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ABSTRACT
Existing deep learning-based humanmesh reconstruction approaches
have a tendency to build larger networks to achieve higher accu-
racy. Computational complexity and model size are often neglected,
despite being key characteristics for practical use of human mesh
reconstruction models (e.g. virtual try-on systems). In this paper,
we present GTRS, a lightweight pose-based method that can re-
construct human mesh from 2D human pose. We propose a pose
analysis module that uses graph transformers to exploit structured
and implicit joint correlations, and a mesh regression module that
combines the extracted pose feature with the mesh template to
reconstruct the final human mesh. We demonstrate the efficiency
and generalization of GTRS by extensive evaluations on the Hu-
man3.6M and 3DPW datasets. In particular, GTRS achieves better
accuracy than the SOTA pose-based method Pose2Mesh while only
using 10.2% of the parameters (Params) and 2.5% of the FLOPs on
the challenging in-the-wild 3DPW dataset. Code is available at
https://github.com/zczcwh/GTRS

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence; Com-
puter vision.
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1 INTRODUCTION
Analyzing and simulating humans from images is an essential task
for computer vision. With the blooming of deep learning methods,
human pose estimation (HPE) has been studied extensively and
rapid progress has been made. In recent years, research in this
domain has progressed beyond the estimation of 2D or 3D poses
[45][42][27] with a basic keypoint structure, and the study of recon-
structing the entire 3Dmesh from a single image has attracted much
interest. Mesh representation, which can provide rich human body
information and have a better visualization, is more welcomed by
real-world applications such as gaming, human-computer interac-
tion, and virtual reality (VR). However, human mesh reconstruction
from a single image is a challenging task due to depth ambiguity,
occlusion, and complex human body articulation.

Two general approaches exist in the literature for performing
mesh reconstruction. One is the direct image-based method, where
the pipeline is trained end-to-end from input image to output mesh.
The second is to employ an off-the-shelf 2D pose detector as the
front end, and design a mesh reconstruction model using 2D poses
as input. Most recent progress has been made in the first category,
achieving promising performance. However, the performance gain
has come at the cost of ever increasing computational requirements
and complex models (for instance, METRO [22] requires 229M
Params and 56.6G FLOPs). In real-world applications such as human-
computer interaction, animated avatar, and VR gaming, the human
mesh reconstruction task needs to be efficient and deployable on
resource-constrained platforms like VR headsets.

While less studied, pose-based methods are alternative solutions
for human mesh recovery with a few advantages for such appli-
cations. First, pose-based methods provide a modular design that
can easily be incorporated with any off-the-shelf 2D pose detectors.
With speed as the primary goal, fast pose detectors (e.g. [35, 38, 44])
can be deployed on a mobile device in real-time with impressive
performance. Second, the input to pose-based methods (that is, the
detected 2D pose) is extremely sparse data with the size of 𝐽 × 2,
where 𝐽 is the number of joints. Compared to the image input, it
gives more flexibility to design a lightweight mesh reconstruction
network to achieve computational and memory efficiency with
competitive performance. Nonetheless, the existing methods (in-
cluding the state-of-the-art pose-based method Pose2Mesh [5]) still
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incur substantial computational and memory overhead. The effi-
cient design of the model is crucial for practical use, but has been
almost entirely ignored in the literature.

To bridge this gap, we propose a Graph Transformer network
for human mesh ReconStruction from 2D human pose (GTRS),
which is the first method focusing on the efficiency. GTRS is a
pose-based method designed to fully exploit joint correlations for
pose and mesh feature representation while minimizing computa-
tional complexity and model size. The operational blocks of GTRS
are designed with an intentional combination of graph neural net-
works and transformer operations. Recently, graph convolutional
networks (GCNs) have shown promising advances in 3D HPE and
mesh reconstruction tasks [62]. Human pose data is naturally for-
mulated as a graph, and GCNs can extract useful information with
relatively little compute and parameters. Therefore, we harness
GCNs to form strong representations from these inherent struc-
tural priors on the front-end of GTRS block operations. After this,
these representations are further refined with lightweight trans-
former structure to powerfully capture global dependencies via its
self-attention mechanism. Thus, these combined operations form
our designed graph transformer blocks, which we employ in a
parallel fashion for comprehensively exploring human kinematic
information from the 2D pose and modeling joint correlations in a
lightweight manner.

Figure 1: The trade-off between MPJPE ↓ (on 3DPW) and
model Params/FLOPs. GTRS (Ours) and Pose2Mesh [5] are
pose-based methods. The reported Params/FLOPs include
the corresponding front-end 2D pose detector (DARK [54] or
LiteHRNet [53]). Others are image-based methods.

As an extremely lightweight pose-based method, GTRS uses
only 7.9M parameters (Params) and 0.19G floating-point operations
(FLOPs) without considering the front-end 2D pose detector. Com-
pared to SOTA pose-based method Pose2Mesh [5], GTRS achieves
better results while only requiring 10.2% of the Params and 2.5%
of the FLOPs. When also considering the front-end 2D pose detec-
tor, GTRS also shows a significant reduction in Params and FLOPs
compared to image-based methods in Fig. 1 (e.g. 6.9% Params and
1.2% FLOPs compared to I2LMeshNet [34]). More discussions are
provided in Sec. 4.3.

Our contributions are summarized as follows:
• Observing that existing methods mainly pursue higher accuracy
while ignoring computational and memory cost, we present a
lightweight pose-based method, GTRS, for efficient human mesh
reconstruction from the 2D pose. We hope our work can inspire
more research on the efficiency of human mesh reconstruction.

• We introduce our pose analysis module with a parallel design to
facilitate improved utilization of human kinematic information.
Within this module, we propose our graph transformer blocks
with fixed and learnable adjacency matrices to simultaneously
explore diverse structured and implicit human joint correlations.

• GTRS achieves competitive results compared to previousmethods
with much fewer parameters and less computational cost on
Human3.6M and 3DPW datasets.

2 RELATEDWORK
Human Mesh Reconstruction: Recovering human mesh from
images is a challenging task that has attracted much attention in
recent years. Without requiring additional devices such as depth
sensors or inertial measurement units, HumanMesh Reconstruction
(HMR) from images makes it more efficient and convenient. The
majority of previous works [19, 22, 23] utilize parametric human
model such as SMPL [30], ADAM [48], STAR [37] to reconstruct
human mesh by training a network to regress model parameters.

