
Partition Crossover can Linearize Local Optima La�ices
of k-bounded Pseudo-Boolean Functions

Darrell Whitley
Colorado State University
Fort Collins, Colorado, USA
whitley@colostate.edu

Gabriela Ochoa
University of Stirling
Stirling, Scotland, UK

gabriela.ochoa@stir.ac.uk

Francisco Chicano
ITIS Software, Universidad de Málaga

Málaga, Spain
chicano@uma.es

ABSTRACT
When Partition Crossover is used to recombine two parents which
are local optima, the o�spring are all local optima in the smallest
hyperplane subspace that contains the two parents. The o�spring
can also be organized into a non-planar hypercube "lattice." Fur-
thermore, all of the o�spring can be evaluated using a simple linear
equation. When a child of Partition Crossover is a local optimum
in the full search space, the linear equation exactly determines its
evaluation. When a child of Partition Crossover can be improved by
local search, the linear equation is an upper bound on the evaluation
of the associated local optimum when minimizing. This theoret-
ical result holds for all k-bounded Pseudo-Boolean optimization
problems, including MAX-kSAT, QUBO problems, as well as ran-
dom and adjacent NK landscapes. These linear equations provide
a stronger explanation as to why the "Big Valley" distribution of
local optima exists. We fully enumerate a sample of NK landscapes
to collect frequency information to complement our theoretical
results. We also introduce new algorithmic contributions that can
1) expand smaller lattices in order to �nd larger lattices that contain
additional local optima, and 2) introduce an e�cient method to �nd
new improving moves in lattices using score vectors.

CCS CONCEPTS
•Mathematics of computing! Graph algorithms; Combina-
torial algorithms; • Theory of computation ! Evolutionary
algorithms.

KEYWORDS
NK landscapes, Big Valley Hypothesis, Partition Crossover, Iterated
Local Search

ACM Reference Format:
Darrell Whitley, Gabriela Ochoa, and Francisco Chicano. 2023. Partition
Crossover can Linearize Local Optima Lattices of k-bounded Pseudo-Boolean
Functions. In Proceedings of the 17th ACM/SIGEVO Conference on Foundations
of Genetic Algorithms (FOGA ’23), August 30-September 1, 2023, Potsdam, Ger-
many. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3594805.
3607129

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
FOGA ’23, August 30-September 1, 2023, Potsdam, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0202-0/23/08. . . $15.00
https://doi.org/10.1145/3594805.3607129

1 INTRODUCTION
In this paper, we consider the set of all k-bounded pseudo-Boolean
optimization problems, 5 : B= ! R. Thus, the objective function
5 (G) acts on a search space of Boolean inputs, G 2 B= , and the
output can be any real-valued or Boolean value. This set of prob-
lems include MAX-kSAT, Quadratic Unconstrained Boolean Opti-
miziation (QUBO) problems, as well as random and adjacent NK
landscapes. Some of our proofs will also generalize to the Traveling
Salesman Problem.

Partition Crossover is a deterministic form of recombination
that has been successfully applied to k-bounded Pseudo-Boolean
optimization problems. Partition Crossover [19] combined with it-
erated local search has been able to solve adjacent NK landscapes to
globally optimal solutions for problems with one million variables
[6]. Partition Crossover was also able to produce better results than
state-of-the-art inexact MAX-kSAT problems when tested speci�-
cally on very hard problem instances taken from the SAT Competi-
tions [5]. Finally, Partition Crossover operators (which include both
Iterated Partial Transcription and Generalized Partition Crossover)
are used by the highly successful Lin-Kernighan-Helsgaun [12]
algorithm for the Traveling Salesman Problem [18].

One of the bene�cial features of Partition Crossover is that it is
deterministic. When Partition Crossover is successful, it produces
a localized decomposition of the evaluation function into @ linearly
separable components, and it returns the best of 2@ o�spring in
$ (=) time. Given two parents that are locally optimal, the o�spring
are all locally optimal in the smallest hyperplane subspace (aka,
the "largest order" hyperplane) that contains the two parents. This
hyperplane is found by �xing all of the bits that the two parents
share in common, thus creating a lower-dimensional subspace in
which all of the o�spring are locally optimal. A formal proof is
given by Tinós et al. [19].

This paper di�ers from previous studies of Partition Crossover
because it focuses on all of the o�spring that can be produced by
Partition Crossover, rather than the best possible o�spring. This
can provide new insights into the distribution of local optima in
k-bounded pseudo-Boolean functions.

All of the children produced by Partition Crossover can be or-
ganized into hypercube structures of dimension @ under Partition
Crossover. Given a hypercube, every hyperplane of the same order
has identical structure and the hypercube graph forms a non-planar
lattice [15]. Thus, we can say that the children produced by Parti-
tion Crossover are organized into a "lattice." Whitley and Ochoa
proved that these lattices can be exponentially large for the Travel-
ing Salesman Problem [22].

For problem instances where data has been collected, the ma-
jority of o�spring produced by Partition Crossover are also local

https://doi.org/10.1145/3594805.3607129
https://doi.org/10.1145/3594805.3607129
https://doi.org/10.1145/3594805.3607129

FOGA ’23, August 30-September 1, 2023, Potsdam, Germany Whitley, Ochoa, Chicano

optima in the full search space when generated from two parents
that are also locally optimal. Obviously, this is an empirical obser-
vation.

However, occasionally a speci�c o�spring is not locally optimal
in the full search space. In this case, an improving move can only
come from a bit that the parents share in common; this immedi-
ately follows from the fact that all children are locally optimal in
the smallest hyperplane that contains the two parents. Thus any
improved string must lie outside that hyperplane. A formal proof
is given by Tinós [19].

First, consider the case where all of the o�spring produced by
Partition Crossover are locally optimal in the full search space. In
this paper, we show that all of these local optima can be evaluated
using a simple linear equation of the form:

5 (G) = U0 +
@’
8=1

U818 (1)

where 18 is a Boolean decision variable which simultaneously acts
on disjoint subsets of variables in G . When 18 is �ipped, a speci�c
subset of variables selected from G also �ip. This is less mysterious
than it might sound because the variable 18 is deterministically
selecting a subset of bits from either Parent 1 or Parent 2. Under
Partition Crossover, the bits that are swapped between Parent 1
and Parent 2 are always complements.

What implications does this have? Let the vector

< 0, 1, 2, 3, 4, 5, 6, 7 >

denote the corners of a 3-d cube over 3 Boolean variables. (Each
integer maps to a 3 bit string, e.g. 5 = 101.) Assume the numbers
from 0 to 7 are indices mapping to 8 di�erent local optima generated
by Partition Crossover.

The evaluations of these local optima are determined by the
values U1,U2,U3 in EQN 1. And the set of local optima indexed by
<0, 1, 4, 5> can be shifted by a constant to yield a new set of local
optima indexed by <2, 3, 6, 7> by changing U2. Thus, the evaluations
of children in one half of the lattice are related to evaluations of
children in another half of the lattice by a single constant in a linear
equation. Local optima are not just "randomly scattered" across the
search space in some arbitrary fashion.

