
1. Introduction
Thwaites Glacier (TG) is uniquely situated in the warmer Amundsen Sea Sector, on a largely retrograde bed slope 
located below sea level. It is hypothesized that its rapid retreat may cause unbounded drainage of ice triggered 
by instabilities that could destabilize the West Antarctic Ice Sheet (Joughin et al., 2014; Scambos et al., 2017). 
Satellite observations indicate an acceleration of the glacier on its bed, likely initiated by the progressive loss 
and severe damage of its floating extensions and the large retreat rates experienced by some parts of its ground-
ing line (Milillo et al., 2019; Rignot et al., 2013). Basal processes are critically responsible for faster retreat of 
the ice sheets and are notoriously difficult to observe and parameterize in models, particularly for a large and 
rapidly-evolving glacier like TG. Model intercomparison experiments highlight the lack of consensus on the 
representation of physical processes as a major cause of the large variations in sea level rise projections (e.g., 
Cornford et al., 2020; Goelzer et al., 2020; Seroussi et al., 2020).

Numerical ice sheet models use basal sliding laws that connect basal shear stress with ice velocity for projections 
of an ice sheet's contribution to sea level. A number of sliding laws have been proposed in literature. These include 
Weertman's sliding law that relates to hard non-deformable beds as well as those that incorporate Coulomb's fric-
tion law to simulate faster flow processes and transport of sediments (Iverson et al., 1998; Schoof, 2006; Tsai 
et al., 2015, 2017; Zoet & Iverson, 2020). The choice of the sliding law in numerical ice sheet models is important 
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because it compounds to the large uncertainty in projections of sea level rise (De Rydt et al., 2021; Helanow 
et al., 2022; Joughin et al., 2019; Nias et al., 2019; Nowicki et al., 2013).
Catchment-wide observations of bed conditions are necessary to constrain basal conditions in ice sheet models. Local-
ized seismic studies on TG show variable bed characters with regions of soft, deforming till as well as pooled ground 
water (Muto et al., 2019). Sedimentary deposits beneath the main trunk and tributaries of the neighboring Pine Island 
Glacier are inferred from seismic reflection studies (Brisbourne et al., 2017). High-resolution radar data (DELORES 
monopulse radars) collected over ∼1,500 km 2 over Pine Island Glacier's tongue also demonstrate contrasting topog-
raphy across the ice-bed interface that influences ice flow (Bingham et al., 2017). Basal reflectivity derived from 
airborne ice-penetrating radar data has been used to interpret basal conditions underneath TG, in particular the 
presence of liquid water, and subglacial hydrology (Chu et al., 2021; Peters et al., 2005; Schroeder et al., 2016). 
In this work, we explore whether the ice sheet model inferred basal sliding-law parameter β 2 used to constrain 
Weertman's sliding law (Figures 1a–1c; from Barnes et al., 2021) and relative basal reflectivity (Figures 1d–1e; from 
Chu et al., 2021) correlate well and identify similar conditions at the bed underneath Thwaites (Figure 1f).

2. Data Sets Used for the Correlation Experiments
2.1. Ice Sheet Model Inferred Basal Sliding-Law Parameter β 2

We use the basal sliding-law parameter β 2 from Barnes et al. (2021). β 2 used here is inferred from three ice sheet 
models: Ice-sheet and Sea-level System Model (ISSM; Larour et al., 2012), Úa (Gudmundsson, 2020) and the 
STREAMICE module of MITgcm (Goldberg & Heimbach, 2013). β 2 is inferred from velocity inversions using 
an adjoint framework (MacAyeal, 1993) and is also referred to as the basal friction or roughness coefficient. All 
three models employ Weertman's sliding law (Weertman, 1957) parameterized in Equations 1–3:
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Úa ∶ "# = ($ + $0)
−
1

%
(
‖&#‖

2
+ &0

2
)(1−%)∕2%

&# (2)

STREAMICE ∶ !" = #2
(
‖$"‖

2
+ $0

2
)(1−%)∕2%

$" (3)

where ! "# is the basal shear stress and ! "# is the basal velocity. β is squared to avoid negative values and includes 
the model regularization terms ! "0 and ! "0. The sliding law exponent m is held constant at m = 3 in the inversions. 
Úa inverts for basal sliding coefficient ! " which has been converted to β 2 using ! " =

(
#2
)−$ to align with ISSM 

and STREAMICE.

