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Abstract— Source code summarization is the task of writing
natural language descriptions of source code. The primary use
of these descriptions is in documentation for programmers. Au-
tomatic generation of these descriptions is a high value research
target due to the time cost to programmers of writing these de-
scriptions themselves. In recent years, a confluence of software
engineering and artificial intelligence research has made inroads
into automatic source code summarization through applications of
neural models of that source code. However, an Achilles’ heel to
a vast majority of approaches is that they tend to rely solely on
the context provided by the source code being summarized. But
empirical studies in program comprehension are quite clear that
the information needed to describe code much more often resides
in the context in the form of Function Call Graph surrounding
that code. In this paper, we present a technique for encoding this
call graph context for neural models of code summarization. We
implement our approach as a supplement to existing approaches,
and show statistically significant improvement over existing ap-
proaches. In a human study with 20 programmers, we show that
programmers perceive generated summaries to generally be as
accurate, readable, and concise as human-written summaries.

Index Terms—Automatic documentation generation, context-
aware models, neural networks, source code summarization.

I. INTRODUCTION

A
SUMMARY of source code is a short description of that

code in natural language. Even very brief summaries e.g.,

“creates connection to game server” help programmers compre-

hend source code without having to read the code itself. These

summaries form the backbone of documentation for program-

mers, such as the navigable HTML files generated by JavaDocs

and Doxygen [1]. The task of automatically writing this part
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of documentation has become known as source code summa-

rization [2], and has been a holy grail of software engineering

research for decades [3], [4].

The workhorse of almost all recent research into code summa-

rization is the attentional encoder-decoder neural architecture.

The inspiration for using models of this architecture derives from

machine translation in NLP, in which sentences in one natural

language (e.g., French) are translated into another (e.g., English).

When provided sufficient training data samples (usually well

into the millions), the encoder portion of the model learns a

representation of one language, and the decoder learns the other.

The representations are combined via an attention network or

other mechanism. Then if the encoder is provided a sentence

in one language, the decoder can be used to help predict an

output sentence in the other language. This is a tidy solution for

machine translation because the information needed to write a

sentence in one language tends to exist in translated sentences

in other languages – the encoder usually has access to all the

information it needs to represent the sentence for the decoder.

At a high level, almost all recent approaches to code summa-

rization are essentially encoder-decoder neural models in which

the input to the encoder is the source code and the output from the

decoder is the natural language description. The encoder must

learn a representation of the code suitable for the decoder to write

a description. The typical direction for research is to create ever

more complex models of the input source code via the encoder,

with the aim to learn better representations for predicting a code

summary via the decoder.

But applications of the metaphor of machine translation

only extend so far for code summarization. Empirical studies

in program comprehension are quite clear that not all of the

information necessary to understand a section of source code

exists within that source code itself [5], [6], [7], [8], [9], [10].

The implication for code summarization research is that there

is a ceiling at which even a “perfect” encoder model could not

lead to an accurate summary, because the information needed to

write that summary is not in the piece of code being summarized.

One potential answer to this problem is also evident in pro-

gram comprehension literature: the Function Call Graph. The

nodes in this graph are the subroutines in a program. The edges

are call relationships among the subroutines (usually directed

from one function to another). Existing empirical studies have

shown that most of the information that human programmers

need to understand a function appears within two “hops” in this

graph – e.g., a function’s caller and the caller’s callers [11]. This
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TABLE I
BLEU FOR REPRODUCTION OF THE PROJECT CONTEXT PAPER [12] WITH

DIFFERENT RANDOM SEED VALUES FOR SELECTION OF METHODS TO INCLUDE

IN THE CONTEXT

information forms the context that a human needs to understand

the code. A hope for neural approaches to code summarization

is to provide the encoder with this same information, so that it

can learn to understand software more like a human would.

Recently, Bansal et al. [12] achieved significant improvements

using methods from other files in the project. These methods

were randomly selected and modeled as “project context”. This

paper is an extension of that project context paper published at

ICPC 2021, except that now we eliminate the random factor. In

addition, we clearly define the relationship between the query

method and every method in the context. We observe that

randomly selected files and methods in project context could

improve or hinder results based on the selection. Therefore, we

chose a call graph to define a fixed set of methods. See Table I

and Section II-A.

In this paper, we present an approach for encoding the func-

tion call graph context for neural approaches to source code

summarization. Our approach is an augmentation to, rather than

a competitor to, existing techniques. Essentially the approach we

take is to 1) extract all functions within two hops of the given

subroutine in the call graph, 2) create vectorized representations

of these functions using a recurrent neural network, 3) use a

graph neural network to propagate information among these

representations, and 4) use an attention mechanism to highlight

the most important functions in the call graph context. The result

is a context vector of the call graph that can be appended to the

code vector created by existing code summarization approaches.

We implement our approach and augment a baseline neural

model for code summarization. We perform an experiment on

the dataset drawn from large software repositories. We show

marked improvement over the baselines in almost all cases. More

importantly, we observe that this improvement is orthogonal

to the improvements made by more complex representations

of the subroutines being summarized themselves. While better

representations of the code being summarized are helpful, our

approach is helpful in a different way. We release a complete

package necessary for replication in our online appendix (see

Section X).

II. BACKGROUND & RELATED WORK

This section discusses key background technologies and re-

lated work, such as source code summarization and neural

encoder-decoder model designs.