This happens no matter the size of the lattice (i.e. the hypercube
of dimension @). Applications of Partition Crossover to real-world
industrial MAX-kSAT problems have produced decompositions
where @ > 1000 and the lattice is larger than 21000 [4].

Our empirical results also show that one local optimum can
appear in hundreds of lattices, even when = = 30. The number of
lattices can grow exponentially with = [22]. Thus, the �tness of
one local optimum can be simultaneously constrained by multiple
linear equations, one for every Partition Crossover event where
that local optimum appears as an o�spring.

Second, consider the o�spring produced by Partition Crossover
that are not locally optimal. The linear equation is now a bound
on the evaluation of the associated local optimum, which is found
by improving the child produced by Partition Crossover. But each
o�spring produced by Partition Crossover must be in a di�erent
basin of attraction associated with a di�erent local optimum. This
is also independent of how a local optimum is de�ned, as long as
there exists a well de�ned neighborhood structure.

A local optimum that is not an o�spring might be reached from
o�spring that appear in multiple non-overlapping lattices. In that
case, the evaluation of the local optimum must be bounded by all of
the linear equations that are associated will all of these lattices, but
of course the tightest bound would seem to be the most relevant.

This paper makes two other contributions. Section 4 fully enu-
merates both random and adjacent NK landscapes of size = = 30
and = = 40. We do this to ask the following questions: How often is
a child produced by Partition Crossover also a local optimum in the
full search space? As one might expect, the probability is higher for
adjacent NK landscapes than random NK landscapes. In addition,
we asked if local optima that are close to the global optimum display
a higher frequency of membership in lattices than local optima that
are farther away from the global optimum. We found that Partition
Crossover is more productive when combining parents that are
closer to the global optimum, and the children of parents that are
closer to the global optimum are also more frequently local optima.

Section 5 presents algorithmic contributions. Section 5.1 presents
a simple way to discover larger lattices starting from smaller lat-
tices. Sections 5.2 and 5.3 demonstrate how score vectors can be
used to e�ciently track improving moves associated with o�spring
that are not locally optimal. We prove that it is possible to evaluate
@ o�spring while making only 1 call to the evaluation function
because each o�spring only updates a partial fragment of the eval-
uation function. While evaluating o�spring, we can also update
and maintain the score vector which can be used to identify both
improving moves and any local optimum in $ (1) time after every
bit �ip.

2 K-BOUNDED BOOLEAN FUNCTIONS
Let 5 (G) denote a k-bounded Boolean function

5 (G) =
<’
8=1

58 (G)

where each subfunction 58 (G) extracts and uses at most : Boolean
variables from G . Each subfunction 58 (G) knows which Boolean
variables to use.

Boolean functions have binary inputs and outputs. Functions
are pseudo-Boolean if the domain (the input) is binary but the
co-domain (the output) can be real-valued. Thus, MAX-kSAT func-
tions are Boolean but NK landscapes are pseudo-Boolean. Both
the class of MAX-kSAT functions and random NK landscapes are
NP-Complete.

It should noted that these k-bounded functions have very sparse
nonlinearity. Since there are < subfunctions, and each subfunc-
tion has : variables, then in expectation every variable appears in
:<
= subfunctions. This would be the case for random MAX-3SAT

instances and random NK landscapes.
One way to formally measure the nonlinearity of a function is to

convert that function into a polynomial form. For example let, (.)
denote a Walsh Transform (AKA: a Hadamard Transform; AKA: a
discrete Fourier Transform using a square wave).

, (5 (G)) =
<’
8=1

, (58 (G))

Crossover Can Linearize Local Optima FOGA ’23, August 30-September 1, 2023, Potsdam, Germany

Note that, (58 (G)) produces at most 2: � : � 1 nonlinear co-
e�cients. There are 2: total coe�cients in the polynomial, but :
terms are linear and 1 term is a constant. For example, for MAX-
3SAT, there are only 4 nonlinear terms. Thus, if< = $ (=) then the
number of nonlinear coe�cients in a k-bounded pseudo-Boolean
function is also $ (=).

Real-world problems empirically have much lower levels of non-
linearity than randomly generated problems [9]. One might specu-
late that this is true because real-world problems have some form of
regular structure. However, one can also prove that the reductions
and transforms which are used to generate k-bounded pseudo-
Boolean functions also result in low levels of nonlinearity.

For example, Cormen’s "Introduction to Algorithms" textbook [8]
reduces the following SAT expression into a MAX-3SAT expression.

(~1 () (~2 ^ ¬G2))
results in the following four clauses in Conjunctive Normal Form:

(¬~1 _ ¬~2 _ ¬G2) ^ (¬~1 _ ~2 _ ¬G2)
^ (¬~1 _ ~2 _ G2) ^ (~1 _ ¬~2 _ G2)

Note that these four clauses can also be combined into a sin-
gle Boolean subfunction 58 (~1,~2, G2) . It follows that these four
clauses yield at most 4 nonlinear terms, or 1 per clause. This is
consistent with the �ndings of Hains et al. [9], who found that the
median number of total terms per clause in 14 real-world indus-
trial MAXSAT problems was 1.17, which yields approximately 1
nonlinear term per clause if m/n = 4.2735.

Consider a slightly di�erent set of four MAX-3SAT clauses.

(¬~1 _ ¬~2 _ G2) ^ (¬~1 _ ~2 _ ¬G2)
^ (¬~1 _ ~2 _ G2) ^ (~1 _ ¬~2 _ G2)

Only the �rst clause changed. When these four clauses are con-
verted into a single subfunction, that subfunction is quadratic (it
is a QUBO subfunction). This is because the 3-way interactions
cancel. When four clauses are generate randomly using the same 3
variables, a QUBO will result with probability 36/70 > 0.51. There
are 4 ways for one of 4 clauses to be false, and (23 choose 4) = 70.
Enumerating all 70 cases yields the stated result.

Transforms [3] also exist that convert pseudo-Boolean functions
into k-bounded or quadratic pseudo-Boolean functions. The use of
transforms and NP-Completeness reductions can also yield prob-
lem instances with very low levels of nonlinearity, even when the
original problem instance is random.

In e�ect, transforms and reductions add additional variables in
order to achieve very low levels of bounded nonlinearity.

3 PARTITION CROSSOVER (PX)
Converting problems into k-bounded pseudo-Boolean functions
allows us to use Graybox crossover operators that also exploit
bounded nonlinearity. In this paper, we use the Partition Crossover
operator to induce q-dimensional lattices over subsets of local op-
tima. The following example, labeled F1, illustrates key ideas behind
Partition Crossover. F1 has = = 24 variables and< = 18 subfunc-
tions. Every subfunction of F1 is labeled using the boldface letters
"a" to "r" and takes in 3 variables. The variables are labeled with
integers from 1 to 24, where integer 8 denotes G8 . This table shows
the membership of variables in subfunctions.