As one of the most popular volumetric models, the SMPL [30]
model has been widely used in HMR, e.g., [2, 14, 15, 52]. Pavlakos
et al. [41], and Omran et al. [36] regress SMPL parameters to recon-
struct 3D human mesh. SPIN [19] revisits optimization approaches
within the neural networks that initializes an iterative optimization
process (SMPLify). Instead of predicting SMPL parameters, Zhu
et al. [60] combine the SMPL model with a hierarchical mesh de-
formation framework to enhance the flexibility of free-form 3D
deformation. Kocabas et al. [18] include the large-scale motion
capture dataset AMASS [31] for adversarial training of their SMPL-
based method named VIBE (Video Inference for Body Pose and
Shape Estimation).

Compared to previous methods that recover human mesh di-
rectly from images, [5] estimates SMPL parameters from predicted
2D poses and achieves impressive performance. By applying off-
the-shelf 2D pose detectors such as AlphaPose [8] and HRNet [46],
the well-estimated 2D pose can be obtained. Then, a CNN-based
PoseNet and MeshNet are proposed to exploit the human mesh
topology to recover human mesh based on the input 2D pose. GTRS
also follows this pose-based pipeline to reconstruct human mesh.

Graph Convolution Networks: Recently, graph convolution
networks (GCNs) have been widely adopted in 3D human pose
estimation (3D HPE) [6, 26, 56, 57, 62] because of the intuitive
modeling of human joints as a graph structure and potential ability
to better capture human kinematics. Following this trend, GCNs
have also gained much attention in human mesh reconstruction [5,
20, 24]. Kolotouros et al. [20] regress the locations of the SMPL
mesh vertices using a GCN architecture. Pose2Mesh [5] employs a
GCN to regress SMPL parameters from estimated 2D and 3D pose.

Vision Transformer: Transformer architecture is developing
rapidly in the field of computer vision. Recent works have demon-
strated the powerful global representation ability of transformer
attention mechanism in various vision tasks such as object detec-
tion [3, 61], image classification [7, 28], segmentation [59], human
pose estimation [57, 58], etc. Lin et al. [22] combine CNNs with
transformer networks in their method, named METRO, to regress
mesh vertices from a single image.

MeshGraphormer [23] is a close related work, which also uses
GCN with transformer architecture. However, it is an image-based
method that injects GCN with fixed adjacency matrix into the trans-
former block between multi-head attention and multilayer percep-
tron (MLP). As a pose-based method, our GTRS utilizes GCNs to
model features with prior knowledge, then applies transformers

5497



A Lightweight Graph Transformer Network for Human Mesh Reconstruction from 2D Human Pose MM ’22, October 10–14, 2022, Lisboa, Portugal

to further explore global dependencies. Moreover, GTRS adopts a
paralleled design which enables different graph transformer blocks
to explore diverse structured and implicit human kinematic infor-
mation by using fixed and learnable adjacency metrices. Compared
to MeshGraphormer [23] that requires 226.5M Params and 56.6G
FLOPs, GTRS shows significant computational and memory cost
reduction. GTRS is more friendly to deploy on mobile devices since
it only requires 9.7M Params and 0.89G FLOPs (4.29% and 1.57% of
MeshGraphormer).

3 METHODOLOGY
3.1 Baseline
In order to achieve model efficiency, an intuitive solution is to utilize
the existing lightweight architecture such as MobileNetV2 [43] for
the 3D human mesh recovery from the 2D pose input. We refer
to this simple design as our baseline. However, these CNN-based
lightweight architectures are designed to process an image-like
input (with the shape of [𝐶,𝐻,𝑊 ] where 𝐶 is channel, 𝐻 is the
height, and𝑊 is the width). First we embed the 2D pose input of
𝐽 joints given by 𝑋𝑖𝑛 ∈ R𝐽 ×2 to 𝑋𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ∈ R𝐶×𝐻×𝑊 , then apply
MobileNetV2 [43] to model mesh features. Finally, the output mesh
parameter 𝑌 ∈ R6890×3 can be estimated after feature embedding.
However, CNNs do not provide a natural modeling of the graph-like
2D pose input (sparse and meaningfully structured), leaving some
representational strength and efficiency on the table.

In light of the limitations of the baseline, we present our proposed
GTRS architecture and elaborate the design components in the
following.

3.2 Overview of GTRS
The vision transformer architecture is designed to capture the global
dependencies cross all patches via self-attention mechanism given
the input size of [𝐶, 𝐷] where 𝐶 is the number of patches and 𝐷
is the embedding dimension. Given the 2D pose input 𝑋𝑖𝑛 ∈ R𝐽 ×2,
the joint correlations can be exploited when modeling human pose
and mesh features through transformer architecture. Therefore,
we design a lightweight transformer architecture which is more
suitable for modeling 3D human pose and mesh given the 2D pose
input rather than a lightweight CNN architecture. The results in
Section 4.3 have proved this claim.

The overall architecture of GTRS is illustrated in Fig. 2. The
input is the estimated 2D pose obtained by off-the-shelf 2D pose
detector such as HRNet [45], which can be denoted as 𝑋𝑖𝑛 ∈ R𝐽 ×2,
where 𝐽 is the number of joints. A feature embedding layer embeds
input 𝑋𝑖𝑛 ∈ R𝐽 ×2 to 𝑋𝑝𝑜𝑠𝑒 ∈ R𝐽 ×𝐷 with a high feature dimen-
sion 𝐷 . Then, a Pose Analysis Module (PAM) returns modelled
feature 𝑋

′
𝑝𝑜𝑠𝑒 ∈ R𝐽 ×𝐷 . Next, the mesh template 𝑀𝑡𝑒𝑚𝑝 ∈ R6890×3

(from [19]) is used to provide initial human mesh information,
which is embedded to mesh template feature 𝑋𝑡𝑒𝑚𝑝 ∈ R𝑇×𝐷 where
𝑇 is the channel number. Then, we feed𝑋

′
𝑝𝑜𝑠𝑒 and𝑋𝑡𝑒𝑚𝑝 toMesh Re-

gressionModule (MRM), and the output would be𝑋𝑜𝑢𝑡 ∈ R( 𝐽 +𝑇 )×𝐷 .
Finally, the estimated mesh parameter 𝑌 ∈ R6890×3 can be obtained
after the regression head.

