4268

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 9, SEPTEMBER 2023

Function Call Graph Context Encoding for Neural
Source Code Summarization

Aakash Bansal

, Graduate Student Member, IEEE, Zachary Eberhart

, Zachary Karas”, Yu Huang ",

and Collin McMillan

Abstract— Source code summarization is the task of writing
natural language descriptions of source code. The primary use
of these descriptions is in documentation for programmers. Au-
tomatic generation of these descriptions is a high value research
target due to the time cost to programmers of writing these de-
scriptions themselves. In recent years, a confluence of software
engineering and artificial intelligence research has made inroads
into automatic source code summarization through applications of
neural models of that source code. However, an Achilles’ heel to
a vast majority of approaches is that they tend to rely solely on
the context provided by the source code being summarized. But
empirical studies in program comprehension are quite clear that
the information needed to describe code much more often resides
in the context in the form of Function Call Graph surrounding
that code. In this paper, we present a technique for encoding this
call graph context for neural models of code summarization. We
implement our approach as a supplement to existing approaches,
and show statistically significant improvement over existing ap-
proaches. In a human study with 20 programmers, we show that
programmers perceive generated summaries to generally be as
accurate, readable, and concise as human-written summaries.

Index Terms—Automatic documentation generation, context-
aware models, neural networks, source code summarization.

I. INTRODUCTION

SUMMARY of source code is a short description of that

code in natural language. Even very brief summaries e.g.,
“creates connection to game server” help programmers compre-
hend source code without having to read the code itself. These
summaries form the backbone of documentation for program-
mers, such as the navigable HTML files generated by JavaDocs
and Doxygen [1]. The task of automatically writing this part

Manuscript received 10 June 2022; revised 1 May 2023; accepted 9 May
2023. Date of publication 24 May 2023; date of current version 19 September
2023. This work was supported by NSF under Grants CCF-2211428 and
CCF-2100035. Recommended for acceptance by M. Nagappan. (Corresponding
author: Aakash Bansal.)

This work involved human subjects or animals in its research. Approval of
all ethical and experimental procedures and protocols was granted by Internal
Review Board at University of Notre Dame under Application No. 22-03-7128.

Aakash Bansal, Zachary Eberhart, Zachary Karas, Yu Huang, and Collin
McMillan are with the Department of Computer Science and Engineering,
University of Notre Dame, Notre Dame, IN 46556 USA, and also with
the Department of Computer Science, University of Vanderbilt, Tennessee,
TN 37235 USA (e-mail: abansall @nd.edu; zacharyeberhart@gmail.com;
z.karas @vanderbilt.edu; yu.huang @vanderbilt.edu; cmc@nd.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TSE.2023.3279774, provided by the authors.

Digital Object Identifier 10.1109/TSE.2023.3279774

of documentation has become known as source code summa-
rization [2], and has been a holy grail of software engineering
research for decades [3], [4].

The workhorse of almost all recent research into code summa-
rization is the attentional encoder-decoder neural architecture.
The inspiration for using models of this architecture derives from
machine translation in NLP, in which sentences in one natural
language (e.g., French) are translated into another (e.g., English).
When provided sufficient training data samples (usually well
into the millions), the encoder portion of the model learns a
representation of one language, and the decoder learns the other.
The representations are combined via an attention network or
other mechanism. Then if the encoder is provided a sentence
in one language, the decoder can be used to help predict an
output sentence in the other language. This is a tidy solution for
machine translation because the information needed to write a
sentence in one language tends to exist in translated sentences
in other languages — the encoder usually has access to all the
information it needs to represent the sentence for the decoder.

At a high level, almost all recent approaches to code summa-
rization are essentially encoder-decoder neural models in which
the input to the encoder is the source code and the output from the
decoder is the natural language description. The encoder must
learn arepresentation of the code suitable for the decoder to write
a description. The typical direction for research is to create ever
more complex models of the input source code via the encoder,
with the aim to learn better representations for predicting a code
summary via the decoder.

But applications of the metaphor of machine translation
only extend so far for code summarization. Empirical studies
in program comprehension are quite clear that not all of the
information necessary to understand a section of source code
exists within that source code itself [5], [6], [7], [8], [9], [10].
The implication for code summarization research is that there
is a ceiling at which even a “perfect” encoder model could not
lead to an accurate summary, because the information needed to
write that summary is not in the piece of code being summarized.

One potential answer to this problem is also evident in pro-
gram comprehension literature: the Function Call Graph. The
nodes in this graph are the subroutines in a program. The edges
are call relationships among the subroutines (usually directed
from one function to another). Existing empirical studies have
shown that most of the information that human programmers
need to understand a function appears within two “hops” in this
graph —e.g., a function’s caller and the caller’s callers [11]. This

0098-5589 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 18,2024 at 19:45:17 UTC from |IEEE Xplore. Restrictions apply.

BANSAL et al.: FUNCTION CALL GRAPH CONTEXT ENCODING FOR NEURAL SOURCE CODE SUMMARIZATION

TABLE I
BLEU FOR REPRODUCTION OF THE PROJECT CONTEXT PAPER [12] WITH
DIFFERENT RANDOM SEED VALUES FOR SELECTION OF METHODS TO INCLUDE
IN THE CONTEXT

Projcon BLEU

Models A 1 2 3 4
attendgru | 15.87 36.22 18.89 11.55 8.03
projconvl | 1719 37.34 2020 1271 9.10
projconv2 | 16.36 36.15 19.29 12.07 8.52
projconv3 | 17.77 37.88 20.71 13.24 9.59

information forms the context that a human needs to understand
the code. A hope for neural approaches to code summarization
is to provide the encoder with this same information, so that it
can learn to understand software more like a human would.

Recently, Bansal et al. [12] achieved significant improvements
using methods from other files in the project. These methods
were randomly selected and modeled as “project context”. This
paper is an extension of that project context paper published at
ICPC 2021, except that now we eliminate the random factor. In
addition, we clearly define the relationship between the query
method and every method in the context. We observe that
randomly selected files and methods in project context could
improve or hinder results based on the selection. Therefore, we
chose a call graph to define a fixed set of methods. See Table I
and Section II-A.

In this paper, we present an approach for encoding the func-
tion call graph context for neural approaches to source code
summarization. Our approach is an augmentation to, rather than
acompetitor to, existing techniques. Essentially the approach we
take is to 1) extract all functions within two hops of the given
subroutine in the call graph, 2) create vectorized representations
of these functions using a recurrent neural network, 3) use a
graph neural network to propagate information among these
representations, and 4) use an attention mechanism to highlight
the most important functions in the call graph context. The result
is a context vector of the call graph that can be appended to the
code vector created by existing code summarization approaches.

We implement our approach and augment a baseline neural
model for code summarization. We perform an experiment on
the dataset drawn from large software repositories. We show
marked improvement over the baselines in almost all cases. More
importantly, we observe that this improvement is orthogonal
to the improvements made by more complex representations
of the subroutines being summarized themselves. While better
representations of the code being summarized are helpful, our
approach is helpful in a different way. We release a complete
package necessary for replication in our online appendix (see
Section X).

II. BACKGROUND & RELATED WORK

This section discusses key background technologies and re-
lated work, such as source code summarization and neural
encoder-decoder model designs.

A. Source Code Summarization

The term “source code summarization” was coined around
2009 by Haiduc et al. [37] for the task of generating short

4269

McBurney (2016) [13] X
Zhang et al. (2016) [14] X X
Iyer et al. (2016) [15] X

Rodeghero et al. (2017) [16] x X
Fowkes et al. (2017) [17] X
Badihi ef al. (2017) [18] X
Loyola et al. (2017) [19]

Lu et al. (2017) [20]

Jiang et al. (2017) [21]

Hu et al. (2018) [22]

Hu et al. (2018) [23]

Allamanis et al. (2018) [24]
Wan et al. (2018) [25]

Liang et al. (2018) [26]

Alon et al. (2019) [27], [28]

Gao et al. (2019) [29]

LeClair et al. (2019) [30]

Nie et al. (2019) [31]

Haldar et al. (2020) [32]
Ahmad et al. (2020) [33]

Haque et al. (2020) [34]

Zigner et al. (2021) [35]

Liu et al. (2021) [36]

Bansal et al. (2021) [12]

(This Paper)

X

XXX XX XXX XXX XX XXX XXX

Fig. 1. Snapshot of the past five years in source code summarization. Column
I stands for IR-based techniques. /N means neural network-based. G means the
code is modeled as a graph. 7" means Transformer designs. C' means learning
chiefly from code context.

descriptions of source code. The word “summarization” re-
ferred to the underlying technologies borrowed from the Natural
Language Processing research community used to summarize
natural language documents. At the time, these were dominated
by keyword extraction techniques, such as ranking the top-n
words in a document using tf/idf or a similar metric. A widely-
accepted practice was to use the context around source code
to help this process [38], where context was defined as a set of
functions in the Function Call Graph surrounding the code being
described [39].