A. Source Code Summarization

The term “source code summarization” was coined around

2009 by Haiduc et al. [37] for the task of generating short

Fig. 1. Snapshot of the past five years in source code summarization. Column
I stands for IR-based techniques. N means neural network-based. G means the
code is modeled as a graph. T means Transformer designs. C means learning
chiefly from code context.

descriptions of source code. The word “summarization” re-

ferred to the underlying technologies borrowed from the Natural

Language Processing research community used to summarize

natural language documents. At the time, these were dominated

by keyword extraction techniques, such as ranking the top-n

words in a document using tf/idf or a similar metric. A widely-

accepted practice was to use the context around source code

to help this process [38], where context was defined as a set of

functions in the Function Call Graph surrounding the code being

described [39].

This line of research was largely put on ice around 2017,

with the introduction of neural models of source code and

encoder-decoder architectures (e.g., seq2seq, graph2seq) [3].

Fig. 1 depicts this history. Column I in the figure groups tech-

niques based on IR, manual feature design, and other heuristics.

Column N refers to papers in which the underlying model is

based on a neural architecture. Column G means the code is

represented via graph or graph-like features such as the AST.

Column T means the model is Transformer-based. Column C

means the intellectual merit of the paper is in using the code

context.

Fig. 1 shows an important pattern, that while neural models

have succeeded IR and template-based solutions, the use of

context is ripe for a resurgence of research interest. Between

2017 and 2019, many papers achieved big gains from the big

data input. Their efforts were focused on how to pre-process

the data for use in existing neural models (an exemplar in this

category is the SBT by Hu et al. [23] technique for linearizing an

AST, which has been validated by third parties [30]). Since then,
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two complementary strategies have emerged to best improve

performance of code summarization: 1) better models of the

code itself, such as by Zügner et al. [35] and Liu et al. [36], and

2) models that include context information, such as by Haque et

al. [34].

More recently, retrieval-based techniques have also been em-

ployed to use contextual information. In 2020, Wei et al. [40]

introduce Re2Com, a technique to find similar functions in a

database and use corresponding summaries as a secondary input

to neural network. In 2021, Li et al. [41] introduced a technique

to retrieve summaries of similar functions and used them as a

template. They proposed a module to edit these summaries with

new information from the target function. These approaches

are important, given the wide re-use of source code in online

repository. However, our dataset and use-case is different, in

that we remove duplicate methods and doc-strings from our

training set to prevent data leaks. Our approach does not rely on

the availability of documented code and summary inputs to the

model during prediction. We believe retrieval-based techniques

have different application conditions from ours, and thus, do not

serve as baselines.

B. Project Context

In 2021, we [12] proposed an approach that improves source

code summarization using contextual information from other

files in the project. However, there was a random element in the

selection of the contextual information. We selected n methods

at random from other files in the project to model “project

context”. We view that work as a proof of concept that shows

the potential for improvement using out-of-file context. After

that project, we observed that this random factor leads to high

variance in terms of metric score improvements. Table I shows

how different random selections can impact the gains made using

“project context”. The v2 selection achieved much lower BLEU

scores compared to random selections. Whereas, the v3 selection

achieved a higher BLEU score than the selection published in

that work (v1). To eliminate this random element, we posit the

function call graph offers a logical solution. As part of the

call graph, selected methods from the project have a clearly

defined relationship with the method being summarized. There

is a flow of data through function parameters and return values

between nodes in the call graph. We design our approach to learn

this relationship between methods in the context and the target

function to be summarized. Note, this paper uses a different

dataset than the one used in Table I, explained in Section IV.

C. Encoder-Decoder Neural Models

The workhorse of almost all neural source code summariza-

tion approaches is the encoder-decoder model architecture. This

architecture consists of two learned representations of paired

inputs of data. The idea was initially proposed for use in ma-

chine translation, where an “encoder” would generate a vector

representation of a sentence in e.g., French, while a “decoder”

would generate a representation of the same sentence in e.g.,

English [42]. A key improvement to the original model design is

the addition of “attention” around 2014 by Bahdanau et al. [43].

The purpose of attention is to connect features in the encoder

representation to features in the decoder representation. Usually

in machine translation, this means connecting a word in one

language to another e.g., “ami” in French to “friend” in English.

The basic structure of the encoder-decoder model has found

uses in many language generation tasks, such as image cap-

tioning [44], question answering [45], and code summarization

(see above). While uses of the encoder-decoder architecture are

far too common to be covered in one paper, notable surveys

include: [3], [46], [47], [48]. This paper is in the same vein as

this related work, except that we focus on encoding function call

graph context rather than details about the source code being

summarized itself. In this way, this paper may be viewed as

bordering image captioning in addition to machine translation,

as we seek to locate features in a context with a much broader

scope than the text that is to be generated. In translation, the

encoder sentence is usually expected to contain the features

necessary to translate it. In image captioning, often artifacts such

as surrounding text in a webpage are considered.

D. Function Call Graph Context

The Function Call Graph is a key abstraction of code context

used in software engineering literature for decades. The graph

itself consists of nodes, which are the functions (or methods,

subroutines) in a program, and edges, which are the call rela-

tionships among the functions. It has long been observed that the

behaviors of a program, from a human perspective, tend to be

defined by these relationships [39], [49], [50]. To take a classic

example, the behavior of booking a single passenger on a single

flight in airline software is unlikely to be implemented by just one

function – there is a constellation of functions in the call graph

that would implement this feature [51]. Abstracting a program

as functions and function calls is one of the key components of

human programmers’ mental models of program behavior [52],

[53], and a mainstay of software engineering research.

In this paper, we define the call context of a subroutine as

the nodes that fall within two edges from the subroutine in

the program call graph. This scope includes the callers of a

subroutine and that caller’s callers. Plus, it includes the functions

that a subroutine calls, plus the functions those functions call.

Our definition of call context is in line with related work, which

has repeatedly shown that human programmers almost always

find the information they need within two edges in the function

call graph [51], [54], [55], [56], [57]. This scope, while “only”

encompassing two hops in the call graph, turns out to cover an

average of 8% of a typical program in our subset. For example,

in our dataset of 190k Java methods, projects have a median of

170 methods, and the mean call context of a method includes

about 14 methods.

