
Accepted to Automated Software Engineering Journal Chia-Yi Su and Collin McMillan

Distilled GPT for Source Code Summarization

Chia-Yi Su
1*
and Collin McMillan

1

1*Department of Computer Science, University of Notre Dame,
Holy Cross Dr, Notre Dame, 46556, Indiana, USA.

*Corresponding author(s). E-mail(s): csu3@nd.edu;
Contributing authors: cmc@nd.edu;

Abstract

A code summary is a brief natural language description of source code. Summaries
are usually only a single sentence long, and yet form the backbone of developer
documentation. A short descriptions such as “changes all visible polygons to the
color blue” can give a programmer a high-level idea of what code does without
the effort of reading the code itself. Recently, products based on Large Language
Models such as ChatGPT have demonstrated a strong ability to write these
descriptions automatically. However, to use these tools, programmers must send
their code to untrusted third parties for processing (e.g., via an API call). This
loss of custody is not acceptable to many organizations. In this paper, we present
an alternative: we train an open source model using sample output generated
by GPT-3.5 in a process related to knowledge distillation. Our model is small
enough (350m parameters) to be run on a single 16gb GPU, yet we show in our
evaluation that it is large enough to mimic GPT-3.5 on this task.

Keywords: source code summarization, software documentation generation

1 Introduction

A code summary is a brief, natural language description of source code. Summaries are
typically only a single sentence. When reading a Java method, for instance, a program-
mer may start with the Javadoc sentence “changes all visible polygons to the color
blue.” The summary provides a quick way for the programmer to understand what
the method does without having to read the code itself. The benefits of summaries
in documentation have been studied for decades (Haiduc et al, 2010), and Software
Engineering (SE) research has long sought to automate the process of writing them,

a
rX

iv
:2

3
0
8
.1

4
7
3
1
v
2

[c

s.
S

E
]

 5
 F

e
b
 2

0
2
4

Chia-Yi Su and Collin McMillan Accepted to Automated Software Engineering Journal

to reduce manual effort by programmers, support under-documented legacy programs,
and build accessibility tools (Robillard et al, 2017). Code summaries form the back-
bone of much documentation for programmers, and the dream of automatic generation
of these summaries has been described as a “holy grail” of SE research (Allamanis
et al, 2018a; Forward and Lethbridge, 2002; LeClair et al, 2019).

Recently, the dream seems within reach. Years of effort on neural code summa-
rization techniques has culminated in products such as Copilot (Github, 2022) and
ChatGPT (OpenAI, 2022), which exhibit an ability to describe arbitrary code (Ma
et al, 2023). At the heart of these products is a language model that is trained using
big data input. The language model in the most powerful products may be tens or hun-
dreds of billions of parameters, and the data input often includes trillions of tokens,
such as the entirety of public GitHub repositories, plus StackOverflow, Wikipedia, etc.
The effectiveness of these products has captured the public imagination and helped
drive a new wave of research (Sun et al, 2023). Like in many research areas, the
decades-long effort toward automatic code summarization suddenly seems at hand.

Yet a major problem looms. For programmers to use these tools, they must send
their code to third parties for processing. An IDE plugin wishing to use GPT-3.5, for
example, must harvest code from the programmer’s codebase and send it via an API
call to OpenAI. This call is a loss of data custody and a non-starter for many institu-
tions (Derner and Batistič, 2023). In addition, the closed nature of these products has
caused controversy among researchers, who point out a lack of reproducibility, poten-
tial data contamination from public test sets to private training data, and resultant
loss of scientific rigor (Hellendoorn and Sawant, 2021). The situation for many pro-
grammers is that the technology to automate a major portion of code summarization
exists, but it is not usable.

In this paper, we present an alternative: knowledge distillation from a large model
(GPT-3.5) to smaller models. Our paper has three key novel research contributions:

1. We present a study comparing summaries from GPT-3.5 to the reference summaries
written by human programmers, and show that the generated summaries tend to
be superior, indicating they are good source of training data. (Section 3)

2. We present a study of knowledge distillation of these summaries for the size of model
(38m - 15.5B parameters) and size of training data (170k - 2.15m samples). We
collect 2.15m summaries generated by GPT-3.5 for Java methods. We use a simple
prompt and methods from open-source Java programs. As foundation models, we
compare jam (Su et al, 2023) and starcoder (Li et al, 2023b). The jam model is
pretrained on 52m Java methods and has an easily-searchable dataset to ensure
reproducibility and a controlled experimental framework. The starcoder model is
much larger and has a larger pretraining dataset, but is also more expensive and
has more non-controllable experimental variables due the the dataset. (Section 4)

3. We evaluate our distilled model against GPT-3.5 in a study with human experts.
(Section 5)

We release all code and implementation details. The model we recommend from our
experiments can be run from a workstation with a single 16GB GPU, which is relatively
low cost for many organizations. This low cost and open source structure enables

Accepted to Automated Software Engineering Journal Chia-Yi Su and Collin McMillan

programmers to access automatic code summarization while keeping data custody.
Although there are some papers that have already formulated the code summarization
as a fine-tuning problem such as Wang et al (2021); Bender et al (2021) and studied
knowledge distillation for smaller models from larger models Hsieh et al (2023); Yu
et al (2023), we thoroughly explore the data and model size for knowledge distillation
on code summarization and conduct the human study to compare the language models
generated summary and human reference with human experts.

2 Background and Related Work

This section discusses the two key areas of background and related work: code
summarization and knowledge distillation.

2.1 Source Code Summarization

The term “source code summarization” was coined in 2010 by Haiduc et al (2010) to
refer to the task of writing natural language descriptions of code. Until 2017, most
of research methods focused on IR-based and template-based methods. From 2017 to

I N G T C
McBurney et al (2016) x x
Iyer et al (2016) x
Rodeghero et al (2017) x x
Fowkes et al (2017) x
Loyola et al (2017) x
Jiang et al (2017) x
Hu et al (2018a) x x
Hu et al (2018b) x
Allamanis et al (2018b) x x
Wan et al (2018) x
Liang and Zhu (2018) x
Alon et al (2019a,b) x x
Gao et al (2019) x
LeClair et al (2019) x x
Nie et al (2019) x
Lu et al (2019) x
Gao et al (2019) x
Haque et al (2020) x x
Haldar et al (2020) x
Zügner et al (2021) x x
Liu et al (2021) x x
Bansal et al (2021b) x x
Wang et al (2021) x
Bender et al (2021) x

Table 1: Snapshot of the past five years in source code summarization. Column I

stands for IR-based techniques. N means neural network-based. G means the code is
modeled as a graph. T means Transformer designs. C means learning from context.

