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Abstract—Rectified Linear Units (ReLU) are the default choice
for activation functions in deep neural networks. While they
demonstrate excellent empirical performance, ReLU activations
can fall victim to the dead neuron problem. In these cases,
the weights feeding into a neuron end up being pushed into a
state where the neuron outputs zero for all inputs. Consequently,
the gradient is also zero for all inputs, which means that the
weights which feed into the neuron cannot update. The neuron
is not able to recover from direct back propagation and model
capacity is reduced as those parameters can no longer be further
optimized. Inspired by a neurological process of the same name,
we introduce Synaptic Stripping as a means to combat this
dead neuron problem. By automatically removing problematic
connections during training, we can regenerate dead neurons and
significantly improve model capacity and parametric utilization.
Synaptic Stripping is easy to implement and results in sparse
networks that are more efficient than the dense networks they are
derived from. We conduct several ablation studies to investigate
these dynamics as a function of network width and depth and
we conduct an exploration of Synaptic Stripping with Vision
Transformers on a variety of benchmark datasets.

Index Terms—Neural Networks, Machine Learning, Dead
Neurons, Model Capacity, Weight Pruning

I. INTRODUCTION

Over the last decade, the rectified linear unit (ReLU) has
become one of the most successful and widely used activation
functions in neural networks. Defined as f(x) = max(0, x),
rectified linear units played a large role in the success of deep
learning as they enabled neural networks to become deeper
without falling prey to the vanishing gradient problem. Unlike
traditional sigmoidal activation functions that saturate when
input values become larger, rectifiers instead have a positive
unbounded range which helps to preserve gradient flow over
many layers, which has been shown to significantly accelerate
learning in deep neural networks [22].

Dead neurons are a common and well documented side
effect that arises from the use of ReLU activation functions in
deep neural networks [7], [10], [25]. As ReLUs always output
zero for a negative number, it’s possible that the weights for a
neuron can be distributed such that no input can activate that
neuron. If a neuron falls into this state, the gradient becomes
zero for all training inputs and the neuron’s weights cannot be
directly updated by back propagation. Dead neurons reduce
model capacity and parametric utilization since the weights

feeding into a dead neuron are unable to be further optimized
during training.

Several rectifier variations have been introduced to address
the dead neuron problem, including: Leaky ReLU, Parametric
ReLU, Exponential Linear Units, and Gaussian Error Linear
Units [4], [13], [16]. These functions contain non-linear or
non-constant outputs in parts of their negative domain, which
results in non-zero gradients that ReLU would otherwise have.
However, dataset and network architecture can significantly
influence the performance of activation functions, and it’s
not conclusive that these variations outperform ReLU in
many cases [8]. Alternative initialization schemes and training
methodologies have also been introduced to try to alleviate
the dead neuron problem, which include lower learning rates,
reparameterization of dead neurons, and asymmetric weight
distributions for initialization [11], [26], [31]. These methods
can reduce the number of dead neurons, but they can nega-
tively impact the speed and quality of convergence.

Inspired by a biological process of the same name, we
introduce Synaptic Stripping as an effective method for re-
generating dead neurons by selectively pruning problematic
connections. Paradoxically, we demonstrate that removing
parameters from a network can actually increase model ca-
pacity without adversely affecting training or generalization
performance.

We explore the efficacy of Synaptic Stripping with state-
of-the-art Vision Transformers on a variety of benchmark
datasets [38]. We conduct a large scale comparison of Synaptic
Stripping with both GELU and ReLU activation functions on
Tiny Imagenet, SVHN, CIFAR-10, and CIFAR-100. We also
conduct several ablation studies using Multilayer Perceptrons
in order to probe the dynamics of dead neurons in networks
of varying widths and depths.