III. APPROACH

This section describes our approach. Essentially we extract the

call context, and then use a neural model to learn a representation

of this context to predict summaries.
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Fig. 2. A depiction of the call context for an example function named setRadius(). We define call context as the functions within two hops in the program
function call graph (see Section II-D).

A. Modeling Call Context

The first step in our approach is to model the call context.

We define call context in Section II-D based on related work.

However, in practice, hardware and software limitations mean

not all information from all functions in this context can be

included. We extract the call context with a limiting hyperpa-

rameter b (breadth) to indicate the maximum number of calls

per function. If a function has more than b calls, we include only

the first b calls that function makes. The value of b is a delicate

balance between maximizing the number of functions in the

context, while preventing a single function from “taking over”

the context by making too many calls. The maximum value of

b we are able to test is 5, limited by the largest graph we can fit

on the GPU memory available to us.

Consider the example call context in Fig. 2. The function

setRadius() is the target, and is part of its own call context.

To build the rest of the call context, we take the first b functions

that setRadius() calls. Then, we take the first b calls that

those functions make. These functions are the “right side” of

the call context in Fig. 2. Then to make the “left side”, we add

a maximum of b functions in which setRadius() is within

the first b calls. Then we add the b functions that call each of

those functions. The maximum number of functions in the call

context is then 2 ∗ (b2 + b) + 1.

We chose b=5, implying a maximum of 61 functions in the call

context. As we will note in Dataset Preparation (Section IV), the

mean number of calls per function in the dataset is 2.7, and only

around 25% made more than five calls. Only four functions in

the dataset had the maximum of 61 functions in the call context.

B. Neural Model

The heart of our prediction model is a graph neural network

(GNN) that creates a vectorized representation of the functions

in the call context. We use a recurrent neural network (RNN) to

create a vector representation for the initial state of each function

in the call context. Then we use a GNN to propagate information

among these functions based on their function calls. We combine

this call context information with information from a standard

encoder-decoder model to predict a summary for the function.

An overview of the neural model underpinning our approach

is in Fig. 3. In general, our model is based on an encoder-decoder

architecture like most approaches to neural code summarization.

Fig. 3. The architecture of our approach. White areas indicate novel additions
for this paper. Gray areas indicate components of the model loaded from a
baseline, prior approach. Solid arrows indicate information flow over which
back propagation is allowed. Dashed arrows indicate information flow without
back propagation.

What is novel is that we add components to the encoder to help

the model learn from call graph context (see our definition of

call context in Section II-D). The gray components in Fig. 3

(area 1) indicate a standard encoder-decoder model in which the

encoder’s input is the source code of the function and the decoder

learns to represent the summaries. This encoder-decoder model

is the foundation of almost all neural source code summarization

techniques (see Section II-A), and we continue to use it in our

approach.

The white components in Fig. 3 indicate novel contributions

of this paper. The purpose of these components is to create a

vectorized representation of the call context of a function. We

combine this representation with the standard encoder-decoder

model. This works as follows:

In area 1, we obtain the source code for a target function to

summarize. That code is the input to the standard “gray” encoder.
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We represent this part as:

C ′ = G2(E2(C)) (1)

T ′ = G1(E1(T )) (2)

T ′′ = SoftmaxActivation

(

m
∑

i=1

C ′

iT
′

i

)

(3)

Tc =

m
∑

i=1

T ′′

i T
′

i (4)

Ta = Tc ⊕ C ′ (5)

Here,G1 andG2 denote pertained RNNs for the function (T) and

comment (C) tokens respectively. E1 and E2 denote the word

embeddings for the function and comment tokens respectively.

The ⊕ symbol denotes a concatenation operation, i and j are

iterative variable.

In area 2 we encode the source code for every function in

the call context of the target function. We use an RNN to create

a representation of the source code for each function in this

context. We use the same word embedding and vocabulary as

the standard encoder, and the initial state of each RNN is the

final state of the RNN from the standard encoder. This operation

is represented as:

N = GRU(E1(Gn)) (6)

Technically, the call context becomes an mxn matrix where

m is the number of functions in the context and n is the vector

size of the RNN’s representing each function.

In area 3 we obtain the edges among each function in the

call context and store these edges as an adjacency matrix. When

we create the adjacency matrix, we treat the call context edges

as undirected. Otherwise, a GNN would propagate information

from the caller functions to the target, but not from the callee

functions. E.g., functions on the left side of the target function

in Fig. 2 would propagate information to the target, but not

functions on the right. In our approach, information from any

functions can propagate to any other functions within the call

context.

We use a convolutional GNN to propagate information among

the functions in the call graph, based on the adjacency matrix.

The GNN we use is of our own implementation. It is a faithful

re-implementation of the GNN used by graph2seq [58] and also

used successfully for modeling abstract syntax trees [59]. We

represent a single “hop” of GNN propagation as:

Nnew = ReLu

⎛

⎝

m
∑

k=1

(

m
∑

x=1

EjxNix

)

jk

Wik

⎞

⎠ (7)

N = Nnew (8)

Here, N is the state of the context at the beginning and end

of a “hop”. E and W denote the edge adjacency matrix and a

randomly initialized weight matrix respectively. The output of

the GNN is a matrix with the samemxn shape as the call context.

The content of this matrix is similar as well, except that the GNN

propagates information among the nodes, so that nodes near each

TABLE II
HYPERPARAMETERS OF OUR NEURAL NETWORK

other in the graph become more similar to each other. In our view,

this propagation is likely to create a good representation of code

context because the edges represent actual information flow in

the program.