This line of research was largely put on ice around 2017,
with the introduction of neural models of source code and
encoder-decoder architectures (e.g., seq2seq, graph2seq) [3].
Fig. 1 depicts this history. Column I in the figure groups tech-
niques based on IR, manual feature design, and other heuristics.
Column N refers to papers in which the underlying model is
based on a neural architecture. Column G means the code is
represented via graph or graph-like features such as the AST.
Column 7" means the model is Transformer-based. Column C
means the intellectual merit of the paper is in using the code
context.

Fig. 1 shows an important pattern, that while neural models
have succeeded IR and template-based solutions, the use of
context is ripe for a resurgence of research interest. Between
2017 and 2019, many papers achieved big gains from the big
data input. Their efforts were focused on how to pre-process
the data for use in existing neural models (an exemplar in this
category is the SBT by Hu et al. [23] technique for linearizing an
AST, which has been validated by third parties [30]). Since then,

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 18,2024 at 19:45:17 UTC from |IEEE Xplore. Restrictions apply.

4270

two complementary strategies have emerged to best improve
performance of code summarization: 1) better models of the
code itself, such as by Ziigner et al. [35] and Liu et al. [36], and
2) models that include context information, such as by Haque et
al. [34].

More recently, retrieval-based techniques have also been em-
ployed to use contextual information. In 2020, Wei et al. [40]
introduce Re2Com, a technique to find similar functions in a
database and use corresponding summaries as a secondary input
to neural network. In 2021, Li et al. [41] introduced a technique
to retrieve summaries of similar functions and used them as a
template. They proposed a module to edit these summaries with
new information from the target function. These approaches
are important, given the wide re-use of source code in online
repository. However, our dataset and use-case is different, in
that we remove duplicate methods and doc-strings from our
training set to prevent data leaks. Our approach does not rely on
the availability of documented code and summary inputs to the
model during prediction. We believe retrieval-based techniques
have different application conditions from ours, and thus, do not
serve as baselines.

B. Project Context

In 2021, we [12] proposed an approach that improves source
code summarization using contextual information from other
files in the project. However, there was a random element in the
selection of the contextual information. We selected n methods
at random from other files in the project to model “project
context”. We view that work as a proof of concept that shows
the potential for improvement using out-of-file context. After
that project, we observed that this random factor leads to high
variance in terms of metric score improvements. Table I shows
how different random selections can impact the gains made using
“project context”. The v2 selection achieved much lower BLEU
scores compared to random selections. Whereas, the v3 selection
achieved a higher BLEU score than the selection published in
that work (v1). To eliminate this random element, we posit the
function call graph offers a logical solution. As part of the
call graph, selected methods from the project have a clearly
defined relationship with the method being summarized. There
is a flow of data through function parameters and return values
between nodes in the call graph. We design our approach to learn
this relationship between methods in the context and the target
function to be summarized. Note, this paper uses a different
dataset than the one used in Table I, explained in Section IV.

C. Encoder-Decoder Neural Models

The workhorse of almost all neural source code summariza-
tion approaches is the encoder-decoder model architecture. This
architecture consists of two learned representations of paired
inputs of data. The idea was initially proposed for use in ma-
chine translation, where an “encoder” would generate a vector
representation of a sentence in e.g., French, while a “decoder”
would generate a representation of the same sentence in e.g.,
English [42]. A key improvement to the original model design is
the addition of “attention” around 2014 by Bahdanau et al. [43].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 9, SEPTEMBER 2023

The purpose of attention is to connect features in the encoder
representation to features in the decoder representation. Usually
in machine translation, this means connecting a word in one
language to another e.g., “ami” in French to “friend” in English.

The basic structure of the encoder-decoder model has found
uses in many language generation tasks, such as image cap-
tioning [44], question answering [45], and code summarization
(see above). While uses of the encoder-decoder architecture are
far too common to be covered in one paper, notable surveys
include: [3], [46], [47], [48]. This paper is in the same vein as
this related work, except that we focus on encoding function call
graph context rather than details about the source code being
summarized itself. In this way, this paper may be viewed as
bordering image captioning in addition to machine translation,
as we seek to locate features in a context with a much broader
scope than the text that is to be generated. In translation, the
encoder sentence is usually expected to contain the features
necessary to translate it. In image captioning, often artifacts such
as surrounding text in a webpage are considered.

D. Function Call Graph Context

The Function Call Graph is a key abstraction of code context
used in software engineering literature for decades. The graph
itself consists of nodes, which are the functions (or methods,
subroutines) in a program, and edges, which are the call rela-
tionships among the functions. It has long been observed that the
behaviors of a program, from a human perspective, tend to be
defined by these relationships [39], [49], [50]. To take a classic
example, the behavior of booking a single passenger on a single
flightin airline software is unlikely to be implemented by just one
function — there is a constellation of functions in the call graph
that would implement this feature [51]. Abstracting a program
as functions and function calls is one of the key components of
human programmers’ mental models of program behavior [52],
[53], and a mainstay of software engineering research.

In this paper, we define the call context of a subroutine as
the nodes that fall within two edges from the subroutine in
the program call graph. This scope includes the callers of a
subroutine and that caller’s callers. Plus, it includes the functions
that a subroutine calls, plus the functions those functions call.
Our definition of call context is in line with related work, which
has repeatedly shown that human programmers almost always
find the information they need within two edges in the function
call graph [51], [54], [55], [56], [57]. This scope, while “only”
encompassing two hops in the call graph, turns out to cover an
average of 8% of a typical program in our subset. For example,
in our dataset of 190k Java methods, projects have a median of
170 methods, and the mean call context of a method includes
about 14 methods.

1II. APPROACH

This section describes our approach. Essentially we extract the
call context, and then use a neural model to learn a representation
of this context to predict summaries.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 18,2024 at 19:45:17 UTC from |IEEE Xplore. Restrictions apply.

BANSAL et al.: FUNCTION CALL GRAPH CONTEXT ENCODING FOR NEURAL SOURCE CODE SUMMARIZATION

resizeFor

mouseRel >

T Dragged >
d finishResizing

mouseReleased

[getAdjustedAssocatedElement

propagatePosition

finishResizing

Fig. 2.
function call graph (see Section II-D).

A. Modeling Call Context

The first step in our approach is to model the call context.
We define call context in Section II-D based on related work.
However, in practice, hardware and software limitations mean
not all information from all functions in this context can be
included. We extract the call context with a limiting hyperpa-
rameter b (breadth) to indicate the maximum number of calls
per function. If a function has more than b calls, we include only
the first b calls that function makes. The value of b is a delicate
balance between maximizing the number of functions in the
context, while preventing a single function from “taking over”
the context by making too many calls. The maximum value of
b we are able to test is 5, limited by the largest graph we can fit
on the GPU memory available to us.

Consider the example call context in Fig. 2. The function
setRadius () is the target, and is part of its own call context.
To build the rest of the call context, we take the first b functions
that setRadius () calls. Then, we take the first b calls that
those functions make. These functions are the “right side” of
the call context in Fig. 2. Then to make the “left side”, we add
a maximum of b functions in which setRadius () is within
the first b calls. Then we add the b functions that call each of
those functions. The maximum number of functions in the call
context is then 2 x (b + b) + 1.

We chose b=5, implying a maximum of 61 functions in the call
context. As we will note in Dataset Preparation (Section I'V), the
mean number of calls per function in the dataset is 2.7, and only
around 25% made more than five calls. Only four functions in
the dataset had the maximum of 61 functions in the call context.

B. Neural Model

The heart of our prediction model is a graph neural network
(GNN) that creates a vectorized representation of the functions
in the call context. We use a recurrent neural network (RNN) to
create a vector representation for the initial state of each function
in the call context. Then we use a GNN to propagate information
among these functions based on their function calls. We combine
this call context information with information from a standard
encoder-decoder model to predict a summary for the function.

An overview of the neural model underpinning our approach
isin Fig. 3. In general, our model is based on an encoder-decoder
architecture like most approaches to neural code summarization.

4271

invalidateBounds

getHeight

getBounds

getModelElement
getLocation
getlLocation

A depiction of the call context for an example function named setRadius (). We define call context as the functions within two hops in the program

Code/Text @ Summaries

{ Embedding | | Embedding |

RNN RNN |

Attention

@

Functions in
Call Context

Z &
=

I HORNIN IO
GNN |3 Attention [—»f DeIse |

R

<4— RNN
<4+— RNN

@I

Adjacency Matrix

Output Prediction

Fig.3. The architecture of our approach. White areas indicate novel additions
for this paper. Gray areas indicate components of the model loaded from a
baseline, prior approach. Solid arrows indicate information flow over which
back propagation is allowed. Dashed arrows indicate information flow without
back propagation.

What is novel is that we add components to the encoder to help
the model learn from call graph context (see our definition of
call context in Section II-D). The gray components in Fig. 3
(area 1) indicate a standard encoder-decoder model in which the
encoder’s input is the source code of the function and the decoder
learns to represent the summaries. This encoder-decoder model
is the foundation of almost all neural source code summarization
techniques (see Section II-A), and we continue to use it in our
approach.