Our results indicate that Synaptic Stripping can significantly
increase effective model capacity of large scale Vision Trans-
formers by up to 30% while improving generalization and
robustness on in-distribution and out-of-distribution datasets.
Synaptic Stripping results in generalization improvements over
baseline models that use ReLU while producing slightly
improved results over GELU. Our method results in better
utilization of network parameters, decreased model size, and
improved training efficiency with minimal computational cost.



Fig. 1: An illustration of Synaptic Stripping. After each training epoch, dead neurons are detected. Problematic connections
associated with dead neurons are pruned. The same dead neurons now become active and training continues.

II. BACKGROUND

A. Neuroscience Observations

Sparse network structures and neuroregeneration play a
critical role in healthy brain function. One early process
in brain development involves a massive proliferation and
subsequent apoptosis, which results in the pruning of billions
of neurons and trillions of synaptic connections. The neuronal
proliferation creates an environment in which neurons and
connections compete for resources. Invariably, many neurons
and connections die and the resulting network becomes highly
specialized, consisting of many sparsely connected neuronal
groups. These neuronal groups then form the primary reper-
toire from which the rest of brain development occurs [9].

Under metabolic energy constraints, this overgrowth and
subsequent pruning has been shown to maximize memory per-
formance [3]. Additionally, this neuronal connectivity allows
for information to be encoded in a sparse and distributed man-
ner, which enables networks to optimize a tradeoff between
energy expenditure and expressivity [1], [12].

Neuroregeneration is a growing field that encompasses
repair and regrowth of the nervous system. One important
process called Synaptic Stripping has been documented as
playing an important role in neuroregeneration, where im-
munocompetent cells called microglia constantly scan the
brain and selectively remove dysfunctional synapses from
injured neurons [18]. There is significant potential impact in
better understanding how dead neurons and neuroregeneration
affect neural systems.

B. The Dying ReLU Problem

Rectified Linear Units (ReLU) are cheap to compute in
both the forward and backward pass, and the sparse activation
patterns have been theorized to allow for better information
disentangling [12]. However, ReLU units can suffer from the
dead neuron problem, where the weights for a given neuron
are pushed into a state where the output of the ReLU is
zero for any reasonable input. This can be illustrated by
considering a standard, fully connected layer that contains
some number of neurons with ReLU activation functions. Each
neuron computes a weighted sum of all of the inputs x with
weights w and a bias term, which is then passed through the
activation function.

f(x) = ReLU(
mX

i=1

wixi + bias) (1)

ReLU(x) =

(
x if x > 0

0 otherwise
(2)

If all inputs x into a given neuron are positive, all weights
w are negative, and the bias is small enough to be negligible,
then for any given input the output of the ReLU activation will
be zero. Consequently, when we back propagate, no updates
will occur to the weights of a dead neuron since the derivative
of the ReLU function is zero for inputs less than zero.

The dying ReLU problem is well documented, and many
researchers have introduced methods for alleviating it in deep
neural networks. Perhaps the most prevalent reason for neurons
being pushed into these dead states is large weight updates
as a result of large learning rates or momentum [11]. The
simple solution is to use small learning rates, however this
can drastically reduce training efficiency. In practice, many
models today implement learning rate schedules that use large
learning rates at the beginning of training which then decay
over time [37]. In these cases, dead neurons develop early
and persist through the rest of training. Additionally, adaptive
optimizers are commonly used, which use running averages to
update momentum and learning rates for each parameter in-
dividually throughout training [19]. These adaptive optimizers
significantly speed up training, but they cause large jumps that
can push neurons into dead states.

Some work has investigated how initial weight distributions
impact the probabilities of ReLU neurons being born dead
[26]. Typically, weights are initialized using random symmet-
ric distributions centered around a zero mean. As networks
get deeper and narrower, these symmetric distributions can
lead to network collapse as the asymptotic probability of dead
neurons causing a bottleneck approaches certainty. However,
since ReLU is an asymmetric function, the probability bounds
for born dead neurons can be drastically reduced by using a
random asymmetric initialization [26].