In area 4 we compute attention between the decoder and

the post-GNN call context. The decoder represents words in

the summary, while the entries in the call context represent

functions in that context. Some words in the summary may have

more relevance to some functions than others. For example,

the word “record” in a summary may have high relevance to

functions related to audio/video files. To capture this relevance,

we compute attention between the words in the decoder and the

functions in the call context. We represent this part as:

C ′′ = SoftmaxActivation

(

m
∑

i=0

C ′

iNi

)

(9)

Cc =

c
∑

i=0

mC ′′

i Ni (10)

Here cm is the number of words in the summary, which is 13

for our experiment. Our attention mechanism is identical to the

one described by Luong et al. [60] and used extensively in code

summarization research [23], [30]. The difference is that we

compute attention to functions in call context rather than only

to words in the target function itself.

In area 5, the final step is to combine the prediction from

the standard encoder-decoder model (the “gray” part) with the

output prediction from the call context.

O = DenseReLu(Cc) (11)

O = O ⊕ Ta (12)

Cn = DenseSoftmax(O) (13)

Here, a dense layer is calculated after attention in both the

standard encoder-decoder model and the call context. We con-

catenate the output from these dense layers into a single vector,

and then send that vector to another dense layer which serves as

the output layer.

C. Hyperparameters

Table II lists hyperparameters of our neural network. Due to

the high expense of computation time in training large neural
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models, a grid search for optimal hyperparameters is not cur-

rently feasible. However, satisfactory values for many parame-

ters are available in related literature: 1) we use the vocabulary

sizes (vd and ve) from recommendations by LeClair et al. [61],

2) we use a GRU with a vector size of 100 as recommended for

modeling functions by Haque et al. [34], and 3) as mentioned

above, we use a convolutional graph neural network to propagate

information among the functions in the call graph inspired by

related work. We discussed the values of b and m above in

Section III-A among other parameters, and we decided onh = 1,

empirically through RQ4 in Section VI-D.

D. Input/Output Details

There are two key components of the input/output details:

1) preprocessing, and 2) training procedure. For preprocessing,

note that the source code of a function and the summary of

that function are both inputs to the model during training. We

used the preprocessed summaries using techniques by LeClair et

al. [61]. We truncated to 13 words, dropped to lower case, and

removed punctuation. For source code, the paper preprocessed

by removing non-word characters, splitting by camel case and

underscore, and dropping to lower case. We used the same pre-

processing, except that we did not remove non-word characters,

and we replaced newlines with a NL special token. We found

in pilot studies that these newlines and other tokens (brackets,

periods, etc.) led to better predictions.

Our training procedure is teacher forcing [62]. Essentially

what teacher forcing does is train the model to predict summaries

one word at a time, while providing the answer at each step

during training. A comprehensive discussion of teacher forcing

is beyond the scope of this paper, as it is the most common means

by which neural code summarization algorithms are trained [23],

[27], [30], [34].

E. Hardware/Software Details

Our implementation and experimental hardware includes a

Xeon E5-1650v4 CPU, two Quadro P5000 GPUs with 16GB of

Video memory each, and 128GB of system memory.

Our software versions for reproduction include CUDA 11.2,

Tensorflow 2.9, Python 3.10, Pandas 1.4, NLTK 3.6, Debian

Experimental Release (March 2021 Snapshot).

IV. DATASET PREPARATION

We curated our dataset from a larger one that was used in the

project context paper we extend [12] and used to generate Table I.

To build our dataset, we extracted call graphs to create the

call context and adjacency matrices required for our approach.

However, we observed that a large percent of the functions in

the dataset used for the project context paper are quite small

and tend to involve rewriting the words available in a subrou-

tine’s signature. For example, a method playMidiFile()

may have a summary like “plays a midi file.” This observation

is further corroborated by related work that uses the same

dataset [63]. While these short methods are interesting targets for

code summarization and automatic documentation generation in

general, we view call context as a way to help write summaries

for longer sections of code that may make several function calls.

A function that is very short and makes no function calls will

have a limited call context and is less likely to benefit from

call context. Therefore, we prepared a subset of the published

dataset.

Our dataset originates from the one published by LeClair et

al. [61]. We selected this dataset because it follows accepted

practice in the field, such as splitting training/validation/test sets

by project. Then, we selected the largest 10% of Java methods

from the dataset, where we define “largest” by the number of

tokens in each method. Our reasons for using this threshold

are two fold. First, this threshold led to approximately 200k

subroutines in the dataset, which is near the upper limit of our

resources for extracting call graphs. We used srcml [64] to

extract the call graph for every project in the dataset, and then

subdivided these graphs into call context function and adjacency

matrices. Due to high I/O requirements, parallelization of this

process has limited benefits, and even 200k functions took

approximately two weeks of compute time. The second reason

we used this threshold is because it favors the larger subroutines,

versus, for example, a random selection.

Due to filtering, the number of samples in the dataset de-

creases while the size of those samples increases. The average

number of tokens increases from 27 in original set to 122 in

our dataset. The number of methods in the call graph has a

median of 12 and mean of 14.2. Roughly 32% of methods were

called by more than 5 methods, as well as 24% called more than

5 methods. Due to resource constraints explained in III-A the

graph is limited to a breadth of 5. In general, a vast majority of

the methods chosen via the size threshold both call (93%) and

are called (also 93%) by at least one other method.

V. QUANTITATIVE EXPERIMENT

This section describes our quantitative experiment involving

computed metrics over our dataset. This experiment is distinct

from our qualitative experiment in Section VII.

A. Research Questions

The research objective of this experiment is to measure the

effect of call context on the prediction quality of neural code

summarization, in a reproducible manner and over large datasets.

We ask the following Research Questions (RQs):

RQ1 What is the difference between our approach and recent

baselines, as measured by automated metrics?

