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Abstract—This paper launches a new effort at modeling
programmer attention by predicting eye movement scanpaths.
Programmer attention refers to what information people intake
when performing programming tasks. Models of programmer
attention refer to machine prediction of what information is
important to people. Models of programmer attention are im-
portant because they help researchers build better interfaces,
assistive technologies, and more human-like AI. For many years,
researchers in SE have built these models based on features
such as mouse clicks, key logging, and IDE interactions. Yet the
holy grail in this area is scanpath prediction – the prediction
of the sequence of eye fixations a person would take over
a visual stimulus. A person’s eye movements are considered
the most concrete evidence that a person is taking in a piece
of information. Scanpath prediction is a notoriously difficult
problem, but we believe that the emergence of lower-cost, higher-
accuracy eye tracking equipment and better large language
models of source code brings a solution within grasp. We present
an eye tracking experiment with 27 programmers and a prototype
scanpath predictor to present preliminary results and obtain
early community feedback.

Index Terms—scanpath prediction, human attention, eye track-
ing, neural networks, artificial intelligence

I. INTRODUCTION

A machine model of human programmer attention is a
computer’s prediction of what information a person needs to
solve a programming task. Typically, these models input the
source code of the software the programmer is developing,
and attempt to predict what elements are most important for
that programmer’s understanding of the code. These models
are academically interesting on their own to improve our
knowledge of human cognition [1], but are also important
building blocks to better interfaces [2], assistive technologies
for individuals with disabilities [3], and even more human-
like attention mechanisms in neural networks [4]. Predicting
human attention has been a core component of automated
software engineering techniques for years [5].

Efforts to model programmer attention have trended to-
wards predictions of actual human behaviors. Traditionally,
researchers studied interactions such as mouse clicks, key
strikes, or use of features in the programmers’ Integrated
Development Environments (IDE). Yet over time, more stud-
ies have focused on synthetic visual attention (e.g., people
selecting screen blurs with a mouse [6]), eye fixations and
tracking [7], and even live scans of brain activity [8]. The gold

standard of modeling human attention is widely considered to
be from the visual system, as a person’s eye movements are
considered the most concrete evidence available that a person
is taking in a particular piece of information [2], [9]. The trend
in the literature is towards understanding these eye movements
to understand what information a person needs.

Scanpath prediction refers to predicting the sequence of eye
fixations a person takes over a visual stimulus. An eye fixation
occurs when a person looks at a location of the stimulus long
enough to intake the information at that location (on the order
of 100ms [10]). Scanpath prediction is a notoriously difficult
problem because it depends on a person’s thought process in
addition to specific environmental factors [11]. It may be easy
to predict that a person will look at a bold, red word in a block
of text, but it is harder to predict what word they will look
at next to answer a particular intellectual question. Therefore,
scanpath prediction is emerging as a major research target [12].

In this paper, we launch a new effort at modeling pro-
grammer attention via scanpath prediction. Our new effort
combines new eye tracking technologies, which allow more
high-accuracy eye tracking experiments to be possible at lower
cost, with new Large Language Models (LLMs) of source
code, which have shown much better capabilities for code
comprehension than previous generations. We present:
1. An eye-tracking experiment with 27 programmers during a

Java code comprehension task. We ask programmers to read
source code and write short summaries describing that code.
This task requires programmers to understand a snippet of
code. We use equipment that is available for <US$10k and
a web browser interface, which is a quarter of the price and
much simpler setup than what was used in previous studies,
allowing more data samples to be collected [13].

2. A prototype scanpath predictor that is based on a 350m
parameter language model of Java source code. We frame
the scanpath prediction problem as a fine-tuning objective
in which the model receives the Java code as a prompt
and the scanpath as a followup sequence of tokens to be
predicted. The idea is for the language model to learn to
mimic the thought process of the programmers, insofar as
the sequence of tokens that the programmers read.
Our goal is to present this paper as a paradigm for scanpath

prediction of programmers, and obtain community feedback.
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II. RELATED WORK

Techniques for scanpath prediction have been developed
for decades. Initially, these consisted of either bio-inspired
techniques that use neurophysical knowledge of the human
visual system and processing [14]–[16] or statistical models
that used various distributions derived from a limited amount
of data to model the eye gaze pattern [17], [18]. Since 2017,
neural network based eye gaze models have offered an alter-
native to the more traditional statistical models. In particular,
generative models like PathGAN [19] and DeepGazeIII [20]
have achieved state of the art performance. More recently,
self-supervised techniques have been proposed that combine
bio-inspired techniques and neural networks [21]. Although
closely related to our problem, these models use saliency
techniques specific to image processing that are often not
transferable to textual data like source code.