2.2. Airborne Radar-Derived Relative Basal Reflectivity
We use the published relative basal reflectivity values from Chu et  al.  (2021) for statistical correlations 
with β 2. For ease of reading, we briefly describe their methodology here; for more details, the readers are 
referred to Chu et al.  (2021). They use an adaptive empirical slope-based attenuation correction technique 
for calculating basal reflectivity (Schroeder et al., 2016). In this technique, the radar attenuation through ice 
is calculated within an initial radius of 20 km which can be adaptively incremented to a maximum radius of 
500 km until a fixed set of criteria is met (Chu et al., 2021). The reflectivity values are relative because the 
mean reflectivity value has been subtracted from the total reflectivity values. The relative reflectivity values 
are also corrected for basal roughness and geometric spreading losses (Chu et al., 2021; Jordan et al., 2017; 
Matsuoka et al., 2010). Higher relative reflectivity values (≥10–20 dB) are used to identify subglacial water 
(Chu et al., 2016; Peters et al., 2005) and intrusion of sea water into the grounding zone (Parizek et al., 2013). 
Other studies have used the specularity content of radar data to investigate subglacial drainage geometry (e.g., 
Schroeder et al., 2013).

3. Methods: Statistical Experiments to Compare Observed and Modeled Basal 
Parameters
3.1. Correlation Techniques
A parametric relation between β 2 and relative basal reflectivity has not been developed yet. As an initial guess, we 
assume that β 2 and relative basal reflectivity are linearly related. For a linear parametric relation, Pearson's corre-
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lation coefficient is an appropriate technique to test the robustness and direction of association of the relation. 
Typically, a range of values is often proposed where a strong linear correlation is indicated by ‖!‖  > 0.7; and no 
correlation is indicated by ‖!‖  < 0.3. These ranges and the limits that define strong, moderate, and weak correla-
tions are often arbitrary and should be judiciously interpreted (e.g., Schober et al., 2018). Researchers generally 
agree that very strong correlations approach a straight line (in either direction) with Pearson's correlation coeffi-
cient approaching ‖!‖  > 0.9 (Schober et al., 2018; Wackerly et al., 2008). However, a nonlinear relation between 
the variables will also output a low value of Pearson's correlation coefficient. If a nonlinear or curvilinear relation 
is suspected, Spearman's correlation coefficient is often calculated. In this work, we calculate both Pearson's and 
Spearman's coefficients for the β 2– relative reflectivity pair.

3.1.1. Pearson's Correlation Coefficient
The formula for Pearson's correlation coefficient (r) is
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1
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∑
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$ − $

)
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Figure 1. The modeled and observational datasets used for the correlation experiments: (a–c) β 2 inversions inferred from three ice sheet models (see Barnes 
et al., 2021); (d) AGASEA-BBAS radar-derived relative basal reflectivity from 2004 to 2005 (see Chu et al., 2021); (e) Histogram of the relative reflectivity data from 
(d); (f) Location of Thwaites Glacier (TG) in Antarctica.
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where n is the number of pairs of data; ! and ! are the sample means of all the x and y values, respectively (here 
the β 2 and relative reflectivity values); and ! "# and ! "# are the sample standard deviations of the x and y values, 
respectively (Pearson, 1895).
3.1.2. Spearman's Correlation Coefficient
Spearman's rank correlation (also called Spearman's correlation or Spearman's ! " ) does not require the relation-
ship between the variables x and y to be linear. It can be used for non-normally distributed data, and is relatively 
robust to outliers (Equation 5; Spearman, 1904). Spearman's rank correlation is similar to Pearson's correlation 
except that it is calculated based on the ranks of the x and y variables rather than the actual values: 

! = 1 −
6
∑

"2

#(#2 − 1)
 (5)

where d is the difference between the ranks of the two columns, and n is the sample size.

