
A Language Model of Java Methods with Train/Test Deduplication

Chia-Yi Su
csu3@nd.edu

University of Notre Dame
Notre Dame, IN, USA

Aakash Bansal
abansal@nd.edu

University of Notre Dame
Notre Dame, IN, USA

Vijayanta Jain
vijayanta.jain@maine.edu

University of Maine
Orono, ME, USA

Sepideh Ghanavati
sepideh.ghanavati@maine.edu

University of Maine
Orono, ME, USA

Collin McMillan
cmc@nd.edu

University of Notre Dame
Notre Dame, IN, USA

ABSTRACT

This tool demonstration presents a research toolkit for a language

model of Java source code. The target audience includes researchers

studying problems at the granularity level of subroutines, state-

ments, or variables in Java. In contrast to many existing language

models, we prioritize features for researchers including an open

and easily-searchable training set, a held out test set with differ-

ent levels of deduplication from the training set, infrastructure for

deduplicating new examples, and an implementation platform suit-

able for execution on equipment accessible to a relatively modest

budget. Our model is a GPT2-like architecture with 350m parame-

ters. Our training set includes 52m Java methods (9b tokens) and

13m StackOverflow threads (10.5b tokens). To improve accessibil-

ity of research to more members of the community, we limit local

resource requirements to GPUs with 16GB video memory. We pro-

vide a test set of held out Java methods that include descriptive

comments, including the entire Java projects for those methods. We

also provide deduplication tools using precomputed hash tables at

various similarity thresholds to help researchers ensure that their

own test examples are not in the training set. We make all our tools

and data open source and available via Huggingface and Github.

CCS CONCEPTS

• Software and its engineering→ Software libraries and repos-

itories; • Computing methodologies→Machine learning.

KEYWORDS

java, language model, deduplication, research tools

ACM Reference Format:

Chia-Yi Su, Aakash Bansal, Vijayanta Jain, Sepideh Ghanavati, and Collin

McMillan. 2023. A Language Model of Java Methods with Train/Test Dedu-

plication. In Peer Review at ESEC/FSE 2023 Tool Demonstration Track (Under

Review at ESEC/FSE 2023 Tool Demonstration Track). ACM, New York, NY,

USA, 8 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Under Review at ESEC/FSE 2023 Tool Demonstration Track, 2023,

© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Large language models (LLMs) have quickly become central to

many areas of research [38]. Within Software Engineering (SE),

they now form the basis for many approaches to code comple-

tion [30], automatic documentation generation [1], automatic bug

repair [21], and dialogue systems about code [32]. Meanwhile, re-

search in several domains has led to LLMs with ever-increasing

parameter counts and training data. These LLMs have shown re-

markable performance on several natural language problems, with

products such as OpenAI’s ChatGPT [28] and GitHub’s Copilot [12]

reaching stratospheric levels of public attention. Application of this

technology to SE has naturally caught the eye of many researchers.

The typical application of LLMs in research is to use a “founda-

tion model” pretrained on big data, followed by fine-tuning steps

to customize the LLM to a specific problem. In research, high value

is placed on control of experimental variables, and care must be

taken to avoid contaminating the training set with test data. SE

researchers typically work at a relatively fine grain, such as subrou-

tines, statements, or even individual variables, and Java is a very

popular language to study. Thus, what many SE researchers need

is an LLM pretrained on a known set of Java methods, that they

can then fine-tune at low cost for various SE research tasks.

Yet a caveat for researchers is that many LLMs are closed-source,

have opaque training data and procedures, and/or are far too large

and complex to reproduce in a laboratory setting. Hellendoorn and

Sawant [16] point out that the situation is becoming inaccessible

to researchers, which has negative implications for scientific rigor

as published results cannot be reproduced or closely scrutinized.

A metaphor for the current situation is that SE researchers need a

“mouse model” of LLMs for code. In biology, mice and other animals

are used to test ideas in a laboratory before the ideas are ready to

be scaled to humans. Likewise, we need inexpensive models that

are nonetheless similar enough to industrial LLMs to suggest that

ideas that work in the lab can work in practice.

In this tool demonstration, we release a 350m parameter GPT2-

like language model in three variations: one pre-trained with a

dataset of 52m Java methods, one pre-trained with a dataset of 13m

StackOverflow threads, and one trained on both. We also provide:

1) A held-out set of 8,192 Java methods for testing various research

applications. 2) Precomputed deduplication tool for researchers

to easily check if their examples are in the training set, so they

can avoid training set contamination. 3) Tools and instructions for

fine-tuning the models on different SE research tasks.

