of the networks can be fit to one dimension better
than expected by chance, and the median fit of these
networks to one dimension is 86% closer to perfect
than expected by chance (Table SI). Two of the non-
significant networks can actually be perfectly sorted
in one dimension, indicating that a one-dimensional
network is not significantly different than the null
expectation for these networks, likely because these
are smaller networks with lower statistical power
(Table S1). A multiple regression with dimensionality
as the response variable shows that dimensionality
tends to increase with network richness (i.e., the total
number of virus and host strains; p=0.006, F, ;,=8.8,
partial R*=0.23). However, there is a stronger relation-
ship when the total richness predictor is replaced with
the minimum richness, defined as min(virus richness,
host richness) (p<10_4, Fl,30:22’ partial R*=0.36;
Figure 4b). Dimensionality is also correlated with
number of links in the network (p<107, F, 5,=16, par-
tial R?=0.26). Dimensionality is not affected by net-
work connectance (p=0.19, F| ;,=1.8), the presence of
multiple viral clades (p=0.54, F, ;,=0.62), or whether
the strains represent natural or experimentally derived
diversity (p=0.18, F, ,,=1.9). Dimensionality does not
differ between networks with bacterial and eukaryotic
hosts (p=0.86, Fl,30:0.03). There is also no evidence
that dimensionality differs between bacterial and eu-
karyotic networks when comparing the distribution of
dimensionalities between these groups (Fisher's exact
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FIGURE 2 Empirical infection networks that can be sorted in one dimension with 0—4 errors. In each panel, hosts are arranged along

the x-axis and viruses along the y-axis. Filled circles represent viruses that can successfully infect hosts at that position. Viral host ranges

are represented by series of filled circles connected with lines, and red crosses represent errors (hosts within a viral host range that cannot

be infected by that virus). Circles are not visible in panel (j) because of the large number of hosts in that study. Source publications for the
networks: (a) Mikli¢ & Rogelj, 2003; (b) DePaola et al., 1998; (c) Krylov et al. 2006; (d) Zinno et al., 2010; (e) Duplessis & Moineau, 2001; (f) Doi
et al., 2003; (g) Nagasaki et al., 2005; (h) Nagasaki et al., 2004; (i) Kankila & Lindstrom, 1994; (j) Pantucek et al., 1998; (k) Seed & Dennis, 2005;
(1) Synnott et al., 2009; (m) Capparelli et al. 2010; (n) Rybniker et al., 2006; (o) Tomaru et al., 2011; (p) Baudoux & Brussaard, 2005; (q)

Middelboe et al., 2009; (r) Ceyssens et al., 2009.

test, p=0.94), or the average number of errors when
sorted in one dimension (permutation test, p=0.55).
Figure 4c,d compares dimensionality vs. minimum
richness and vs. number of links.

Statistically significant nestedness is common in the
compiled infection networks, consistent with the pre-
vious analysis of phage-bacteria networks by Flores
et al. (2011). Of the 37 total networks, 26 are significantly
nested, while 2 are significantly anti-nested (Table S1).
These results were obtained using SNODF as the metric
of nestedness, but the results are very similar when using
network temperature (Table SI). 17 out of 26 bacterial
networks are nested and 2 are anti-nested, while 9 out of
11 eukaryote networks are nested and 0 are anti-nested.
The frequency of nested, non-nested, and anti-nested
networks does not differ significantly between networks
with bacterial and eukaryotic hosts (Fisher's exact test,

p=0.85). Although most of the 37 networks are signifi-
cantly nested, and most are relatively low-dimensional,
there is no evidence for a relationship between nested-
ness and dimensionality. Networks that are significantly
nested do not tend to have lower dimensionality than
those that are not (permutation test, p=0.40), and do not
tend to have fewer errors when sorted in one dimension
(permutation test, p=0.36). Finally, in contrast to the
commonness of nestedness, only a minority of the net-
works (8) are significantly modular, while 2 are signifi-
cantly anti-modular (Table S1).

DISCUSSION

Our results show that viral infection networks are
often low-dimensional, and the success in sorting these
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FIGURE 3 Infection network of 14 Micromonas and 44 virus strains, from Baudoux et al. (2015). The network is sorted from the host

direction in one dimension with 7 errors. Host ranges and errors are represented in Figure 2. Below the host strain labels on the x-axisis a
phylogeny of the host strains, estimated using FastTree v2.1.11 in Geneious v11.1.5, from a 1493 bp alignment (MAFFT v7.45) of 18S rRNA
sequences. Support values for nodes are omitted for clarity. Red lines indicate two strains whose position on the phylogeny is flipped relative to

their position in the 1D sorted network.

networks along a single dimension is generally much
better than expected by chance. This simplicity in net-
work structure is noteworthy, considering that the in-
tricacy and complexity of host-virus interactions could
conceivably lead to high-dimensional coevolutionary
dynamics. The finding that dimensionality increases
with network richness (Figure 4b) suggests that low
dimensionality of observed networks may be driven
in part by undersampling of the full diversity of host
and virus populations. Nonetheless, even if true net-
work dimensionality is underestimated, the relatively
low dimensionality of the observed networks suggests
it may be possible to explain most of network struc-
ture with a small number of underlying mechanisms

that determine which viruses can infect which hosts.
Likewise, host-virus coevolution may often play out
primarily along a small number of dimensions. Testing
the validity of these speculations will require further
research that integrates analyses of network structure
with detailed study of the mechanisms determining
viral host range and host resistance.