Chia-Yi Su and Collin McMillan Accepted to Automated Software Engineering Journal

present, neural models for code summarization becomes the most dominant research
direction. Table 1 shows the history and families of different methods. Although the
most dominant research line is neural models, there are different families of neural
models, which include better modeling of code itself and using more context. For
example, LeClair et al (2019); Alon et al (2019a,b) combined AST with source code and
Allamanis et al (2018b) modeled AST as a graph for neural models. Haque et al (2020)
applied the attention mechanism to the file context. Bansal et al (2021b) combined
information different software projects.

More recently, Wang et al (2021); Bender et al (2021) introduce the technique
to fine-tune Large Language Models (LLM) for code summarization. Although some
proprietary LLM such as OpenAI’s ChatGPT has demonstrated the great capability
on program comprehension, we cannot avoid data leak problems because of the inac-
cessibility of training data on these models. In this paper, we examine the data and
model size for fine-tuning and distill the knowledge from GPT-3.5 by training small
models with public and controllable datasets and mimic GPT-3.5’s capability for code
summarization.

2.2 Knowledge Distillation

Knowledge Distillation refers to teaching a small machine learning model to behave
like a larger one for a niche task (Hsieh et al, 2023; Yu et al, 2023; Wang and Yoon,
2021). Knowledge distillation is useful in scenarios where a large model may be capable
of many tasks or even considered general purpose, such as ChatGPT or Copilot, but
is too expensive or impractical to use for certain specific tasks. A classic application
is in image classification, where a powerful model capable of classifying many types
may be used to teach a smaller model with some tradeoffs, such as lower accuracy
or recognizing fewer categories (Gou et al, 2021; Wang and Yoon, 2021; Zagoruyko
and Komodakis, 2016). More recently, general purpose models such as GPT-3.5 have
been used to teach smaller models to perform question-answering tasks (Zhang et al,
2023), assessment of student answers (Li et al, 2023a), follow specific types of instruc-
tions (Tang et al, 2023), and to improve output from existing smaller chatbots (Chen
et al, 2023).

An important point in knowledge distillation is that there is almost always a trade
made in exchange for the reducing model size. Gudibande et al (2023) make the point
that small models attempting to replicate all capabilities of ChatGPT, for instance,
are likely to face problems with generalization to prompts unlike those in the training
samples. They highlight how the benefit of knowledge distillation is focused on training
small models to perform specific tasks – one should not necessarily expect the small
model to do all tasks well, but the small model can mimic the large one by specializing
on a single task. In this paper, we focus on the task of code summarization, and
demonstrate how a small model can perform on par with the large one in this specialty.

3 GPT-3.5 and Human-written References

This section discusses our comparison of source code summaries generated by GPT-
3.5 to summaries written by human programmers. We also compare the summaries

Accepted to Automated Software Engineering Journal Chia-Yi Su and Collin McMillan

generated by the model trained with GPT-3.5 summaries and the summaries written
by human programmers. The purpose of this comparison is to determine whether
summaries generated by GPT-3.5 are suitable replacements for human-written ones.
This comparison is necessary in this paper because we seek to distill GPT-3.5’s ability
to generate summaries for a smaller model, so we should measure the quality of the
summaries GPT-3.5 generates. If GPT-3.5 generates poor quality summaries, then it
would not be suitable for distillation. Thus, we ask the Research Question (RQ):

RQ1 How well do summaries generated by GPT-3.5 compare to human-written
reference summaries, across key quality criteria established in relevant literature?

By “human-written reference summaries”, we mean code summaries written by the
programmers or other team members who wrote the underlying software, such as the
summary sentence of the Javadocs for Java methods. By “key quality criteria”, we
mean the concepts of Accuracy, Completeness, and Concision that were first used to
evaluate code summaries over ten years ago by Sridhara et al (2010) and have been used
in numerous studies since McBurney et al (2016). We will establish how we measure
these concepts in the next subsection. Note we also measure overall preference of one
summary to another, for a gauge on how people balance the quality criteria.

3.1 Research Method

Our research method is a survey in which we show programmers different code and
summaries of that code, and ask them to rank the summaries in four questions. We
designed our survey to be consistent with years of best-practice in evaluating sum-
maries, namely from Sridhara et al (2010); McBurney et al (2016); Bansal et al (2021a),
including the wording we use in the survey questions. The survey has four questions
per summary, divided over two pages. On the first page, the survey shows a Java
method and a summary of that method, plus these three questions:

1. Independent of other factors, I feel that the summary is accurate.
2. The summary is missing important information, and that can hinder the under-

standing of the method.
3. The summary contains a lot of unnecessary information.

The first question is intended to measure accuracy, the second measures complete-
ness, and the third measures concision. Following each question are four radio buttons
to select one of: “Strongly Agree”, “Agree”, “Disagree”, and “Strongly Disagree.” On
the next page, the survey shows the same Java method and summary, plus another
summary for the same Java method. The first summary is either the summary from
GPT-3.5 or the human-written reference (decided randomly). The second summary is
the alternative. The second page also shows a single question:

4. Overall, which summary is better in your opinion?

Following this question are three options: “Summary 1”, “Summary 2”, and “I
really cannot decide.” We phrased the third option such that participants would be
encouraged to select between the two summaries, but still have an option to avoid the
question in very difficult or impossible cases, such as if the summary were the same

Chia-Yi Su and Collin McMillan Accepted to Automated Software Engineering Journal

(a) Page One (b) Page Two

Fig. 1: Example of the two pages of our survey for each Java method.

or both were illegible. For quality control (see Section 3.3), we also asked participants
to enter a rationale for their answer to this question. Figure 1 shows each page.

3.2 Subject Source Code, Summaries, Participants

We obtained the subject source code from the funcom-java-long dataset provided
by Su et al (2023). This dataset is a revision of the dataset provided by LeClair
and McMillan (2019) to include various fixes such as those proposed by Bansal et al
(2021b); Shi et al (2022). This dataset includes a training set of around 170k Java
methods paired with summaries written by human experts (the origin of these sum-
maries was Javadocs provided with the source code), as well as a test set of around
8k Java methods. The dataset also includes a total of over 52m Java methods that do
not contain human-written summaries. The funcom-java-long dataset is diverse in
that it contains over 50k Java projects from many domains collected over at least one
decade. The test set of 8k methods represents 880 projects.

To obtain summaries written by GPT-3.5, we used a prompt in the format:

Write a one sentence description of this Java method:

Followed by the source code for the method. We collected summaries from GPT-3.5
using this prompt for a total of 2.15m Java methods. The 2.15m Java methods included
all 170k from the funcom-java-long training set, all 8k from the funcom-java-long
test set, plus 2m additional methods randomly selected from the 52m Java methods
in the dataset that do not have human-written summaries. We filtered approximately
20k summaries which were either empty or not in English.