Under Review at ESEC/FSE 2023 Tool Demonstration Track, 2023,
Chia-Yi Su, Aakash Bansal, Vijayanta Jain, Sepideh Ghanavati, and Collin McMillan

2 BACKGROUND & RELATED WORK

A “language model” is a probability distribution given a sequence

of natural language tokens. The tokens may be characters, words,

or sub-word units. The list of all known tokens is called the “vocab-

ulary.” In practice, the input to a language model is a sequence of

tokens, and the output is (usually) the probability that each word

in the vocabulary will be the next token in the sequence. In recent

years, language models based on neural models have proliferated.

These models are given a set of “training data” from which to gen-

erate the probability distribution. The size of the neural models and

training data have increased multiple orders of magnitude in a small

number of years. Today, language models consisting of billions of

parameters and trillions of tokens of training data are the heart of

several high-profile products such as ChatGPT and Copilot [19].

The steps to use a language model in a product usually consist

of: 1) obtain a “foundation model” that is pretrained on a very large

dataset of general domain text, and 2) “fine tune” the model on

problem-specific input/output examples. As a general rule, the big-

ger the better. State-of-the-art results are possible with foundation

models in the tens or hundreds of billions of parameters, pretrained

with datasets encompassing the entire internet, libraries of books,

legal documents, etc. Fine-tuning these models becomes a resource

problem, as even loading the models requires tens of gigabytes of

memory, and computation requirements are high with even a few

examples [7]. An alternative is a partial fine-tune procedure such as

LoRA [17], which trades accuracy for reduced computational cost

and yet more experimental variables (e.g., LoRA parameters) [9].

A plethora of LLMs have been released as potential foundation

models recently, such as GPT-2/3 [8], LLaMA [36], GPT-J [40], and

GPT-NeoX [6]. Many even target source code, such as CodePar-

rot [37], StarCoder [39], and CodeGeeX [41]. The training data for

these consists of datasets such as The Stack [23], which contains

1.5TB of code in 317m files in over 350 programming languages.

Researchers in several areas of software engineering have indicated

how the “fine-tuned LLM” strategy is likely to achieve state-of-

the-art results when foundation models are further trained with

task-specific examples in problems such as code generation [34],

code summarization [1], and clone detection [29].

The problem for researchers is that the results frommany founda-

tion model LLMs are difficult to understand from a scholarly point

of view. While the results may be state-of-the-art, it is difficult to

eliminate experimental variables such as architectural differences

in the models, choices of hyperparameters, and sources of data

contamination between training and test sets. If a researcher’s test

set contains e.g. 10,000 Java files, the cost to ensure deduplication

between that test set and e.g. The Stack becomes 10k x 317m =

3.17T file comparisons. If that researcher also wishes to verify if a

different set of hyperparameters during pretraining would lead to

different results, the cost to retrain the LLM from scratch could be

tens or hundreds of thousands of dollars [33]. At these sizes, even

basic principles of scientific integrity are cost prohibitive.

The problem of LLM cost to scientific research is earning more

attention. Hellendoorn and Sawant [16] crystallize several of the

problems and propose a few solutions. In the community more

broadly, open-source solutions are becoming popular, though many

of these still contain noisy datasets or are difficult to reproduce.

3 THE TOOL

This section introduces our tool, including the datasets, language

model, and supporting fine-tuning and deduplication toolkits.

3.1 Target Audience / Requirements

Our target audience includes researchers in SE who study Java,

particularly at the level of methods, statements, and variable names.

The key requirements of our tool are:

1. A training set at the level of Java methods that are searchable

in tractable time for duplicates or other attributes.

2. An additional training set containing natural language, within

the domain of software engineering.

3. A model design that is easy to modify and well-studied in

existing literature – no “magic.”

4. A model size suitable for full retraining and fine-tuning (i.e.

without LoRA) on a single 16GB GPU.

5. Clear instructions for reproducibility by students or others

learning the technology’s fundamentals.

Note that we do not seek to achieve state-of-the-art results. Our

goal is not to be the largest or most-capable LLM, and we do not

intend for our tool to be used in commercial products. Our target

audience is scientific researchers and educators seeking maximum

control of experimental variables within an accessible limit of re-

source constraints. This audience is likely to rerun experiments

many times, across many machines, encounter errors (e.g., stu-

dent learners), and/or operate in a cost restricted environment. At

present, a single 16GB GPU workstation with a recent architecture

(e.g., NVidia Ampere [27]) is available in most markets for under

US$1,500.