It’s also been shown that reinitializing dead neurons can
have significant impact on performance. Neural Rejuvenation
was introduced as an optimization method for convolutional
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Fig. 2: A visualization of neuron weights evolving over time. We display histogram snapshots of the weights of three neurons
after each epoch of training. To illustrate how Synaptic Stripping works, we include a healthy neuron, a dead neuron, and
a dead neuron that is trained with Synaptic Stripping. After several epochs of pruning negative weights, Synaptic Stripping
successfully regenerates the dead neuron, enabling further optimization.

networks that reparameterizes and reallocates dead neurons
during training [31]. Here they define dead neurons to be
convolutional channels that have a low impact on the output.
Low impact channels are removed from the given layer, moved
to another layer and reinitialized. In some respects, this method
is a neural architecture search algorithm that finds layer size
configurations while optimizing parameters at the same time.

C. Activation Function Trends in Computer Vision

Logistic Sigmoids and Hyperbolic Tangents were the most
widely used activation functions in early computer vision
research. In 2012, the seminal AlexNet paper led to the pop-
ularity and wide adoption of ReLU as activation functions in
deep neural networks [22]. In 2015, residual networks utilized
skip connections and ReLU activations to enable extremely
deep networks [14]. ResNets have been extremely influential
and have been the building block for many computer vision
architectures over the last several years.

Several new activation functions were introduced to improve
on ReLU. Leaky ReLUs, Parametric ReLUs, Exponential
Linear Units, Gaussian Error Linear Units, and Sigmoid linear
Units contain non-linear or non-constant activations in the neg-
ative parts of their domain, so that neurons could potentially
recover if they end up in a state that would be considered dead
with ReLUs [4], [13], [16], [28], [32]. However, despite the
purported benefits of these alternatives, there is not conclusive
evidence that they outperform ReLU. Dataset and network
architecture can influence performance and research has shown
that ReLU is competitive and even outperforms these other
activations on benchmark datasets with convolutional networks
[8].

D. Transformers

In natural language processing, transformers now dominate
the field [36]. These models make use of attention mechanisms
and linear layers with Gaussian Error Linear Units (GELU).
Recently, these architectures have made their way to computer
vision and have produced several state of the art results on
large datasets [6]. Borrowing from their natural language vari-
ants, Vision Transformers also use GELU functions. However,

there has been limited work exploring the efficacy of different
activation functions with these models as activation function
performance can depend on dataset and architecture choice
[8]. So while there are claims of GELU being more effective
on language tasks with transformers, there is not conclusive
evidence that this assumption holds on image datasets with
Vision Transformers.

III. SYNAPTIC STRIPPING

Our approach regenerates dead ReLU neurons by selec-
tively pruning synaptic connections. Synaptic Stripping can
be plugged into any standard training loop. We begin by
initializing and training a neural network using a standard
optimization algorithm and learning rate schedule. After each
training epoch, we evaluate the network on a validation set,
while keeping track of the outputs of each ReLU. Each neuron
that has a total activation of zero over the entire validation
set is considered dead. As ReLU is a positive asymmetric
function, we prune the most negative weights feeding into dead
neurons, shifting weight distributions towards a more positive
mean. Training then continues with regenerated neurons, and
this process is repeated until convergence.

A. Dense Layers vs Convolutional Layers

We focus our research on dead neurons which are located
in dense, fully connected layers. While convolutional layers
do suffer from the dead neuron problem, the local connectiv-
ity and weight sharing aspect of convolutional filters makes
pruning a less appealing option for regenerating dead units.