A value of 1 indicates that the two variables are not independent, and a value of zero indicates that the two varia-
bles are independent. Any value in-between conveys the degree of dependency between the two variables.

3.2. Preparing the Data Sets for the Correlation Experiments
We carry out the correlation experiments on two spatial scales: local scale and on a 15 km averaging box. For 
the first experiment, we interpolate β 2 directly on the original radar grid points and calculate Pearson's and 
Spearman's correlation coefficients. We call this experiment the “local-scale experiment.” Because β 2 is inferred 
from numerical models with resolutions coarser than the radar data, the relative basal reflectivity and β 2 may not 
agree well on smaller spatial scales (Kyrke-Smith et al., 2017). Therefore, we also correlate the two variables 
on a larger spatial scale of 15 km. For this, we define boxes of 15-km widths around each radar coordinate and 
correlate the mean and the median values of the relative reflectivity with the mean of β 2 within this box. This is 
our “spatially-averaged experiment.”

We also examine how higher values of m would impact the correlation results. We choose m = 20 which would 
represent a near-plastic bed (De Rydt et al., 2021; Gillet-Chaulet et al., 2016) in Equations 1–3, and carry out a 
simple scaling experiment described by Equations 6–8.

For this test, we note that wherever the ice sheet is grounded, the ice-sheet momentum balance used in the models 
dictates that basal drag is equal to the sum of the driving stress τd and membrane stress ! "(#$) , that is,

!" +#($%) = !%($%) (6)

Both membrane stress and basal drag have a dependence on velocity, which is made explicit here. However, if the 
functional dependence of basal drag on velocity were to be changed, the balance would still hold with the same 
velocity field, as long as basal drag were unchanged (Felikson et al., 2022; Brondex et al., 2019, 2017; Text S1 
in Supporting Information S1). Thus, a higher value for m is considered as follows. We define a new basal drag 
coefficient ! "2

20
 through the relationships
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where β 2 is the sliding law parameter corresponding to m = 3 and ! "2

20
 is the sliding law parameter corresponding 

to m = 20; and we carry out the correlations with ! "2

20
 derived from Equation 8.

4. Results
The spatial variation of β 2 and the corresponding relative reflectivity values over the Thwaites domain are shown 
in Figure 1. In general, β 2 values decrease from the upstream areas to the grounding zone. Conversely, the relative 
reflectivity values increase from upstream to the grounding zone. This is expected, because ice slides faster on 
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a thawed bed that offers lower resistance and generally has low β 2 and high relative reflectivity (e.g., box a1, 
Figure 2a). Initial assessment therefore suggests a negative correlation between the two parameters. However, 
both parameters have local variability. For example, pockets of higher relative reflectivity as high as the values 
near the grounding zone are observed in the upper elevations areas (box a2, Figure 2a). The corresponding β 2 
values in this region are also high. The coherent nature of the relative reflectivity values suggests that these are 
likely not artifacts or errors in the data. Localized friction heating due to rougher bed could be responsible for the 
high relative reflectivity values in these areas.
The scatterplots of the β 2–relative reflectivity pair for the local-scale experiment are shown in Figures 2b–2d for 
the three ice sheet models. The warmer colors of the scatterplots indicate a higher density of points. Although 
the relative reflectivity values stretch from −50 to 50 dB in Figures 2b–2d, the number of points beyond −40 and 
+40 dB are insignificant (Figure 1e; Chu et al., 2021). The strength of the relation is specified by Pearson's and 
Spearman's correlation coefficients (Table 1). Pearson's coefficient ranges from −0.26 to −0.34 for the local-scale 
experiment for the three ice sheet models. The local-scale Spearman's coefficient is higher than Pearson's coeffi-
cient and ranges from −0.35 to −0.37 for the three models.
As we increase the size of the box to 15 km for the spatially-averaged experiment, Pearson's correlation coeffi-
cient shows a slight improvement and ranges from −0.29 to −0.37 for the three ice sheet models (Table 1). This 
range includes both the mean and the median filters used for averaging the relative reflectivity values in the 15 km 
boxes. As noted previously, the minimum radius for calculating the attenuation rates is 20 km (Chu et al., 2021). 
As the relative reflectivity values are sensitive to the choice of the attenuation rates, we anticipate that the relative 
reflectivity grid may be somewhat smoothed if one single attenuation rate is used for at least 20 km. In some 
difficult areas, this radius could be higher. We chose not to increase the averaging box to >15 km because it is not 
clear that would be physically justified for a fast-moving glacier such as Thwaites. We infer that as the correlation 
coefficients are lower than 0.4 (with a negative or downhill trend), a robust relation does not exist between the 
two variables. All three models perform similarly in all the experiments.
Our experiment with a higher value of m (m = 20) representing a near-plastic bed rheology (Equation 8) yields a 
Pearson's correlation coefficient of 0.12, 0.13, and 0.11 for ISSM, Úa and STREAMICE respectively (Table 1) 
indicating no correlation between the two parameters. In fact, our calculations indicate that any value of m 
between 3, which is usually used, and 20, which is an extreme case, does not improve the correlation (see Text 
S1 in Supporting Information S1).
The standard deviations of β 2 and relative reflectivity (Figures 3a–3d) are calculated within the 15 km boxes 
and demonstrate how variability in bed conditions are disparately captured by models and observations. For 
example, all three models show high standard deviations at one side of the grounding zone (x ≈  −1,500 km 
and y ≈  −500 km) with low relative reflectivity variations. In contrast, the high variability in relative reflec-
tivity values in the region around x ≈  −1,300 km and y ≈  −650 km are not equally identified by the three 
models.