3.2 Language Model

We build our language model using the GPT-2 model design as

presented by Karpathy in the NanoGPT implementation [22]. We

configure the model with the following parameters:

! embedding dimensions 1024

" number of layers 24

ℎ attention heads 16

$ block size / context length 256

% batch size 4

& accumulation steps 32

' dropout 0.20

(learning rate 3e-5

) weight decay 1e-1

Parameters ! , ", and ℎ correspond to the GPT-2-medium size

(350m parameters). This size is large enough to be likely to pro-

duce meaningful results in many situations (e.g., BERT [10] is 345m

parameters), while small enough to fit into 16GB VRAM. The con-

text length $ of 256 tokens covers over 95% of Java methods in our

dataset, and yet at much lower computational cost than the default

1024 size. Since our target audience use Java methods, statements,

and variables, the smaller context length is appropriate. The batch

size % allows the model to be reproduced within the 16GB limit, but

the accumulation steps & of 32 maintains a relatively high effective

batch size of 4 x 32 = 128. The dropout, learning rate, and weight

decay are defaults of NanoGPT.

A Language Model of Java Methods with Train/Test Deduplication
Under Review at ESEC/FSE 2023 Tool Demonstration Track, 2023,

3.3 Datasets

We release two datasets that we use to pretrain our model.

jm52m is a dataset of 52m Java methods created from 52k Java

projects. The source code originated from the Merobase [20]

and Sourcerer [26] data releases, supplemented by our own

prior work in LeClair et al. [24]. It contains code uploaded to

code repositories between 2008 and 2018. We then extracted

every Java method from every file and project. We removed

empty methods, methods from corrupt files, and methods

with parsing errors.

so13m is a dataset containing 13m discussion threads from

StackOverflow. The origin of the data is the StackExchange

data dump [18] from between January 2014 and December

2022. The threads cover a multitude of topics. This dataset

serves as a natural language and (often) accompanying code

in the domain of software engineering. Its inclusion could

help downstream tasks depending on generating or under-

standing natural language.

We use the GPT byte-pair encoder [11] to tokenize both datasets.

We provide a SQL database dump (see jm52m.sql on our website,

Section 5) for traceability of the methods to their files and projects.

The following table shows the dataset sizes in different metrics:

jm52m so13m

number of tokens 8,752,695,577 10,495,518,108

number of documents 51,841,717 13,071,148

number of files 8,402,038 n/a

number of projects 52933 n/a

megabytes after processing 16,695 20,019

We create a holdout set of 8,192 Java methods from jm52m.

These are the Java methods from the test set for comment genera-

tion research published by Bansal et al. [3] in the funcom-java-long

dataset. We chose these because they were filtered for quality, con-

tain header comments which may assist various areas of research,

and are consistent with other work for easier reproducibility. We

exclude the holdout methods from jm52m and use them as the basis

for deduplication in Section 3.5.

3.4 Model Releases

We call our model jam (for Java Methods). We release three versions

of the model:

jam (default, also jam-jm) This model is trained on jm52m only.

We train for one epoch, which is ∼300,000 iterations. We

intend this version for most applications.

jam-so This model is trained on so13m only. Also trained for

one epoch, also about 300,000 iterations.

jam-sojm This model is trained on so13m and then jm52m for

one epoch each after resetting the learning rate and decay.

Our training hardware consists of an Intel i9-10900X CPU with

128GBmemory and 2xA5000 NVidia GPUs. Training time is approx-

imately 2.1s per iteration, or about seven days per epoch. Scaling

with faster hardware or more GPUs would likely accelerate training.

The model files contain the iteration and training configuration.

We provide instructions on our website for resuming training if

more epochs are desired.

3.5 Deduplication Toolkit

We provide a deduplication toolkit to help researchers verify that

their test sets are not in the training set. This toolkit is necessary

because different users may have different tolerances for duplicates,

and because not all users will want to use the holdout set we provide.

For example, code generation experiments will have a low tolerance

for duplicates since the model may have seen the code it is trying to

generate. But some experiments, e.g. generating code embeddings,

may have a higher tolerance since the model will see the code to

generate the embedding vector anyway.

Our toolkit is based on the MinHashLSH deduplication tech-

nique [25], which is widely used in machine learning for dedupli-

cation [4, 5, 35]. The way MinHashLSH works is to generate an

lsh object for a set of documents at a given threshold of similarity.

Then, an alternate document is hashed and checked against that

object. The result is a set of documents in the lsh object that the

alternate document matches. Creating the lsh objects needs non-

trivial computing power: to generate the objects for jm52m took

about 26 hours on our workstation.

We provide the following:

1. A set of scripts using MinHashLSH to generate lsh dedupli-

cation objects from jm52m and so13m at a given threshold.