In convolutional layers, filters slide over the input to produce
feature maps. Pruning weights from a filter impacts not only
the neuron that corresponds to that location in the feature
map, but also all other neurons in the channel. With dense
layers, neurons are fully connected and independent of all
other neurons in the same layer. Therefore, pruning can target
dead neurons without adversely affecting other neurons in the
same layer. Additionally, pruning dead neurons leads to a strict
increase in capacity. Since the weights feeding into a dead
neuron are not being utilized, there is no danger of reducing
capacity by removing these connected weights. In the worst



case, some weights are removed and the neuron continues to
stay dead where functional capacity is identical. In the best
case, a small number of connections are removed, the neuron
is regenerated, and the model can now make use of the extra
parameters feeding into the neuron that were not pruned.

B. Detecting Dead Neurons

Dead neurons can be identified by analyzing the outputs of
neurons in the forward pass or the gradients of neurons in the
backward pass.

Gradient based detection is closely related to saliency based
pruning methods [24], [34]. The goal is to identify neurons
or parameters that have the lowest impact on the network’s
output. This distinction can lead to confusion between neurons
that are dead (always output zero) and neurons that are frozen
(not being updated) [11]. As gradients are calculated by
differentiating the error with respect to the weights, a low error
can result in a zero gradient for a specific neuron even though
it is active. This can happen when the network exists in some
local optima or the weights for a neuron exist in some flat
region of the loss landscape. The ambiguity between frozen
neurons and dead neurons makes gradient based detection a
poor fit for our method.

We instead detect dead neurons by analyzing the output
activations of neurons on the forward pass. This approach is
simple in practice since we can just keep a running sum of each
neuron’s outputs over all batches or samples in the dataset.
Any neuron that has a sum total activation of zero is considered
dead. This constraint can be relaxed with a small threshold to
allow for neurons with very low activations. In these cases, a
neuron may be considered mostly dead if it is only active for
a couple of samples in a large dataset. Synaptic Stripping may
be beneficial in encouraging mostly dead neurons to become
more active.

Dead neurons can be evaluated over an entire training set or
over a validation set. Since validation sets are much smaller
than training sets, it’s possible that dead neurons found over
a validation set would not appear as dead neurons during
training. In these cases, we would be pruning neurons that have
potential for further optimization. However, as these neurons
are dead for all predictions that the model is evaluated on, then
validation set detection could offer some form of regularization
over a more robust training set detection. Unless otherwise
stated, our experiments all use validation set detection with a
standard 80/10/10 train/validation/test split.

C. Pruning Methodology

We implement Synaptic Stripping by removing some of the
most negative weights from each dead neuron at the end of
each training epoch. The amount of weights to remove depends
on the network architecture, the training data, the number of
training epochs, and the frequency of pruning.

In our experiments, we prune ten percent of the weights
feeding into each dead neuron at each iteration. It is possible
that ten percent is not enough to regenerate certain neurons
in one shot. Thus, the same neuron may need to be pruned

over multiple epochs in order to regenerate. We find that
this approach prevents over-pruning, which would reduce total
capacity by pruning more weights than is necessary.

The effects of Synaptic Stripping can be visualized by look-
ing at histograms of the weight distributions of dead neurons
over time. Figure 2 shows how weight distributions evolve
by recording neuron weights taken at the end of each epoch
for ten epochs. Healthy neurons end up more or less centered
around a zero mean as weights drift towards their optima. The
dead neuron’s weights are strongly skewed towards negative
values at the first epoch and over time they remain frozen.
This negative skew is typical of dead neurons in networks
that we analyzed. When Synaptic Stripping is implemented,
a small percentage of the most negative weights feeding into
the dead neuron are removed at each epoch, which shifts the
distribution in the positive direction so that the neuron is able
to regenerate.

D. Model Capacity

Complexity is a fundamental problem in machine learning
theory, where the goal is to understand the expressivity and
learnability of different models. Some popular complexity
metrics introduced include Vapnik–Chervonenkis (VC) dimen-
sion and Rademacher complexity [2], [35] which provide
loose bounds on a model’s ability to shatter a dataset and
to fit random labels respectively. However, since these metrics
provide only loose bounds and modern deep neural networks
are extremely overparameterized, this results in values that are
a poor fit for meaningful comparison [17].