The similar distributions of dimensionality and nest-
edness among bacterial and eukaryotic infection net-
works suggest that the processes underlying network
structure are comparable across domains of life and dis-
tinct viral lineages that infect them. Because most (8/11)
eukaryotic networks in the dataset include known or
suspected dsDNA viruses, and all 26 bacterial networks
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(a) Distribution of dimensionalities among the 37 compiled infection networks. (b) Relationship between dimensionality and

minimum network richness (i.e., min(virus richness, host richness)). ‘bact’=networks with bacterial hosts, ‘euk’=networks with eukaryotic
hosts. (c) Comparison of dimensionality vs. minimum richness in virus-host networks (‘this study’) and other ecological networks (‘Ek16f”;
data from Eklof et al., 2013). (d) Comparison of dimensionality vs. number of links in virus-host networks (‘this study’) and other ecological
networks (‘Ek16f"; data from Eklof et al., 2013). In (b-d) points are slightly jittered on the y-axis to better display overlapping points.

include known or suspected dsDNA viruses, it will be
important to study network structure of viruses with
other genome types, to assess whether other genome
types are associated with alternative network patterns.
It is noteworthy that the networks in the current study
exhibit similar scaling of dimensionality vs. minimum
richness and dimensionality vs. number of links, when
compared to the diverse ecological networks compiled
by EkIof et al. (2013; Figure 4c,d). This suggests that
networks composed of different kinds of ecological in-
teractions are constrained to similar distributions of di-
mensionality, conditional on network diversity. It may
be the case that common processes such as competitive
resource partitioning and coevolution among interactors
ultimately lead to similar dimensionalities for different
network types.

One of the most useful outcomes of analysing net-
work dimensionality is that the networks are sorted
in a way that better reveals patterns of host partition-
ing (Figures 2, 3). The resulting axis (or axes) could be
utilized in further analyses to test underlying mech-
anisms. For example, one can ask whether viral geno-
types or traits are correlated with the location of their

host ranges along the axis of sorted hosts. Likewise, host
genotypes or traits can be compared to the location of
host susceptibility ranges along an axis of sorted viruses,
to test causes of susceptibility and resistance. We have
focused on one-dimensional patterns here because they
are easiest to visualize, but sorting networks in two or
more dimensions would allow one to test whether dif-
ferent network dimensions are associated with different
host and virus traits. One or more network axes could
also be compared to phylogenies, to test whether there
is a strong phylogenetic signal to network structure (as
is evident in Figure 3), and axes could also be compared
to environmental data describing the niches of isolates,
to test whether host partitioning is associated with host
niche differentiation.

Low dimensionality and nestedness are both frequent
in the compiled networks, and nestedness is a network
pattern that should be associated with low dimensionality.
At the same time, many low-dimensional networks in this
compilation do not show strongly nested structures, and
there is no statistical relationship between dimensionality
and nestedness. This suggests that a combination of host
partitioning and nestedness, with their relative importance
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varying among networks, maybe the most accurate para-
digm for how infection networks are typically structured
(Figure le,f), at least when focusing on networks that do
not have great enough phylogenetic diversity to encompass
true modules (Figure 1g,h). This conclusion has implica-
tions for understanding and modelling the dynamics of
coevolution and the tradeoffs that constrain it. Host par-
titioning is most consistent with ‘matching alleles’ or ‘im-
perfect lock and key’ conceptual models of host—parasite
coevolution (Beckett & Williams, 2013;Dennehy, 2012;
Weitz et al., 2013), and its occurrence implies that viral
diversity is structured by tradeoffs that cause viruses to
specialize on different host phenotypes. It has also been
noted that modularity in network structure may be driven
by matching alleles coevolution (Weitz et al., 2013).
Host partitioning and modularity are related patterns
potentially driven by the same mechanism, because a
continuous host axis with overlapping viral host ranges
(Figure 1c) can ultimately form distinct modules, given
sufficient host and virus divergence (Figure 1g,h) (Beckett
& Williams, 2013). In contrast, nested network structure
may be more consistent with ‘gene for gene’ coevolution,
whereby a virus evolves a broader host range by possessing
a set of genes needed to infect each host (Dennehy, 2012;
Weitz et al., 2013). The apparent mix of host partition-
ing and nestedness in most low-dimensional networks
(Figure 2) suggests that host-virus coevolution generally
involves a mix of coevolutionary mechanisms (Agrawal &
Lively, 2002). Combining analyses of dimensionality, nest-
edness, and modularity with genetic and phenotypic data
will promote a better understanding of how this mixture
of mechanisms operates in different microbial systems.
Furthermore, the number of eukaryote-virus systems for
which cross-infection data from diverse isolates has been
collected is relatively modest, and additional research in
this area will aid understanding of the distribution and
drivers of network structure. Finally, understanding the
causes of low or high dimensionality will benefit from in-
depth studies of particular systems that attempt to disen-
tangle the potential roles of strain richness, phylogenetic
diversity, and spatiotemporal scale.
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