3.3 Preliminaries of GTRS
GCN: The GCN was introduced by [17]. A graph is defined as
G = {𝜈, 𝜀} , where 𝜈 is a set of 𝑁 nodes and 𝜀 is a set of edges. We
use GCN to model 2D pose feature, for the input feature 𝑋 ∈ R𝐽 ×𝐷 ,
where 𝐽 is the number of joints and 𝐷 is the dimension of input
feature. Given the adjacency matrix 𝐴 ∈ R𝐽 ×𝐽 based on the joints
connectivity, the output 𝑋 ′ ∈ R𝐽 ×𝐷′

of one GCN layer can be
represented as:

𝑋 ′ = 𝜎 (𝐴𝑋𝑊 ) (1)

where 𝜎 (·) is the activation function for network non-linearity,
and𝑊 ∈ R𝐷×𝐷′

is the learnable weight matrix which changes the
feature dimension from 𝐷 to 𝐷 ′. We use the Gaussian Error Linear
Unit (GELU) [10] as activation function in this work.
Transformer: Multi-Head Self-Attention Layer (MHA) is the core
function of the transformer blocks, which was proposed by Vaswani
et al. [49]. The input 𝑋 ∈ R𝐽 ×𝐷 is first mapped to three matrices:
query matrix 𝑄 , key matrix 𝐾 and value matrix 𝑉 by three linear
transformation:

𝑄 = 𝑋𝑊𝑄 , 𝐾 = 𝑋𝑊𝐾 , 𝑉 = 𝑋𝑊𝑉 . (2)

where𝑊𝑄 ,𝑊𝐾 and𝑊𝑉 ∈ R𝐷×𝐷 .
The scaled dot product attention can be described as the follow-

ing mapping function:

Attention(𝑄,𝐾,𝑉 ) = Softmax(𝑄𝐾⊤/
√
𝑑)𝑉 . (3)

where 1√
𝑑
is the scaling factor for appropriate normalization to

prevent extremely small gradients.
Next, the MHA utilizes multiple heads to model the informa-

tion jointly from various representation subspaces with different
positions. Each head applies scaled dot-product attention in paral-
lel. The MSA output will be the concatenation of ℎ attention head
outputs.

MSA(𝑄,𝐾,𝑉 ) = Concat(𝐻1, 𝐻2, . . . , 𝐻ℎ)𝑊𝑜𝑢𝑡 (4)
where 𝐻𝑖 = Attention(𝑄𝑖 , 𝐾𝑖 ,𝑉𝑖 ), 𝑖 ∈ [1, ..., ℎ] (5)

𝑊𝑜𝑢𝑡 is a linear projection ∈ R𝐷×𝐷 .

3.4 Pose Analysis Module in GTRS
In the PAM, we utilize graph transformers to improve the structured
and implicit correlations based on the human kinematic informa-
tion. We follow [62] to build our GCN blocks. Then a transformer
block is followed to model global dependencies. Our graph trans-
former block is illustrated in Fig. 3 (b). Different from previous
transformer architecture that stacks multiple transformer encoders,
we form graph transformer blocks parallelly as shown in Fig. 3 (a).
The transformer embedding dimension is set to be a small number
to make the network lightweight. Because GCNs maintain a strong
relationship with the input graph structure, we begin each block
with such operations to inject structural priors before performing
the transformer’s self-attention. Based on the human kinematic
configuration illustrated in Fig. 4 (a), the actual adjacency matrix
can be obtained as shown in Fig. 4 (b). Among these paralleled graph
transformer blocks, only one block utilizes the actual adjacency
matrix, which means this adjacency matrix is fixed and would not
be updated. This graph transformer block is maintained to model
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2D pose input Mesh Template
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Embedding

Mesh
Regression

Head

Mesh output

Pose Analysis 
Module (PAM)

Mesh
Regression

Module
(MRM)Feature

Embedding

3D Pose 
Supervision

Figure 2: Overview of the proposed GTRS architecture. Given the image, 2D human pose is first detected by an off-the-shelf 2D pose detector.
Then, the Pose Analysis Module outputs the pose feature and intermediate 3D pose which is supervised by the ground truth 3D pose. Next,
the pose feature is modeled with template mesh feature in the Mesh Regression Module. Finally, a regression head will output human mesh
parameters for reconstruction. The mesh template is provided by [19] and the mesh template figure is from [22].

GCN

MHA CONV

Norm

Norm

SE

Transformer 
Block

(b) Graph Transformer block(a) Pose Analysis Module

3D Pose 
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Head
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Graph Transformer
(learnable adj)

Graph Transformer
(learnable adj)

Graph Transformer
(learnable adj)

Graph Transformer
(fixed adj)

... x N

Figure 3: The Pose Analysis Module architecture is shown in
(a), which consists of paralleled graph transformer blocks.
‘fixed adj’means afixed adjacencymatrix is used in this graph
transformer block, and ‘learnable adj’ means a learnable
adjacency matrix is used. (b) is the architecture of one graph
transformer block.

(a) (b)

(c)
Joint index
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t i
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ex
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nd
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Joint index Joint index Joint index

Figure 4: The normalized adjacency matrices used in PAM.
(a) is the joint index of Human3.6M dataset. (b) is a fixed ad-
jacency matrix directly from the joint connectivity to model
structured correlations. (c) shows learnable adjacency ma-
trices that learned from training data to capture implicit
correlations. In PAM, we apply a fixed adjacency matrix and
multiple learnable adjacency matrices with a paralleled de-
sign to allow the network to explore a diverse set of struc-
tured and implicit correlations.

pose features with structured human kinematic information using
the fixed adjacency matrix. The rest of the graph transformer blocks
are responsible to capture implicit correlations from the training
data by applying the learnable adjacency matrices. The different

patterns of correlations can be discovered through learnable adja-
cency matrices as shown in Fig. 4 (c). The parallel design allows
for various structural biases to be applied simultaneously. Not only
the kinematic correlations can be provided by the fixed adjacency
matrix (based on the body joints structure), but also the unexpected
correlations beyond our prior knowledge can be discovered by the
learnable adjacency matrices in PAM. Next, a fusion block, which
is a convolutional layer, will fuse all paralleled features together to
a feature that maintains the same size as the input.