The survey randomly selected 30 Java methods from the 8k test set to show to
each participant. We chose 30 because we found that participants tended to spend
between two and three minutes per method, and we aimed to keep the survey time to
a maximum of 90 minutes to prevent fatigue bias (Sievertsen et al, 2016).

We recruited 15 participants for each study via the Prolific platform1. We used
Prolific’s features to filter for people who were at least 25 years of age, were located in

1https://www.prolific.co/

Accepted to Automated Software Engineering Journal Chia-Yi Su and Collin McMillan

the United States or United Kingdom, and had a university degree in Computer Sci-
ence or Computer Engineering. We describe additional filters for biases in the Threats
to Validity, Section 3.3. With 15 participants and 30 methods each, we collected feed-
back for 450 Java methods. Approximately half showed the human-written summaries
on the first survey page (therefore answering questions 1-3), with the remainder show-
ing the GPT-3.5 summaries on the first page. All saw both summaries on the second
page. To reduce the subjective bias, we randomly selected 150 functions from the orig-
inal 450 samples and we recruited additional five different participants (30 methods
for each participant) to evaluate the methods with the same criteria and the same
website via the Prolific platform.

3.3 Threats to Validity

The key threats to validity in this study are: 1) the participants, 2) the GPT-3.5
version and prompt, and 3) the subject Java methods. The participant pool can be a
threat to validity because online survey participants can fake work history. Danilova
et al (2021) recommend programming-based screening questions, but Ghorbani et al
(2023) point out that these questions are now easily circumvented with online AI-based
tools such as Copilot and ChatGPT. Therefore, we manually inspect each participant’s
survey results for clear patterns of fraud. We rejected one participant who completed
the survey in under fifteen minutes (thirty seconds per method).

The GPT-3.5 version and prompt are threats to validity because GPT-3.5 is a
commercial product and subject to change without notice, and also may give different
answers with different prompts. We collected the summaries between June 1 and
June 30, 2023, during which no changes were reported to GPT-3.5, though these
changes could have occurred unreported. Note that while the results of this study
could change with different prompts or model versions, we view this paper as still valid
as a framework for distilling knowledge from large models, and is still reproducible
because we release the responses from GPT-3.5 as a separate dataset. In this way,
our procedure is consistent with other research distilling commercial language models,
such as Zhang et al (2023).

The subject Java methods are also a key threat to validity because our study results
could change with a different set of Java methods. We reduce the risk by using methods
from a large and well-studied dataset, with methods from projects in many domains
collected over many years. Our study used a total of 450 of these methods, randomly
selected from the dataset. The total of 450 is a representative sample: considering
a test set population size of 8k methods, Israel (1992) sample size recommendations
shows a minimum sample size of 381 at +/-5% precision tolerance.

3.4 RQ1 Results

We find that GPT-3.5 produces source code summaries that are higher quality than the
reference summaries. The evidence for this finding comes in two key forms, depicted in
Figure 2. First, the ratings provided by the human evaluators for accuracy and com-
pleteness are better for GPT-3.5 than for the references by a statistically-significant
margin. The mean values for accuracy of GPT-3.5 are higher than the references,

Accepted to Automated Software Engineering Journal Chia-Yi Su and Collin McMillan

with the 90% of values for GPT-3.5 in the 3-4 range. In other words, human evalu-
ators marked “Strongly Agree” or “Agree” to a statement about accuracy for a 90%
of summaries. For the references, only 74% were in this range. Likewise, for complete-
ness, human evaluators rated GPT-3.5 with better scores by a statistically-significant
margin (lower is better for completeness and conciseness due to the wording of the
survey questions, see Section 3.1). Second, when comparing summaries, human evalu-
ators preferred GPT-3.5 summaries in 80% of comparisons, versus 18% for references

private Time simulate() throws SimulationException{
Time current = startSimulation();
try {

if (endTime.isLT(current)) {
throw new SimulationException(””Requested time ”” + endTime

+ ”” is smaller than current time ”” + current + ””!””);
while (isRunning()) {

if (current.isGE(endTime)) { break; }
current = continueSimulation(current, endTime);
Thread.yield();

} finally {
finishSimulation();

}
return currentTime();

}

GPT-3.5 simulates a process until a given end time and returns the final
current time, handling exceptions if the end time is reached before
the current time

Human Reference increase the simulation time and execute all events with an earlier
time

Trained with GPT-3.5 simulates a simulation by checking if the requested time is greater
than the current time and returns the simulation time, or throws
a SimulationException if the requested time is not found

Trained with Human Reference simulate the simulation

private Literal promoteDecimal(Literal numeral) {
Long result;
try {

result = Long.valueOf(numeral.getLabel());
} catch (NumberFormatException e) {
throw new TypeError(””Cannot promote non-numeral to a decimal value””);
}

return this.factory.createLiteral(result.toString(), SPARQLConstants.DECIMAL TYPE);
}

GPT-3.5 promotes a Literal numeral to a decimal value by converting it to
a Long and creating a new Literal with the converted value and
the DECIMAL TYPE

Human Reference promotes a literal to a decimal datatype reparsing the label
Trained with GPT-3.5 promotes a given Literal to a decimal type and returns the pro-

moted Literal
Trained with Human Reference promotes a literal to a decimal literal

Table 2: Examples of summaries generated by GPT-3.5 and the human reference for
two Java methods from the dataset.

Accepted to Automated Software Engineering Journal Chia-Yi Su and Collin McMillan

human reference. We depict the results in Figure 4. Overall, the evaluators prefer the
summaries generated by the model trained with the GPT-3.5 summaries although the
statistical test shows no statistical significance on accuracy, completeness, and concise-
ness. We find 71% of the answers prefer the summaries generated by the model trained
with GPT-3.5 summaries versus 24% trained with human reference and 5% undecided.
In terms of accuracy, we observe that the summaries generated by the model trained
with GPT-3.5 is slightly higher than the summaries generated by the model trained
with human reference. Similarly, evaluators rated the summaries generated by the
model trained with the GPT-3.5 summaries more complete than the summaries gener-
ated by the model trained with human reference. Although we observe that the results
of accuracy and complete only edges to the summaries generated by models trained
with GPT-3.5, the summaries generated by the model trained with GPT-3.5 outper-
forms the summaries generated by the model trained with human reference in overall
preference. The possible explanation is that the training data is not enough to mimic
the ability of GPT-3.5 for code summarization. For example, compared with “promotes
a Literal numeral to a decimal value by converting it to a Long and creating a new
Literal with the converted value and the DECIMAL TYPE” generated by GPT-3.5 in
Table 2, the trained model generates “promotes a given Literal to a decimal type and
returns the promoted Literal”, which is less complete and accurate compared with the
original GPT-3.5 summary. But, compared with the reference version, this summary
is still more informative. Therefore, the evaluator prefers the summary generated by
the model trained with GPT-3.5. This result aligns with findings by Roy et al (2021)
that ratings by human evaluators often do not appear statistical significantly different
unless the summaries are very qualitatively different due to noise in how people give
subjective ratings, yet people may prefer one group of summaries when asked directly.