5. Discussions
In this work, we compare model-inferred β 2 with relative basal reflectivity and observe no robust correlations. 
Based on limited observations of the bed underneath Thwaites and Pine Island glaciers (Bingham et al., 2017; 
Brisbourne et al., 2017; Muto et al., 2019), we know that the bed conditions underneath both of these glaciers 
are variable, with regions of soft, deformable till and scattered presence of water. Is it possible that incorporating 
effective pressure via Coulomb friction would have correlated better with the relative basal reflectivity? Would 
the correlations have been different for a slower flowing glacier? These questions highlight the unknown bed 
conditions over large/catchment scales that impact ice flow. With improved geophysical observations of the bed 
along larger spatial domains, these avenues can be explored.
The choice of the exponent m could also influence the inferred spatial distribution of β 2. On the Pine Island 
Glacier catchment, the value of m has been inferred to be ∼20, closely aligned with a near-plastic bed rheology 
(De Rydt et al., 2021; Gillet-Chaulet et al., 2016). However, our simple experiment with m = 20 does not yield 
a better Pearson's correlation coefficient over TG. The low correlation values achieved with m = 3, 7, 10, and 
20 (Text S1, Supporting Information S1) indicate that any other value of m between 3 and 20 in Weertman's 
sliding law is unlikely to improve the correlation of β 2 with the relative basal reflectivity used in this analysis. 
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Figure 2. Correlation experiments: (a) Spatial variation of sliding-law parameter β 2 and relative basal reflectivity; a1 shows 
regions where relative reflectivity is high with generally low β 2, and a2 is a region where a localized pocket of high relative 
reflectivity is associated with high β 2; (b–d) Scatterplots of β 2 with relative basal reflectivity for the local-scale experiment 
(b) ISSM; (c) Úa; (d) STREAMICE (note the shorter x-axis scale for STREAMICE due its smaller spread of β 2).
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Most sliding laws currently used follow Weertman-like behavior throughout 
most of the domain, with the Coulomb friction component only active in 
a narrow band near the grounding line. Therefore, it is probable that any 
catchment-scale correlation would be similar to what we have calculated in 
this paper.