RQ2 Are the gains orthogonal, as measured by ensembles of

models to generate summaries?

RQ3 How does our model compare to the baselines when the

summary includes words from the call graph?

RQ4 What is the effect of breadth b and hops h on perfor-

mance, as measured by automated metrics ?

The rationale behind RQ1 is two fold. First, automated metrics

are inexpensive, so performance over several thousand subrou-

tines may be computed. This evaluation of a large set reduces the

risk of inadvertently “cherry picking” a set for which one model

works better than another (as may happen in a human evaluation
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with only a few dozen randomly selected samples). Second, it

makes studies reproducible – the datasets are available via our

online appendix, and automated metrics are well-defined in the

literature. So far, a vast majority of approaches use this type of

evaluation.

The rationale behind RQ2 is that automated metrics are mea-

sured as an average over the whole test set, but some models may

excel over a subset more than the other. Recent work by Bansal et

al. [12] and LeClair et al. [65] uses these to capture orthogonal

gains and generate better summaries using ensembles.

The purpose of RQ3 is to explore “how” the call graph helps

generate better summaries. One possibility is that there are

unique words in the methods that are part of the call graph that

do not exist in the target method. The reference summaries,

written by human programmers, could contain identifiers and

other words from the caller and callee methods. We ask this

RQ to measure performance of our approach over these niche

subsets.

The rationale behind RQ4 is to find out how our design choices

affect the model performance. First, our graph layer is inspired

by LeClair et al. [59]. They found that the value of h produces

diminishing returns in terms of performance for AST graphs, but

we do not know if this is true for call graphs. Second, we chose

b = 5 because that is the maximum number we could fit on our

GPU. While we cannot test out higher values of b, it may be that

a smaller graph performs better. We ask this RQ to quantify the

level to which these design choices affect performance of our

approach.

B. Methodology

Our methodology is based on the accepted practice followed

by most papers on neural source code summarization techniques.

First, as detailed in Section IV, we prepare our dataset. The

training, validation, test split is approximately 80%, 10%, 10%,

though because these datasets were split using a “by project”

procedure to reduce biases (and because we filter for larger

functions), the split percentages are only approximate. The

second step is to train each baseline (plus our approach) using

the training set.

We trained for a maximum of 20 epochs, and then chose

the model at the epoch that achieved the highest validation set

accuracy. Then we used that model to predict summaries for

subroutines in the test set. Finally, we computed METEOR [66],

USE [67], ROUGE [68], and BLEU [69] scores for predictions

against the reference summaries for those subroutines. Recently,

Roy et al. [70] evaluated several metrics for source code sum-

marization and recommended METEOR as an alternative to

BLEU. Haque et al. [67] found that sentence encoder based

metrics correlate better to human similarity ratings compared

to n-gram based metrics such as METEOR and BLEU. They

recommended a Universal Sentence Encoder [71] based metric

we report as USE. We report BLEU-A and ROUGE-LCS scores

to be consistent with literature and our previous work with

project context that this paper extends. We use the python NLTK

version 3.6 implementation of these metrics.

C. Baselines

Our experiment includes five baselines. We created faithful

reimplementations of each baseline in our own experimental

framework in order to reduce experimental variables. While

many papers do release reproducibility packages, there are slight

differences such as preprocessing/input changes, different vector

sizes or RNN types (e.g., LSTM versus GRU), pretrained word

embeddings, etc. Therefore, output of the models could vary

due to implementation differences, while we aim to measure the

effect of call context only.

code2seq This approach represents a family of approaches

that use paths in the AST to represent code, as introduced by

Alon et al. [27]. This model is consistently a strong performer

in experiments in various papers [34].

ast-attendgru-fc This approach is the “file context”

baseline introduced by Haque et al. [34]. It works by modeling

each subroutine in the same file with an RNN, then computing

attention between the output summary words and the RNN

output vectors for each of those subroutines. It is similar to this

approach in that other subroutines are modeled for prediction,

but it is different in that it does not consider any relationships

between subroutines.

codegnngru This approach represents a family of papers

that model source code as an abstract syntax tree (AST). This

approach is the best configuration reported by LeClair et al. [59],

which uses a GNN to encode the AST only, not any external

context. GNNs are a growing area of investigation for modeling

source code [24], [35], [72].

transformer This approach is essentially a vanilla

transformer-based seq2seq model, as described by Ahmad et

al. [33]. Transformer-based models have found strong accep-

tance in the NLP research community and are beginning to be

tested for code summarization.

HANcode This approach is the newest baseline that uses

a Hierarchical Attention Network designed for source code

summarization. This approach is a non-ensembled version of

the best performing approach proposed by Zhou et al. [73], who

recommend an ensemble with an AST based approach for best

performance.

D. Threats to Validity

This experiment carries threats to validity similar to most

studies of neural code summarization. The key threats are the

datasets and the automated metrics. Different conclusions may

arise with different random splits, since these splits affect what is

in the training set. We attempted to mitigate this threat by using

a project based split filtered by length. The other key threat are

the metrics BLEU and ROUGE. These metrics compute word

overlap, which is only one way of measuring similarity. We

attempt to mitigate this threat by also conducting a qualitative

experiment with human experts.

VI. QUANTITATIVE STUDY RESULTS

This section includes our answers to RQ1, RQ2, and RQ3

based on the data collected in the quantitative experiment.
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TABLE III
AUTOMATED METRIC SCORES FOR BASELINES, OUR APPROACH, AND ENSEMBLES

A. RQ1: Performance using Automated Metrics

We found that compared to our baselines,callcon achieved

the highest performance as measured by automated metrics.