This result is surprising considering that human-written references have long been
considered the gold standard in evaluating software documentation generation LeClair
and McMillan (2019); Shi et al (2022). Yet consider the examples in Table 2, which are
representative of typical summaries from each source. The human-written references
tend to be concise, but lack detail which can lead to confusion (e.g., the meaning of
“reparse the label” is unclear in the second human-written example in Table 2, but
the GPT-3.5 provides detail). These observations are borne out in the study results
where GPT-3.5 is superior in accuracy and completeness, but not conciseness. They
are also supported by evidence in the literature that people often produce low-quality
documentation Aghajani et al (2019). In short, we find that in practice, GPT-3.5
outperforms people when writing software documentation.

4 Distilling GPT-3.5

This section discusses the knowledge distillation process and evaluation. Our objective
is to study knowledge distillation of a large language model for code summarization,
using the norms for model architecture and datasets prevalent in current literature.
Therefore, we ask the following Research Question:

RQ2 How closely do language models mimic GPT-3.5 for code summarization, across
different model and dataset sizes?

Chia-Yi Su and Collin McMillan Accepted to Automated Software Engineering Journal

By “different model sizes”, we mean models in terms of numbers of parameters.
Much of the current research frontier is focused on Generative Pretrained Transformer
(GPT)-like models, with model size considered a major contributor to both model
output quality and resource cost (Xu et al, 2023). One goal of RQ2 is to help decision-
making in balancing model output quality and costs. It is likely that a “price break”
will emerge after which the expense of model size will increase faster than output
quality gains, and practitioners may wish to choose a model at this break point.
Likewise, by “different dataset sizes”, we mean size in terms of number of samples. We
collected 2.15m samples from GPT-3.5 in Section 3, though it is possible that fewer
samples are needed. Additional samples increase training cost, so it may be desirable
to use fewer samples.

4.1 Distillation Process for Decoder-only Language Models

At a high level, our distillation process is straightforward: we fine-tune a pretrained
language model to generate source code summaries, using the summaries generated
by GPT-3.5 as training samples. We use a fine-tuning process proposed by Su et al
(2023) wherein we use a training prompt of the form:

TDAT: <Java method code>

COM: <summary of Java method>

We create training prompts in this form for the entire 2.15m samples we collected
from GPT-3.5 in Section 3. During fine-tuning, we use the standard autoregressive
process in which the model learns to produce each token in the prompt conditioned
on all previous tokens. The model will learn to generate code one token at a time
after the TDAT, then learn to generate a summary comment after the COM. The model
will learn to generate summary comments one token at a time, conditioned on the
previous tokens in that comment, as well as the Java code prior to the COM token.
In almost all cases, the first word of the summary is an action word such as “gets”,
“prints”, or “calculates”, so the model learns to decide this word based on the Java
code (Haque et al, 2021). The model decides the next word using the action word and
the Java code, and continues until it produces an end-of-sequence token to denote the
summary’s end.

4.2 Subject Decoder-only Language Models

We fine-tune two language model architectures as part of our study, using different
settings for the model and dataset sizes. Because the heart of our target model for dis-
tillation, GPT-3.5, is a decoder-only Transformer (Brown et al, 2020), both language
model architectures we use are also decoder-only Transformers. One is a called jam and
is a GPT-2-like model that is pretrained using 52m Java methods. The jam model was
released by Su et al (2023) as a language model for working with Java code. The 52m
Java methods in the pretraining dataset are searchable for code clones, to limit the
possibility of data leakage from test to training set. The pretraining dataset excludes
8k samples in funcom-java-long test set, which we used in the study in Section 3 and
later in this section. We use the key configuration parameters in Table 3, which in a

Accepted to Automated Software Engineering Journal Chia-Yi Su and Collin McMillan

GPT-2-like architecture such as jam result in total network parameter sizes of 350m,
110m, and 38m.

As an alternative, we use starcoder (Li et al, 2023b), which is a 15.5B parameter
GPT-2-like model. The starcoder model is pretrained with “The Stack”, which is a
collection of 6TB of source code in over 350 programming languages. This model serves
as a strong alternative to jam because it represents a state-of-the-art language model,
with billions of parameters and an internet-scale pretraining dataset size. Whereas jam
is an inexpensive model with very closely-controlled experimental variables, starcoder
is an industrial-strength model with more potential variables due to the much larger
and difficult-to-search pretraining data (i.e., there is more risk of data contamination).

jam starcoder

d embedding dimension 512 768 1024 6144
L number of layers 4 10 24 40
h attention heads 4 8 16 48
r learning rate 3e-5 3e-5 3e-5 1e-4
e epochs 3 3 3 3
o dropouts 0.2 0.2 0.2 0.05

total number of parameters 38m 110m 350m 15.5B

Table 3: Key model settings and parameters sizes.

4.3 Subject Encoder-Decoder Language Models

In addition to decoder-only transformer GPT architecture, we also use encoder-
decoder models to distill the knowledge of GPT-3.5 for code summarization. We train
attendgru (LeClair and McMillan, 2019), transformer (Ahmad et al, 2020), and
setransformer (Li et al, 2023c) for 10 epochs on four different datasets. We pick the
one with the best accuracy on the validation set as the model for prediction. Table
4 shows the settings and parameters that we use for encoder-decoder models. We
summarize three different models as follows:

attendgru is the model that uses GRU as a backbone with the attention
mechanism to form the encoder-decoder architecture.

transformer uses multi-head attention with the key, query, and value vector for
parallelization of the attendgru model.

setransformer uses transformer as a base with an additional context, abstract
syntax tree of the function, as an input and computes the convolution of each input
feature.

Parameters Description Settings
d embedding dimension 100
b batch size 50
l learning rate 0.001
s summary vocabulary size 10,908
f functions vocabulary size 70k
t number of tokens for functions 50
c number of tokens for summaries 13

Table 4: Settings for encoder-decoder models

Chia-Yi Su and Collin McMillan Accepted to Automated Software Engineering Journal

4.4 Dataset Sizes

We use four dataset sizes during fine-tuning: 2.15m, 1.25m, 620k, and 170k. The 170k
dataset size uses the same Java methods in the training set from funcom-java-long to
maintain consistency with previous studies and enable experiments comparing against
human-written references (all 170k Java methods in funcom-java-long have human-
written summaries, which we remove prior to fine tuning and replace with GPT-3.5-
generated summaries). We then randomly sub-sample the 2.15m dataset of GPT-3.5-
generated summaries we created in Section 3 and add these to the 170k, to create
1.25m and 620k datasets. The 2.15m dataset also contains the 170k samples. Thus,
all dataset sizes contain the same 170k Java methods for comparison, with additional
samples added for a maximum size of 2.15m.