The physical interpretation of the relative basal reflectivity values is also 
non-unique as in-situ measurements of basal conditions are very rare and 
comparisons cannot be readily made. Multiple processes—including subgla-
cial water, frictional heat dissipation, water saturated sediments at the 
bed— can all result in high relative reflectivity values. In addition, meas-
urement errors influence the values of the correlation coefficients (Saccenti 
et al., 2020; Spearman, 1904). With increased complexity of instruments and 
measured values, measurement errors are heterogenous, spatially variable 
and not independent. For example, including the uncertainties in relative 

Figure 3. Standard deviations of β 2 and relative basal reflectivity within the 15 km box used in the correlation experiments (a) for ISSM (b) Úa (c) STREAMICE and 
(d) relative basal reflectivity.

Table 1 
Correlation Values Between β 2 and Relative Basal Reflectivity

Ice sheet 
model

Pearson's 
correlation 
coefficient 

(local-
scale) 
m = 3

Spatially-averaged 
15 km mean/

median filtered 
correlation 
experiment 

(Pearson's) m = 3

Spearman's 
correlation 
coefficient 

(local-
scale) 
m = 3

Pearson's 
correlation 
coefficient 

(local-
scale) 

m = 20

ISSM −0.26 −0.3/−0.29 −0.35 0.12
Úa −0.28 −0.32/−0.31 −0.34 0.13
STREAMICE −0.34 −0.38/−0.37 −0.37 0.11
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basal reflectivity (Figure S1, Equations S1 and S2 in Text S2 of Supporting Information S1) provided by Chu 
et al. (2021) leads to an increase in ‖!‖ , although very nominal, for all three ice sheet models, for both Pearson's 
and Spearman's methods (Table S1 in Text S2 of Supporting Information S1).

Our rationale for comparing the β 2–relative reflectivity pair is based on the assumption that they should be 
related via ice velocity. Our similar exercise of comparison of relative basal reflectivity with modeled ice velocity 
shows a better agreement with a Pearson's correlation coefficient of ∼0.53 and a Spearman's coefficient of ∼0.61 
(Figures 4a and 4b). An initial assessment of the point cloud distribution of the velocity–relative reflectivity pair 
suggests the presence of a relation that is likely non-linear. Further work is needed to parameterize the velocity–
relative reflectivity relation. It also needs to be assessed whether this point-cloud distribution is sensitive to the 
correction for attenuation rates through ice.
It should be noted that the correlations, although low, are uniformly negative for the β 2–relative reflectivity pair 
with m = 3, and positive for the relative reflectivity–velocity pair. At least this is physically valid. Exploring how 
relative basal reflectivity could be related to other processes such as intrusion of seawater near the grounding 
zone would be useful for interpreting complex basal conditions.

6. Conclusions
We compare inversions of β 2, known as the basal sliding-law parameter in Weertman's sliding law from three 
ice sheet models ISSM, Úa and STREAMICE with airborne radar-derived relative basal reflectivity from the 
AGASEA-BBAS mission. Pearson's correlation coefficient for the β 2–relative reflectivity pair ranges from −0.26 
to −0.38 for all three ice sheet models. Spearman's correlation coefficient, often used if a curvilinear relationship 
is suspected, ranges from −0.34 to −0.37 for the three models. Based on the low values of the correlation coeffi-
cients, we conclude that a robust relationship does not exist between the β 2–relative reflectivity pair. The correla-
tions do not improve even when a higher value of m is used. For relative basal reflectivity to provide independent 
constraints on the sliding law parameters in ice sheet models, robust correlations between these two quantities 
are needed. Our results suggest that β 2 and relative basal reflectivity do not infer similar conditions at the bed.

Data Availability Statement
The datasets from this study are available via USAP-DC website https://doi.org/10.15784/601658. The radar 
reflectivity data is available at https://doi.org/10.15784/601436 (see Chu et al., 2021).

Figure 4. Comparison of relative basal reflectivity and modeled ice velocity: (a) Spatial variation of relative basal 
reflectivity and ISSM modeled ice velocity within the Thwaites domain; (b) Spread of ISSM modeled velocity and relative 
basal reflectivity.
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