The simplest and most common way to consider model
capacity is to simply count the number of parameters. In
our case, it is more interesting to consider the number of
active parameters a model contains. Since dead neurons al-
ways output zero and are incapable of further training or
optimization, they in turn have no impact on subsequent
computation. Dead neurons and all associated input and output
weights can then be removed from a network with no effect
on functional behavior. So in order to compute the number of
active parameters, we simply count the number of parameters
that are not attached to a dead neuron. For networks trained
with Synaptic Stripping, we count the number of parameters
that are not attached to dead neurons, while adjusting for the
number of pruned connections.

This provides a simple and clean way to compare the
capacity between a network that has dead neurons and a
network that has been pruned.

IV. EXPERIMENTS

Datasets: We use the computer vision datasets, Tiny Ima-
genet [23], CIFAR-10 CIFAR-100 [21], and SVHN [29].

Tiny ImageNet is a subset of the famous ImageNet dataset
with images scaled and downsized to 64x64 pixels. Tiny
ImageNet contains 100,000 images of 200 classes, where each
class contains 500 training images, 50 validation images, and
50 test images. We perform an additional downsize to 32x32
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Fig. 3: Explorations of dead neurons with Multilayer Percep-
trons on CIFAR-10. The leftmost graph shows the number of
dead neurons (w/o Synaptic Stripping) increasing as a function
of both model width and depth. The rightmost graph shows
how dead neurons develop over 50 epochs of training with a
2 layer network of varying widths. The results for Synaptic
Stripping are shown as dashed lines, and the corresponding
results without pruning as solid lines.

pixels to keep our models consistent between all experiments
on CIFAR and SVHN.

CIFAR consists of 60,000 small natural colored images of
32x32 pixels in size. Those 60,000 images are split up into
50,000 training images and 10,000 testing images. CIFAR-10
samples from 10 classes of images, while CIFAR-100 samples
from 100 classes of images. CIFAR-100 is more difficult than
CIFAR-10 as each class will have only 500 training samples
compared to 5,000 in CIFAR-10.

SVHN is the Street View House Number dataset which
contains 600,000 32x32 real world images of house numbers
obtained from Google’s Street View cameras. The goal is to
classify single digits (0 to 9). The images are cropped so that a
single digit is centered, but many photos contain other digits
and distractors as well. The dataset is split into a training
set of 73,257 images and a testing set of 26,032 images. The
remaining 531,131 images are included as additional examples
to use as extra training data. We do not use these extra images
in our experiments.

We also test our methods on corrupted variations of all
four of the previous datasets. These datasets are created by
applying up to 20 different distortions (gaussian noise, blur,
pixelation, snow, etc.) at five different severity levels [15].
These additional test sets allow us to measure the robustness
of models on out-of-distribution data, which allows us to get
a better sense of generalization performance.

Models: We use a standard Multilayer Perceptron for our
ablation experiments. These models consist only of fully
connected layers followed by ReLU activations. For our large
scale experiment, we use an open source implementation
of the Vision Transformer with hyperparamters selected to
be appropriate for small scale datasets [30]. All models are
implemented and tested with PyTorch.

Optimization: We use Adaptive Moment Estimation
(Adam) for all of our experiments. This optimizer keeps track

CIFAR-10

Baseline Synaptic Stripping

L N Acc " #D # %A " Acc " #D # %A "
2 256 53.28 30 88.62 53.74 0 94.01
2 512 53.89 224 61.04 53.94 0 82.88
2 1024 53.92 1010 25.69 54.38 3 68.67

4 256 53.50 63 88.07 53.54 1 91.23
4 512 54.27 645 46.93 54.42 5 83.02
4 1024 55.04 2610 13.16 54.67 53 59.07

8 256 52.72 781 38.58 52.92 6 73.95
8 512 53.89 2566 13.95 53.89 31 64.33
8 1024 54.08 6052 6.82 54.04 248 43.57