The white components in Fig. 3 indicate novel contributions
of this paper. The purpose of these components is to create a
vectorized representation of the call context of a function. We
combine this representation with the standard encoder-decoder
model. This works as follows:

In area 1, we obtain the source code for a target function to
summarize. That code is the input to the standard “gray” encoder.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 18,2024 at 19:45:17 UTC from |IEEE Xplore. Restrictions apply.

4272

We represent this part as:

C" = G2(E»(C)) (1)
T = G1(FE(T)) 2)
T" = Softmaz Activation Z CiT] 3)
i=1
T.= Y T/T])
i=1
Ta - Tc 5> Cl (5)

Here, G and G5 denote pertained RNNs for the function (T) and
comment (C) tokens respectively. F/; and F> denote the word
embeddings for the function and comment tokens respectively.
The @& symbol denotes a concatenation operation, i and j are
iterative variable.

In area 2 we encode the source code for every function in
the call context of the target function. We use an RNN to create
a representation of the source code for each function in this
context. We use the same word embedding and vocabulary as
the standard encoder, and the initial state of each RNN is the
final state of the RNN from the standard encoder. This operation
is represented as:

N = GRU(E1(G,)) (6)

Technically, the call context becomes an mxn matrix where
m is the number of functions in the context and n is the vector
size of the RNN’s representing each function.

In area 3 we obtain the edges among each function in the
call context and store these edges as an adjacency matrix. When
we create the adjacency matrix, we treat the call context edges
as undirected. Otherwise, a GNN would propagate information
from the caller functions to the target, but not from the callee
functions. E.g., functions on the left side of the target function
in Fig. 2 would propagate information to the target, but not
functions on the right. In our approach, information from any
functions can propagate to any other functions within the call
context.

We use a convolutional GNN to propagate information among
the functions in the call graph, based on the adjacency matrix.
The GNN we use is of our own implementation. It is a faithful
re-implementation of the GNN used by graph2seq [58] and also
used successfully for modeling abstract syntax trees [59]. We
represent a single “hop” of GNN propagation as:

Nyew = ReLu i (Zm: Eijigc> Wik (7
jk

k=1 \z=1
N = Nneu) (8)

Here, N is the state of the context at the beginning and end
of a “hop”. E and W denote the edge adjacency matrix and a
randomly initialized weight matrix respectively. The output of
the GNN is a matrix with the same mxn shape as the call context.
The content of this matrix is similar as well, except that the GNN
propagates information among the nodes, so that nodes near each

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 9, SEPTEMBER 2023

TABLE II
HYPERPARAMETERS OF OUR NEURAL NETWORK

Parameter | Value | Description

Vg 10000 | decoder vocab size

Ve 75000 | encoder vocab size

b 5 maximum calls per function

m 61 maximum functions in call context
n 100 embedding vector size

cm 13 number of tokens in the summary
RNN GRU | type of RNN

GNN conv | type of GNN

h 1 hops in GNN

other in the graph become more similar to each other. In our view,
this propagation is likely to create a good representation of code
context because the edges represent actual information flow in
the program.

In area 4 we compute attention between the decoder and
the post-GNN call context. The decoder represents words in
the summary, while the entries in the call context represent
functions in that context. Some words in the summary may have
more relevance to some functions than others. For example,
the word “record” in a summary may have high relevance to
functions related to audio/video files. To capture this relevance,
we compute attention between the words in the decoder and the
functions in the call context. We represent this part as:

m
C" = SoftmazActivation ZC£N1> 9)
i—0

Ce

ZC: mC! N; (10)
=0

Here c¢m is the number of words in the summary, which is 13
for our experiment. Our attention mechanism is identical to the
one described by Luong et al. [60] and used extensively in code
summarization research [23], [30]. The difference is that we
compute attention to functions in call context rather than only
to words in the target function itself.

In area 5, the final step is to combine the prediction from
the standard encoder-decoder model (the “gray” part) with the
output prediction from the call context.

O = DenseReLu(C.) (11)
0=06aT, (12)
Cn = DenseSoftmaxz(O) (13)

Here, a dense layer is calculated after attention in both the
standard encoder-decoder model and the call context. We con-
catenate the output from these dense layers into a single vector,
and then send that vector to another dense layer which serves as
the output layer.

C. Hyperparameters

Table II lists hyperparameters of our neural network. Due to
the high expense of computation time in training large neural

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 18,2024 at 19:45:17 UTC from |IEEE Xplore. Restrictions apply.

BANSAL et al.: FUNCTION CALL GRAPH CONTEXT ENCODING FOR NEURAL SOURCE CODE SUMMARIZATION

models, a grid search for optimal hyperparameters is not cur-
rently feasible. However, satisfactory values for many parame-
ters are available in related literature: 1) we use the vocabulary
sizes (vq and v.) from recommendations by LeClair et al. [61],
2) we use a GRU with a vector size of 100 as recommended for
modeling functions by Haque et al. [34], and 3) as mentioned
above, we use a convolutional graph neural network to propagate
information among the functions in the call graph inspired by
related work. We discussed the values of b and m above in
Section III-A among other parameters, and we decidedon & = 1,
empirically through RQ4 in Section VI-D.

D. Input/Output Details

There are two key components of the input/output details:
1) preprocessing, and 2) training procedure. For preprocessing,
note that the source code of a function and the summary of
that function are both inputs to the model during training. We
used the preprocessed summaries using techniques by LeClair et
al. [61]. We truncated to 13 words, dropped to lower case, and
removed punctuation. For source code, the paper preprocessed
by removing non-word characters, splitting by camel case and
underscore, and dropping to lower case. We used the same pre-
processing, except that we did not remove non-word characters,
and we replaced newlines with a NL special token. We found
in pilot studies that these newlines and other tokens (brackets,
periods, etc.) led to better predictions.

Our training procedure is teacher forcing [62]. Essentially
what teacher forcing does is train the model to predict summaries
one word at a time, while providing the answer at each step
during training. A comprehensive discussion of teacher forcing
is beyond the scope of this paper, as it is the most common means
by which neural code summarization algorithms are trained [23],
[27], [30], [34].

E. Hardware/Software Details

Our implementation and experimental hardware includes a
Xeon E5-1650v4 CPU, two Quadro P5000 GPUs with 16GB of
Video memory each, and 128GB of system memory.

Our software versions for reproduction include CUDA 11.2,
Tensorflow 2.9, Python 3.10, Pandas 1.4, NLTK 3.6, Debian
Experimental Release (March 2021 Snapshot).

IV. DATASET PREPARATION

We curated our dataset from a larger one that was used in the
project context paper we extend [12] and used to generate Table I.
To build our dataset, we extracted call graphs to create the
call context and adjacency matrices required for our approach.
However, we observed that a large percent of the functions in
the dataset used for the project context paper are quite small
and tend to involve rewriting the words available in a subrou-
tine’s signature. For example, a method playMidiFile ()
may have a summary like “plays a midi file.” This observation
is further corroborated by related work that uses the same
dataset [63]. While these short methods are interesting targets for
code summarization and automatic documentation generation in

4273

general, we view call context as a way to help write summaries
for longer sections of code that may make several function calls.
A function that is very short and makes no function calls will
have a limited call context and is less likely to benefit from
call context. Therefore, we prepared a subset of the published
dataset.

Our dataset originates from the one published by LeClair et
al. [61]. We selected this dataset because it follows accepted
practice in the field, such as splitting training/validation/test sets
by project. Then, we selected the largest 10% of Java methods
from the dataset, where we define “largest” by the number of
tokens in each method. Our reasons for using this threshold
are two fold. First, this threshold led to approximately 200k
subroutines in the dataset, which is near the upper limit of our
resources for extracting call graphs. We used srcml [64] to
extract the call graph for every project in the dataset, and then
subdivided these graphs into call context function and adjacency
matrices. Due to high I/O requirements, parallelization of this
process has limited benefits, and even 200k functions took
approximately two weeks of compute time. The second reason
we used this threshold is because it favors the larger subroutines,
versus, for example, a random selection.

Due to filtering, the number of samples in the dataset de-
creases while the size of those samples increases. The average
number of tokens increases from 27 in original set to 122 in
our dataset. The number of methods in the call graph has a
median of 12 and mean of 14.2. Roughly 32% of methods were
called by more than 5 methods, as well as 24% called more than
5 methods. Due to resource constraints explained in III-A the
graph is limited to a breadth of 5. In general, a vast majority of
the methods chosen via the size threshold both call (93%) and
are called (also 93%) by at least one other method.

V. QUANTITATIVE EXPERIMENT

This section describes our quantitative experiment involving
computed metrics over our dataset. This experiment is distinct
from our qualitative experiment in Section VII.

A. Research Questions

The research objective of this experiment is to measure the
effect of call context on the prediction quality of neural code
summarization, in areproducible manner and over large datasets.
We ask the following Research Questions (RQs):

RQ; What s the difference between our approach and recent

baselines, as measured by automated metrics?

RQ- Are the gains orthogonal, as measured by ensembles of

models to generate summaries?

RQ3 How does our model compare to the baselines when the

summary includes words from the call graph?

RQ4 What is the effect of breadth b and hops h on perfor-

mance, as measured by automated metrics ?