2. Precomputed lsh objects at four thresholds for each dataset.

3. Lists of Java methods from the holdout set which researchers

may consider removing, depending on their tolerance for

duplicates. We also provide the ID numbers of documents

in jm52m and so13m that are considered matches at different

similarity thresholds, to allow for manual inspection.

4. A program for using the precomputed lsh objects on given

code, to quickly check for duplicates locally.

5. A web API and interface for checking a document online.

We chose the following thresholds for lsh objects in each dataset.

The count indicates the number of methods in the holdout set that

were detected as potential duplicates at that threshold. As a general

rule, we found the most lenient options to include very near exact

duplicates only, while the most strict options were quite far and

may have only a few overlapping words.

jm52m so13m

threshold count threshold count

0.5 4822 0.3 4979 ↑more strict

0.6 1905 0.4 1486

0.7 611 0.5 136

0.8 44 0.6 0 ↓more lenient

3.6 Fine-tuning Toolkit

We provide a fine-tuning toolkit to help researchers adapt jam to a

specific research problem. Our toolkit is drawn from the NanoGPT

framework, with a few customizations to streamline the fine-tuning

process using our model. We integrate code by Grittner [13] to

allow for fine-tuning using LoRA, in case researchers have even

more limited resources than expected or want to answer research

questions about the effects of LoRA on their particular problem.

Our toolkit will automatically download our trained models from

our Huggingface model repository, to minimize steps needed by

the researcher. All code is MIT licensed.

Under Review at ESEC/FSE 2023 Tool Demonstration Track, 2023,
Chia-Yi Su, Aakash Bansal, Vijayanta Jain, Sepideh Ghanavati, and Collin McMillan

4 APPLICATION

In this section, we demonstrate one application of our tool for the

problem of code summarization, which is the task of writing com-

ments that describe code [14]. Code summarization is an active

research area that is suitable for the application of pretrained lan-

guage models. A typical target for this problem in Java are the short

header comments known as JavaDocs. Most approaches use an

encoder-decoder neural architecture in which the source code is en-

coded and the descriptive comment is “decoded.” These approaches

work well considering limited data, though could be improved using

larger models pretrained with relevant data.

To demonstrate how jam can help this line of research, we use

the funcom-java-long dataset presented by Bansal et al. [3] from

which we extracted the holdout set in Section 3.3. The training set

for funcom-java-long has ∼170k Java methods and summaries.

These are already heavily cleaned and deduplicated from the hold-

out set by Bansal et al. [2]. From these 170k samples, we create

fine-tuning example prompts in the form:

TDAT: <method code> COMMENT: <comment> <!endofdoc>

Then we fine-tune for four epochs using a fixed (non-decaying)

learning rate of 3e-5, with all other parameters equal to the table in

Section 3.2. Our configuration information for this small experiment

is in the file config/finetune_funcom.py on our website. We

fine-tune our three models: jam, jam-so, jam-sojm. We also fine-

tune pre-trained gpt2-medium [31] and an equally-sized NanoGPT

model from scratch as a comparison points. All models have the

same architecture and parameters, to simplify comparison.

METEOR USE BLEU

jam 33.25 51.29 20.07

jam-so 34.04 52.88 19.83

full jam-sojm 34.61 52.36 20.68

gpt2-med 33.83 52.70 19.73

scratch 16.05 22.54 7.63

METEOR USE BLEU

jam 33.41 51.08 20.42

jam-so 34.11 52.75 20.16

t=0.6 jam-sojm 34.73 52.27 21.12

gpt2-med 33.99 52.66 20.19

scratch 15.55 21.43 7.23

The two tables above show the performance of the fine-tuned

models according to three metrics recommended for evaluating

code summarization techniques [15]. We show results for the full

holdout set as well as when removing methods that match the

threshold t=0.6 for jm52m. We make the following observations:

1. The jam model and its two “brothers” achieve performance

exceeding the gpt2-medium baseline, which was trained on

a larger but proprietary dataset.

2. The jam-somodel slightly outperforms jam for this problem,

which is not surprising because so13m contains much more

natural language data and code summarization is a natural

language generation task.

3. The scratchmodel performs poorly, which is not surprising

given the large model and small (170k) dataset.