Although eye-trackers have been intermittently used in
automated SE research for over two decades, they have mainly
been used as investigative tools to understand programmer
cognition and behavior [22]–[26]. Models of programmer
attention in software engineering research have typically used
mouse cursors and keystrokes as proxy for programmer atten-
tion [27], [28]. Earlier this year, Bansal et al. [7] introduced
a novel approach for predicting human attention using data
from a 2014 eye-tracking study [13]. They introduced a model
to predict programmer attention, in the form of total fixation
duration. They cite the unavailability of recent eye-tracking
data as a limitation for their approach. Therefore, in this paper
we conduct a larger eye-tracking study designed to inform
an attention prediction model. To the best of our knowledge,
this paper is only the second attempt at modeling programmer
attention using eye trackers, and the first to provide a prototype
for scanpath prediction which is a more challenging problem.

III. EYE-TRACKING EXPERIMENT

We perform an eye-tracking experiment to extract the scan-
path data of programmers for modeling programmer attention.
Figure 2 shows an overview of our experiments: 1) this eye-
tracking experiment, 2) the prototype in Section IV, and 3)
preliminary experiment in Section V.

A. Program Comprehension Task
To record eye gaze data and extract the scanpath, we

recruited programmers for a program comprehension task,
specifically, code summarization. Code summarization is the
task of writing natural language summary for a snippet of
code, a Java method in this instance. We chose this task,
because it requires the programmer to bridge the gap between
the lower level understanding of source code and the high-level
concepts that benefit from human cognition and attention [29].

We populate our study using the funcom-java-long

dataset [7]. The dataset consists of high-quality Java method-
summary pairs from Javadocs. This dataset is also excluded
from the jm52m [30] dataset that was used for pre-training
of our prototype, detailed in Section IV. From the roughly
8800 Java methods in their test set, we picked 68 methods at

Fig. 1. A screenshot of our interface.

random for our experiment. Each participant saw 25 randomly
selected methods from the subset.

In Figure 1 we show an example of the web interface and
the task we asked each participant to complete. Each task
consists of a Java method displayed on the left, and a text box
on the right. For this study, we recruited 27 programmers,
each with 3-10 years of programming experience, and a
minimum of 1 year of Java programming experience. We asked
each participant to complete 25 tasks, with an average study
duration of 1.5 hours. We asked participants to take a break
every 20 minutes to re-calibrate the eye-tracker and minimize
the effects of exhaustion [24].

B. The Eye-Tracking Hardware & Software
The eye-tracking hardware we use includes a Tobii Pro

Fusion eye-tracker and a 24 inch monitor at 1920x1080 resolu-
tion and a refresh rate of 60Hz. We kept the workstation costs
below $10K, much lower than $40K in previous studies [13].
Lower costs and the mobile nature of the eye-tracker setup
allowed us to collect more data at two locations. The eye-
tracker is mounted on the monitor, which is beneficial because
the participants did not have to change their work-flow and
were largely left to work as they would without the eye-tracker.
We use the Tobii Pro Python SDK to access raw gaze data.
C. Data Collection & Processing

In Figure 2 area 1, we provide an overview of the eye-
tracker data processing. We performed this study at two
institutions in parallel (anonymized for review). We used the
same data set, interface, hardware, and protocol for both
studies. First we apply a velocity-based fixation filter, then we
use a low-pass filter to remove noisy peaks [31], [32]. Next,
we merge the data from both institutions. The only difference
between the two setups is that one eye tracker collected the
data at a sampling rate of 120Hz, while the other collected
data at 60Hz due to software mismatch. This difference in
sampling rates does not affect our study as we cluster fixations
using methods recommended in related work for eye-tracking
data with different sampling frequencies [33], [34].The final
result of this processing is 680 data points, each containing a
sequences of first n fixations from a participant over a method.

IV. SCANPATH PREDICTOR PROTOTYPE

We design a prototype scanpath predictor to model program-
mer attention using the scanpath data we extract from the eye-
tracking experiment. We provide an overview of our design
in Figure 2 area 2, where we frame the problem as a fine-
tuning task for an LLM. We use LLMs because they are pre-
trained on large task-agnostic datasets and can be finetuned for
a prediction task given a small number of examples. Although
our eye-tracking apparatus is much cheaper than previous



Fig. 2. Overview of our experimental setup.