The rationale behind RQ); is two fold. First, automated metrics
are inexpensive, so performance over several thousand subrou-
tines may be computed. This evaluation of a large set reduces the
risk of inadvertently “cherry picking” a set for which one model
works better than another (as may happen in a human evaluation

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 18,2024 at 19:45:17 UTC from |IEEE Xplore. Restrictions apply.

4274

with only a few dozen randomly selected samples). Second, it
makes studies reproducible — the datasets are available via our
online appendix, and automated metrics are well-defined in the
literature. So far, a vast majority of approaches use this type of
evaluation.

The rationale behind RQs is that automated metrics are mea-
sured as an average over the whole test set, but some models may
excel over a subset more than the other. Recent work by Bansal et
al. [12] and LeClair et al. [65] uses these to capture orthogonal
gains and generate better summaries using ensembles.

The purpose of RQs is to explore “how” the call graph helps
generate better summaries. One possibility is that there are
unique words in the methods that are part of the call graph that
do not exist in the target method. The reference summaries,
written by human programmers, could contain identifiers and
other words from the caller and callee methods. We ask this
RQ to measure performance of our approach over these niche
subsets.

The rationale behind RQy is to find out how our design choices
affect the model performance. First, our graph layer is inspired
by LeClair et al. [59]. They found that the value of h produces
diminishing returns in terms of performance for AST graphs, but
we do not know if this is true for call graphs. Second, we chose
b = 5 because that is the maximum number we could fit on our
GPU. While we cannot test out higher values of b, it may be that
a smaller graph performs better. We ask this RQ to quantify the
level to which these design choices affect performance of our
approach.

B. Methodology

Our methodology is based on the accepted practice followed
by most papers on neural source code summarization techniques.
First, as detailed in Section IV, we prepare our dataset. The
training, validation, test split is approximately 80%, 10%, 10%,
though because these datasets were split using a “by project”
procedure to reduce biases (and because we filter for larger
functions), the split percentages are only approximate. The
second step is to train each baseline (plus our approach) using
the training set.

We trained for a maximum of 20 epochs, and then chose
the model at the epoch that achieved the highest validation set
accuracy. Then we used that model to predict summaries for
subroutines in the test set. Finally, we computed METEOR [66],
USE [67], ROUGE [68], and BLEU [69] scores for predictions
against the reference summaries for those subroutines. Recently,
Roy et al. [70] evaluated several metrics for source code sum-
marization and recommended METEOR as an alternative to
BLEU. Haque et al. [67] found that sentence encoder based
metrics correlate better to human similarity ratings compared
to n-gram based metrics such as METEOR and BLEU. They
recommended a Universal Sentence Encoder [71] based metric
we report as USE. We report BLEU-A and ROUGE-LCS scores
to be consistent with literature and our previous work with
project context that this paper extends. We use the python NLTK
version 3.6 implementation of these metrics.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 9, SEPTEMBER 2023

C. Baselines

Our experiment includes five baselines. We created faithful
reimplementations of each baseline in our own experimental
framework in order to reduce experimental variables. While
many papers do release reproducibility packages, there are slight
differences such as preprocessing/input changes, different vector
sizes or RNN types (e.g., LSTM versus GRU), pretrained word
embeddings, etc. Therefore, output of the models could vary
due to implementation differences, while we aim to measure the
effect of call context only.

code2seq This approach represents a family of approaches
that use paths in the AST to represent code, as introduced by
Alon et al. [27]. This model is consistently a strong performer
in experiments in various papers [34].

ast-attendgru-£c This approach is the “file context”
baseline introduced by Haque et al. [34]. It works by modeling
each subroutine in the same file with an RNN, then computing
attention between the output summary words and the RNN
output vectors for each of those subroutines. It is similar to this
approach in that other subroutines are modeled for prediction,
but it is different in that it does not consider any relationships
between subroutines.

codegnngru This approach represents a family of papers
that model source code as an abstract syntax tree (AST). This
approach is the best configuration reported by LeClair et al. [59],
which uses a GNN to encode the AST only, not any external
context. GNNs are a growing area of investigation for modeling
source code [24], [35], [72].

transformer This approach is essentially a vanilla
transformer-based seq2seq model, as described by Ahmad et
al. [33]. Transformer-based models have found strong accep-
tance in the NLP research community and are beginning to be
tested for code summarization.

HANcode This approach is the newest baseline that uses
a Hierarchical Attention Network designed for source code
summarization. This approach is a non-ensembled version of
the best performing approach proposed by Zhou et al. [73], who
recommend an ensemble with an AST based approach for best
performance.

D. Threats to Validity

This experiment carries threats to validity similar to most
studies of neural code summarization. The key threats are the
datasets and the automated metrics. Different conclusions may
arise with different random splits, since these splits affect what is
in the training set. We attempted to mitigate this threat by using
a project based split filtered by length. The other key threat are
the metrics BLEU and ROUGE. These metrics compute word
overlap, which is only one way of measuring similarity. We
attempt to mitigate this threat by also conducting a qualitative
experiment with human experts.

VI. QUANTITATIVE STUDY RESULTS

This section includes our answers to RQ1, RQ2, and RQ3
based on the data collected in the quantitative experiment.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 18,2024 at 19:45:17 UTC from |IEEE Xplore. Restrictions apply.

TABLE III

BANSAL et al.: FUNCTION CALL GRAPH CONTEXT ENCODING FOR NEURAL SOURCE CODE SUMMARIZATION

AUTOMATED METRIC SCORES FOR BASELINES, OUR APPROACH, AND ENSEMBLES

Models METEOR USE ROUGE-LCS BLEU-A
Score T-test P-val | Score T-test P-val | P R F1 Score
code2seq 3044 1839 0.01 46.68 2831 0.01 5042 4291 4475 | 16.52
ast-attendgru-fc 29.51 23.01 0.01 45,69 3274 0.01 4954 4157 43.70 | 15.55
codegnngru 3227 890 0.01 4942 1467 0.01 51.15 4449 46.07 | 17.94
transformer 3324 3.46 0.01 51.87 0.49 0.31 51.81 4558 46.97 | 18.53
HANCcode 2719 3454 0.01 4121 5190 0.01 43.80 38.80 39.85 | 14.71
callcon 33.80 - - 51.95 - - 5141 46.12 47.16 | 19.54
Ensembles METEOR USE ROUGE-LCS BLEU-A
Score T-test P-val | Score T-test P-val | P R F1 Score
code2seq-+callcon 3431 2522 0.01 5253 35.67 0.01 53.66 46.75 4846 | 19.83
ast-attendgru-fc+callcon 34.33 3045 0.01 5253 40.73 0.01 53.47 4658 48.30 | 19.77
codegnngru+callcon 3477 1788 0.01 53.04 2482 0.01 53.91 47.00 48.68 | 20.15
transformer+callcon 35.09 1431 0.01 53.84 15.70 0.01 53.83 4743 48.92 | 20.22
HANCcode+callcon 33.79 4022 0.01 51.25 5399 0.01 5196 4598 4732 | 19.42

4275

Top subtable reports scores for standalone models where the T-tests for METEOR and USE compare our approach with each baseline. Bottom
subtable reports scores for ensembles of our approach and baselines where the t-tests compare ensemble with the baseline.

A. RQ;: Performance using Automated Metrics

We found that compared to our baselines, callcon achieved
the highest performance as measured by automated metrics.
In Table III the top sub-table shows the METEOR, USE,
ROUGE-LCS, and BLEU scores over our test set for each
of the model configurations. For METEOR and USE scores
we also performed a paired T-test for statistical significance
where P-value of less than 0.05 indicates rejection of the null
hypothesis and hence strongly suggests statistical significance.
This test was conducted compared to our approach — therefore,
the values are blank for our approach. We found that callcon
achieved highest scores in all but one sub-metric, P score for
ROUGE-LCS.

Specifically, callcon achieves a 33.80 METEOR score
which we found to be a statistically significant improvement
over all baselines using the T-test. Our approach achieves a 51.59
USE similarity score which is higher than all other baselines,
with a caveat that the statistical significance cannot be confirmed
over the transformer baseline. callcon achieves a 19.54
BLUE-A score outperforming the transformer baseline by
5.5%. Although it achieved a slightly lower ROUGE-L Precision
score, it achieves better Recall and more importantly, better F1
scores. Therefore, we posit that call graph can be used as external
context to improve performance of source code summarization
models.

B. RQs: Ensembles

We perform comparison using ensembles and find that our
approach improves all other approaches significantly and or-
thogonally. We present data related to our findings in Table III
and Fig. 4. Table III shows the METEOR, USE, ROUGE-
LCS and BLEU-A scores for ensembles in the bottom sub-
table. Compared to the top subtable, we observe that ensemble
with callcon significantly improves metric scores for every
baseline. For METEOR and USE, the paired T-test compares
the ensemble over the baseline model. We observe high t-test
values with P-values below 0.01 for every ensemble when
compared to the respective baseline. We observe that overall
transformer+callcon is the best performing ensemble

with 35.09 METEOR, 53.84 USE, 48.92 ROUGE-LCS Fl,
and 20.22 BLEU scores. These represent a 4-7% grain over
transformer baseline. Therefore, call context can achieve
significant orthogonal improvements when ensembled with any
of the baselines.