F1: a: 1 2 3 f: 6 7 23 k: 11 13 22 p: 15 16 17
b: 2 3 4 g: 8 9 10 l: 11 20 21 q: 16 17 20
c: 3 4 5 h: 8 9 22 m: 11 21 22 r: 18 19 21
d: 4 5 6 i: 8 10 23 n: 14 15 24
e: 5 6 7 j: 11 12 13 o: 14 16 17

In this case, a boldface f denotes a subfunction and f (G) < 5 (G).
In a MAX-3SAT problem, each subfunction would denote a clause
in Conjunctive Normal Form, and we would evaluate each clause.
In an NK landscape, we would generate a random lookup table for
the binary assignments to the variables in each subfunction.

Partition Crossover constructs the Variable Interaction Graph
(VIG) of the k-bounded function. Figure 1a presents an image of
the VIG for example F1. If 5 (G) has = variables and< subfunctions,
the VIG has = nodes and $ (:2<) edges when : is bounded. If
< = $ (=) the VIG can be computed 4G02C;~ in$ (=) time using the
Fourier Transform. The VIG can also be de�ned heuristically: create
a vertex for each variable in 5 (G), and create an edge between two
variables if they appear together in a subfunction of 5 (G). Often,
the heuristic VIG is only slightly larger than the exact VIG. The
VIG is only computed once.

Assume that the parents P1 and P2 are also local optima under
a single bit-�ip neighborhood. Partition Crossover decomposes
the VIG by �xing common variable assignments in P1 and P2. A
"common assignment" means that both parents have the same as-
signment (0 or 1) for a particular variable G8 . After variables with
common assignments are removed, the VIG is often decomposed
into@ connected subgraphs. Decomposing the VIG also decomposes
5 (G) into linearly separable subfunctions. In our example F1, let
the two parent strings P1 and P2 be:

%1 = 01000 01100 10000 01101 1111

%2 = 10111 10011 01111 10011 1111
These two solutions share ***** ***** ***** ****1 1111 as common
bits, where * represents bits that have complementary assignments
in the parent solutions. When the VIG is decomposed, vertices
20 through 24 (G20 to G24) are deleted, leaving �ve recombining
components. Figure 1b shows the recombination graph associated
with the VIG for example F1.

When any two random strings of length = are generated, the
number of matching bits (both 0, or both 1) at any position 8 has
a Binomial distribution with mean =/2. Thus, half the bits in two
random binary strings are expected to match. We might expect
two local optima to be closer in Hamming distance than random
bitstrings, but this may not be true for all problem domains.

The @ components of the decomposed VIG represent 2@ candi-
date solutions of 5 (G) because each component can either take
assignments from P1 or P2. Mathematically, P1 and P2 are included
in the set of 2@ possible children.

Let G 0 denote any string where the shared �xed bits in P1 and
P2 are removed. Some subfunctions in 5 (G) may only be associated
with �xed variables, and thus these subfunctions only contribute
to some constant 2 . When the VIG is decomposed, 5 (G) is also
decomposed into a set of new subfunctions 61 (G 0). . .6@ (G 0) . Then

5 (G) = 6(G 0) + 2 =
@’
8=1

68 (G 0) + 2 (2)

FOGA ’23, August 30-September 1, 2023, Potsdam, Germany Whitley, Ochoa, Chicano

Figure 1: Variable interaction graph (VIG) for example F1 as well as the decomposed recombination graph for P1 and P2.

In Figure 1 we have the following speci�c example, where the
variables and indexes of 6(G 0) are arbitrarily sorted by index:

6(G 0) = 61 (G1, G2, G3, G4, G5, G6, G7) + 62 (G8, G9, G10)
+ 63 (G11, G12, G13) + 64 (G14, G15, G16, G17)
+ 65 (G18, G19)

Note that the function 6(G 0) is separable. The set of subfunc-
tions 61 (G 0). . .6@ (G 0) are disconnected subgraphs of the recombi-
nation graph. Thus, for any 8 and 9 (8 < 9) the subfunctions 68 (G 0)
and 6 9 (G 0) do not have any shared variables. Each 68 (G 0) also maps
to a unique subset of the subfunctions as well. Recall that G 0 de-
notes a string where the variables G20 to G24 are �xed (to 1 in this
case). Also recall that boldface is use to represent subfunctions (for
example f, g, i, j, k, n, m). Then we can see that:

62 (G8, G9, G10) = g(G8, G9, G10) + h(G8, G9) + i(G9, G10)
63 (G11, G12, G13) = j(G11, G12, G13) + k(G11, G13) + l(G11) +m(G11)

65 (G18, G19) = r(G18, G19)
and more generally for G 0:

61 (G1, G2, G3, G4, G5, G6, G7) = a(G 0)+b(G 0)+c(G 0)+d(G 0)+e(G 0)+f (G 0)
64 (G14, G15, G16, G17) = n(G 0) + o(G 0) + p(G 0) + q(G 0)

Thus, the recombining components decompose both the set of
subfunctions as well as the set of variables.

Exactly the same function 6(G 0) can be constructed for Partition
Crossover when applied to the Traveling Salesman Problem [18].

3.1 A Linear Equation for Children
We next show how to convert Equation 2 into a simple linear equa-
tion that can be used to evaluate all of the children of Parents P1
and P2.

For each recombining component from 8 = 1 to @ we de�ne
components of a weight vector U as follows:

U8 = 68 (%1) � 68 (%2)
where U8 represents the change in evaluation when changing only
the bits in the 8C⌘ recombining component. The subfunction 68
selects the correct bits to evaluate the 8C⌘ recombining component.

Let 1 denote an auxiliary binary string (a vector of variables)
of length @. Let 18 = 0 denote that the child inherits the bits from

Parent 2 in the 8C⌘ recombining component. By symmetry, 18 = 1
denotes that the child inherits the bits from Parent 1 in the 8C⌘
recombining component. Inheritance from P1 is represented by
1 = 1@ and inheritance from P2 is represented by 1 = 0@ .

T������ 3.1. Under Partition Crossover, all of the 2@ children of
parents P1 and P2 can be evaluated using the following linear equation
and the auxiliary bit function 1.

5 (G) = 6(G 0) + 2 = U0 +
@’
8=1

U818 (3)

where U0 = 5 (%2) .

P����. By construction, the set of subfunctions 61 (G) . . .6@ (G)
are linearly separable. The coe�cientU8 computes the changewhich
occurs when the bits in a single recombining component (indexed
by 8) all �ip simultaneously from the assignment in P2 to the assign-
ment in P1. By de�nition, when 18 = 0 the evaluation of 68 (G 0) from
P2 are already includes in U0. Therefore, when 18 = 1, the change in
the evaluation of 68 (G 01) is computed by U8 = 68 (%1) � 68 (%2). ⇤

C�������� 3.2. If all of the children of Partition Crossover are local
optima, then all of those local optima can be evaluated using linear
equation (2). If a child of Partition Crossover is not a local optimum,
linear equation (2) provides an upper bound (when minimizing) on
the �tness of all local optima that can be reached by taking at least
one improving move starting from that child.

Obviously, linear equation (2) provides a bound on the �tness
of any local optimum that can be reached from a child of Partition
Crossover since local search can only improve on the evaluation
of the original child. Theorem 3.1 holds for all k-bounded pseudo-
Boolean functions as well as the Traveling Salesman Problemwhich
uses the same function 6(G 0).