Our transformer encoder layer is different from the original trans-
former encoder in [7]. The structure of our transformer encoder
is illustrated in Fig. 3 (b). First, we add one convolutional branch
parallel to the MHA branch, which is a point-wise convolution
with the 1 × 1 convolutional filters as described in [11]. The reason
we use this pointwise convolution is to create linear combinations
of the input channels (𝐽 joint channels) while maintaining a low
computational cost. Then, instead of the MLP layer, we use an SE
block [12] which is also computationally lightweight. The SE block
is designed to recalibrate channel-wise feature responses by mod-
eling channel interdependencies. The output of our transformer
blocks given the input 𝑋𝑖𝑛 ∈ R𝐽 ×𝐷 can be represented as follows:

𝑋 ′ = MSA(Norm(𝑋𝑖𝑛)) + CONV(Norm(𝑋𝑖𝑛)) + 𝑋𝑖𝑛 (6)
𝑋𝑜𝑢𝑡 = SE(Norm(𝑋 ′)) + 𝑋 ′ (7)

where CONV(·) is the convolutional block, Norm(·) is the normal-
ization operator, and SE(·) denotes the SE block.

Besides the output pose features𝑋𝑜𝑢𝑡 , a 3D pose regression head
(implemented as an MLP) is used to output a 3D pose prediction
𝑋3𝐷𝑃𝑜𝑠𝑒 ∈ R𝐽 ×3. This supervision on the 3D pose ensures the PAM
can exploit pose features well even if the detected 2D pose is noisy
(such as missing joints).

3.5 Mesh Regression Module in GTRS
The computational complexity of our transformer structure (as in
our PAM) is O(𝑛𝐷2) for the input size of 𝑋 ∈ R𝑛×𝐷 and 𝑛 is much
less than 𝐷 . To maintain a lightweight network, the transformer
blocks with small embedding dimension 𝐷 (consistent with the
embedding dimension in PAM) are used in MRM. Considering that
small embedding dimension 𝐷 may not have enough representa-
tion ability, we introduce the mesh template which provides rich
human mesh information for a better regression. The effective-
ness of adding the mesh template has been verified in Sec. 4.4. We
embed the original mesh template to the mesh template feature
𝑋𝑡𝑒𝑚𝑝 ∈ R𝑇×𝐷 to reduce the computational cost.
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Figure 5: The Mesh Regression Module architecture is shown
in (a), which is consists of dual-branch transformer blocks.
(b) is the architecture of one transformer block.

Due to different scales of the pose feature 𝑋
′
𝑝𝑜𝑠𝑒 ∈ R𝐽 ×𝐷 and the

mesh template feature 𝑋𝑡𝑒𝑚𝑝 ∈ R𝑇×𝐷 , we design a dual-branch
block structure where two separate transformers are applied first
to model these two features and then fuse information by a fusion
transformer. The output is 𝑋𝑓 𝑢𝑠𝑖𝑜𝑛 ∈ R( 𝐽 +𝑇 )×𝐷 , which can be split
to𝑋𝐵_𝑝𝑜𝑠𝑒 ∈ R𝐽 ×𝐷 and𝑋𝐵_𝑡𝑒𝑚𝑝 ∈ R𝑇×𝐷 as the input of next block.

Finally, a regression head MLP will upsample the feature 𝑋𝑜𝑢𝑡 ∈
R( 𝐽 +𝑇 )×𝐷 to the final mesh output.

3.6 Loss functions
For the PAM, we add a linear layer to regress the intermediate 3D
human pose (the final 3D human pose is obtained from the final
mesh) to get a better pose feature. The pose feature is fed into the
MRM. To train the PAM, we apply an 𝐿1 distance loss between the
predicted indeterminate 3D pose 𝐽3𝐷_𝑖𝑛𝑡 ∈ R𝐾×3 and the ground
truth 3D pose 𝐽3𝐷 ∈ R𝐾×3, where 𝐾 is the number of joints. The
indeterminate 3D joint loss is defined as follows:

L𝐽 _𝑖𝑛𝑡 =
1
𝐾

𝐾∑︁
𝑖=1

∥ 𝐽3𝐷_𝑖𝑛𝑡 − 𝐽3𝐷 ∥1, (8)

After pretraining the PAM, we train the entire pipeline includes
the PAM and the MRM. The following loss functions are used.

Mesh Vertex Loss: We use an 𝐿1 distance loss between the
predicted 3Dmesh vertices coordinates𝑉3𝐷 ∈ R𝑀×3 and the ground
truth 3D mesh vertices coordinates 𝑉3𝐷 ∈ R𝑀×3, where 𝑀 is the
number of vertices. The mesh vertex loss is defined as follows:

L𝑉𝑒𝑟𝑡𝑒𝑥 =
1
𝑀

𝑀∑︁
𝑖=1

∥𝑉3𝐷 −𝑉3𝐷 ∥1 . (9)

3D Joint Coordinate Loss: After estimating 3D mesh vertices
coordinates𝑉3𝐷 ∈ R𝑀×3, we use the model defined joint regression
matrix 𝑅 ∈ R𝐾×𝑀 to calculate 3D pose based on the estimated
mesh, where 𝐾 is the number of joints and 𝑀 is the number of
vertices. We apply an 𝐿1 loss between the regressed 3D pose from
estimated mesh 𝑅𝑉 and the ground truth 3D pose 𝐽3𝐷 ∈ R𝐾×3.

L𝐽 𝑜𝑖𝑛𝑡 =
1
𝐾

𝐾∑︁
𝑖=1

∥𝑅𝑉 − 𝐽3𝐷 ∥1 (10)

Surface Normal Loss: Following [5, 51], we supervise normal
vectors of the estimated mesh surface with the ground truth unit
normal vector. We apply this surface normal loss to improve surface

smoothness and local detail as in [51]. The surface normal loss is
defined as follows:

L𝑁𝑜𝑟𝑚𝑎𝑙 =
∑︁
𝑓

∑︁
{𝑖, 𝑗 }⊂𝑓

����⟨ 𝑣𝑖 − 𝑣 𝑗
∥𝑣𝑖 − 𝑣 𝑗 ∥2

, 𝑛∗
𝑓
⟩
���� , (11)

where 𝑓 denotes a triangle face in the human mesh and 𝑛∗
𝑓
denotes

a ground truth unit normal vector of 𝑓 . The 𝑣𝑖 and 𝑣 𝑗 denotes the
𝑖th and 𝑗th vertices in 𝑓 , respectively.