There is a chance that the simple process of creating ensem-
bles can improve performance. Therefore we compare every
possible combination of ensembles and find our approach con-
sistently achieves the highest metric scores. In Fig. 4 we observe
that every baseline when ensembled with callcon achieves the
highest METEOR, ROUGE, USE, and BLEU scores. The black
line in the graph plots scores for baseline + callcon. We can
see that this line is distinctly above other configurations in terms
of (a) METEOR, (¢c) ROUGE, and (d) BLEU scores. For (b) USE
score, we observe that scores for ensembles with callcon and
transformer as the second model overlap for three out of 5
baselines. However, we can see for the t rans former baseline,
our approach is the best performing ensemble compared to any
other approach. We posit that transformer may be a close
competitor to our approach independently. They each perform
best for different subsets of the test set. Therefore, we reassert
that the increase in metrics achieved by call context is orthogonal
to other baselines. We posit that future approaches may benefit
from ensembles with call context.

C. RQs: Word Overlap

In Table IV we report the METEOR and USE scores for
different values of word overlap. We observe that for all levels
of overlap, our approach outperforms all of the baselines. More
interestingly, for wo >= 2, we find that callcon achieves
20.7%, and 10.3% higher METEOR and USE scores respec-
tively over the transformer baseline. For that small subset
(<1% of the test set) we find that when there are two or more
words in the summary that exist in the call graph, but not in the
target function, our approach is able to use those words correctly
to improve the summary. We also observe that some of these
words might also be present in the “file context”, which is why
ast-attendgru-£fc seems to improve on this subset as well.
Overall, we did not find any level of word overlap where our

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 18,2024 at 19:45:17 UTC from |IEEE Xplore. Restrictions apply.

4276

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 9, SEPTEMBER 2023

» code2seq e ast-attendgru-fc « codegnngru e transformer ¢ HANcode e callcon

36

34

32

METEOR Score

30

28

P

code2seq ast-attendgru-fc codegnngru

(a)
50

transformer HANcode

: —

ROUGE Score
Y S
= >

I
S}

40

code2seq ast-attendgru-fc codegnngru

(c)

transformer HANcode

55

50

USE Score

40

pal

20

@

BLEU Score
3

code2seq

ast-attendgru-fc codegnngru

s

(b)

transformer

HANcode

_J\
S

code2seq

ast-attendgru-fc codegnngru

(d)

transformer

HANcode

Fig. 4. Graphs comparing metric scores for every baseline ensembled with every other baseline as measured by (a) METEOR scores, (b) USE scores, (c)
ROUGE-LCS F1 scores, and (d) BLEU scores. The z-axis names the five baselines and the y axis plots the scores ensembles. We use the baseline scores for model
ensembled with itself to maintain the structure of the graph.

TABLE IV
SCORES FOR OUR APPROACH AND BASELINES WHEN EVALUATED FOR DIFFERENT SUBSETS OF THE TEST SET

METEOR USE
model wo=0 wo>=1 wo>=2 wo>=3 | wo=0 wo>=1 wo>=2 wo>=3
code2seq 30.68 22.62 14.5 11.68 46.87 40.46 31.94 32.00
ast-attendgru-fc | 29.75 21.58 17.10 09.21 4588 39.29 34.28 28.97
codegnngru 3256 22.67 16.62 14.75 4964 4251 33.52 35.08
transformer 3350 24.65 15.83 14.27 52.07 45.38 32.95 33.43
HANCcode 2743 19.38 15.22 12.48 414 35.22 29.22 31.47
callcon 34.07 2491 19.12 15.5 5214 45.72 36.35 37.42

Here wo indicates the number of words in summary that exist in the source code of call graph nodes but not in the

the target function.

approach performs worse than a baseline, even when there is no
word overlap. This may indicate that our approach doesn’t just
rely on new words from the call graph functions. We posit this
is just one of the ways our approach helps improve summaries.

D. RQy: Configurations

In Table V we report metric scores for callcon, with values
of h ranging from 1 to 5. Recall from Section III-C that h is
the number of hops in the call context GNN (Fig. 3, area 3). A
value of i = 1 achieved the highest METEOR, USE, and BLEU
score. ROUGE-LCS FI scores increase consistently with the

TABLE V
PERFORMANCE SUMMARY FOR DIFFERENT HOPS h OF THE GNN
METEOR | USE ROUGE BLEU
h Score Score P R F1 Score
1 33.80 51.95 | 51.41 46.12 47.16 19.54
2 33.68 51.65 | 51.97 4589 47.21 19.41
3 33.74 51.75 | 51.92 4598 47.25 | 19.38
4 33.75 51.76 | 51.92 4599 47.26 19.46
5 33.68 51.76 | 52.54 45.73 47.33 | 19.29

increase of hop size. We observe increase is due to the increase
in precision which comes at the cost of decrease in recall scores,

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 18,2024 at 19:45:17 UTC from IEEE Xplore. Restrictions apply.

BANSAL et al.: FUNCTION CALL GRAPH CONTEXT ENCODING FOR NEURAL SOURCE CODE SUMMARIZATION

TABLE VI
PERFORMANCE SUMMARY FOR BREADTH VALUES b FOR THE CALL GRAPH

METEOR USE ROUGE BLEU
b Score Score P R F1 Score
1 32.90 50.69 | 50.75 4522 46.76 18.70
2 32.94 50.78 | 50.80 45.25 46.79 | 18.73
3 33.23 5143 | 51.09 45.35 46.92 | 19.01
4 33.79 51.89 | 51.63 45.77 47.09 | 1947
1 33.80 51.95 | 5141 46.12 47.16 19.54

while F1 score strikes a balance between precision and recall.
Moreover, for all values of h, callcon achieves scores higher
overall scores than the transformer baseline. This my indi-
cate that while h has a slight effect on performance, models with
call context achieve better performance than models without
call context. The reason that there is low variance in scores for
different hops may partially be explained by Section VI-C, as
the improvements over the overlap subset may not be affected
by hops, the model is able to see those words for any value of h.

In Table VI we report how metric scores change based on
the breadth b during the creation of the call graph. As one would
expect, we observe a consistent increase in METEOR, USE, and
BLEU scores as we increase the size of the call graph. Recall
that we chose b = 5 because that is the maximum size of graph
we could fit on our GPU. An interesting observation is that even
for b = 1, we see that our approach achieves a higher BLEU
score than all baselines including transformer. This is not
corroborated by other metrics. Therefore we recommend future
work evaluate their approach over several metrics. We make
another interesting observation, in that score difference between
b = 4 (maximum nodes = 41) and b = 5 (maximum number of
nodes = 61) is very small. Therefore, we recommend b = 4 if
resources are constrained. Due to limitation of our resources we
are unable to test for values of b greater than 5.

VII. QUALITATIVE EXPERIMENT

We conduct a qualitative experiment as a supplement to the
quantitative experiment in the previous two sections. This qual-
itative experiment with human experts compares our approach
to the reference, human-written summaries.

The scope of this study encompasses only a comparison
of callcon to the reference summaries in the dataset. The
quantitative experiment provides a “breath” evaluation of two
large datasets with thousands of samples in the test set of each
dataset. However, that experiment uses automated metrics to
compare word overlap of predictions to a reference, which
leaves a gap related to the overall quality of the predictions
along criteria other than word overlap. In other words, even
if the predictions perfectly matched the reference every time,
the automated metrics do not provide an in depth picture of
how programmers perceive these summaries. This qualitative
experiment provides this “depth,” though on fewer summaries
than automated metrics as human studies are expensive in both
cost and time.

Note that this experiment measures only perceptions of qual-
ity, and therefore is only intended to compare perceptions of two

4277

sets of summaries. Programmers’ perceptions may be affected
by a lack of knowledge about the entire software project [74],
[75], so a low or high score should not be interpreted globally,
i.e., alow accuracy score does not necessarily mean the summary
is inaccurate — it is only relative i.e., “approach A is perceived
by this human expert as less accurate than approach B.”

A. Research Questions

The research objective of this experiment is to determine the
difference in quality of the summaries we generate to the refer-
ence summaries in the dataset as perceived by human experts.
We ask the following RQs:

RQs; What is the level of overall accuracy of generated and
reference summaries?

What is the level of readability of generated and refer-
ence summaries?

What is the level of completeness of generated and
reference summaries?

What is the level of conciseness of the generated and
reference summaries?

We use the three criteria accuracy, conciseness, and com-
pleteness proposed for evaluating source code summaries by
Sridhara et al. [76] and further recommended by McBurney et
al. [77]. Accuracy is defined as the perceived level of correctness
of the information in the summaries. Completeness is defined as
the perception of whether the summaries are missing informa-
tion that should be in the summary. Conciseness is defined as
the perceived level of extraneous material in the summaries. We
added the question about readability as a sanity check, to make
sure the summaries are sensible and readable english sentences.