4. The results change slightly at a different threshold * .

5 DISCUSSION / CONCLUSION

This tool demonstration advances the community by providing a

language model and supporting tools for research problems involv-

ing Java source code.We intend ourmodel especially for researchers

working at a relatively fine level of granularity: Java methods, state-

ments, and variables. Ourmodel is a “one stop shop” for experiments

involving fine-tuning, as we provide domain-specific pretraining

datasets, multiple model configurations, fine-tuning tool support,

and a deduplication toolkit to help ensure scientific integrity. We

provide a holdout set of over 8k Java methods, as well as support

for deduplicating one’s own test set. We even provide traceability

of each Java method in jm52m to its file and project of origin.

We have demonstrated our tool in an application for the problem

of code summarization. We show how jam is able to outperform the

most-similar proprietary baseline (gpt2-med) on this task under

identical conditions. We note that the score we report are higher

than those reported in recent code summarization papers for the

same dataset [2, 3]. It is likely that these results would be surpassed

with a larger model pretrained on more data. But, our finding is in

an environment where we can control every experimental variable

from pretraining data, to model architecture, to training parameters,

and fine-tuning details. We are able to exercise this level of control

at low costs: all experiments can be reproduced from scratch on a

workstation with only a single 16GB GPU.

Our idea is that jam will fill the role of a “mouse model” for

fine-tuning experiments involving Java methods, statements, and

variables. Researchers with ideas about how to improve language

models for some task can use this tool as a highly-controlled testbed

to create a proof-of-concept. A researcher can try many permuta-

tions of the idea at low cost and then scale up the idea to a larger

model where the researcher has less control of variables and much

higher expense.

The doorway to our tool is our website:

https://github.com/apcl-research/jam

At that link, readers will find the following key components:

datasets via Huggingface repositories.

model releases via Huggingface repositories.

dedup/finetune toolkits via the Github repository.

application demo via the Github repository.

instruction manual via the Github repository.

ACKNOWLEDGEMENT

We thank Andrej Karpathy and Daniel Grittner for their work

providing the NanoGPT and NanoGPT-LoRA code. This work is

supported in part by NSF CCF-2100035 and CCF-2211428. Any

opinions, findings, and conclusions expressed herein are the authors

and do not necessarily reflect those of the sponsors.

REFERENCES
[1] Toufique Ahmed and Premkumar Devanbu. 2022. Few-shot training LLMs for

project-specific code-summarization. arXiv preprint arXiv:2207.04237 (2022).
[2] Aakash Bansal, Sakib Haque, and Collin McMillan. 2021. Project-Level Encod-

ing for Neural Source Code Summarization of Subroutines. In 29th ACM/IEEE
International Conference on Program Comprehension (ICPC’21).

[3] Aakash Bansal, Bonita Sharif, and Collin McMillan. 2023. Towards modeling
human attention from eye movements for neutral source code summarization.

A Language Model of Java Methods with Train/Test Deduplication
Under Review at ESEC/FSE 2023 Tool Demonstration Track, 2023,

Proceedings of ACM Human-Computer Interaction, Vol. 7 (2023).
[4] Stella Biderman, Kieran Bicheno, and Leo Gao. 2022. Datasheet for the pile. arXiv

preprint arXiv:2201.07311 (2022).
[5] Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle

O’Brien, Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, et al. 2023. Pythia: A suite for analyzing large language
models across training and scaling. arXiv preprint arXiv:2304.01373 (2023).

[6] Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence
Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, et al. 2022.
Gpt-neox-20b: An open-source autoregressive language model. arXiv preprint
arXiv:2204.06745 (2022).

[7] Alexander Borzunov, Dmitry Baranchuk, Tim Dettmers, Max Ryabinin, Younes
Belkada, Artem Chumachenko, Pavel Samygin, and Colin Raffel. 2022. Petals:
Collaborative inference and fine-tuning of large models. arXiv preprint
arXiv:2209.01188 (2022).

[8] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[9] Guanzheng Chen, Fangyu Liu, Zaiqiao Meng, and Shangsong Liang. 2022. Re-
visiting parameter-efficient tuning: Are we really there yet? arXiv preprint
arXiv:2202.07962 (2022).

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[11] Philip Gage. 1994. A new algorithm for data compression. C Users Journal 12, 2
(1994), 23–38.

[12] Github. 2022. Github Co-Pilot. https://github.com/features/copilot
[13] Daniel Grittner. 2023. NanoGPT-LoRA. https://github.com/danielgrittner/

nanoGPT-LoRA.
[14] Sonia Haiduc, Jairo Aponte, and Andrian Marcus. 2010. Supporting program

comprehension with source code summarization. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume 2. 223–226.

[15] Sakib Haque, Zachary Eberhart, Aakash Bansal, and Collin McMillan. 2022. Se-
mantic similarity metrics for evaluating source code summarization. In Proceed-
ings of the 30th IEEE/ACM International Conference on Program Comprehension.
36–47.