We next show that local optima can sometimes be grouped into
pairs, such that each pair has the same combined �tness.

T������ 3.3. For any child⇠8 in the lattice produced by Partition
Crossover, denote its complement by ⇠̄8 . The following equalities hold:

5 (%1) + 5 (%2) = 5 (⇠8) + 5 (⇠̄8) =
1

2@�1

2@’
8=1

5 (⇠8) (4)

P����. First consider 5 (%1) + 5 (%2) = 5 (⇠8) + 5 (⇠̄8) . In Equa-
tion 3 inheritance from P1 is represented by 1 = 1@ and from P2

Crossover Can Linearize Local Optima FOGA ’23, August 30-September 1, 2023, Potsdam, Germany

is represented by 1 = 0@ . By de�nition, if string 1 generates child
⇠ under PX, then 1̄ generates ⇠̄ . Since 6(G 0) is linearly separa-
ble with respect to representation 1 it follows that 5 (⇠) + 5 (⇠̄) =
5 (%1) + 5 (%2). And on average 5 (%1) + 5 (%2)/2 = 1

2@
Õ2@
8=1 5 (⇠8)

and 5 (%1) + 5 (%2) = 1
2@�1

Õ2@
8=1 5 (⇠8) . ⇤

Clearly, if all of the children produced by Partition Crossover
are locally optimal, then all of the associated pairs of local optima
will have the combined �tness of 5 (%1) + 5 (%2).

The following are some additional consequences of Theorem 3.3.
Let ⇠1 denote the best child and ⇠F the worst child. Because ⇠1
and ⇠F must be complements 5 (%1) + 5 (%2) = 5 (⇠1) + 5 (⇠F).

Next, assume there are 3 recombining components and that we
de�ne 8 possible children relative to a 3-bit auxiliary function G
over the recombining components.

Let 6̂(1) be a proxy function for 6(G 0) = 61 (G 0) +62 (G 0) +63 (G 0)
where 1 again determines inheritance of recombining components
from Parent P1 or P2. If all 8 children are local optima in the full
search space, then Theorem 3.3 tells us:

6̂ (111) + 6̂ (000) = 6̂ (001) + 6̂ (110) = 6̂ (010) + 6̂ (101) = 6̂ (100) + 6̂ (011)

These same equalities must also hold for function 5 (G) when eval-
uating the children of Partition Crossover.

There is also a recursive decomposition based on hyperplane
slices of the hypercube lattice. Thus, it is true (for example) that if
we �x 11 = 0:

6̂(011) + 6̂(000) = 6̂(001) + 6̂(010)
This recursive decomposition must hold for any linear function.

Why does this matter? These equalities strongly constrain the
intervals between the evaluations of local optima in the lattice.
These local optima do not and cannot have arbitrary evaluations.

3.2 The Hamming Distance Linear Equation
Let the function �⇡ (G,~) measure the Hamming distance between
bit strings G and ~ (where string length is =). By convention, a
global optimum is represented by string G⇤. Generalize the function
�⇡68 (G 0, G⇤) so it also computes Hamming Distance only over the
bits in the recombining component represented by 68 (G 0) .

We again use the auxiliary string 1 and will compute the coef-
�cients (denoted by V8) of a linear equation. Let V0 = �⇡ (%2, G⇤) .
Let V8 = �⇡68 (%1, G⇤) � �⇡68 (%2, G⇤).

T������ 3.4. Under Partition Crossover, the Hamming distance
between a global optimum G⇤ all of possible 2@ children of parents P1
and P2 can be evaluated using the following linear equation and the
auxiliary bit function 1.

�⇡ (G, G⇤) = V0 +
@’
8=1

V818 . (5)

P����. By de�nition, the calculation of Hamming distance
is already a linear function. When 18 = 0 the calculation of
�⇡68 (%2, G⇤) is already included in V0 .When 18 = 1, the expression
V8 = �⇡68 (%1, G⇤) � �⇡68 (%2, G⇤) computes the change in Ham-
ming distance when the bits in a single recombining component
(indexed by 8) all �ip simultaneously from the assignment in P2 to
the assignment in P1. ⇤

It follows that the Hamming function � (G, G⇤) is also symmetric
and

�⇡ (⇠) + �⇡ (⇠̄) = �⇡ (%1) + �⇡ (%2)
when evaluating the children of Partition Crossover. Therefore,
lattices (and sub-lattices) are symmetric both in terms of �tness,
but also in terms of Hamming distance.

3.3 An Example Lattice
In Figure 2, 16 di�erent local optima are shown, taken from an
adjacent NK landscape with N=40 and k=3. All of these 16 local
optima were generated by one application of Partition Crossover:
all of the children are also local optima. Note the strong sym-
metries which exist in the set of local optima. Let ` denote the
average of all of these locally optimal children; we can think of ` as
being a "centroid" of these �tness values. The average of all pairs
of complements in the lattice of o�spring is also `.

The coe�cients for the linear equation in this case are given by

5 (G) = 5 (%0A4=C2) + U111 + U212 + U313 + U414

5 (G) = 2754 + 611 + 1912 + 6413 + 7114 (6)

In Figures 2 and 3 the constant (5 (%2) = 2754) has been dropped.
In Figure 2, the linear equation (2) also tells us that all of the

local optima in hyperplanes 00** and 11** and 01** and 10** must
be identical in �tness, except shifted by a constant in both the y
axis (the evaluation function) and the x axis (Hamming distance).
The constant must be the sum of one or more coe�cients in linear
equation 3 (the U terms) and linear equation 5 (the V terms). Fixing
the same bits induces a lower dimensional space in each case. This
can be seen in Figure 3 where 3 of 6 =

�4
2
�
subspaces are highlighted.

The ellipses show di�erent shifts of the evaluation function and
Hamming distance in di�erent hyperplane subspaces of the lattice
in Figure 2.

Note that there is nothing special about this particular example
(except that all of the children are also local optima). This same
kind of shifting must occur in all lattices that might be found in any
arbitrary k-bounded pseudo-Boolean problem instance. We also
sampled a random NK landscape (n=40, k=3) with 4 recombining
components where all of the children were also local optima. In this
case, 5 (%2) = 2735 and the U coe�cients (i.e. to compute �tness)
are

5 (G) = 2735 � 6011 + 8812 + 8013 � 1914 . (7)

The same shifting must also occur for the Traveling Salesman Prob-
lem when using Partition Crossover or Helsgaun’s IPT operator
[18].

4 LATTICES AND
THE BIG VALLEY HYPOTHESIS

The "Big Valley" hypothesis asserts that local optima which are
closer to the global optimum in evaluation are generally also closer
to the global optimum in the representation space [1, 2]. The Big
Valley hypothesis conjectures that heuristic search methods are
able to escape one local optimum by moving a short distance into
the basin of another local optimum. By repeatedly "hopping" from
local optimum to local optimum, iterated local search can (often)
make progress toward a global optimum.