4.5 Hardware and Software Requirement

We use NVIDIA RTX A5000 GPU with 24GB VRAM and Intel i9-10900X CPU with
128GB RAM as the hardware to train the models. In addition, we use Pytorch 2.0.1,
transformers 4.29.2, and tensorflow 2.12.0 as our software.

4.6 Evaluation Metrics

We use two metrics for evaluation: METEOR and USE. METEOR (Banerjee and
Lavie, 2005) is a metric that considers the similarity between each word and word
overlap for evaluation. USE (Haque et al, 2022) is a metric that encodes the reference
and the predicted summary to a fixed-length vector by using universal encoder and
computes the similarity scores between two summaries. Haque et al (2022); Roy et al
(2021) point out that METEOR and USE are closer to human preference because
these metrics assign partial credits to words instead of treating the importance of
the words equally. Therefore, older metrics that only consider word overlap such as
BLEU (Papineni et al, 2002) are considered as deprecated so we don’t report it.

4.7 RQ2 Results

The automated metrics METEOR and USE indicate a general trend towards bet-
ter matching of GPT-3.5 as the training dataset and number of model parameters
increases, as shown in Tables 5 and 6. The METEOR score for the 170k dataset using
the 38m parameter jam model is 33.88, which rises to 40.73 for the 350m parameter
jam model and 44.8 for starcoder. Likewise, the 40.73 score for the 350m jam model
rises to 44.77 as the dataset increases from 170k to 2.15m samples. The USE scores
show the same pattern, with the 350m jam model ranging between 68.21 and 70.85
as the dataset size increases. This pattern is not surprising given that larger model
and dataset sizes are widely regarded as resulting in better automated scores in many
domains (Schaeffer et al, 2023), and are consistent with a view that the models are
able to learn to mimic at least a portion of GPT-3.5’s ability to summarize code.

A “price break” occurs favoring the use of the 350m jam model. Table 7 shows that
starcoder is 28 times more expensive than the 350m jam model, yet reaches only 10%
higher METEOR and 5% higher USE scores. The starcoder model was not feasible

Accepted to Automated Software Engineering Journal Chia-Yi Su and Collin McMillan

to fine tune for the 2.15m dataset due to an estimated 14 days cost requirement,
while previous metric increases were low (less than 1% difference in USE between
1.25m and 620k datasets, for example). In contrast, the 350m jam model cost is only
slightly higher than smaller models, and can be operated on a single 16GB GPU (Su
et al, 2023). Note that while it is tempting to write off training (or even inference)
costs as sunk costs, in fact model expense is a key engineering detail affecting model
deployment and cost/benefit analyses in industrial products (Bender et al, 2021).
Overall, the 350m jam model provides a balance between cost and performance.

We find that the performance of some models such as 38m and 110m parameter jam
does not increase as the data size increases. For example, in the 38m parameter jam,
170k data size outperforms any other datasets that are larger than 170k. Pérez-Mayos
et al (2021) also observed the similar phenomenon that the performance of certain
models do not always increase as the data size increases in the syntactic generation
task. The possible explanation is that models learn the trivial features when the models
are not large enough for the certain size of dataset (Chang and Bergen, 2023). Also,
the smaller models saturate faster than the larger models (Zhai et al, 2022). This
can further show that the 350m parameter jam is small enough to operate on 16GB
GPU (Su et al, 2023), but large enough to mimic the portion of GPT-3.5’s ability for
code summarization.

In terms of the encoder-decoder language models, we find that the attendgru

and setransformer follow the trend of reverse performance when they reach certain
amount of data size. For example, attendgru has the best performance at 620k data

jam starcoder encoder-decoder

38m 110m 350m 15.5B attendgru transformer setransformer

d
a
ta
se
ts 170k 33.88 36.71 40.73 44.8 22.39 23.17 21.33

620k 28.29 33.98 41.57 45.59 22.88 23.59 22.93
1.25m 30.19 35.58 42.63 46.38 16.64 25.10 23.18
2.15m 32.11 37.18 44.77 - 19.53 25.38 22.45

Table 5: METEOR scores for RQ2.

jam starcoder encoder-decoder

38m 110m 350m 15.5B attendgru transformer setransformer

d
a
ta
se
ts 170k 62.52 64.88 68.21 71.55 48.94 50.49 42.54

620k 57.78 62.84 69.24 72.16 50.17 51.19 47.27
1.25m 59.67 64.28 70.08 72.74 40.93 52.84 46.94
2.15m 60.43 64.82 70.85 - 45.14 53.33 44.83

Table 6: USE scores for RQ2.

jam starcoder encoder-decoder

38m 110m 350m 15.5B attendgru transformer setransformer

d
a
ta
se
ts 170k 0.2 0.3 1.0 28 0.05 0.05 0.07

620k 0.5 1.5 3.5 97 0.18 0.18 0.23
1.25m 0.9 2.5 6.5 195 0.37 0.45 0.78
2.15m 2.0 4.0 10.5 - 0.67 0.63 0.78

Table 7: Training time required in hours. The training time for jam and starcoder

is the complete finetuning time. The training time for encoder-decoder models is
the training time for one epoch.

Chia-Yi Su and Collin McMillan Accepted to Automated Software Engineering Journal

size instead of 2.15m data size. This is because the models are much smaller than
our pretrained models. Compared with the pretrained 38m and 110m parameter jam
models, attendgru reaches the plateau at 620k data size instead of 170k data size
because we train the model from scratch. Although we observe that performance of
transformer increases as the data size increases, the improvement of transformer
is relative small compared with 350m parameter jam (4.8% improvement on 350m
parameter jam versus 1.1% on transformer between 2.15m and 1.25m dataset, for
example). All things considered, we show that 350m parameter jam is the better model
for the knowledge distillation for code summarization.

5 GPT-3.5 and Distilled Summaries Comparison

This section discusses our comparison with human experts of source code summaries
generated by GPT-3.5 to summaries generated by the 350m parameter version of the
jam model trained with the 2.15m example dataset. The purpose of this compari-
son is to measure how closely the jam model replicates GPT-3.5 for the task of code
summarization. We chose to compare the 350m parameter version of the jam model
instead of the various alternatives in Section 4 because the 350m jam model achieves
a balance between performance and affordability. This model is within 10% perfor-
mance of starcoder in terms of METEOR and USE scores (e.g., 44.8 versus 40.73
METEOR), while also requiring only a single 16GB GPU a relatively short amount of
time. The starcoder model does have higher performance, but at much higher cost.
Meanwhile, the 350m parameter jam model achieves a greater-than 10% improvement
in METEOR and USE scores over the 110m parameter model, at relatively low cost in
practice. The 350m parameter jam model is a balance between cost and performance.
To compare jam to GPT-3.5, we ask the following RQ:

RQ3 How closely does the distilled model mimic GPT-3.5 for code summarization,
as measured by human experts?