CIFAR-100

Baseline Synaptic Stripping

L N Acc " #D # %A " Acc " #D # %A "
2 256 23.33 51 81.07 23.53 1 92.39
2 512 23.01 215 62.26 23.24 0 81.48
2 1024 22.57 787 37.91 22.43 0 72.48

4 256 23.03 97 81.95 23.34 2 90.06
4 512 23.06 539 54.29 23.09 2 81.15
4 1024 22.40 1970 26.94 22.82 1 62.22

8 256 20.68 557 53.00 21.00 5 75.87
8 512 21.14 1975 26.81 21.37 6 67.18
8 1024 20.58 5454 11.17 21.84 78 47.98

TABLE I: Results from the ablation experiments with MLPs
of varying hidden depths and widths. All models trained for
50 epochs with Adam. Metrics include (L) number of hidden
layers, (N) number of hidden neurons, (Acc.) peak validation
accuracy, (#D) number of dead neurons, and (%A) percentage
of active parameters.

of an exponentially decaying moving average of previous
gradients and squared gradients so that individual parameters
are updated with adapted learning rates. Adam is known for
its training efficiency compared to stochastic gradient descent
and is commonly used across many machine learning tasks
[20].

Data Augmentation: Transformers need larger amounts of
data to perform well without overfitting. Data augmentation
is commonly used as a way to artificially expand the size of
training sets. We use AutoAugment for our Vision Transformer
experiments, which is a collection of optimal augmentation
policies for CIFAR, SVHN, and ImageNet found by searching
through a space of various image perturbations including
operations like translation, rotation, shear, contrast, etc [5].

Hardware: All models are trained on a single Nvidia GTX-
1080-Ti GPU.

A. MLP Ablations

We begin by exploring how Synaptic Stripping affects
simple models of varying width and depth on the CIFAR-
10 and CIFAR-100 dataset. The model variations differ in the
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Fig. 4: Mean normalized accuracy, loss, and capacity for Vision Transformers over all four datasets (CIFAR-10, CIFAR-100,
SVHN, Tiny Imagnet). Training loss is indicated with a dashed line. Test loss with a solid line. Performance is very similar
between ReLU with Synaptic Stripping (SS) and GELU. There is a significant increase in performance and capacity with
Synaptic Stripping over the baseline ReLU.

Parameter Value

Epochs 200
Warmup Epochs 5

Batch Size 128
Optimizer Adam
Scheduler Cosine
↵1, ↵2 1e-3, 1e-5
�1, �2 0.9, 0.999

Weight Decay 5e-5
Patch Size 8

Heads 8
Layers 7

Hidden Size 384
Expansion 4

Activation Dataset Acc " NLL # cAcc " cNLL # #D # %A "
GeLU CIFAR-10 89.27 0.423 79.86 0.912
ReLU 88.75 0.425 79.14 0.946 1511 64.86

ReLU (SS) 89.29 0.419 80.07 0.898 9 87.12

GeLU CIFAR-100 61.62 1.724 50.36 3.141
ReLU 61.27 1.729 49.39 3.170 1051 75.56

ReLU (SS) 61.57 1.733 50.17 3.151 2 89.58

GeLU SVHN 97.35 0.118 92.44 0.377
ReLU 97.08 0.131 92.26 0.446 2001 53.47

ReLU (SS) 97.37 0.118 93.13 0.376 4 87.26

GeLU Tiny Imagenet 38.75 2.738 26.67 6.617
ReLU 38.81 2.735 26.21 6.577 995 76.86

ReLU (SS) 38.87 2.736 26.61 6.656 2 90.25

TABLE II: Hyperparameters and results for Vision Transformers with GELU, ReLU and ReLU with Synaptic Stripping (SS).
All models are trained twice and the best runs are reported. Metrics include (Acc) accuracy, (NLL) negative log likelihood,
(#D) number of dead neurons, and (%A) percentage of active parameters. We also report (cAcc) accuracy and (cNLL) negative
log likelihood for each final model evaluated on a larger corrupted dataset.

number of hidden layers between [2, 4, 8] and the number of
neurons in each hidden layer between [256, 512, 1024].