FOGA ’23, August 30-September 1, 2023, Potsdam, Germany Whitley, Ochoa, Chicano

Figure 2: A sample of 16 optima from a Big Valley distribution of local optima (leftmost). These optima were generated under
one application of Partition Crossover. The hypercube recombination graph is also shown (rightmost).

Figure 3: The same local optima shown in Figure 2 are shown here grouped as lower dimensional hyperplanes of the larger
lattice. These are 3 of 6 con�gurations. Each frame shows how lower dimensional lattices are identical but shifted by a constant.
All of the children are local optima, and each constant can be exactly derived from the coe�cients of linear equations for
Hamming distance (Eq. 5) and �tness (Eq. 6). Lower dimensional lattices can also be used to �nd higher dimensional lattices.

This Big Valley Hypothesis has been used to explain the e�ective-
ness of heuristic search methods for combinatorial optimization. In-
tuitively, heuristic search methods often escape one local optimum
by moving a short distance into the basin of another (hopefully bet-
ter) local optimum. This implies some global structure. However, no
general mechanism has been proposed that can adequately explain
why the Big Valley structure should exist, or why it should occur
so commonly in instances of NP-Hard problems. And it should be
noted, there are also examples of landscapes with multiple funnels
where the Big Valley (or largest funnel) will lead one away from the
global optimum [10]; however, these cases are often associated with
continuous optimization problems, and some hard combinatorial
problems such as the quadratic assignment problem (QAP) [17].

The linear equations introduced in this paper provide a stronger
explanation as to why the Big Valley distribution of local optima ex-
ists, and why both genetic recombination and iterated local search
are able to exploit the Big Valley distribution of local optima. Lo-
cal optima which are children of Partition Crossover have �tness
values that are determined by a relatively small number of linear

coe�cients. Thus, local optima that co-occur together in lattices
must also display similar �tness trends relative to their distance
from the global optimum.

Consider the case where all of the children of Partition Crossover
(including the parents) are local optima. All of the children belong
to a lattice and the orientation of the lattice is determined by linear
equations 3 and 5. If the change in Hamming distance and in �t-
ness evaluation are positively correlated (assuming minimization),
the entire lattice of local optima must contribute to a Big Valley
distribution.

4.1 Exploring the Big Valley Distribution
The previous section starts to explain the distribution of many
local optima that are part of Big Valley distributions. Our empirical
data was collected from NK landscapes, where N=n and K=k-1.
The NK look-up tables (i.e., the subfunctions) were populated with
random integers between 1 and 100 (see [16]). In those lattices that
are composed entirely of local optima, an improvement in �tness

Crossover Can Linearize Local Optima FOGA ’23, August 30-September 1, 2023, Potsdam, Germany

Figure 4: All of the local optima of an adjacent NK landscape
(N=30, k=3) are plotted with �tness rank on the x-axis. The
y-axis counts how often that optimum appears in a lattice.
The minimum membership is 27 lattices; the average is 288.

Figure 5: This is a classic example of the Big Valley distribu-
tion of local optima. The �tness evaluation is on the y-axis
and the Hamming distance from the global optimum is on
the x-axis. The global optimumwas captured by coincidence.

is often matched by a reduction in Hamming distance across the
entire lattice.

Of course, it is possible that a local optimum is not part of any
lattice. But the empirical data suggests this might be rare. In Figure 4,
we enumerated all of the local optima in an adjacent NK landscape
for n=30 and k=3. There were 89 local optima in the search space.
On average every local optimum appears in 288 lattices. Every local
optimum appears in a minimum of 27 lattices. Figure 4 also displays
locality e�ects: local optima with similar �tness may also appear in
a similar number of lattices. This may be because these local optima
share some (but not all) of the same recombining components.

In Figure 5, we present a classic illustration of the Big Valley
distribution sampled from the same NK landscape (N=30 and k=3).
Local optima that are nearer to the global optimum in Hamming
distance are also nearer to the global optimum in �tness evaluation.
This cloud of local optima looks as if the local optima might be
randomly distributed. But they are not. In this case, the samples
were �ltered so that all of the children of Partition Crossover are
also local optima, and we �ltered to select a variety of lattice sizes. A
lattice containing the global optimum was sampled by coincidence.

In Figure 6 we present the distinct lattices that make up the
cloud of local optima seen in Figure 5. All of the distinct lattices
are symmetric, with shifted �tness values and shifted Hamming
distance relative to the global optimum. We can see that most
individual lattices also show a Big Valley bias. But not all lattices are
aligned with the Big Valley distribution. Lattice L9 is anti-correlated
with the Big Valley distribution. However, for most lattices, the best
child is also closest to the global optimum. Taken together the
lattices yield the Big Valley distribution found in Figure 5.

5 THE NK LANDSCAPE EMPIRICAL DATA
Following the convention of NK landscapes, N=n. We generated
10 adjacent and 10 random NK landscapes with N=40 and N=30
and K+1 = k = 3. We then enumerated all of the local optima in the
search space. We then recombined every local optimum with every
other local optimum. This represents all possible recombinations
of parents that are locally optimal.

Our �rst question: What percentage of the application of Parti-
tion Crossover produced children and lattices?

N=30 Adjacent NK: 88.93% N=30 Random NK: 21.21%
N=40 Adjacent NK: 96.84% N=40 Random NK: 32.40%

We already see that random and adjacent NK landscapes are very
di�erent (also see [20]). Partition Crossover is muchmore successful
when recombining adjacent NK landscapes. However, the success
rate of Partition Crossover appears to increase with problem size
for both random and adjacent NK landscapes. That is logical: longer
strings provide more opportunities for decomposition.

Our second question: What percentage of the children of Parti-
tion Crossover are also local optima?

N=30 Adjacent NK: 83.04% N=30, Random NK: 74.43%
N=40 Adjacent NK: 79.91% N=40, Random NK: 71.29%

There is again a di�erence between random and adjacent NK
landscapes, but here the di�erence is less extreme. And now the
percentage of children that are also local optima seems to decrease
with problem size.

This also means that in 20% to 30% or more applications of
Partition Crossover, there is an opportunity to improve one of the
children using local search. Of course, modern local search methods
for k-bound pseudo-Boolean functions do not randomly �ip bits
and do not enumerate the neighborhood. But it is worth pursuing
these improving moves and what is the best way to do that? We
address this question in Sections 6.2 and 6.3

All of our empirical data is presented in Table 1. Table 1 summa-
rizes data over all of the local optima, and also over the best half
of the local optima (all of those with above median �tness).

The Table counts the average number of local optima for each
function. It also counts the number of lattices of size 4, size 8, size
16, size 32, size 64, and size 128. Recall that with @ recombining
components, the size of the lattice is 2@ .

The Table reports the Partition Crossover success rate, which
means that an application of Partition Crossover resulted in recom-
bining components and that children were produced. The success

FOGA ’23, August 30-September 1, 2023, Potsdam, Germany Whitley, Ochoa, Chicano

Figure 6: Lattices over the set of local optima seen in the Big Valley distribution shown in Figure 4. Every point is a local
optimum. The constraints and symmetries governing the �tness evaluations are obvious in these individual lattice distributions.
Some jitter was added to L16 of size 64 in order to visualize points that have very similar evaluations.

rate for adjacent NK landscapes is extremely high (> 78% for N =
40). The success rate for random NK landscapes is lower, but still
substantial (>30 % for N=40).