Surface Edge Loss: Following [5, 51], we use a edge length
consistency loss between the predicted edges and ground truth
edges. The surface edge loss aims to improve the smoothness of
hands, feet, and a mouth which is defined as

L𝐸𝑑𝑔𝑒 =
∑︁
𝑓

∑︁
{𝑖, 𝑗 }⊂𝑓

��∥𝑣𝑖 − 𝑣 𝑗 ∥2 − ∥𝑣𝑖 − 𝑣 𝑗 ∥2
�� , (12)

where 𝑓 denotes a triangle face in the human mesh. The 𝑣𝑖 and 𝑣 𝑗
denotes the 𝑖th and 𝑗th vertices in 𝑓 , respectively.

Based on the four type of loss functions, our overall loss is written
as

L = 𝜆𝑣L𝑉𝑒𝑟𝑡𝑒𝑥 + 𝜆 𝑗L𝐽 𝑜𝑖𝑛𝑡 + 𝜆𝑛L𝑁𝑜𝑟𝑚𝑎𝑙 + 𝜆𝑒L𝐸𝑑𝑔𝑒 , (13)

where 𝜆𝑣 = 1, 𝜆 𝑗 = 0.01, 𝜆𝑛 = 0.01, and 𝜆𝑒 = 0.01 .

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
Human3.6M is one of the most widely used large-scale indoor
dataset for 3D HPE and mesh reconstruction [13]. There are 3.6M
video frames recorded by 11 professional actors with performing 17
actions. The ground truth 3D pose annotations were captured by an
accurate marker-based motion capture system, but no ground truth
3Dmesh annotationswere provided. The previousworks [15, 19, 20]
used pseudo-ground truth mesh provided by Mosh [29]. However,
they are no longer accessible due to license issues. Now we use the
pseudo-ground truth mesh generated by [5]. Following previous
works [5, 15, 19, 20], we select 5 subjects (S1, S5, S6, S7, S8) for
training and 2 subjects for testing (S9, S11).

3DPW is an in-the-wild dataset [50] that contains 60 video
sequences (51K video frames) captured in the outdoor environment.
The ground truth 3D pose and mesh annotations are provided. We
only use its defined test set for evaluation following [5, 19].

We also use MSCOCO [25] and MuCo-3DHP [33] for mixed
training following [5, 19, 34]. For evaluation metrics, we use the
three standard metrics below. The unit for these metrics is millime-
ters (mm).

MPJPE: Mean-Per-Joint-Position-Error is used to evaluate the
estimated 3D human pose. It is computed as the mean Euclidean
distance between the estimated joints and the ground truth joints.

PA-MPJPE: is the MPJPE after Procrustes Analysis [9]. The rigid
alignment using procrustes analysis is performed the estimated 3D
pose, then compute MPJPE with the ground truth 3D pose. P-MPJPE
aims to measure the errors of the reconstructed structure without
considering translations and rotations.

MPVE: Mean-Per-Vertex-Error is used to evaluate the estimated
3D mesh vertices. It is computed as the mean Euclidean distance
between the estimated and the ground truth mesh vertices.
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Table 1: Performance comparison with SOTA methods on
Human3.6M. “†” denotes using GT (ground truth) 2D pose as
input.

Methods Human3.6M
MPJPE↓ PA-MPJPE↓

Image
Based

HMR [15] CVPR 2018 88.0 56.8
GraphCMR [20] CVPR 2019 - 50.1
SPIN [19] ICCV 2019 - 41.1
METRO [22] CVPR 2021 54.0 36.7
MeshGraphormer [23] ICCV 2021 51.2 34.5
PyMAF [55] ICCV 2021 57.7 40.5

Video
Based

VIBE [18] CVPR 2020 65.6 41.4
TCMR [4] CVPR 2021 62.3 41.1

Pose
Based

(detected by [46])

Pose2Mesh [5] ECCV 2020 64.9 47.0
Baseline - 68.3 50.0
GTRS - 64.3 45.4

Pose
Based
(GT 2D)

Pose2Mesh [5]† ECCV 2020 51.3 34.9
Baseline† - 57.5 39.6
GTRS† - 50.3 30.4

4.2 Implementation Details
We implemented GTRS with Pytorch [40] using two NVIDIA RTX
3090 GPUs. GTRS can be trained in an end-to-end manner, but we
first pretrain the PAM, then train the entire GTRS after loading
those weights for better performance. In the PAM, there are 6
graph transformer blocks (1 with fixed adjacency matrix and 5 with
learnable adjacency matrix) and the embedding dimension is 128.
We use Adam [16] optimizer with a learning rate 1×10−4 to pretrain
the PAM for 120 epochs. In MRM, the embedding dimension is the
same as in PAM, which is 128, and the layer number 𝑁 is 4. The
mesh template 𝑀𝑡𝑒𝑚𝑝 ∈ R6890×3 is the mean SMPL parameters
provided by [19]. We also use Adam [16] optimizer with a learning
rate 1 × 10−4 to train the GTRS for 180 epochs. The total training
time would be less than one day.

4.3 Comparison with state-of-the-art results
Evaluation on Human3.6M: Table 1 compares GTRS with pre-
vious SOTA image/video-based and pose-based methods on Hu-
man3.6M test set. We follow the same setting as Pose2Mesh [5]
and [15, 19, 20] for a fair comparison; that is, we only use the Hu-
man3.6M training set for training and PA-MPJPE is only measured
on the frontal camera set. Same as Pose2Mesh [5], [46] is used as
the 2D pose detector. Within the similar total number of parame-
ters and FLOPs, the performance boost from our baseline to GTRS
demonstrates that transformer architecture is more suitable than
CNN-based architecture when considering model efficiency for
pose-based human mesh recovery. GTRS achieves better perfor-
mances than Pose2Mesh [5] (MPJPE decreases 0.6 and PA-MPJPE
decreases 1.6). Compared with video-based methods, GTRS still
achieves similar MPJPE (within 2 points) as a lightweight model.
When using ground truth 2D pose as input, GTRS outperforms pre-
vious methods both in terms of MPJPE and PA-MPJPE. This results
indicates the lower bound of GTRS. As more accurate and robust
2D human pose detectors are proposed, they can be plugged-in to
GTRS and close the gap towards this lower bound.