In Table III the top sub-table shows the METEOR, USE,

ROUGE-LCS, and BLEU scores over our test set for each

of the model configurations. For METEOR and USE scores

we also performed a paired T-test for statistical significance

where P-value of less than 0.05 indicates rejection of the null

hypothesis and hence strongly suggests statistical significance.

This test was conducted compared to our approach – therefore,

the values are blank for our approach. We found that callcon

achieved highest scores in all but one sub-metric, P score for

ROUGE-LCS.

Specifically, callcon achieves a 33.80 METEOR score

which we found to be a statistically significant improvement

over all baselines using the T-test. Our approach achieves a 51.59

USE similarity score which is higher than all other baselines,

with a caveat that the statistical significance cannot be confirmed

over the transformer baseline. callcon achieves a 19.54

BLUE-A score outperforming the transformer baseline by

5.5%. Although it achieved a slightly lower ROUGE-L Precision

score, it achieves better Recall and more importantly, better F1

scores. Therefore, we posit that call graph can be used as external

context to improve performance of source code summarization

models.

B. RQ2: Ensembles

We perform comparison using ensembles and find that our

approach improves all other approaches significantly and or-

thogonally. We present data related to our findings in Table III

and Fig. 4. Table III shows the METEOR, USE, ROUGE-

LCS and BLEU-A scores for ensembles in the bottom sub-

table. Compared to the top subtable, we observe that ensemble

with callcon significantly improves metric scores for every

baseline. For METEOR and USE, the paired T-test compares

the ensemble over the baseline model. We observe high t-test

values with P-values below 0.01 for every ensemble when

compared to the respective baseline. We observe that overall

transformer+callcon is the best performing ensemble

with 35.09 METEOR, 53.84 USE, 48.92 ROUGE-LCS F1,

and 20.22 BLEU scores. These represent a 4-7% grain over

transformer baseline. Therefore, call context can achieve

significant orthogonal improvements when ensembled with any

of the baselines.

There is a chance that the simple process of creating ensem-

bles can improve performance. Therefore we compare every

possible combination of ensembles and find our approach con-

sistently achieves the highest metric scores. In Fig. 4 we observe

that every baseline when ensembled withcallcon achieves the

highest METEOR, ROUGE, USE, and BLEU scores. The black

line in the graph plots scores for baseline + callcon. We can

see that this line is distinctly above other configurations in terms

of (a) METEOR, (c) ROUGE, and (d) BLEU scores. For (b) USE

score, we observe that scores for ensembles with callcon and

transformer as the second model overlap for three out of 5

baselines. However, we can see for thetransformerbaseline,

our approach is the best performing ensemble compared to any

other approach. We posit that transformer may be a close

competitor to our approach independently. They each perform

best for different subsets of the test set. Therefore, we reassert

that the increase in metrics achieved by call context is orthogonal

to other baselines. We posit that future approaches may benefit

from ensembles with call context.

C. RQ3: Word Overlap

In Table IV we report the METEOR and USE scores for

different values of word overlap. We observe that for all levels

of overlap, our approach outperforms all of the baselines. More

interestingly, for wo >= 2, we find that callcon achieves

20.7%, and 10.3% higher METEOR and USE scores respec-

tively over the transformer baseline. For that small subset

( <1% of the test set ) we find that when there are two or more

words in the summary that exist in the call graph, but not in the

target function, our approach is able to use those words correctly

to improve the summary. We also observe that some of these

words might also be present in the “file context”, which is why

ast-attendgru-fc seems to improve on this subset as well.

Overall, we did not find any level of word overlap where our
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Fig. 4. Graphs comparing metric scores for every baseline ensembled with every other baseline as measured by (a) METEOR scores, (b) USE scores, (c)
ROUGE-LCS F1 scores, and (d) BLEU scores. The x-axis names the five baselines and the y axis plots the scores ensembles. We use the baseline scores for model
ensembled with itself to maintain the structure of the graph.

TABLE IV
SCORES FOR OUR APPROACH AND BASELINES WHEN EVALUATED FOR DIFFERENT SUBSETS OF THE TEST SET

approach performs worse than a baseline, even when there is no

word overlap. This may indicate that our approach doesn’t just

rely on new words from the call graph functions. We posit this

is just one of the ways our approach helps improve summaries.

D. RQ4: Configurations

In Table V we report metric scores for callcon, with values

of h ranging from 1 to 5. Recall from Section III-C that h is

the number of hops in the call context GNN (Fig. 3, area 3). A

value of h = 1 achieved the highest METEOR, USE, and BLEU

score. ROUGE-LCS F1 scores increase consistently with the

TABLE V
PERFORMANCE SUMMARY FOR DIFFERENT HOPS h OF THE GNN

increase of hop size. We observe increase is due to the increase

in precision which comes at the cost of decrease in recall scores,
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TABLE VI
PERFORMANCE SUMMARY FOR BREADTH VALUES b FOR THE CALL GRAPH

while F1 score strikes a balance between precision and recall.

Moreover, for all values of h, callcon achieves scores higher

overall scores than the transformer baseline. This my indi-

cate that while h has a slight effect on performance, models with

call context achieve better performance than models without

call context. The reason that there is low variance in scores for

different hops may partially be explained by Section VI-C, as

the improvements over the overlap subset may not be affected

by hops, the model is able to see those words for any value of h.

In Table VI we report how metric scores change based on

the breadth b during the creation of the call graph. As one would

expect, we observe a consistent increase in METEOR, USE, and

BLEU scores as we increase the size of the call graph. Recall

that we chose b = 5 because that is the maximum size of graph

we could fit on our GPU. An interesting observation is that even

for b = 1, we see that our approach achieves a higher BLEU

score than all baselines including transformer. This is not

corroborated by other metrics. Therefore we recommend future

work evaluate their approach over several metrics. We make

another interesting observation, in that score difference between

b = 4 ( maximum nodes = 41) and b = 5 (maximum number of

nodes = 61) is very small. Therefore, we recommend b = 4 if

resources are constrained. Due to limitation of our resources we

are unable to test for values of b greater than 5.