The number of children of Partition Crossover that are also
locally optimal is high. For adjacent NK landscapes and N=40, 80%
of the children of Partition Crossover are also locally optimal. For
random NK landscapes and N=40, 71% of the children of Partition
Crossover are also locally optimal. These percentages are higher for
local optima in the upper 50 percentile; these are the local optima
that are closer to the global optimum in �tness.

Lattices produced by recombining local optima in the upper 50
percentile are also approximately 3 times more likely to contain
the global optimum. The probability of a lattice containing the
global optimum was greater than 0.5% for N=30 and N=40, for both
adjacent and random NK landscapes when the parents are sampled
from the upper 50 percentile.

6 ALGORITHMIC CONTRIBUTIONS
When a large lattice does exist where all of the children are local
optima, we should expect to �nd smaller sub-lattices of this lattice
with high frequency. In general, if there are @ recombining compo-
nents in a larger lattice, there are 2@ � (@+1) sub-lattices with some
dimension less than @ but greater than 1 or 0. If the children of the
large lattice are all local optima, then (obviously) all of the children
of the approximately 2@ sub-lattices are also all local optima. It
follows that the recombination of parents which are local optima is
much more likely to discover a smaller sub-lattice of a larger lattice
than it is to discover the larger lattice itself.

We also motivate this section by referring to Figure 3. The lattice
in this case is 4 dimensional. However, the decompositions that
are shown are 2 dimensional. Assume that we have discovered
some (but not all) of the 2-dimensional lattices that make up the 4-
dimensional lattice. Can we use this information to �nd the higher
dimensional lattice? In some cases, the answer is immediately "yes".
In other cases, there are strategies that will improve the chances of
�nding higher dimensional lattices.

Consider Figure 3 again. Assume we have not found the full
4-dimensional lattice, but we have found two of the associated
3-dimensional lattices.

For example, if one 3-dimensional lattice has coe�cients

5 (G) = 21 + 611 + 1912 + 6413
and another 3-dimensional lattice has coe�cients

5 (G) = 22 + 611 + 1912 + 7114
then recovering the 4-dimensional lattice is trivial.

What precisely happens in this case? Consider 3 parents: P2, P1,
P3. In the 4-dimensional hypercube for the auxiliary function 1
let P2 be represented by 0000, P1 is represented by 0111 and P3 is
represented by 1011. Then P2 ⌦ P1 has coe�cients U1,U2,U3 and
P2 ⌦ P3 has coe�cients U1,U2,U4 .

Of course this case is special. Because P2 is involved in both
applications of Partition Crossover and is the basis of the constant,
the U8 values overlap. In general, this rarely happens.

However, more generally we can look for any pair of suc-
cessful applications of Partition Crossover that share at least
one identical recombining component. The following Lattice

Crossover Can Linearize Local Optima FOGA ’23, August 30-September 1, 2023, Potsdam, Germany

Table 1: Empirical data collected by enumerating all local optima for N=30 and N=40 (k=3) NK landscapes. All numbers are
averages of 10 instances, except Adjacent N=40 where there were 8 instances. Recombination crossed every local optimum
with every local optimum (columns labeled "ALL"); or Recombination crossed the best half of the local optima with each other
(columns labeled "Best 1/2"). Over 70% of all children were also local optima, but this number decreased as N increased.

N = 30 N = 30 N = 40 N = 40
Adjacent Random Adjacent Random

ALL Best 1/2 ALL Best 1/2 ALL Best 1/2 ALL Best 1/2
Count of all Local Optima 865 432 485 243 5 448 2 729 3 468 1 734
Count of size 4 lattices 270 774 73 668 27 348 10 890 4 071 180 1 015 428 1 858 411 470 687
Count of size 8 lattices 255 536 69 574 4 280 2 753 7 718 967 1 983 148 461 645 124 739
Count of size 16 lattices 69 390 18 213 284 126 5 334 851 1 339 630 68 703 18 913
Count of size 32 lattices 4 725 1 190 1 1 1 553 133 316 041 4 384 1 482
Count of size 64 lattices 48 11 0 0 125 394 23 250 128 54
Count of size 128 lattices 0 0 0 0 2 673 137 0 0
Total Lattice Count 600 473 162 656 31 915 12 934 18 639 384 4 677 638 2 388 035 615 875
Crossover Success Rate 88% 96% 21% 30% 79% 96% 32% 33%
Locally Optimal Children 83% 86% 74% 84% 80% 84% 71 % 77 %
Global Opt. as Improved Child (Count) 441 247 360 233 9 438 5 375 2 027 2 621
Global Opt. as Direct Child (Count) 1 516 1 221 213 81 19 244 19 222 1 566 1 176
Lattices containing Global Opt. 0.32% 0.90% 1.79% 2.40% 0.15% 0.52% 0.15% 0.61%

Discovery Theorem provides a road-map that can help guide search
toward the discovery of larger lattices.

6.1 The Lattice Discovery Theorem

Theorem (The Lattice Discovery Theorem): Consider parents
%1⌦%2 and %3⌦%4. Assume there is a recombining component rc1 that
is shared by both sets of parents. With loss of generalization, assume
there is at least one recombining component rc2 that is only found
in %1 ⌦ %2. If rc2 has no nonlinear interaction with the recombining
components already produced by %3 ⌦ %4 then the lattice associated
with %3 ⌦ %4 is a sub-lattice of a larger lattice.

Proof: The proof immediately follows from the de�nition of what
it means to be a recombining component. If rc2 has no nonlinear
interaction with the recombining components already produced
by %3 ⌦ %4 then rc2 can only connect to bits that are shared in
common by parents %3 and %4. Transplanting bit assignments from
%1 to %3 and from %2 to %4 associated with recombining component
rc2 will create a new set of parents which must also yield another
recombining component ⇤.

Corrollary: Under the Lattice Discovery theorem every recom-
bining component that is only found in %1 ⌦ %2 but not in %3 ⌦ %4
represents an opportunity to �nd a larger lattice. This can also
apply in reverse for recombining components found in %3 ⌦ %4 but
not in %1 ⌦ %2.

This theorem provides an algorithmic strategy to search for
larger lattices, and suggests other strategies as well. For example,
assume that %1 ⌦ %2 yields 32 recombining components, and %3 ⌦
%4 yields 20 recombining components, but only 2 recombining
components are shared. Hypothetically, it may be possible to merge

these recombining components to obtain a lattice of dimension 50
(32+20-2).

Furthermore, even if we only know about %1 ⌦ %2 but do not
have %3 or %4, local search can �x the bits found in the known
recombining components for %1⌦%2 and look for other local optima
that share the known recombining components with %1 and %2. It is
even possible that a library of recombining components could also
be used to construct solutions by assembling strings made up of
previously discovered non-overlapping recombining components.
Thus, even when there are no shared recombining components, this
strategy can be used to directly search for pairs of parents that do
share recombining components. Finding larger lattices will improve
the chances of �nding an improved local optimum or even a global
optimum.