Evaluation on 3DPW: Table 2 compares GTRS with previ-
ous SOTA image/video-based and pose-based methods on 3DPW
test set. The training sets include Human3.6M, COCO, MPII [1],
UP3D [21], MPI-INF-3DHP [32], and AMASS [31]. Each method
uses a different combination of these datasets. For GTRS, we only
use Human3.6M [13], COCO [25], and MuCo [33] as the training
sets. Following Pose2Mesh [5], we use DARK [54] as the 2D pose

Table 2: Performance comparison with SOTA methods on
3DPW dataset. * indicates 3DPW training set is used during
training. “†” denotes using GT 2D pose as input.

Methods 3DPW dataset
MPJPE↓ PA-MPJPE↓ MPVE↓

Image
Based

HMR [15] CVPR 2018 - 81.3 -
GraphCMR [20] CVPR 2019 - 70.2 -

SPIN [19] ICCV 2019 - 59.2 116.4
I2LMeshNet [34] ECCV 2020 93.2 57.7 -
PyMAF [55] ICCV 2021 92.8 58.9 110.1

MeshGraphormer* [23] ICCV 2021 74.7 45.6 87.7

Video
Based

VIBE [18] CVPR 2020 93.5 56.5 113.4
VIBE* [18] CVPR 2021 82.9 51.9 99.1
TCMR [4] CVPR 2021 95.0 55.8 111.5

Pose
Based

(detected by [54])

Pose2Mesh [5] ECCV 2020 88.9 58.3 106.3
Baseline - 95.6 61.3 129.8
GTRS - 88.5 58.9 106.2

Pose
Based
(GT 2D)

Pose2Mesh [5]† ECCV 2020 65.1 34.6 -
Baseline† - 67.7 36.1 70.3
GTRS† - 53.8 34.5 61.6

detector for 3DPW evaluation. Comparing our baseline with GTRS
under similar total number of parameters and FLOPs, we can draw
the same conclusion that transformer architecture is more suitable
than CNN-based architecture when considering model efficiency
for pose-based human mesh recovery. Note here METRO [22] and
MeshGraphormer [23] used 3DPW training set while others did
not. Among those methods without using 3DPW training set, GTRS
achieves comparable results with much less computational cost.

When using ground truth 2D pose input, the performance of
GTRS can be improved significantly. GTRS yields the lowest MPJPE
of 53.8, PA-MPJPE of 34.5, and MPVPE of 61.6 (more than 24% re-
duction compared with MeshGraphormer [23]). 3DPW dataset is
a challenging in-the-wild dataset, distinct from the lab-controlled
Human3.6M dataset. Occlusions and atypical human postures in
these in-the-wild cases are the biggest challenges for accurate 3D
human mesh recovery. Due to the difficulties of obtaining sufficient
training data with accurate mesh annotations, these issues are diffi-
cult to address directly in 3D pose estimation. However, it is much
easier to acquire sufficient training data with accurate 2D pose
annotations. By simply plugging-in a robust and more accurate 2D
pose detector in the future, GTRS can further improve the perfor-
mance and approach the lower bound. Therefore, GTRS has the
potential to continue staying relevant as an effective approach for
3D mesh reconstruction as 2D pose estimators inevitably improve.

Model Size and FLOPs Comparison: Previous human mesh
reconstruction methods did not pay much attention to model effi-
ciency. These methods mainly pursued higher accuracy without
considering computation and memory. Table 3 reports the Params
and FLOPs comparison between previous methods and GTRS. Pose-
based methods can easily select a lightweight 2D pose detector to
reduce the computational burden. But for most image/video-based
methods, a very large feature extractor is needed for extracting fea-
tures (e.g. ResNet-50 is used by [4, 18, 19]). GTRS only requires 7.9M
Params (10.2% of the Pose2Mesh [5]) and 0.19G FLOPs (2.5% of the
Pose2Mesh [5]) while achieving better results than Pose2Mesh [5]
when using the same 2D pose input detected by DARK [54]. When
compared with our baseline, GTRS improves the performance while
maintaining lower memory and computational cost. When we use
Lite-HRNet [53] as 2D pose detector, the overall Params is 9.7M and
FLOPs is 0.89G. GTRS achieves close results with significant Params
and FLOPs reduction (6.9% and 1.2% of I2LMeshNet [34], 16.5% and
9.2% of VIBE [18], 7.9% and 8.6% of TCMR [4]). It also can be ob-
served that METRO [22] and MeshGraphormer [22] demanded an
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Table 3: The Params and FLOPs comparison on 3DPW dataset. * indicates 3DPW training set is used during training.

Methods Feature extractor Proposed model Overall MPJPE
Params (M) FLOPs (G) Params (M) FLOPs (G) Params (M) FLOPs (G) on 3DPW

Image
Based

I2LMeshNet [34] ECCV2020 - - - - 140.5 73.2 93.2
METRO* [22] CVPR2021 - - - - 229.2 56.6 77.1
MeshGraphormer* [23] ICCV2021 - - - - 226.5 56.6 74.7

Video
Based

VIBE [18] CVPR2020 25.6 8.2 33.0 1.3 58.6 9.6 93.5
TCMR [4] CVPR2021 25.6 8.2 97.3 2.1 122.9 10.3 95.0

Methods 2D pose detector Proposed model Overall MPJPE
Param (M) FLOPs (G) Param (M) FLOPs (G) Param (M) FLOPs (G) on 3DPW

Pose
Based

Pose2Mesh with DARK [54] ECCV2020 63.6 3.6 77.1 7.5 140.7 11.1 88.9
Baseline with DARK [54] - 63.6 3.6 8.3 0.32 71.9 3.9 97.7
GTRS with DARK [54] - 63.6 3.6 7.9 0.19 71.5 3.8 88.5
Pose2Mesh with LiteHRNet [53] ECCV2020 1.8 0.7 77.1 7.5 78.9 8.2 -
Baseline with LiteHRNet [53] - 1.8 0.7 8.3 0.32 11.1 1.1 103.4
GTRS with LiteHRNet [53] - 1.8 0.7 7.9 0.19 9.7 0.89 93.5

Table 4: Ablation study on different components in PAM.