RQs
RQ7

RQg

B. Methodology

Our methodology adheres closely to procedure recommended
in earlier studies [76], [77]. For each participant, we randomly
select 40 Java methods from a subset of 200 methods we ran-
domly picked from the test set (based on the recommendation of
around 90 seconds per method evaluation, with a total workload
of around 1 hour per participant). Next, we created a survey
which displays a Java method and a summary of that method.
The summary is either from our approach or from the reference
summary. To avoid biases [78], the survey did not reveal whether
the summary was from our approach or the reference. The survey
also displayed four statements:

1) Independent of other factors, I feel that the summary is

accurate.

2) The summary is missing important information, which

limits my understanding.

3) The summary contains a lot of unnecessary information.

4) The summary is written in easily readable english.

Next to each statement was set of radio buttons with a 1-4
scale, ranging from “Strongly Disagree” (1) to “Disagree” (2)
to “Neutral(3)” to “Agree” (4) to “Strongly Agree” (5). We
recruited twenty programmers with at least one year of pro-
fessional Java development experience. The programmers rate
summaries for 40 methods, randomly selected and different for
each participant.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 18,2024 at 19:45:17 UTC from |IEEE Xplore. Restrictions apply.

4278

The survey output consisted of two sets of 1-5 scores for each
of the four statements: one set was for our predicted summaries
and one set was for the reference summaries. We report these
sets of scores in aggregate (e.g., via boxplots). We also report
results of Mann-Whitney U tests between sets of ratings for
each quality criterion for predicted and reference summaries. For
example, we compare overall accuracy between predicted and
reference summaries. The Mann-Whitney U test is appropriate
because it is a non-parametric and non-paired. A non-parametric
test is suitable because our sample size is not large enough
to reasonably assume a normal distribution. A non-paired test
is suitable because we have only roughly equal numbers of
ratings for the same method, because our survey chose randomly
whether to display a generated or reference summary.

C. Threats to Validity

The main threats to validity of this study include the par-
ticipants and the selection of methods from the test set. We
recruited 20 participants from a large pool of programmers, but
the risk remains that different programmers may give different
answers. To mitigate this risk we present box-plots instead of
average numbers so we may draw conclusions from the overall
distribution. Also, we randomly selected 200 Java methods for
the study, of which each participant evaluated 40, which is as
large a pool of summaries we could reasonably ask participants
to evaluate (give time conflicts with regular career duties).
However, the risk remains that our conclusions could vary with
methods. Another threat is that our qualitative study does not
compare our approach against any of the baselines. We do this
following the recommendations from Roy et al. [70] that found
that score differences of less than 2 points may not be detectable
by small human studies such as the one we conduct. Although
these improvements are very important, it would require a large
human study to detect a small improvement over a baseline.
Therefore, our qualitative evaluation compares our approach
against the ground truth. The goal of this study is to test if
the predicted summaries are reasonably accurate and human
readable, when compared with the ground truth.

VIII. QUALITATIVE STUDY RESULTS

We answer RQj5 - RQg in this section, using the experimental
data we collected in our survey in the previous section.

A. RQs5: Accuracy

In Fig. 5 we show the accuracy ratings for both generated and
reference summaries. The mean score for the reference sum-
maries was about 3.4, which is between “neutral” and “agree”
for the question about accuracy. In comparison, the mean score
for callcon was about 3.3, which is comparatively close. We
expect a lower accuracy from generated summaries (recall the
METEOR scores are in the 30s). The range of scores in the
boxplot from first to third quartile, shown by the grey box, is
almost identical for both generated and reference summaries.
A more interesting observation is that the median score for
both is 4, which correlates to “Agree”. This means that roughly
half of the participants marked “agree” or “strongly agree” for

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 9, SEPTEMBER 2023

Accuracy Readability
5
4 —
3
2
1
Callcon Reference Callcon Reference
(a)
Completeness Conciseness
| ’ ‘
4
3
2 — —_—
1
Callcon Reference Callcon Reference
(b)
Fig. 5. Human evaluation ratings for (a) Accuracy and Readability, and (b)

Completeness and Conciseness. Higher is better for accuracy and readability,
while lower is better for completeness and conciseness as they were posed
negatively. The black line in the boxplot indicates the median. Red line indicates
the mean.

the accuracy of generated and reference summaries. The other
half were split between “neutral”, “disagree”, and “strongly
disagree”. Although this may indicate that the reference sum-
maries of lower accuracy of quality, we caution against drawing
such conclusions due to two reasons. First, we truncate all
summaries to 13 tokens due to the design of our neural network
and recommendations from related work. Programmers may
simply expect a longer summary, and could mark the summary
inaccurate. Second, we only show the participants raw code of
the target function not the entire project. Programmers may
also perceive information as inaccurate because they do not
understand the entire project, even if the author of the summary
actually included relevant insights [74], [75]. If the summaries
have words that are not in the target function but in the project,
such as found in Section VI-C, participants may mark those as
inaccurate.

B. RQg: Readability

We found that most programmers found both generated and
reference summaries readable. The mean score for callcon

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 18,2024 at 19:45:17 UTC from |IEEE Xplore. Restrictions apply.

BANSAL et al.: FUNCTION CALL GRAPH CONTEXT ENCODING FOR NEURAL SOURCE CODE SUMMARIZATION

TABLE VII
MANN-WHITNEY U TEST RESULTS COMPARING RATINGS FOR Callcon AND
REFERENCE SUMMARIES

Accuracy Readability Completeness Conciseness
U 82012 93323 100878 95320
Ue 100453 89142 81588 87146
p-value | 0.008 0.531 0.006 0.228

was 3.98, which is a hairline away from “agree”. Surprisingly,
the mean for reference summaries was slightly lower at 3.88,
although the variance between quartiles is smaller for reference
summaries. Mean values can be skewed by the opinion of
couple of programmers that may simply prefer another sentence
structure than the one used by reference summary. Table VII
suggests this difference is not statistically significant. In both
cases, the median score was 4. This median was the lower
end of the distribution for human-written reference summaries.
Given both the mean and median, we posit that both generated
and reference summaries follow a good sentence structure that
programmers find acceptable, with a very small difference in
human evaluation between the two.

C. RQ7: Completeness

We found that most programmers found both generated and
reference summaries to be incomplete — with a mean score above
3 for both, which is closer to “agree” than “disagree”. This rating
is slightly closer to “neutral” for reference summaries and this
difference is statistically significant (See Fig. 8.3). Median rating
for both is 4, i.e., “agree”. Recall that we pose this question
negatively, therefore “agree” means that programmers think
there is missing information that limits their understanding. One
explanation for both generated and reference summaries, in line
with related literature, is that the information in the reference
summaries is out of date [10]. Another explanation is that we
truncate summaries to 13 words as recommended by the original
paper that released the dataset [61]. Additionally, for generated
summaries, one explanation is that they have “<UNK>" tokens
due to the limited vocabulary, while reference summaries do
not have any such limitations. The occurrence of an “<UNK>"
token would make the summary incomplete, especially if that
word is important such as identifier names that usually fall out
of vocabulary for our approach. Overall, we find that program-
mers want more information from source code summaries, and
recommend future work to consider training on, and generating
longer summaries.

D. RQg: Conciseness

We found no significant difference in the ratings for con-
ciseness in Table VII. In general, programmers tended to view
the summaries from both approaches as concise, with a mean
and median for both sets of summaries around 2 (“disagree”).
Recall that we framed this question in a negative tone, therefore
“disagree” and “strongly disagree” indicate that the summary is
concise and does not contain useless information. This result
is in line with our observation in RQ5-RQ; that a majority

4279

programmers felt the summary was missing information but
accurate and readable.

IX. CONCLUSION

This paper advances the state-of-the-art with an approach to
source code summarization that includes function call context.
Call context has long been a resource in software engineering
research to improve techniques for a variety of problems, though
current literature does not explain how to exploit it for neural
models source code summarization. Prior to neural models
“taking over” source code summarization research, using call
context was mainstream. We show one way to make use of it in
recent neural models.

We evaluated different configurations of our approach against
several baselines in a quantitative experiment, followed by a
comparison to the reference summaries in a qualitative ex-
periment. In the quantitative experiment, we showed that our
approach improves over the baselines in a large dataset. We also
showed that our approach improves automated summaries over
other models for a niche set.

In the qualitative experiment, we show that participants found
our summaries reasonably accurate, readable, and concise. How-
ever, a majority of them found both generated and reference
summaries incomplete.

Broader impacts of this paper include suggestions for future
work implied by our experimental results. First, we advise that
future work explore different subsets of their dataset where
one approach excels over another. We recommend ensembles
as a way to combine improvements for future work. Second,
we found that metric scores do not correlate with each other
in terms of improvements. We recommend future work to use
multiple metrics, especially metrics such as METEOR in favor
of the standard BLEU metric. Third, the qualitative experiment
suggests studying the accuracy of the underlying reference ex-
amples. While caution is advised against concluding that the
reference summaries are inaccurate (since the ratings are based
on perceptions of reading only the method’s code and summary),
the results do indicate that more study is needed into the reasons
for the lower perception of accuracy and completeness of these
summaries.