The Lattice Discovery Theorem can be supported by data struc-
tures which e�ciently store information about known recombining
components. This includes information about which bits are in-
volved, and the partial evaluation of the recombining component.
This data structure would make it possible to determine if an ap-
plication of Partition Crossover involves a previously discovered
recombining component.

There are also situations which are not covered by the Lattice
Discovery Theorem. For example, assume that there exists a lattice
with 4 recombining components denoted by rc1, rc2, rc3 and rc4.
There could exist an application of Partition Crossover which uses
rc1 and rc2 and a second, di�erent application of Partition Crossover
that uses rc3 and rc4. In this case, there are no shared recombining
components. However, this case might also be detected because
disjoint subsets of bits are involved.

6.2 Lattices and Improving Moves
Consider a lattice with @ = 3, and 8 children. We know the two
parents are local optima. Let parent P1 be denoted by recombination

FOGA ’23, August 30-September 1, 2023, Potsdam, Germany Whitley, Ochoa, Chicano

mask 17 = 111 and parent P2 by mask 10 = 000. We will associate
children with their binary recombination masks. We will also group
the children into pairs of binary complements according to their
recombination masks and the associated integers.
b7 = 111 b1 = 001 b2 = 010 b4 = 100
b0 = 000 b6 = 110 b5 = 101 b3 = 011

Append the ! symbol to the children that are local optima, and
append a # symbol to children that can be improved by local search.
b7 = 111! b1 = 001# b2 = 010! b4 = 100#
b0 = 000! b6 = 110# b5 = 101! b3 = 011!

Assuming that we always recombine local optima using PX, this
lattice is reachable by recombining P1 and P2, and by recombining
C2 and C5. But it is not reachable from any of the other children
because one or both of the potential parents is not a local opti-
mum. This assumes, of course, that we only recombine local optima
(because we improve all strings that are not locally optimal).

The Lattice Expansion Theorem tells us that it is useful to store
information about all of the local optima that are discovered during
search as well as information about recombining components.

There also may be value in storing children that are members of
a lattice, but which are not locally optimal. We sampled 30 strings
which appear as a child under Partition Crossover but which were
not locally optimal from an adjacent NK landscape with N=40, k=3.
All of the lattices were of size 16. On average a child that was not
locally optimal appeared in 1275 di�erent lattices. Thus all children
found in lattices are strongly associated with other local optima
and could play a critical role in discovering other lattices and local
optima.

Is it worth searching the lattice of children for improving moves?
Partition Crossover already returns the best of 2@ o�spring and
testing all of the o�spring is not feasible for large @.

We sampled 120 lattices of size 4 (q=2) to collect data, where
N=30. Note that lattices of size 4 are embedded in larger lattices. So
the results also partially transfer to larger lattices. We only consider
cases where there was an improving move. Note that the best child
can also be improved in some cases.

How often is the worst child improved to yield the best solution?
For random NK landscapes 34.8 percent of the time the worst child
is improved to be better than the best child. For adjacent NK land-
scapes, 30.0 percent of the time the worst child is improved to be
better than the best child. But in order to e�ciently locate and �nd
improving moves in $ (1) time we must use a score vector.

6.3 Updating the Score Vector
Modern iterated local search algorithms, as well as intelligent evo-
lutionary algorithms, use a score vector to track improving moves
for a 1-bit �ip, or even a multi-�ip neighborhood [13] [14] [7]. The
Hoos and Stützle textbook [13] explains how score vectors are used
to track improving moves for MAX-kSAT problems.

Assume the current candidate solution is G2 . Let G? be a neigh-
bor of G2 generated by �ipping bit ? . The score vector stores the
following information:

B2>A4 (2, ?) = 5 (G2) � 5 (G?)
The index 2 is typically omitted because 2 is the current solution.
Thus the score vector is of dimension =. If we are minimizing and

5 (G) > 0 for all G , a positive score indicates an improving move.
Updating the B2>A4 vector is dramatically better than enumerating
the neighborhood.

Whitley et al. [21] present a proof of$ (1) average time complex-
ity for updating the score vector for all k-bounded pseudo-Boolean
functions. For k-bounded functions, a bit �ip a�ects$ (1) other bits
on average and thus in expectation an arbitrary bit �ip changes only
$ (1) entries in the B2>A4 vector, but in the worst case it changes
$ (=) entries in the B2>A4 vector. An average $ (1) complexity is
achieved by bounding the frequency of repeatedly �ipping the same
bit [21]; this will amortize the worst case behavior.

So how do we combine score vectors with Partition Crossover?
For example, we might not want to evaluate all of the children in
the lattice when looking for children that are not local optima,
and thus could be improved by local search. Evaluating all of the
children requires determining the �tness of 2@ individuals. These
evaluations can be grouped so that @ children can be evaluated with
one call to the evaluation function. But this still results in 2@/@ calls
to the evaluation function. For large @ checking all of the children
for improving moves is not feasible. So we would need to sample,
but we want to sample in a clever and e�cient manner.

Theorem (The Score Update Theorem): It is possible visit @ � 2
child solutions along a path between Parent 1 and Parent 2 by changing
every recombining component exactly once. This requires less than
= updates to the B2>A4 vector and can be done in $ (=) time with at
most 1 call to the complete evaluation function.

PROOF: Assume the parents are P1 and P2. We move from P1
or P2 by changing one recombining component at a time. Using
the auxiliary binary string 1 let 1 = 0@ correspond to P2 and let
1 = 1@ correspond to P1. We will �ip each bit in 1 one time, thus
moving from P2 to P1 (or vice versa). This also means that every
bit in string G also only �ips at most one time, since every variable
is found in only one recombining component. The score vector is
updated after each bit �ip in string G . But not every bit in G will
�ip because there must exist "shared variables" which separate the
recombining components. The cost of bit �ips and score vector
updates combined is therefore $ (=). Every subfunction is only
evaluated once because each subfunction can only be associated
with one recombining component (which is associated with only 1
bit in 1). Thus, evaluating @ � 2 children in this way is equivalent
to at most one call to the evaluation function 5 (G). ⇤

In practice, we can construct a path of children between P1
and P2 that includes the best child. Or we can also construct a
second path of children between P1 and P2 that includes the worst
child. The Score Update Theorem allows us to explore a constant
number of paths between P1 and P2 with only 1 call to the complete
evaluation function per path.

Consider the following example: assume that q=6. We can evalu-
ate the following set of children by changing 1 bit at a time on the
auxiliary binary string 1; this will yield less than = updates to the
score vector.

000000 ! 000001 ! 100001 ! 100101 ! 110101 ! 110111 ! 111111

Crossover Can Linearize Local Optima FOGA ’23, August 30-September 1, 2023, Potsdam, Germany

Note that this updates the score vector while only �ipping those
bits in G that occur in a recombining component because they are
the only bits that change along this path. However, if an improving
move is identi�ed, it must be a bit that is not in a recombining
component.

If there is any child along this path that can be improved by
local search, the score vector will identify it, calculate the change
in evaluation and the score vector can be automatically updated if
that move is accepted. Note that there could be multiple children
along such a path that might be improved by local search.