Architecture in PAM
graph transformer blocks

with fixed adj
graph transformer blocks

with learnable adj MPJPE↓ PA-MPJPE↓
1 0 68.0 50.3
1 1 66.9 48.9
1 3 65.1 48.2
1 5 64.3 47.5
1 7 64.6 47.6
6 0 65.3 48.4
0 6 66.4 48.8

pure transformer blocks
6 67.2 49.5

extremely large number of Params and FLOPs to achieve the SOTA
results; they also used the 3DPW training set while other methods
did not. Apart from that, METRO [22] and MeshGraphormer [22]
were trained in 5 days on 8 NVIDIA V100 GPUs, which is incredibly
time and resource consuming. GTRS, on the other hand, can be
trained in less than one day on two NVIDIA RTX 3090 GPUs. To
summarize, GTRS is much more time and resource efficient
compared to image-based methods and SOTA pose-based
method.

4.4 Ablation Study
We conduct the ablation study on Human3.6M dataset (training on
S1, S5, S6, S7, S8, and testing on S9 and S11) and report the accuracy
using MPJPE and PA-MPJPE.

Effectiveness of Using Graph Transformer Blocks:We in-
vestigate the use of graph transformer blocks in the PAM in Table 4.
All blocks are applied in parallel as shown in Fig 3. When we only
use one fixed graph transformer block, the MPJPE is 68.0 and PA-
MPJPE is 50.3. By adding learnable graph transformer blocks, and
thereby enabling the exploration of implicit correlations, the per-
formance improves. The network achieves the best results (MPJPE
is 64.3 and PA-MPJPE is 47.5) when using one graph transformer
block with a fixed adjacency matrix and five graph transformer
blocks with learnable adjacency matrices,

Next, to verify that the observed performance increase is not
solely a matter of additional blocks, we also investigate fixing all
adjacent matrices in the six graph transformer blocks. This enforces
the graph transformer blocks only to learn with structured correla-
tions of human kinematics. The MPJPE is 65.3 and PA-MPJPE is 48.4.
On the contrary, we then try setting all adjacent matrices in the six
graph transformer blocks to be learnable during the training. This
allows the graph transformer blocks to learn implicit correlations
of human kinematics, and results in a MPJPE of 66.4 and PA-MPJPE
of 48.8. Lastly, we apply six pure transformer blocks (without any

GCNs), which gives a MPJPE of 67.2 and PA-MPJPE of 49.5. All these
results are worse than applying six graph transformer blocks (one
with fixed adjacency matrix and five with learnable adjacency ma-
trices), which verifies the effectiveness of using graph transformer
blocks with both fixed and learnable adjacency matrices.

Impact of 2D Pose Detectors: In Table 5, we analyze the impact
of the quality of 2D pose on the final mesh performance. When
using ground-truth 2D pose as input, GTRS can get 50.3 of MPJPE
and 30.4 of PA-MPJPE, which outperform the Pose2Mesh [5] results
(51.3 of MPJPE and 34.9 of PA-MPJPE). Here, we see that accuracy of
GTRS can be improved when using more precise 2D pose inputs. We
also evaluate the performance of using different 2D pose detectors.
Incorporated with [47], the MPJPE of GTRS is 64.3 and PA-MPJPE
is 47.5, but the Params is 34M and FLOPs is 6.4G. When switching
to a more lightweight 2D pose detector [53], the entire pipeline
is more computational and memory efficient (Params is 9.7M and
FLOPs is 0.9G) while preserving the accuracy.

Impact of 2D Pose Input during Inference: For testing in-the-
wild images, the quality of the 2D pose would be affected by various
fluctuations based on the input image. We evaluate the robustness
of our trained model against potential perturbations since GTRS
relies on the input pose.

First, we evaluate if GTRS can still perform well when input
joints are missing. During inference, we set a drop probability for
the joints and the results are shown in Fig. 7 (a). In PAM, we output
the intermediate 3D pose for a 3D pose supervision, which enables
GTRS can still achieve acceptable results given a large drop rate.

Second, we evaluate the robustness of GTRS to noisy 2D pose
input. Specifically, we add Gaussian noise N(0, 𝜎2) to the input
2d pose to simulate in-the-wild 2D pose input during inference.
We do not retrain the model (which is trained using GT pose),
instead, we directly evaluate the performance of noisy pose input
on the trained model. The results are shown in Fig. 7 (b). GTRS
consistently outperforms Pose2Mesh [5], demonstrating that GTRS
is more robust to in-the-wild inference.

Qualitative Results: Fig. 6 shows the qualitative results of
GTRS on in-the-wild images from COCO dataset that GTRS can
reconstruct acceptable human meshes. More qualitative results are
in appendix.

5 CONCLUSION AND DISCUSSION
We present a lightweight pose-based method, GTRS, for human
mesh reconstruction from 2D human pose that reduces Params and
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Image Mesh View 1 View 2 View 3 View 4

Figure 6: Qualitative results of the proposed GTRS. Images are taken from the in-the-wild COCO [25] dataset.

Table 5: Ablation study on different 2D pose input.

Methods Input MPJPE↓ PA-MPJPE↓
Pose2Mesh [5] GT 2D pose 51.3 34.9

GTRS (Ours)

GT 2D pose 50.3 30.4
Estimated 2D pose by [47] 64.3 47.5

Estimated 2D pose by LiteHRNet [53] 66.9 48.7

FLOPs significantly. A PAM is introduced to exploit structured and
implicit joint correlations by using paralleled graph transformers
blocks. Then, a MRM is able to combine the extracted pose feature
with the mesh template efficiently to reconstruct the human mesh.

Despite GTRS achieving competitive performance, as a pose-
based approach, GTRS may not be able to recover varied human
body shapes using only 2D human poses as input. Although image-
based methods have the potential to reconstruct a more accurate
human mesh, pose-based methods are still worth investigating due
to their flexibility and lightweight design. In the future, we intend
to include another branch that extracts human shape features from
images to improve reconstruction capability while keeping the
model structure lightweight.