VII. QUALITATIVE EXPERIMENT

We conduct a qualitative experiment as a supplement to the

quantitative experiment in the previous two sections. This qual-

itative experiment with human experts compares our approach

to the reference, human-written summaries.

The scope of this study encompasses only a comparison

of callcon to the reference summaries in the dataset. The

quantitative experiment provides a “breath” evaluation of two

large datasets with thousands of samples in the test set of each

dataset. However, that experiment uses automated metrics to

compare word overlap of predictions to a reference, which

leaves a gap related to the overall quality of the predictions

along criteria other than word overlap. In other words, even

if the predictions perfectly matched the reference every time,

the automated metrics do not provide an in depth picture of

how programmers perceive these summaries. This qualitative

experiment provides this “depth,” though on fewer summaries

than automated metrics as human studies are expensive in both

cost and time.

Note that this experiment measures only perceptions of qual-

ity, and therefore is only intended to compare perceptions of two

sets of summaries. Programmers’ perceptions may be affected

by a lack of knowledge about the entire software project [74],

[75], so a low or high score should not be interpreted globally,

i.e., a low accuracy score does not necessarily mean the summary

is inaccurate – it is only relative i.e., “approach A is perceived

by this human expert as less accurate than approach B.”

A. Research Questions

The research objective of this experiment is to determine the

difference in quality of the summaries we generate to the refer-

ence summaries in the dataset as perceived by human experts.

We ask the following RQs:

RQ5 What is the level of overall accuracy of generated and

reference summaries?

RQ6 What is the level of readability of generated and refer-

ence summaries?

RQ7 What is the level of completeness of generated and

reference summaries?

RQ8 What is the level of conciseness of the generated and

reference summaries?

We use the three criteria accuracy, conciseness, and com-

pleteness proposed for evaluating source code summaries by

Sridhara et al. [76] and further recommended by McBurney et

al. [77]. Accuracy is defined as the perceived level of correctness

of the information in the summaries. Completeness is defined as

the perception of whether the summaries are missing informa-

tion that should be in the summary. Conciseness is defined as

the perceived level of extraneous material in the summaries. We

added the question about readability as a sanity check, to make

sure the summaries are sensible and readable english sentences.

B. Methodology

Our methodology adheres closely to procedure recommended

in earlier studies [76], [77]. For each participant, we randomly

select 40 Java methods from a subset of 200 methods we ran-

domly picked from the test set (based on the recommendation of

around 90 seconds per method evaluation, with a total workload

of around 1 hour per participant ). Next, we created a survey

which displays a Java method and a summary of that method.

The summary is either from our approach or from the reference

summary. To avoid biases [78], the survey did not reveal whether

the summary was from our approach or the reference. The survey

also displayed four statements:

1) Independent of other factors, I feel that the summary is

accurate.

2) The summary is missing important information, which

limits my understanding.

3) The summary contains a lot of unnecessary information.

4) The summary is written in easily readable english.

Next to each statement was set of radio buttons with a 1-4

scale, ranging from “Strongly Disagree” (1) to “Disagree” (2)

to “Neutral(3)” to “Agree” (4) to “Strongly Agree” (5). We

recruited twenty programmers with at least one year of pro-

fessional Java development experience. The programmers rate

summaries for 40 methods, randomly selected and different for

each participant.
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The survey output consisted of two sets of 1-5 scores for each

of the four statements: one set was for our predicted summaries

and one set was for the reference summaries. We report these

sets of scores in aggregate (e.g., via boxplots). We also report

results of Mann-Whitney U tests between sets of ratings for

each quality criterion for predicted and reference summaries. For

example, we compare overall accuracy between predicted and

reference summaries. The Mann-Whitney U test is appropriate

because it is a non-parametric and non-paired. A non-parametric

test is suitable because our sample size is not large enough

to reasonably assume a normal distribution. A non-paired test

is suitable because we have only roughly equal numbers of

ratings for the same method, because our survey chose randomly

whether to display a generated or reference summary.

C. Threats to Validity

The main threats to validity of this study include the par-

ticipants and the selection of methods from the test set. We

recruited 20 participants from a large pool of programmers, but

the risk remains that different programmers may give different

answers. To mitigate this risk we present box-plots instead of

average numbers so we may draw conclusions from the overall

distribution. Also, we randomly selected 200 Java methods for

the study, of which each participant evaluated 40, which is as

large a pool of summaries we could reasonably ask participants

to evaluate (give time conflicts with regular career duties).

However, the risk remains that our conclusions could vary with

methods. Another threat is that our qualitative study does not

compare our approach against any of the baselines. We do this

following the recommendations from Roy et al. [70] that found

that score differences of less than 2 points may not be detectable

by small human studies such as the one we conduct. Although

these improvements are very important, it would require a large

human study to detect a small improvement over a baseline.

Therefore, our qualitative evaluation compares our approach

against the ground truth. The goal of this study is to test if

the predicted summaries are reasonably accurate and human

readable, when compared with the ground truth.

VIII. QUALITATIVE STUDY RESULTS

We answer RQ5 - RQ8 in this section, using the experimental

data we collected in our survey in the previous section.

A. RQ5: Accuracy

In Fig. 5 we show the accuracy ratings for both generated and

reference summaries. The mean score for the reference sum-

maries was about 3.4, which is between “neutral” and “agree”

for the question about accuracy. In comparison, the mean score

for callcon was about 3.3, which is comparatively close. We

expect a lower accuracy from generated summaries ( recall the

METEOR scores are in the 30s). The range of scores in the

boxplot from first to third quartile, shown by the grey box, is

almost identical for both generated and reference summaries.