X. REPRODUCIBILITY

We strongly endorse and encourage reproducibility and future
research. We provide our complete datasets, scripts for gener-
ating these datasets, our approach implementation, and various
other information via our online appendix:

https://github.com/aakashba/callcon-public

ACKNOWLEDGMENTS

The authors would like to sincerely thank participants of our
qualitative study and members of the software engineering com-
munity that helped refine several drafts. Any opinions, findings,
and conclusions expressed herein are the authors’ and do not
necessarily reflect those of the sponsors.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 18,2024 at 19:45:17 UTC from |IEEE Xplore. Restrictions apply.

4280

(1]

(2]

(3]

(4]

[3]

(6]

(71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 9, SEPTEMBER 2023

REFERENCES

D. Kramer, “API documentation from source code comments: A case study
of Javadoc,” in Proc. 17th Annu. Int. Conf. Comput. Documentation, New
York, NY, USA: ACM, 1999, pp. 147-153. doi: 10.1145/318372.318577.
S.Haiduc, J. Aponte, and A. Marcus, “Supporting program comprehension
with source code summarization,” in Proc. IEEE/ACM 32nd Int. Conf.
Softw. Eng., 2010, pp. 223-226.

M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey of machine
learning for big code and naturalness,” ACM Comput. Surveys, vol. 51,
no. 4, pp. 1-37, 2018.

A. Forward and T. C. Lethbridge, “The relevance of software documen-
tation, tools and technologies: A survey,” in Proc. ACM Symp. Document
Eng., 2002, pp. 26-33.

T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models:
A study of developer work habits,” in Proc. 28th Int. Conf. Softw. Eng.,
2006, pp. 492-501.

D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway, “Mental models
and software maintenance,” J. Syst. Softw., vol. 7, no. 4, pp. 341-355,
Dec. 1987, doi: 10.1016/0164-1212(87)90033-1.

L.L.Levesque, J. M. Wilson, and D. R. Wholey, “Cognitive divergence and
shared mental models in software development project teams,” J. Organi-
zational Behav., vol. 22, no. 2, pp. 135-144, 2001, doi: 10.1002/job.87.
J. Sillito, G. C. Murphy, and K. De Volder, “Asking and answering
questions during a programming change task,” IEEE Trans. Softw. Eng.,
vol. 34, no. 4, pp. 434451, Jul./Aug. 2008.

A.J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Trans. Softw. Eng., vol. 32,
no. 12, pp. 971-987, Dec. 2006.

T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do professional
developers comprehend software?,” in Proc. IEEE 34th Int. Conf. Softw.
Eng., 2012, pp. 255-265.

S. Jiang, C. McMillan, and R. Santelices, “Do programmers do change
impact analysis in debugging?,” Empirical Softw. Eng., vol. 22, no. 2,
pp. 631-669, 2017.

A. Bansal, S. Haque, and C. McMillan, “Project-level encoding for neural
source code summarization of subroutines,” in Proc. IEEE/ACM 29th Int.
Conf. Prog. Comprehension, 2021, pp. 253-264.

P. W. McBurney, C. Liu, and C. McMillan, “Automated feature discovery
via sentence selection and source code summarization,” J. Softw.: Evol.
Process, vol. 28, no. 2, pp. 120-145, 2016.

B. Zhang, E. Hill, and J. Clause, “Towards automatically generating
descriptive names for unit tests,” in Proc. IEEE/ACM 3l1st Int. Conf.
Automated Softw. Eng., 2016, pp. 625-636.

S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing source
code using a neural attention model,” in Proc. 54th Annu. Meeting Assoc.
Comput. Linguistics, 2016, pp. 2073-2083.

P. Rodeghero, S. Jiang, A. Armaly, and C. McMillan, “Detecting user
story information in developer-client conversations to generate extrac-
tive summaries,” in Proc. IEEE/ACM 39th Int. Conf. Softw. Eng., 2017,
pp. 49-59.

J. Fowkes, P. Chanthirasegaran, R. Ranca, M. Allamanis, M. Lapata, and
C. Sutton, “Autofolding for source code summarization,” IEEE Trans.
Softw. Eng., vol. 43, no. 12, pp. 1095-1109, Dec. 2017.

S. Badihi and A. Heydarnoori, “Crowdsummarizer: Automated generation
of code summaries for Java programs through crowdsourcing,” IEEE
Softw., vol. 34, no. 2, pp. 71-80, Feb. 2017.

P. Loyola, E. Marrese-Taylor, and Y. Matsuo, “A neural architecture for
generating natural language descriptions from source code changes,” in
Proc. 55th Annu. Meeting Assoc. Comput. Linguistics, 2017, pp. 287-292.
Y. Lu, Z. Zhao, G. Li, and Z. Jin, “Learning to generate comments for
API-based code snippets,” in Software Engineering and Methodology for
Emerging Domains. Berlin, Germany: Springer, 2017, pp. 3-14.
S.Jiang, A. Armaly, and C. McMillan, “Automatically generating commit
messages from diffs using neural machine translation,” in Proc. IEEE/ACM
32nd Int. Conf. Automated Softw. Eng., 2017, pp. 135-146.

X. Hu, G. Li, X. Xia, D. Lo, S. Lu, and Z. Jin, “Summarizing source
code with transferred API knowledge,” in Proc. 27th Int. Joint Conf. Artif.
Intell., 2018, pp. 2269-2275.

X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment generation,”
in Proc. 26th Conf. Prog. Comprehension, 2018, pp. 200-210.

M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to repre-
sent programs with graphs,” in Proc. Int. Conf. Learn. Representations,
2018.

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Y. Wan et al., “Improving automatic source code summarization via deep
reinforcement learning,” in Proc. IEEE/ACM 33rd Int. Conf. Automated
Softw. Eng., 2018, pp. 397-407.

Y. Liang and K. Q. Zhu, “Automatic generation of text descriptive
comments for code blocks,” in Proc. 32nd AAAI Conf. Artif. Intell.,
2018.

U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating se-
quences from structured representations of code,” in Proc. Int. Conf. Learn.
Representations, 2019.

U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” in Proc. ACM Program. Lang., vol. 3,
pp- 1-29, 2019.

S. Gao, C. Chen, Z. Xing, Y. Ma, W. Song, and S.-W. Lin, “A neu-
ral model for method name generation from functional description,”
in Proc. IEEE 26th Int. Conf. Softw. Anal. Evol. Reengineering, 2019,
pp. 414-421.

A. LeClair, S. Jiang, and C. McMillan, “A neural model for generating
natural language summaries of program subroutines,” in Proc. IEEE 41st
Int. Conf. Softw. Eng., 2019, pp. 795-806.

P. Nie, R. Rai, J. J. Li, S. Khurshid, R. J. Mooney, and M. Gligoric, “A
framework for writing trigger-action todo comments in executable format,”
in Proc. 2019 27th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found.
Softw. Eng., 2019, pp. 385-396.

R. Haldar, L. Wu, J. Xiong, and J. Hockenmaier, “A multi-perspective
architecture for semantic code search,” 2020, arXiv: 2005.06980.

W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “A transformer-
based approach for source code summarization,” 2020, arXiv: 2005.00653.
S. Haque, A. LeClair, L. Wu, and C. McMillan, “Improved automatic
summarization of subroutines via attention to file context,” in Int. Conf.
Mining Softw. Repositories, 2020.

D. Ziigner, T. Kirschstein, M. Catasta, J. Leskovec, and S. Giinnemann,
“Language-agnostic representation learning of source code from structure
and context,” in Proc. Int. Conf. Learn. Representations, 2021. [Online].
Available: https://openreview.net/forum?id=Xh5eMZVONGF

S. Liu, Y. Chen, X. Xie, J. K. Siow, and Y. Liu, “Retrieval-augmented
generation for code summarization via hybrid GNN,” in Proc. Int. Conf.
Learn. Representations,2021. [Online]. Available: https://openreview.net/
forum?id=zv-typlgPxA

S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of automated
text summarization techniques for summarizing source code,” in Proc.
IEEE 17th Work. Conf. Reverse Eng., 2010, pp. 35-44.

P. W. McBurney and C. McMillan, “Automatic documentation generation
via source code summarization of method context,” in Proc. 22nd Int.
Conf. Prog. Comprehension, 2014, pp. 279-290.

J. Krinke, “Effects of context on program slicing,” J. Syst. Softw., vol. 79,
no. 9, pp. 1249-1260, 2006.

B. Wei, Y. Li, G. Li, X. Xia, and Z. Jin, “Retrieve and refine: Exemplar-
based neural comment generation,” in Proc. IEEE/ACM 35th Int. Conf.
Automated Softw. Eng., 2020, pp. 349-360.

J.Li, Y. Li, G. Li, X. Hu, X. Xia, and Z. Jin, “EditSum: A retrieve-and-edit
framework for source code summarization,” in Proc. IEEE/ACM 36th Int.
Conf. Automated Softw. Eng., 2021, pp. 155-166.

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with
neural networks,” CoRR, vol. abs/1409.3215, 2014. [Online]. Available:
http://arxiv.org/abs/1409.3215

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” 2014, arXiv:1409.0473.