Our rationale for asking this question is that while the study in Section 4 measures
how well different models mimic GPT-3.5 in terms of automated metrics, these auto-
mated metrics are known to diverge from human expert opinion at times (Novikova
et al, 2017). To fill this potential gap, we also perform a study with human experts to
compare the models based on human preference. Our research method to answer RQ3
is identical to how we answer RQ1, except that we change the source of the samples
and recruit a new group of participants. We use the same survey pages and ask the
same questions. As with RQ1, we do not mark the summaries as coming from any
particular model, to avoid demand characteristic bias (Dell et al, 2012). We recruit 15
new participants via the Prolific platform using the same criteria as for RQ1. Also,
we randomly select 150 functions from 450 functions that we use for the first study to
answer RQ3 and recruit five different participants to evaluate the summary with the
same criteria to reduce bias as in RQ1.

Figure 5 depicts the results. In short, we do not observe a statistically-significant
difference between the 350m parameter jam model and GPT-3.5 in terms of accu-
racy, completeness, or conciseness. The mean value for accuracy and completeness for

Accepted to Automated Software Engineering Journal Chia-Yi Su and Collin McMillan

6 Discussion/Conclusion

This paper moves the state-of-the-art forward in three key ways:

1. We present a study comparing source code summaries generated by GPT-3.5 to
summaries provided as references with the code itself. We found that human readers
preferred the summaries generated by GPT-3.5 by a significant margin. This result
has two important implications. First, AI-based models are likely to be useful tools
for augmenting or even replacing documentation written by people, which supports
a vision of researchers for on-demand developer documentation (Robillard et al,
2017). Second, the research community may reconsider using human-written refer-
ences as the gold standard for training and evaluating source code summarization
tools. AI-based models may be superior at times.

2. We present a study in which we distilled GPT-3.5’s code summarization abilities
into several smaller models and thoroughly examine the exact model and data size
for knowledge distillation on code summarization. Some of these models are several
orders of magnitude smaller than GPT-3.5, and yet are able to achieve comparable
results in a large portion of instances when measured by the automated metrics
METEOR and USE. Specifically, we observe that 350m jam model with 2.15m data
is a tradeoff. A key advantage to these models is that they can be run locally, with
tractable costs for many consumers (a single 16GB consumer GPU, for instance).
Local model execution means local custody of data. With our distilled model, it is
possible to replicate much of the benefit of a large model for code summarization,
without losing control of ones sensitive data and source code.

3. We present a study comparing GPT-3.5 to a distilled model (350m parameter
jam) with human experts. This study shows how jam is able to reproduce GPT-
3.5 for code summarization. We did not observe a statistically-significant difference
between the summaries from the two models in terms of accuracy, completeness,
or conciseness. We did observe a slight preference favoring GPT-3.5 in direct com-
parisons by participants (52% GPT-3.5, 46% jam, 2% undecided). Overall, these
results support a conclusion that an inexpensive model such as 350m jam can repli-
cate a very large model such as GPT-3.5 for the task of code summarization when
provided sufficient examples.

Finally, we release all data and code for our studies and approach via an online
appendix. We encourage reproducibility of our results, as well as access to the
technology via our implementation in Data and Code Availability Section.

Funding

This work is supported in part by NSF CCF-2100035 and CCF-2211428. Any opinions,
findings, and conclusions expressed herein are the authors and do not necessarily reflect
those of the sponsors.

Chia-Yi Su and Collin McMillan Accepted to Automated Software Engineering Journal

Contributions

Chia-Yi Su did the experiments and implemented the code for finetuning tasks. Collin
McMillan wrote the manuscript, built the infrastructure and generated the dataset for
experiments.

Conflict of Interest

The authors declare that they have no competing interests.

Data Availability

All of the datasets and models are in our APCL Hugginface repository,
https://huggingface.co/datasets/apcl/Jam-CGPT and https://huggingface.co/apcl/
Jam-CGPT

Code Availability

We release our code for experiments in our APCL Github repository, https://github.
com/apcl-research/Jam-CGPT

References

Aghajani E, Nagy C, Vega-Márquez OL, et al (2019) Software documentation
issues unveiled. In: 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), IEEE, pp 1199–1210

Ahmad W, Chakraborty S, Ray B, et al (2020) A transformer-based approach for
source code summarization. In: Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics. Association for Computational Linguis-
tics, Online, pp 4998–5007, https://doi.org/10.18653/v1/2020.acl-main.449, URL
https://aclanthology.org/2020.acl-main.449

Allamanis M, Barr ET, Devanbu P, et al (2018a) A survey of machine learning for big
code and naturalness. ACM Comput Surv 51(4). https://doi.org/10.1145/3212695

Allamanis M, Brockschmidt M, Khademi M (2018b) Learning to represent programs
with graphs. In: International Conference on Learning Representations, URL https:
//openreview.net/forum?id=BJOFETxR-

Alon U, Brody S, Levy O, et al (2019a) code2seq: Generating sequences from struc-
tured representations of code. International Conference on Learning Representations
URL https://openreview.net/forum?id=H1gKYo09tX

Alon U, Zilberstein M, Levy O, et al (2019b) code2vec: Learning distributed
representations of code. Proceedings of the ACM on Programming Languages
3(POPL):1–29. https://doi.org/10.1145/3290353

Accepted to Automated Software Engineering Journal Chia-Yi Su and Collin McMillan

Banerjee S, Lavie A (2005) Meteor: An automatic metric for mt evaluation with
improved correlation with human judgments. In: Proceedings of the acl work-
shop on intrinsic and extrinsic evaluation measures for machine translation and/or
summarization, pp 65–72, URL https://aclanthology.org/W05-0909

Bansal A, Eberhart Z, Wu L, et al (2021a) A neural question answering system
for basic questions about subroutines. In: 2021 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER), pp 60–71, https:
//doi.org/10.1109/SANER50967.2021.00015

Bansal A, Haque S, McMillan C (2021b) Project-level encoding for neural source code
summarization of subroutines. In: 2021 IEEE/ACM 29th International Conference
on Program Comprehension (ICPC), IEEE, pp 253–264

Bender EM, Gebru T, McMillan-Major A, et al (2021) On the dangers of stochastic
parrots: Can language models be too big? In: Proceedings of the 2021 ACM Con-
ference on Fairness, Accountability, and Transparency. Association for Computing
Machinery, New York, NY, USA, FAccT ’21, p 610–623, https://doi.org/10.1145/
3442188.3445922