[16] Vincent J Hellendoorn and Anand Ashok Sawant. 2021. The growing cost of
deep learning for source code. Commun. ACM 65, 1 (2021), 31–33.

[17] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2021. Lora: Low-rank adaptation of large
language models. arXiv preprint arXiv:2106.09685 (2021).

[18] Stack Exchange Inc. 2022. Stack Exchange Data Dumps. https://archive.org/
details/stackexchange

[19] Sajed Jalil, Suzzana Rafi, Thomas D LaToza, Kevin Moran, and Wing Lam. 2023.
Chatgpt and software testing education: Promises & perils. arXiv preprint
arXiv:2302.03287 (2023).

[20] Werner Janjic, Oliver Hummel, Marcus Schumacher, and Colin Atkinson. 2013.
An unabridged source code dataset for research in software reuse. In 2013 10th
Working Conference on Mining Software Repositories (MSR). IEEE, 339–342.

[21] Kevin Jesse, Toufique Ahmed, Premkumar T Devanbu, and Emily Morgan. 2023.
Large Language Models and Simple, Stupid Bugs. arXiv preprint arXiv:2303.11455
(2023).

[22] Andrej Karpathy. 2022. NanoGPT. https://github.com/karpathy/nanoGPT.
[23] Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Car-

los Muñoz Ferrandis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas
Wolf, et al. 2022. The Stack: 3 TB of permissively licensed source code. arXiv
preprint arXiv:2211.15533 (2022).

[24] Alex LeClair and Collin McMillan. 2019. Recommendations for Datasets for
Source Code Summarization. In Proceedings of NAACL-HLT. 3931–3937.

[25] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. 2020. Mining of
massive data sets. Cambridge university press.

[26] C. Lopes, S. Bajracharya, J. Ossher, and P. Baldi. 2010. Source Code Data Sets.
http://www.ics.uci.edu/\simlopes/datasets/

[27] NVidia. 2020. NVidia Ampere Architecture Blog. https://www.nvidia.com/en-
us/data-center/ampere-architecture/

[28] OpenAI. 2022. ChatGPT. https://openai.com/blog/chatgpt
[29] Vishal Pallagani, Bharath Muppasani, Keerthiram Murugesan, Francesca Rossi,

Lior Horesh, Biplav Srivastava, Francesco Fabiano, and Andrea Loreggia. 2022.
Plansformer: Generating Symbolic Plans using Transformers. arXiv preprint
arXiv:2212.08681 (2022).

[30] Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, and Bren-
dan Dolan-Gavitt. 2022. Examining Zero-Shot Vulnerability Repair with Large
Language Models. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, 1–18.

[31] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAI blog
1, 8 (2019), 9.

[32] Steven I Ross, Fernando Martinez, Stephanie Houde, Michael Muller, and Justin D
Weisz. 2023. The programmer’s assistant: Conversational interaction with a large
language model for software development. In Proceedings of the 28th International
Conference on Intelligent User Interfaces. 491–514.

[33] Max Ryabinin and Anton Gusev. 2020. Towards crowdsourced training of large
neural networks using decentralized mixture-of-experts. Advances in Neural
Information Processing Systems 33 (2020), 3659–3672.

[34] Advait Sarkar, Andrew D Gordon, Carina Negreanu, Christian Poelitz, Sruti Srini-
vasa Ragavan, and Ben Zorn. 2022. What is it like to program with artificial
intelligence? arXiv preprint arXiv:2208.06213 (2022).

[35] Emily Silcock, Luca D’Amico-Wong, Jinglin Yang, and Melissa Dell. 2022. Noise-
Robust De-Duplication at Scale. Technical Report. National Bureau of Economic
Research.

[36] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[37] Lewis Tunstall, Leandro Von Werra, and Thomas Wolf. 2022. Natural language
processing with transformers. " O’Reilly Media, Inc.".

[38] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. 2022. Expectation
vs. experience: Evaluating the usability of code generation tools powered by
large language models. In Chi conference on human factors in computing systems
extended abstracts. 1–7.

[39] Leandro Von Werra and Loubna Ben Allal. 2023. StarCoder: A State-of-the-Art
LLM for Code. https://huggingface.co/blog/starcoder.

[40] Ben Wang and Aran Komatsuzaki. 2021. GPT-J-6B: A 6 Billion Parameter Autore-
gressive Language Model. https://github.com/kingoflolz/mesh-transformer-jax.