TDAT: public void testNegativeParseCases() {
verbose("--->Negative parse tests START");
for (int i = 0; i < negativeParseTests.length; i++) {

parseFilter(negativeParseTests[i], false);
}
checkDelete(); }

SEQ: <s> testNegativeParseCases </s>

Fig. 3. Finetuning prompt for the participant ID 133, method ID 31696447.

generation of eye-trackers, recruitment of programmers for the
study is still a cost-limiting factor. Therefore, LLMs are good
candidates for our prototype. For our prototype we use the
jam [35] language model. We chose this specific pre-trained
LLM for two reasons. First, at ∼ 350m parameters the model is
large enough to produce meaningful results but small enough
to fit on a single 24GB GPU [35]. Second, the model is pre-
trained on the jm52m [30] dataset of 52 million Java methods
which excludes the funcom-java-long dataset that we use
for our eye-tracking experiment. Therefore, by using jam, we
can be reasonably sure that the Java methods we use for our
experiment and subsequent testing, have not been previously
seen by the model during pre-training.

We finetune our prototype on the training set extracted from
the eye-tracking experiment. During finetuning we provide
the model with a prompt which consists of raw Java code,
followed by the scanpath sequence. Figure 3 shows an example
of our finetuning prompt. We use the following configurations
to finetune our model:

c block size 256
b batch size 4
e embedding dimension 768
L number of layers 12
h attention heads 12
a accumulation steps 32
r learning rate 3e-5
s pre-trained iterations 27200
i iterations for finetuning 200

After finetuning, we provide the model with the test set
for inference. The input prompt is similar to the prommpt
that we use for finetuning in Figure 3, except that we stop
the prompt at “SEQ:”. The prototype predicts <s> scanpath

</s>, where {scanpath} is a sequence of n predictions, and
<s> and </s> are start and end tags for the sequence.

V. PRELIMINARY EXPERIMENT

We conduct a preliminary experiment to evaluate the effi-
cacy of our scanpath predictor prototype. Recall, we design
our prototype to predict first n words in the scanpath. For this
experiment we evaluate predictions at n = {1, 2, 3, 4}.

Before we dive into the experimental details, we introduce
the research questions for this experiment:
RQ1 How accurately can our prototype predict the first n

words that a programmer would look at when summariz-
ing a Java method previously seen during finetuning?

RQ2 How accurately can our prototype predict the first n
words that programmers would look at when summariz-
ing a previously unseen Java method?

The rationale behind RQ1 is to evaluate the accuracy of
the scanpath predictor prototype against reference data from a
particular programmer. Note, the model has seen the scanpath
of the other participants over the same Java method during
finetuning. The goal is to evaluate the correlation between the
predicted scanpath and a human programmer’s scanpath.

The rationale behind RQ2 is to challenge the scanpath
predictor prototype. Note, the model has never seen this
Java method during pre-training or finetuning. The goal is to
evaluate how accurately the prototype predicts the scanpath
over an unseen method, compared to the human programmers.
A. Holdout Experiment Setup

In Figure 2 area 3, we provide an overview of our prelimi-
nary experiment. Our goal is to compare the predictions from
our prototype against reference scanpath from human subjects.
However, different programmers might look at different words
in the sequence. Therefore, we do not test our approach against
any one programmer’s data. Instead, we use a one-holdout
approach and create 95 versions of our dataset.

For RQ1, we take a participant-holdout approach,
where we holdout all the datapoints from one participant as the
test set. The training data in each instance has 26 participants,
of which 1 participant is held out for validation. The test data
in each instance has scanpaths from 1 participant over each of
the 25 methods they saw during the experiment.

For RQ2, we take a method-holdout approach, where we
holdout all the datapoints from for one Java method as the
test set. The training data in each instance has 67 methods, of
which 1 method is held out for validation during finetuning.
The test data in each instance has scanpaths from 1 method
over a variable number of participants because not every
participant saw every method. Recall from Section III, we have
27 participants and 68 methods. Therefore, we processed 27
datasets for the participant-holdout experiments and 68
datasets for the method-holdout experiment.
B. Metrics

We report two metrics from related work to evaluate the
performance of our prototype scanpath predictor.
Levenshtein is the string-matching metric that uses the Lev-

enshtein edit distance, which is a popular scanpath met-
ric [36], to compute character level string comparison.
We use the TheFuzz [37] implementation.