M. Hossain, F. Sohel, M. F. Shiratuddin, and H. Laga, “A comprehensive
survey of deep learning for image captioning,” ACM Comput. Surveys,
vol. 51, no. 6, 2019, Art. no. 118.

K. Chen, J. Wang, L.-C. Chen, H. Gao, W. Xu, and R. Nevatia, “ABC-
CNN: An attention based convolutional neural network for visual question
answering,” 2015, arXiv:1511.05960.

R. Dabre, C. Chu, and A. Kunchukuttan, “A survey of multilingual neural
machine translation,” ACM Comput. Surveys, vol. 53, no. 5, pp. 1-38,
2020.

J.R. Chaudhary and A. C. Patel, “Machine translation using deep learning:
A survey,” Int. J. Sci. Res. Sci. Eng. Technol, vol. 4, no. 2, pp. 145-150,
2018.

H. Sharma, M. Agrahari, S. K. Singh, M. Firoj, and R. K. Mishra,
“Image captioning: A comprehensive survey,” in Proc. IEEE Int.
Conf. Power Electron. IoT Appl. Renewable Energy Control, 2020,
pp. 325-328.

D. Binkley, “Source code analysis: A road map,” in Proc. IEEE Future
Softw. Eng., 2007, pp. 104-119.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 18,2024 at 19:45:17 UTC from |IEEE Xplore. Restrictions apply.

BANSAL et al.: FUNCTION CALL GRAPH CONTEXT ENCODING FOR NEURAL SOURCE CODE SUMMARIZATION

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]
[72]

[73]

[74]

[75]

T. J. Biggerstaff, B. G. Mitbander, and D. Webster, “The concept assign-
ment problem in program understanding,” in Proc. IEEE 15th Int. Conf.
Softw. Eng., 1993, pp. 482-498.

C.McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu, “Portfolio:
Finding relevant functions and their usage,” in Proc. 33 rd Int. Conf. Softw.
Eng., 2011, pp. 111-120.

S. Letovsky, “Cognitive processes in program comprehension,” J. Syst.
Softw., vol. 7, no. 4, pp. 325-339, 1987.

A. Armaly, P. Rodeghero, and C. McMillan, “A comparison of program
comprehension strategies by blind and sighted programmers,” IEEE Trans.
Softw. Eng., vol. 44, no. 8, pp. 712-724, Aug. 2018.

E. Hill, L. Pollock, and K. Vijay-Shanker, “Exploring the neighborhood
with dora to expedite software maintenance,” in Proc. IEEE/ACM 22nd
Int. Conf. Automated Softw. Eng., 2007, pp. 14-23.

M. Eaddy, A. V. Aho, G. Antoniol, and Y.-G. Guéhéneuc, “CERBERUS:
Tracing requirements to source code using information retrieval, dynamic
analysis, and program analysis,” in Proc. IEEE 16th Int. Conf. Prog.
Comprehension, 2008, pp. 53-62.

J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, and S. D.
Fleming, “How programmers debug, revisited: An information foraging
theory perspective,” IEEE Trans. Softw. Eng., vol. 39, no. 2, pp. 197-215,
Feb. 2010.

T. D. LaToza and B. A. Myers, “Developers ask reachability questions,”
in Proc. IEEE/ACM 32nd Int. Conf. Softw. Eng., 2010, pp. 185-194.

K. Xu, L. Wu, Z. Wang, Y. Feng, M. Witbrock, and V. Sheinin,
“Graph2Seq: Graph to sequence learning with attention-based neural
networks,” in Proc. Conf. Empirical Methods Natural Lang. Process.,
2018.

A. LeClair, S. Haque, L. Wu, and C. McMillan, “Improved code summa-
rization via a graph neural network,” in Proc. IEEE/ACM 28th Int. Conf.
Prog. Comprehension, 2020, pp. 184—195.

M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” 2015, arXiv:1508.04025.

A. LeClair and C. McMillan, “Recommendations for datasets for source
code summarization,” in Proc. Conf. North Amer. Chapter Assoc. Comput.
Linguistics: Hum. Lang. Technol., 2019, pp. 3931-3937.

R. J. Williams and D. Zipser, “A learning algorithm for continually
running fully recurrent neural networks,” Neural Comput., vol. 1, no. 2,
pp- 270-280, 1989.

S. Haque, A. Bansal, L. Wu, and C. McMillan, “Action word prediction for
neural source code summarization,” in Proc. IEEE 28th Int. Conf. Softw.
Anal. Evol. Reengineering, 2021, pp. 330-341.

M. L. Collard, M. J. Decker, and J. I. Maletic, “Lightweight transformation
and fact extraction with the srcML toolkit,” in Proc. 11th IEEE Int. Work.
Conf. Source Code Anal. Manipulation, 2011, pp. 173-184.

A. LeClair, A. Bansal, and C. McMillan, “Ensemble models for neural
source code summarization of subroutines,” in Proc. IEEE Int. Conf. Softw.
Evol. Maintenance, 2021, pp. 286-297.

S. Banerjee and A. Lavie, “METEOR: An automatic metric for MT
evaluation with improved correlation with human judgments,” in Proc.
ACL Workshop Intrinsic Extrinsic Eval. Measures Mach. Transl. Summa-
rization, 2005, pp. 65-72.

S. Haque, Z. Eberhart, A. Bansal, and C. McMillan, “Seman-
tic similarity metrics for evaluating source code summarization,”
2022, arXiv:2204.01632.

C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,”
Text Summarization Branches Out, pp. 74-81, 2004.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: A method for
automatic evaluation of machine translation,” in Proc. 40th Annu. Meeting
Assoc. Comput. Linguistics, 2002, pp. 311-318.

D. Roy, S. Fakhoury, and V. Arnaoudova, “Reassessing automatic evalua-
tion metrics for code summarization tasks,” in Proc. ACM Joint Eur. Softw.
Eng. Conf. Symp. Found. Softw. Eng., 2021, pp. 1105-1116.

D. Cer et al., “Universal sentence encoder,” 2018, arXiv:1803.11175.

Y. Zhou, J. Shen, X. Zhang, W. Yang, T. Han, and T. Chen, “Automatic
source code summarization with graph attention networks,” J. Syst. Softw.,
vol. 188, 2022, Art. no. 111257.

Z. Zhou, H. Yu, G. Fan, Z. Huang, and X. Yang, “Summarizing source
code with hierarchical code representation,” Inf. Softw. Technol., vol. 143,
2022, Art. no. 106761.

E. Aghajani et al., “Software documentation: The practitioners’ perspec-
tive,” in Proc. IEEE/ACM 42nd Int. Conf. Softw. Eng., 2020, pp. 590-601.
L. C. Briand, “Software documentation: How much is enough?,” in Proc.
IEEE 7th Eur. Conf. Softw. Maintenance Reengineering, 2003, pp. 13-15.

[76]

(771

[78]

4281

G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker, “To-
wards automatically generating summary comments for Java methods,” in
Proc. IEEE/ACM Int. Conf. Automated Softw. Eng., 2010, pp. 43-52.

P. W.McBurney and C. McMillan, “Automatic source code summarization
of context for Java methods,” IEEE Trans. Softw. Eng., vol. 42, no. 2,
pp. 103-119, Feb. 2016.

N. Dell, V. Vaidyanathan, I. Medhi, E. Cutrell, and W. Thies, “Yours is
better!: Participant response bias in HCI,” in Proc. SIGCHI Conf. Hum.
Factors Comput. Syst., 2012, pp. 1321-1330.

Aakash Bansal (Graduate Student Member, IEEE)
is currently working toward the doctoral degree with
the University of Notre Dame, advised by Dr. Collin
McMillan. His research focuses on advancing the
field of automated software engineering, with special
focus in introducing contextual and a priori human
knowledge to neural networks for automatic summa-
rization of source code.

Zachary Eberhart is a Gameplay Engineer with
Legacy Labs and a doctoral candidate, the University
of Notre Dame advised by Dr. Collin McMillan. His
research focuses on the application of virtual assistant
technology to software engineering tasks, including
source code search and source code summarization.

Zachary Karas is a doctoral student with Vanderbilt
University, advised by Dr. Yu Huang. He studies the
cognitive factors of software engineering to improve
computer science education and software develop-
ment. Using neuroimaging and eye-tracking, his re-
search examines the cognitive processes underlying
code writing, summarization, and comprehension.

Yu Huang is currently an assistant professor in the
Department of Computer Science with Vanderbilt
University’s Institute for Software Integrated Sys-
tems. Her expertise lies in the fields of human factors
and software engineering, with a specific emphasis
on leveraging diverse modalities to explore user cog-
nition and behaviors, and their intricate connection to
Al for software engineering, sustainability for open
source software, and computer science education.

Collin McMillan is an associate professor in the
Department of Computer Science and Engineering at
the University of Notre Dame. He started with Notre
Dame in 2012 after finishing the PhD degree with the
College of William & Mary. Dr. McMillan’s work has
since been recognized with the NSF CAREER award
and the ASEE Illinois/Indiana Teacher of the Year
award.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 18,2024 at 19:45:17 UTC from IEEE Xplore. Restrictions apply.