[41] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan
Wang, Lei Shen, Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023.
CodeGeeX: A Pre-Trained Model for Code Generation with Multilingual Evalua-
tions on HumanEval-X. arXiv:2303.17568 [cs.LG]

Under Review at ESEC/FSE 2023 Tool Demonstration Track, 2023,
Chia-Yi Su, Aakash Bansal, Vijayanta Jain, Sepideh Ghanavati, and Collin McMillan

6 APPENDIX

In this Appendix we provide detailed instructions for replication

of our results. Please download the source code from our Github

repository linked in Section 5 and follow following steps:

• If you only want to finetune one of our pre-trained models,

refer to subsections 6.1, 6.2, and 6.4.

• If you only want to deduplicate your dataset, refer to subsec-

tion 6.3.

• If you want to re-train a model using our processed and

tokenized dataset, refer to subsection 6.7.

• if you want to scratch-train, by reprocessing the dataset,

refer to subsections 6.6 and then 6.7.

We also present a video walk-through of our tool here:

https://www.youtube.com/watch?v=WP7ya17uYcY

6.1 Model Checkpoints

The first step is to download our pre-trained model checkpoints.

They are downloaded as directories that contain weights and check-

points needed for finetuning or retraining. We have made the fol-

lowing model checkpoints publicly available, each trained to one

epoch, i.e., roughly 300K iterations.

jam - https://huggingface.co/apcl/jam

jam-so - https://huggingface.co/apcl/jam_so

We also provide checkpoint for the model trained twice, for one

epoch on each dataset. Note, the learning rate and decay were reset

between each epoch.

jam-sojm - https://huggingface.co/apcl/jam_sojm

Any of these model checkpoints can be downloaded using the

following script:

python3 download.py --repo_id=apcl/jam --

repo_type=model

This python script can be used with several tags to download all or

specific data items from a respository:

--repo_id specifies the name of repository, which for models

are apcl/jam, apcl/jam_so, or apcl/jam_sojm.

--filename specifies the name of the specific file that you want

to download from the repository (optional).

--local_dir specifies the name of your local output directory.

The default value for this flag is the “data” directory that is

populated from our github repository.

--repo_type specifies the type of repository that hosts the file,

i.e., “model” for these repositories.

If you do not want to use our pre-trained checkpoints, you may

train the model from scratch using instructions in Section 6.3.

6.2 Finetuning

The next step is finetuning one of the model checkpoints. We make

the training and test data to finetune our model checkpoints for

source code summarization available at:

https://huggingface.co/datasets/apcl/funcom-java-long

To fine-tune the apcl/jam checkpoint for source code summariza-

tion as described in Section 3.6, please run the following commands:

cp -r jam jam_ft

torchrun --standalone --nproc_per_node=XX

train.py config/finetune_funcom.py

--out_dir=jam_ft

Here, the config/finetune_funcom.py provides the configuration

required for finetuning and –out_dir specifies the path to the pre-

trained model checkpoints. We make a copy of the pre-trained

weights because the script modifies the files in the –out_dir during

finetuning.

The following commands can be used to fine-tune using the apcl/jam_so

checkpoint:

cp -r jam_so jam_ft

torchrun --standalone --nproc_per_node=

whatever train.py config/

finetune_funcom.py --out_dir=jam_ft

6.3 Deduplication

The next step is to run the de-duplication tool, which is described in

Section 6.3. To test for deduplication over the jm52m dataset, please

run the following command:

python3 data/jam_jm52m/dedup_fctest.py

This script can be used with the following flags:

--test_filename specifies the path to the the test file.

--lsh_dir specifies the directory for LSH files.

--threshold specifies the threshold to which the test function

and training function can be similar before they are consid-

ered duplicates. We recommend a threshold for 0.70 over our

dataset.

--dedup_outfile specifies the output file, where each entry is

the function id tab-limited with a set duplicate functions id

in the current part of the training set. More on parts below.

--fundats_file specifies the name of the raw code file that is

a dictionary for raw function code with key = function id

and value = raw code. This file can be downloaded for our

dataset, instructions for which are in Section .

The deduplication process as described in Section 6.3 relies on

system memory. We provide these additional flags to decrease this

computational load by dividing the training data into 50 parts. You

may iterate through these parts, as memory allows using these

flags:

--partstart specifies the starting part number of the dataset,

with a minimum value of 0.

--partend specifies the ending part number of the dataset, with

a maximum value of 50.

To test for deduplication over the so13m dataset, please run:

python3 data/jam_so13m/

dedup_stackoverflow.py

This script can be used with the following flags:

--stackoverflow_text_id_filename specifies the path to the

pickle file that is a list for apcl/so13m file names.