Each model is trained for 50 epochs using the Adam
optimizer with a learning rate of 1e-3 and a batch size of
64. All data is transformed with mean standard normalization
with µ = (0.4914, 0.4822, 0.4465); � = (0.2023, 0.1994,
0.2010) and µ = (0.5071, 0.4867, 0.4408) � = (0.2675,
0.2565, 0.2761) for CIFAR-10 and CIFAR-100 respectively.

Each model is trained with and without Synaptic Stripping.
Synaptic Stripping is applied at each epoch for all dead
neurons found through validation set detection. We prune 10%
of the most negative weights for each dead neuron. For neurons
that have previously been pruned, Synaptic Stripping removes
10% of the remaining weights.

For the baseline models and models trained with Synaptic
Stripping, we keep track of the number of dead neurons and
the number of active parameters. The number of active param-
eters are calculated by subtracting the number of parameters
connected to all dead neurons and the number of parameters

pruned from the total number of hidden parameters in order
to get a percentage value for the total capacity of the hidden
layers.

Table 1 contains results for the ablation experiments. For
these simple models, accuracy does improve on both CIFAR-
10 and CIFAR-100 for most model configurations, however
the difference is small. More importantly, Synaptic Stripping
significantly improves model capacity across the board for all
layer depth and width configurations.

B. Vision Transformers

In addition to our baseline experiments, we explore Synaptic
Stripping with Vision Transformers on several benchmark
datasets. The original Vision Transformer was introduced
for large datasets with several suggested configurations; the
smallest (Vit-B) used 86 million parameters. We use an open
source and standardized implementation with hyperparamters
suitable for much smaller image sizes and datasets [30].
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ReLU ReLU (SS)

Schedule Dataset #D # %A " #D # %A "
Baseline CIFAR-10 2787 35.20 72 79.11
Warmup 1511 64.86 9 87.12

Baseline CIFAR-100 2138 50.28 26 81.42
Warmup 1051 75.56 2 89.58

Baseline SVHN 2249 47.71 58 83.63
Warmup 2001 53.47 4 87.26

Baseline Tiny Imagenet 2259 47.47 62 74.93
Warmup 995 76.86 2 90.25

Fig. 5: Results detailing how warmup epochs affect dead
neuron dynamics in Vision Transformers with and without
Synaptic Stripping on CIFAR-10, CIFAR-100, SVHN, and
Tiny Imagenet. The leftmost graph displays the number of
dead neurons when the model is trained with a cosine anneal-
ing learning rate schedule from [1e-3, 1e-5]. The rightmost
graph includes 5 epochs of linear learning rate warmup from
[0, 1e-3] before then decaying from [1e-3, 1e-5]. Dashed lines
represent models trained with Synaptic Stripping. Number of
dead neurons (#D) and percentage of active parameters (%A)
are reported for each case.

We evaluate three models: one standard Vision Transformer
with GELU activations, one with ReLU activations, and one
with ReLU activations trained with Synaptic Stripping. All
models contain seven transformer encoder layers and eight
attention heads. Each transformer encoder contains a self
attention block with a hidden size of 384 followed by a two
layer MLP with an expansion factor of 4 for a hidden size of
1536. These MLP layers contain the activation functions and
all Synaptic Stripping occurs with only these layers. We do
not prune any of the attention modules.