Gestalt is a popular pattern-matching metric that uses the
Gestalt Pattern Matching algorithm to compute the
similarity between two sequences. We use the pyy-
matcher [38] implementation.



VI. RESULTS FOR PRELIMINARY EXPERIMENT

We present the results for both of our preliminary experi-
ments to evaluate our prototype scanpath predictor. In Table I
we show the average scores over for each experiment.

A. RQ1: Participant Holdout Experiment

For the participant-holdout experiment, we observe
that the Levenshtein score is the highest at 0.46 when n = 4,
which means that the prototype is slightly better at predicting
longer scanpaths than shorter n <= 3. This is a promising
result because we expect future research to focus on predicting
scanpaths at n > 4. On the other hand, for the Gestalt metric,
the highest score is 0.442 at n = 1. We observe that the
Levenshtein scores show a consistent increase from n = 1−4,
while the Gestalt metric is less comparative between n = 2−4.
Each of the scores in Table I is an average over 680 prediction-
reference pairs, therefore we dig a little deeper into the score
distribution to understand these scores.

In Figure 4 (a), we show a frequency distribution bar-chart
of our Levenshtein scores. We observe that for n = 1, the
highest frequency is at the Levenshtein score of 1.0, which
means a perfect match for 168 out of 680 samples. This is
a promising result for our prototype, because it shows that it
learns to pick the first word correctly out of all the words in
the Java method for 25% of the samples. For n = 2, 3, 4 we
observe a sharp decrease in perfect matches with score 1, but
a considerable increase in number of samples with scores in
the [0.4 − 0.8] range, which is above the average scores we
saw in Table I. Overall, we find that although our prototype
achieves higher average scores for n = 4, the number of
perfect matches are very few (< 5). One possible explanation
is that scanpaths vary between participants and neighboring
words in a code sequence may not match the target word,
making a perfect match hard to achieve for longer scanpaths.

B. RQ2: Method Holdout Experiment

For the method-holdout experiment, we observe a highest
Levenshtein scores are less comparative for n = 1 − 4 with
the highest score of 0.343 for n = 3. The Gestalt score is
highest for n = 1, and is more comparative with a consistent
trend of decreasing values for n = 1− 4. Overall, we see that
the average scores are lower compared to RQ1. We expect
this because predicting scanpath over an unseen method is a
harder task. The model did not see this method during pre-
training, making it more challenging to learn word embeddings
for unique words such as variable names.

To investigate further, we show a frequency distribution
bar-chart of Levenshtein scores in Figure 4 (b). We note
that for n = 2, 3, 4 we observe a sharp decrease in the
number of perfect matches when compared to n = 1, and

TABLE I
AVERAGE GESTALT AND LEVENSHTEIN SCORES FOR RQ1 AND RQ2.

Experiment Levenshtein Gestalt
n = 1 n = 2 n = 3 n = 4 n = 1 n = 2 n = 3 n = 4

participant-holdout 0.431 0.434 0.452 0.460 0.442 0.421 0.429 0.424
method-holdout 0.337 0.342 0.343 0.332 0.347 0.332 0.315 0.295

(a)

(b)
Fig. 4. Frequency charts for (a) participant-holdout and (b)
method-holdout experiments. There are 680 samples. The x axis
indicates bins of Levenshtein score, the y axis indicates number of samples.

a significant increase in number of samples with scores in the
[0.4 − 0.8] range. This aligns with our expectations, in that
predicting scanpaths over unseen methods is a harder task,
specially for longer scanpaths. We expect future work with
bigger eye-tracking datasets to improve these results because
our prototype may benefit from seeing scanpaths of similar
methods during finetuning and learn from them.

VII. CONCLUSION

In this new ideas paper we make three main contributions
to model programmer attention. First, we present an eye-
tracking experiment designed to extract scanpath data from
programmers. Second, we frame the scanpath prediction prob-
lem as a finetuning task for an LLM to develop a novel
prototype. Third, we show how well our prototype correlates
with human scanpaths with a preliminary experiment. The
main goal of this paper is to provide a framework for future
research towards modeling programmer attention, specifically
by automatically predicting eye movements such as scanpaths.
Potential applications of this work are towards building more
human-like neural networks [39], SE virtual assistants that
consider human factors [40], and assisted systems for low
vision and disabled programmers [41], [42] to name a few.

We provide a repository for the replication of our results at:
https://github.com/apcl-research/scanpathpred
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