A Language Model of Java Methods with Train/Test Deduplication
Under Review at ESEC/FSE 2023 Tool Demonstration Track, 2023,

--fundats_file specifies the path to a pickle file that is a dic-

tionary for raw function code files, where key = function id

and value = raw code.

--stackoverflow_text_filename specifies the path to a pickle

file that is a dictionary for apcl/so13m posts with key = post

id and value = post.

--dedup_outfile specifies the path to the output file, where

each entry is the function id tab-separated with a set of post

IDs that are duplicate in the current part of the training set.

--threshold specifies the threshold to which the test func-

tion and a post can be similar before they are considered

duplicates.

--test_filename file name of your test file

--lsh_outdir directory for lsh files

--partstart specifies the starting part number of the dataset,

with a minimum value of 0.

--partend specifies the starting part number of the dataset,

with a minimum value of 100.

Note, it is possible that each test ID may have several entries in the

output file because the tool works in parts to limit system memory

requirements.

6.4 Test Set

The penultimate step is to extract the test set. To download and

extract the test set, run the following command:

python3 download_extract_file.py

This script can be used with the following flags:

--repo_id the id of repository that you want to download files

--local_dir directory that you want to put your files

--filename name of the file that you want to download

6.5 Inference

The final step is to run inference and predict summaries using the

source code from the test set, using the following command:

python sample_funcom.py --out_dir=outdir

Note, the directory specified with the out_dir tag must be the direc-

tory where the final model weights to be used are saved. This script

generates a prediction directory with a text file, where each line is

the function id tab-separated by the predicted summary sequence.

6.6 Scratch-Compile Dataset

To scratch-compile our dataset, use the following command:

python3 download.py --repo_id=apcl/jm52m

--filename=*.pkl --repo_type=

dataset

The candidates for repo_id values are apcl/jm52m and apcl/so13m

respectively. The script above downloads the raw data as a pickle

file fundats-j1.pkl. Also, a list of function ids in our code summa-

rization test set q90testfids.pkl that we exclude from the training

set. Now using these files, a training dataset can be generated using

the following command:

python3 data/jam_jm52m/prepare_fc_raw.py

--num-proc=4 --q90testfids-file=

q90testfids.pkl --fundats-file=

fundats-j1.pkl

Here, q90testfids.pkl is a list of function ids from our test set

that we exclude from the training set. This script will generate the

train,val, and test bins required to retrain the model as described in

the next subsection.

6.7 Re-Training Instructions

We also provide instructions for re-training our models if the pre-

trained checkpoints are not desirable. The first step for scratch

training is to download the required datasets. We provide public

access to both datasets described in Section 3.3 at:

jm52m - https://huggingface.co/datasets/apcl/jm52m

so13m - https://huggingface.co/datasets/apcl/so13m

We also provide a script in our github repo to download these

datasets using the follow command:

python3 download.py --repo_id=apcl/jm52m

--filename=train.bin --repo_type=

dataset

The candidates for repo_id values are apcl/jm52m and apcl/so13m

respectively. Note, the repo_type is “dataset" to download datasets

from our repositories. Note, without the use filename tag, the script

will download the entire dataset hub, which includes roughly 50

GigaBytes of LSH MiniHash files for deduplication as described in

Section 6.3.Please refer to Section 6.1 for a list of flags that can be

used with this script.

Next, we train the model from scratch using the following torchrun

command:

torchrun --rdzv-backend=c10d --rdzv-

endpoint=localhost:0 --nnodes=1 --

nproc-per-node=1 train.py config/

train_funcom_raw.py --out_dir=

jam350m_jm

Note, these configuration files define the dataset that is used to

train the model:

train_funcom_raw.py to train themodel over the jm52m dataset

train_stackoverflow.py to train the model over the so13m

dataset

Please note, when using torchrun, the port number for rdzv-endpoint

may be changed for multiple instances on the same machine using

the following document.

https://pytorch.org/docs/stable/elastic/run.html

Otherwise, two different training instances may update the same

model weights.

6.8 Hardware

We recommend a GPU with an architecture comparable to the

NVidia Ampere [27] or newer, because the “bfloat16” format is

essential for efficient computation with our scripts. For GPUs older

Under Review at ESEC/FSE 2023 Tool Demonstration Track, 2023,
Chia-Yi Su, Aakash Bansal, Vijayanta Jain, Sepideh Ghanavati, and Collin McMillan

than that, “float32” format may be used. However, the VRAM re-

quirements are higher using that format and computations are

considerably slower.

Note, a workstation with NVidia A4000 GPU can be assembled for

under US$1500 as discussed in Section 3.1.