Each model is trained for 200 epochs using Adam with
a batch size of 128. We incorporate a warmup phase for 5
epochs where the learning rate is linearly increased from 0 to
1e-3. This is known to reduce the large or divergent variance
between runs [27]. We then use a cosine annealing learning
rate schedule which decays from an initial rate of 1e-3 to a
final rate of 1e-5 for the remaining 195 epochs. We train all
models on CIFAR-10, CIFAR-100, SVHN and Tiny ImageNet.
We test each model on the validation sets and the corrupted

validation sets.
All images are sized to 32x32x3 and all datasets are

expanded with AutoAugment policies. For Tiny ImageNet, we
achieved better results using the CIFAR policy as opposed to
the ImageNet policy due to the difference in image size that we
use (32x32x3), as opposed to the original Imagenet dimensions
(224x224x3).

We report peak validation accuracy, negative log likelihood,
corrupted accuracy, corrupted negative log likelihood, number
of dead neurons and percentage of active parameters. The
number of dead neurons is not applicable for GELU as it does
not suffer from the dead ReLU phenomena. We leave those
fields blank in Table 2.

Our experiments indicate that ReLU with Synaptic Stripping
significantly outperforms standard ReLU. Synaptic Stripping
also outperforms GELU on all datasets except CIFAR-100;
however, the performance gap between the two is extremely
small. These patterns are consistent on the out-of-distibution
corrupted datasets as well. Synaptic Stripping is effective at
significantly reducing the number of dead neurons. On these
small scale datasets, Synaptic Stripping increases capacity by
15% to 33% while reducing total parameter counts by 10%
to 15% at the same time. It’s interesting to note that more
dead neurons develop on datasets with fewer classes and
more samples per class (CIFAR-10 and SVHN) compared
to datasets with more classes and fewer samples per class
(CIFAR-100 and Tiny Imagenet).

The Impact of Warming Up: Our initial experiments used a
standard cosine annealing training schedule without warmup
epochs where we found a significant amount of variance
between runs. Since Adam calculates gradient statistics using a
moving average, early epochs have a large impact on training,
sometimes resulting in convergence to local optima with much
worse performance. After implementing a 5 epoch learning
rate warmup schedule, our runs became much more consistent
and with better accuracy. Figure 5 details the results of our
comparisons between runs with and without warmup epochs.
We find that runs with warmup epochs results in a significant
reduction of the number of dead neurons and an increase in the
percentage of active parameters in both the baseline models
trained without Synaptic stripping as well as those trained with
Synaptic Stripping.

V. CONCLUSIONS

We introduced Synaptic Stripping as an elegant way to
regenerate dead rectifier neurons (ReLUs) in neural networks.
Inspired by a neurological process of the same name, Synaptic
Stripping is an iterative method that detects dead neurons,
identifies problematic connections, and prunes those connec-
tions. After each training epoch, we detect dead neurons by
calculating the sum of ReLU outputs for each neuron through
a validation set. Since dead neurons are caused by a weight
distribution that results in zero outputs, we prune some of the
most negative weights from each of the dead neurons. The
strength and frequency of Synaptic Stripping can be tuned for
a given model or dataset. Our approach is flexible, extremely



simple to implement for standard training methods and highly
effective at regenerating dead neurons.

We conduct a number of experiments exploring Synaptic
Stripping with simple Multilayer Perceptrons and modern Vi-
sion Transformers. We explore the dynamics of dead neurons
across a wide range of model widths and depths. We test our
approach on the benchmark CIFAR-10, CIFAR-100, SVHN,
and Tiny Imagenet datasets, as well as their out-of-distribution
corrupted variants. When compared to standard ReLU net-
works, Synaptic Stripping significantly increased accuracy,
reduced dead neurons and increased the number of active
parameters on every experiment. We see improvement with
Synaptic Stripping over Gaussian Error Linear Units (GELU)
on Vision Transformers, indicating that there is value in further
investigations of our approach on large scale datasets like
Imagenet or the JFT-300M [33]. Our experiments demonstrate
the counter intuitive idea that removing parameters from a
network can actually increase model capacity significantly,
resulting in networks that are accurate, sparse, and efficient.
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