A more interesting observation is that the median score for

both is 4, which correlates to “Agree”. This means that roughly

half of the participants marked “agree” or “strongly agree” for

Fig. 5. Human evaluation ratings for (a) Accuracy and Readability, and (b)
Completeness and Conciseness. Higher is better for accuracy and readability,
while lower is better for completeness and conciseness as they were posed
negatively. The black line in the boxplot indicates the median. Red line indicates
the mean.

the accuracy of generated and reference summaries. The other

half were split between “neutral”, “disagree”, and “strongly

disagree”. Although this may indicate that the reference sum-

maries of lower accuracy of quality, we caution against drawing

such conclusions due to two reasons. First, we truncate all

summaries to 13 tokens due to the design of our neural network

and recommendations from related work. Programmers may

simply expect a longer summary, and could mark the summary

inaccurate. Second, we only show the participants raw code of

the target function not the entire project. Programmers may

also perceive information as inaccurate because they do not

understand the entire project, even if the author of the summary

actually included relevant insights [74], [75]. If the summaries

have words that are not in the target function but in the project,

such as found in Section VI-C, participants may mark those as

inaccurate.

B. RQ6: Readability

We found that most programmers found both generated and

reference summaries readable. The mean score for callcon

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 18,2024 at 19:45:17 UTC from IEEE Xplore.  Restrictions apply. 



BANSAL et al.: FUNCTION CALL GRAPH CONTEXT ENCODING FOR NEURAL SOURCE CODE SUMMARIZATION 4279

TABLE VII
MANN-WHITNEY U TEST RESULTS COMPARING RATINGS FOR Callcon AND

REFERENCE SUMMARIES

was 3.98, which is a hairline away from “agree”. Surprisingly,

the mean for reference summaries was slightly lower at 3.88,

although the variance between quartiles is smaller for reference

summaries. Mean values can be skewed by the opinion of

couple of programmers that may simply prefer another sentence

structure than the one used by reference summary. Table VII

suggests this difference is not statistically significant. In both

cases, the median score was 4. This median was the lower

end of the distribution for human-written reference summaries.

Given both the mean and median, we posit that both generated

and reference summaries follow a good sentence structure that

programmers find acceptable, with a very small difference in

human evaluation between the two.

C. RQ7: Completeness

We found that most programmers found both generated and

reference summaries to be incomplete – with a mean score above

3 for both, which is closer to “agree” than “disagree”. This rating

is slightly closer to “neutral” for reference summaries and this

difference is statistically significant (See Fig. 8.3). Median rating

for both is 4, i.e., “agree”. Recall that we pose this question

negatively, therefore “agree” means that programmers think

there is missing information that limits their understanding. One

explanation for both generated and reference summaries, in line

with related literature, is that the information in the reference

summaries is out of date [10]. Another explanation is that we

truncate summaries to 13 words as recommended by the original

paper that released the dataset [61]. Additionally, for generated

summaries, one explanation is that they have “<UNK>” tokens

due to the limited vocabulary, while reference summaries do

not have any such limitations. The occurrence of an “<UNK>”

token would make the summary incomplete, especially if that

word is important such as identifier names that usually fall out

of vocabulary for our approach. Overall, we find that program-

mers want more information from source code summaries, and

recommend future work to consider training on, and generating

longer summaries.

D. RQ8: Conciseness

We found no significant difference in the ratings for con-

ciseness in Table VII. In general, programmers tended to view

the summaries from both approaches as concise, with a mean

and median for both sets of summaries around 2 (“disagree”).

Recall that we framed this question in a negative tone, therefore

“disagree” and “strongly disagree” indicate that the summary is

concise and does not contain useless information. This result

is in line with our observation in RQ5-RQ7 that a majority

programmers felt the summary was missing information but

accurate and readable.

IX. CONCLUSION

This paper advances the state-of-the-art with an approach to

source code summarization that includes function call context.

Call context has long been a resource in software engineering

research to improve techniques for a variety of problems, though

current literature does not explain how to exploit it for neural

models source code summarization. Prior to neural models

“taking over” source code summarization research, using call

context was mainstream. We show one way to make use of it in

recent neural models.

We evaluated different configurations of our approach against

several baselines in a quantitative experiment, followed by a

comparison to the reference summaries in a qualitative ex-

periment. In the quantitative experiment, we showed that our

approach improves over the baselines in a large dataset. We also

showed that our approach improves automated summaries over

other models for a niche set.

In the qualitative experiment, we show that participants found

our summaries reasonably accurate, readable, and concise. How-

ever, a majority of them found both generated and reference

summaries incomplete.

Broader impacts of this paper include suggestions for future

work implied by our experimental results. First, we advise that

future work explore different subsets of their dataset where

one approach excels over another. We recommend ensembles

as a way to combine improvements for future work. Second,

we found that metric scores do not correlate with each other

in terms of improvements. We recommend future work to use

multiple metrics, especially metrics such as METEOR in favor

of the standard BLEU metric. Third, the qualitative experiment

suggests studying the accuracy of the underlying reference ex-

amples. While caution is advised against concluding that the

reference summaries are inaccurate (since the ratings are based

on perceptions of reading only the method’s code and summary),

the results do indicate that more study is needed into the reasons

for the lower perception of accuracy and completeness of these

summaries.

X. REPRODUCIBILITY

We strongly endorse and encourage reproducibility and future

research. We provide our complete datasets, scripts for gener-

ating these datasets, our approach implementation, and various

other information via our online appendix:

https://github.com/aakashba/callcon-public
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