(a) Drop rate (%) (b) Variance

Figure 7: (a) Impact of missing joints during inference. Each
joint has a drop probability to simulate missing joints by
the 2D pose detector during inference. (b) Impact of noisy
2D pose input during inference. Various degrees of Gauss-
ian noise (i.e. variance 𝜎2) are added to the input 2d pose to
simulate in-the-wild 2D pose input during inference. 𝜎2 = 0
means GT pose provided in the Human3.6M dataset.
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ence Foundation under Grant No. 1910844
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A APPENDIX
A.1 Different locations to inject GCN.

(b) GCN between MHA 
and SE

GCN

MHA CONV

Norm

Norm

SE

(a) GCN before MHA

GCN

MHA CONV

Norm

Norm

SE

(c) GCN after SE

GCN

MHA CONV

Norm

Norm

SE

Figure 8: Three different locations to inject GCN to trans-
former blocks. (a) GCN is in front of the MHA block. (b) GCN
is between the MHA and SE block. (c) GCN is behind the SE
block. Results are evaluated on Human3.6M dataset.

In GTRS, we utilize GCNs to maintain a strong joint relationship
based on human kinematic information. We inject structural priors
provided by GCNs before performing the transformer’s multi-head
self-attention (MSA) as shown in Fig. 8 (a). We also investigate
other locations to inject GCNs. The results are reported in Table
6. When GCN is between the MSA and SE block as illustrated in
Fig. 8 (b), the MPJPE is 64.9 and PA-MPJPE is 48.2. When GCN is
behind the SE block in Fig. 8 (c), the MPJPE is 65.2 and PA-MPJPE
is 48.3. We observe that GCN before the MHA achieves the best
performance (MPJPE is 64.3 and PA-MPJPE is 47.5), indicating that
GCNs do provide structural priors to help final mesh regression.

Table 6: Ablation study on different locations to inject GCN.
Results are evaluated on Human3.6M dataset.

MPJPE↓ PA-MPJPE↓
GCN before MHA 64.3 47.5
GCN between MHA and SE 64.9 48.2
GCN after SE 65.2 48.3

A.2 Impact of different backbones
As a pose-based method, GTRS can easily choose a lightweight 2D
pose detector to reduce the computational burden. But for most
image/video-basedmethods, a very large feature extractor is needed
for extracting features (e.g. ResNet-50 is used by [4, 18, 19]). We
retrain the I2LMeshNet [34] with a small backbone (ResNet18), the
results are shown in Table 7. Although selecting a small backbone
can reduce the total Params and FLOPs, the performance also drops.
GTRS with DARK [54] is much more time and resource efficient
compared to I2LMeshNet.

A.3 Impact of different losses
We apply multiple loss introduced in Section 3.6 when training
GTRS. Here we evaluate the impact of different losses combination
in Table.

Table 7: Impact of different backbones. Results are evaluated
on 3DPW dataset.

Backbone total Params(M) FLOPs(G) MPJPE PA-MPJPE
I2LMeshNet ResNet50 140.5 73.2 93.2 57.7
I2LMeshNet

(small) ResNet18 94.6 68.3 101.8 62.9

GTRS with
DARK [54] 71.5 3.8 88.5 58.9

Table 8: Comparison of the inference speed. The frame per
second (fps) is obtained by using batch size 1 on a single
GPU/CPU.

Human3.6M Human3.6M
MPJPE MPVE

Vertex Loss only 71.9 86.3
Vertex Loss + 3D joint Loss 65.3 83.4

Vertex Loss + 3D joint Loss + Normal Loss 64.9 82.4
Vertex Loss + 3D joint Loss + Normal Loss + Edge Loss 64.3 82.0

Without 3D joint supervision, the MPJPE is 71.9 and MPVE is
86.3 (2D pose is detected by [42]). After adding 3D joint supervision,
the performances are boosted to 65.3 of MPJPE and 83.4 of MPVE.
The normal loss and edge loss can further improve the performance
slightly as shown in the table below.

A.4 Evaluation on the inference speed

Table 9: Comparison of the inference speed. The frame per
second (fps) is obtained by using batch size 1 on a single
GPU/CPU.

FPS on GPU FPS on CPU
2D pose
detection

3D mesh
regression overall 2D pose

detection
3D mesh
regression overall

METRO [22] - - 15.65 - - 1.81
GTRS 133.73 32.41 26.17 19.87 24.11 10.86

We compare the inference speed between GTRS (end-to-end)
and the state-of-the-art image-based mesh reconstruction method
METRO[22]. The frame per second (fps) is reported in Table 6. We
use a single NVIDIA RTX 3090 GPU and an AMD Ryzen 3970X
32-Core Processor CPU for testing. Our proposed GTRS is a pose-
based method, which means any off-the-shelf 2D pose detector can
be easily adopted. Here we use the lightweight OpenPose [39] as
the 2D pose detector. The fps numbers of lightweight OpenPose
on the testing GPU and CPU are 133.73 and 19.87, respectively. For
GTRS, the fps numbers on the GPU and CPU are 32.41 and 24.11,
respectively. Overall, GTRS can achieve 26.27 fps on GPU and 10.86
fps on CPU, which ismuch faster than METRO (the fps is 15.65 on
GPU and 1.81 on CPU) on the same computing hardware. Compared
to METRO, GTRS gains more advantages on resource-constrained
devices since it is significantly more computational efficient.

A.5 More qualitative results of GTRS
In Fig. 9, we show the qualitative results of GTRS on in-the-wild
images. We observe that GTRS achieves acceptable performance
by reconstructing reasonable human mesh on these challenging
in-the-wild cases. However, there are still some failure cases of our
method due to challenging pose and heavy occlusion as shown in
Fig. 10.
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Image Mesh View 1 View 2 View 3 View 4

Figure 9: Qualitative results of the proposed GTRS on in-the-wild images. Images are taken from MSCOCO[25].

Figure 10: Failure cases due to challenging pose and heavy
occlusion.

We also compare with image-based method I2LMeshNet [34] in
Fig. 11. Our GTRS is comparable with I2LMeshNet while reducing

memory and computational cost significantly (only 6.9 % Params
and 1.2 % FLOPs).

Input GTRS I2LMeshNet

Figure 11: Qualitative comparison with image-based method
I2LMeshNet.
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