Brown T, Mann B, Ryder N, et al (2020) Language models are few-shot
learners. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances
in Neural Information Processing Systems, vol 33. Curran Associates, Inc.,
pp 1877–1901, URL https://proceedings.neurips.cc/paper files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Chang TA, Bergen BK (2023) Language model behavior: A comprehensive survey.
arXiv preprint arXiv:230311504

Chen Z, Jiang F, Chen J, et al (2023) Phoenix: Democratizing chatgpt across
languages. arXiv preprint arXiv:230410453

Danilova A, Naiakshina A, Horstmann S, et al (2021) Do you really code? designing
and evaluating screening questions for online surveys with programmers. In: 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE), IEEE,
pp 537–548

Delgado R, Tibau XA (2019) Why cohen’s kappa should be avoided as performance
measure in classification. PloS one 14(9):e0222916

Dell N, Vaidyanathan V, Medhi I, et al (2012) ” yours is better!” participant response
bias in hci. In: Proceedings of the sigchi conference on human factors in computing
systems, pp 1321–1330, https://doi.org/10.1145/2207676.2208589

Derner E, Batistič K (2023) Beyond the safeguards: Exploring the security risks of
chatgpt. arXiv preprint arXiv:230508005

Chia-Yi Su and Collin McMillan Accepted to Automated Software Engineering Journal

Donker D, Hasman A, Van Geijn H (1993) Interpretation of low kappa values.
International journal of bio-medical computing 33(1):55–64

Forward A, Lethbridge TC (2002) The relevance of software documentation, tools and
technologies: A survey. In: Proceedings of the 2002 ACM Symposium on Document
Engineering. Association for Computing Machinery, New York, NY, USA, DocEng
’02, p 26–33, https://doi.org/10.1145/585058.585065

Fowkes J, Chanthirasegaran P, Ranca R, et al (2017) Autofolding for source code sum-
marization. IEEE Transactions on Software Engineering 43(12):1095–1109. https:
//doi.org/10.1109/TSE.2017.2664836

Gao S, Chen C, Xing Z, et al (2019) A neural model for method name generation from
functional description. In: 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER), IEEE, pp 414–421, https://doi.
org/10.1109/SANER.2019.8667994

Ghorbani A, Cassee N, Robinson D, et al (2023) Autonomy is an acquired taste:
Exploring developer preferences for github bots. In: 2023 IEEE/ACM 45th Interna-
tional Conference on Software Engineering (ICSE), IEEE, pp 1405–1417

Github (2022) Co-pilot. URL https://github.com/features/copilot

Gou J, Yu B, Maybank SJ, et al (2021) Knowledge distillation: A survey. International
Journal of Computer Vision 129:1789–1819

Gudibande A, Wallace E, Snell C, et al (2023) The false promise of imitating
proprietary llms. arXiv preprint arXiv:230515717

Haiduc S, Aponte J, Moreno L, et al (2010) On the use of automated text summariza-
tion techniques for summarizing source code. In: 2010 17th Working Conference on
Reverse Engineering, IEEE, pp 35–44, https://doi.org/10.1109/WCRE.2010.13

Haldar R, Wu L, Xiong J, et al (2020) A multi-perspective architecture for
semantic code search. In: Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics. Association for Computational Linguistics,
Online, pp 8563–8568, https://doi.org/10.18653/v1/2020.acl-main.758, URL https:
//aclanthology.org/2020.acl-main.758

Haque S, LeClair A, Wu L, et al (2020) Improved automatic summarization of sub-
routines via attention to file context. International Conference on Mining Software
Repositories https://doi.org/10.1145/3379597.3387449

Haque S, Bansal A, Wu L, et al (2021) Action word prediction for neural source
code summarization. In: 2021 IEEE International Conference on Software Analy-
sis, Evolution and Reengineering (SANER), pp 330–341, https://doi.org/10.1109/
SANER50967.2021.00038

Accepted to Automated Software Engineering Journal Chia-Yi Su and Collin McMillan

Haque S, Eberhart Z, Bansal A, et al (2022) Semantic similarity metrics for evaluating
source code summarization. In: Proceedings of the 30th IEEE/ACM Interna-
tional Conference on Program Comprehension, pp 36–47, https://doi.org/10.1145/
3524610.3527909

Hellendoorn VJ, Sawant AA (2021) The growing cost of deep learning for source code.
Commun ACM 65(1):31–33. https://doi.org/10.1145/3501261

Hsieh CY, Li CL, Yeh CK, et al (2023) Distilling step-by-step! outperforming larger
language models with less training data and smaller model sizes. arXiv preprint
arXiv:230502301

Hu X, Li G, Xia X, et al (2018a) Deep code comment generation. In: Proceedings
of the 26th Conference on Program Comprehension. Association for Computing
Machinery, New York, NY, USA, ICPC ’18, p 200–210, https://doi.org/10.1145/
3196321.3196334

Hu X, Li G, Xia X, et al (2018b) Summarizing source code with transferred api
knowledge. In: Proceedings of the 27th International Joint Conference on Artificial
Intelligence. AAAI Press, IJCAI’18, p 2269–2275

Israel GD (1992) Determining sample size

Iyer S, Konstas I, Cheung A, et al (2016) Summarizing source code using a neural
attention model. In: Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Association for Compu-
tational Linguistics, Berlin, Germany, pp 2073–2083, https://doi.org/10.18653/v1/
P16-1195, URL https://aclanthology.org/P16-1195

Jiang S, Armaly A, McMillan C (2017) Automatically generating commit messages
from diffs using neural machine translation. In: Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering. IEEE Press, ASE
’17, p 135–146

LeClair A, McMillan C (2019) Recommendations for datasets for source code sum-
marization. In: Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pp 3931–3937

LeClair A, Jiang S, McMillan C (2019) A neural model for generating natural lan-
guage summaries of program subroutines. In: Proceedings of the 41st International
Conference on Software Engineering, IEEE Press, pp 795–806, https://doi.org/10.
1109/ICSE.2019.00087

Li J, Gui L, Zhou Y, et al (2023a) Distilling chatgpt for explainable automated student
answer assessment. arXiv preprint arXiv:230512962

Chia-Yi Su and Collin McMillan Accepted to Automated Software Engineering Journal

Li R, Allal LB, Zi Y, et al (2023b) Starcoder: may the source be with you! arXiv
preprint arXiv:230506161

Li Z, Wu Y, Peng B, et al (2023c) Setransformer: A transformer-based code semantic
parser for code comment generation. IEEE Transactions on Reliability 72(1):258–
273. https://doi.org/10.1109/TR.2022.3154773

Liang Y, Zhu KQ (2018) Automatic generation of text descriptive comments for code
blocks. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intel-
ligence and Thirtieth Innovative Applications of Artificial Intelligence Conference
and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence.
AAAI Press, AAAI’18/IAAI’18/EAAI’18

Liu S, Chen Y, Xie X, et al (2021) Retrieval-augmented generation for code summa-
rization via hybrid GNN. In: International Conference on Learning Representations,
URL https://openreview.net/forum?id=zv-typ1gPxA

Loyola P, Marrese-Taylor E, Matsuo Y (2017) A neural architecture for generating
natural language descriptions from source code changes. In: Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers). Association for Computational Linguistics, Vancouver, Canada,
pp 287–292, https://doi.org/10.18653/v1/P17-2045, URL https://aclanthology.org/
P17-2045

Lu Y, Zhao Z, Li G, et al (2019) Learning to generate comments for api-based code
snippets. In: Li Z, Jiang H, Li G, et al (eds) Software Engineering and Methodology
for Emerging Domains. Springer Singapore, Singapore, pp 3–14

Ma W, Liu S, Wang W, et al (2023) The scope of chatgpt in software engineering: A
thorough investigation. arXiv preprint arXiv:230512138

McBurney PW, Liu C, McMillan C (2016) Automated feature discovery via sen-
tence selection and source code summarization. Journal of Software: Evolution and
Process 28(2):120–145. https://doi.org/10.1002/smr.1768

Nie P, Rai R, Li JJ, et al (2019) A framework for writing trigger-action todo comments
in executable format. In: Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. Association for Computing Machinery, New York, NY, USA,
ESEC/FSE 2019, p 385–396, https://doi.org/10.1145/3338906.3338965

Novikova J, Dušek O, Cercas Curry A, et al (2017) Why we need new evalu-
ation metrics for NLG. In: Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing. Association for Computational Linguis-
tics, Copenhagen, Denmark, pp 2241–2252, https://doi.org/10.18653/v1/D17-1238,
URL https://aclanthology.org/D17-1238

Accepted to Automated Software Engineering Journal Chia-Yi Su and Collin McMillan

OpenAI (2022) Chatgpt. URL https://openai.com/blog/chatgpt

Papineni K, Roukos S, Ward T, et al (2002) Bleu: a method for automatic evaluation
of machine translation. In: Proceedings of the 40th annual meeting on association for
computational linguistics, Association for Computational Linguistics, pp 311–318,
https://doi.org/10.3115/1073083.1073135

Pérez-Mayos L, Ballesteros M, Wanner L (2021) How much pretraining data do
language models need to learn syntax? arXiv preprint arXiv:210903160

Robillard MP, Marcus A, Treude C, et al (2017) On-demand developer documenta-
tion. In: 2017 IEEE International conference on software maintenance and evolution
(ICSME), IEEE, pp 479–483, https://doi.org/10.1109/ICSME.2017.17

Rodeghero P, Jiang S, Armaly A, et al (2017) Detecting user story informa-
tion in developer-client conversations to generate extractive summaries. In: 2017
IEEE/ACM 39th International Conference on Software Engineering (ICSE), pp
49–59, https://doi.org/10.1109/ICSE.2017.13

Roy D, Fakhoury S, Arnaoudova V (2021) Reassessing automatic evaluation met-
rics for code summarization tasks. In: Proceedings of the ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), https://doi.org/10.1145/3468264.3468588

Schaeffer R, Miranda B, Koyejo S (2023) Are emergent abilities of large language
models a mirage? arXiv preprint arXiv:230415004

Shi L, Mu F, Chen X, et al (2022) Are we building on the rock? on the importance of
data preprocessing for code summarization. In: Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. Association for Computing Machinery, ESEC/FSE 2022, p
107–119

Sievertsen HH, Gino F, Piovesan M (2016) Cognitive fatigue influences students’ per-
formance on standardized tests. Proceedings of the National Academy of Sciences
113(10):2621–2624. https://doi.org/10.1073/pnas.1516947113

Sridhara G, Hill E, Muppaneni D, et al (2010) Towards automatically generating
summary comments for java methods. In: Proceedings of the IEEE/ACM inter-
national conference on Automated software engineering, ACM, pp 43–52, https:
//doi.org/10.1145/1858996.1859006

Su CY, Bansal A, Jain V, et al (2023) A language model of java methods
with train/test deduplication. In: 31st ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering,
Demonstrations (FSE’23 Demos)

Chia-Yi Su and Collin McMillan Accepted to Automated Software Engineering Journal

Sun W, Fang C, You Y, et al (2023) Automatic code summarization via chatgpt: How
far are we? arXiv preprint arXiv:230512865

Tang Y, da Costa AAB, Zhang J, et al (2023) Domain knowledge distillation from
large language model: An empirical study in the autonomous driving domain. arXiv
preprint arXiv:230711769

Wan Y, Zhao Z, Yang M, et al (2018) Improving automatic source code summarization
via deep reinforcement learning. In: Proceedings of the 33rd ACM/IEEE Interna-
tional Conference on Automated Software Engineering. Association for Computing
Machinery, New York, NY, USA, ASE ’18, p 397–407, https://doi.org/10.1145/
3238147.3238206, URL https://doi.org/10.1145/3238147.3238206

Wang L, Yoon KJ (2021) Knowledge distillation and student-teacher learning for visual
intelligence: A review and new outlooks. IEEE transactions on pattern analysis and
machine intelligence 44(6):3048–3068

Wang Y, Wang W, Joty S, et al (2021) CodeT5: Identifier-aware unified pre-trained
encoder-decoder models for code understanding and generation. In: Moens MF,
Huang X, Specia L, et al (eds) Proceedings of the 2021 Conference on Empir-
ical Methods in Natural Language Processing. Association for Computational
Linguistics, Online and Punta Cana, Dominican Republic, pp 8696–8708, https:
//doi.org/10.18653/v1/2021.emnlp-main.685, URL https://aclanthology.org/2021.
emnlp-main.685

Xu C, Xu Y, Wang S, et al (2023) Small models are valuable plug-ins for large language
models. arXiv preprint arXiv:230508848

Yu Y, Zhuang Y, Zhang J, et al (2023) Large language model as attributed training
data generator: A tale of diversity and bias. arXiv preprint arXiv:230615895

Zagoruyko S, Komodakis N (2016) Paying more attention to attention: Improv-
ing the performance of convolutional neural networks via attention transfer. In:
International Conference on Learning Representations

Zhai X, Kolesnikov A, Houlsby N, et al (2022) Scaling vision transformers. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp 12104–12113

Zhang R, Han J, Zhou A, et al (2023) Llama-adapter: Efficient fine-tuning of language
models with zero-init attention. Parameters 7:13B

Zügner D, Kirschstein T, Catasta M, et al (2021) Language-agnostic represen-
tation learning of source code from structure and context. In: International
Conference on Learning Representations, URL https://openreview.net/forum?id=
Xh5eMZVONGF