7 CONCLUSIONS
We have used Partition Crossover to discover lattices. However,
the local optima which appear in lattices are de�ned with respect
to a speci�c local search operator. The lattices and constraints are
inherent to the function itself. Partition Crossover is only a vehicle
for discovering the lattices.

We have shown that Partition Crossover operators can be used to
�nd subsets of local optima that are related to each other by a simple
linear equation. When Partition Crossover identi�es @ recombining
components, it also identi�es a lattice (i.e., a hypercube) of children.
All of the children in that lattice have �tness evaluations that can
be determined using the following linear equation:

5 (G) = 6(G 0) + 2 = U0 +
@’
8=1

U818

where U0 = 5 (%2) and 18 is associated with a recombining compo-
nent.

If the parents are local optima, and all of the children are local
optima, then local optima can also be evaluated using the same
linear equation.

We also prove that the evaluation of local optima which appear
in lattices are highly constrained, and for every solution ⇠8 in a
lattice: 5 (%1) + 5 (%2) = 5 (⇠8) + 5 (⇠̄8).

The Hamming distance between children which appear in a
lattice and the global optimum is also determined by a simple linear
equation. For any string G that appears in a lattice, and global
optimum x*:

�⇡ (G, G⇤) = V0 +
@’
8=1

V818 . (8)

where V0 = 5 (%2) and 18 is associated with a recombining compo-
nent.

The Lattice Expansion Theorem shows how it is possible to
�nd higher dimensional lattices given a speci�c sample of lower
dimensional (sub)lattices of local optima.

We enumerated all of the local optima in adjacent and random
NK landscapes for N=30 and N=40 and k=3. This empirical data
suggests that lattices occur with extremely high frequency and
that this frequency appears to increase with problem size for k-
bounded functions. Our results also show dramatic di�erences in
adjacent and randomNK landscapes, which might call into question
comparisons of algorithms when using adjacent NK landscapes

(which are known to have PTIME solutions) as benchmark test
functions.

This work greatly improves our understanding of the Big Valley
distribution, and lays a theoretical foundation which suggests new
ways in which we could build more intelligent heuristic search
algorithms by exploiting known properties of k-bounded pseudo-
Boolean functions, including MAX-kSAT [11].

REFERENCES
[1] K. D. Boese, A. B. Kahng, and S. Muddu. 1993. On the big valley and adaptive multi-

start for discrete global optimizations. Technical Report. UCLA CS Department.
[2] Kenneth D. Boese, Andrew B. Kahng, and Sudhakar Muddu. 1994. A new adaptive

multi-start technique for combinatorial global optimizations. Operations Research
Letters 16 (1994), 101–113.

[3] E. Boros and P.L. Hammer. 2002. Pseudo-Boolean Optimization. Discrete applied
mathematics 123, 1 (2002), 155–225.

[4] W. Chen and D. Whitley. 2017. Decomposing SAT instances with pseudo back-
bones. In 17th European Conference on Evolutionary Computation Combinatorial
Optimization (EVOCOP). Springer, LNCS.

[5] W. Chen, D. Whitley, F. Chicano, and R. Tinós. 2018. Tunneling between plateaus:
improving on a state-of-the-art MAXSAT solver using partition crossover. In
Genetic and Evolutionary Computation Conference (GECCO). ACM, 921–928.

[6] F. Chicano, D. Whitley, G. Ochoa, and R. Tinós. 2017. Optimizing one million
variable NK landscapes by hybridizing deterministic recombination and local
search. In Genetic and Evolutionary Computation Conference (GECCO). ACM,
753–760.

[7] F. Chicano, D. Whitley, and A. Sutton. 2014. E�cient Identi�cation of Improv-
ing Moves in a Ball for Pseudo-Boolean Problems. In Genetic and Evolutionary
Computation Conference (GECCO). ACM, 437–444.

[8] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. 2001. Introduction to Algorithms,
2nd Edition. MIT Press, New York.

[9] A Howe W Chen D Hains, D Whitley. 2013. Hyperplane initialized local search
for MAXSAT. In Genetic and Evolutionary Computation Conference (GECCO).
ACM, 437–444.

[10] J P K Doye, M A Miller, and D J Wales. 1999. The double-funnel energy landscape
of the 38-atom Lennard-Jones cluster. Journal of Chemical Physics 110, 14 (1999),
6896–6906. https://doi.org/10.1063/1.478595

[11] P. Dunton and D. Whitley. 2022. Reducing the cost of partition crossover on large
MAXSAT problems: the PX-preprocessor. In Genetic and Evolutionary Computa-
tion Conference (GECCO). ACM, 694–702.

[12] Keld Helsgaun. 2000. An e�ective implementation of the Lin-Kernighan traveling
salesman heuristic. Eur. J. Oper. Res. 126, 1 (2000), 106–130. https://doi.org/10.
1016/S0377-2217(99)00284-2

[13] H.H. Hoos and Th. Stützle. 2004. Stochastic Local Search: Foundations and Appli-
cations. Morgan Kaufman.

[14] H. H. Hoos. 1999. On the run-time behaviour of stochastic local search algorithms
for SAT.. In Proc of AAAI. 661–666.

[15] M. Mieskolainen and R. Orava. 2017. Observables of QCD di�raction. In AIP
Conf Proceedings, Vol. 1819(1). AIP Publishing.

[16] M. E. J. Newman and Robin Engelhardt. 1998. E�ects of neutral selection on the
evolution of molecular species. Proc. R. Soc. London B 256 (1998), 1333–1338.

[17] Gabriela Ochoa and Sebastian Herrmann. 2018. Perturbation Strength and the
Global Structure of QAP Fitness Landscapes. In PPSN (2) (Lecture Notes in Com-
puter Science, Vol. 11102). Springer, 245–256.

[18] Renato Tinós, Keld Helsgaun, and Darrell Whitley. 2018. E�cient Recombination
in the Lin-Kernighan-Helsgaun Traveling SalesmanHeuristic. In PPSN (1) (Lecture
Notes in Computer Science, Vol. 11101). Springer, 95–107.

[19] R. Tinos, D. Whitley, and F. Chicano. 2015. Partition Crossover for Pseudo-
Boolean Optimization. In Foundations of Genetic Algorithms. ACM Press, 137–
149.

[20] E.D. Weinberger. 1996. NP-Completeness of Kau�man’s N-k model: a tunably
rugged energy landscape. Technical Report 96-02-003. Santa Fe Institute, Santa
Fe, NM.

[21] D. Whitley, A. Howe, and D. Hains. 2013. Greedy or Not? Best Improving versus
First Improving Stochastic Local Search for MAXSAT. In The National Conference
on Arti�cial Intelligence (AAAI). 940–946.

[22] D. Whitley and G. Ochoa. 2022. Local optima organize into lattices under re-
combination: an example using the traveling salesman problem. In Genetic and
Evolutionary Computation Conference (GECCO). ACM, 757–765.

https://doi.org/10.1063/1.478595
https://doi.org/10.1016/S0377-2217(99)00284-2
https://doi.org/10.1016/S0377-2217(99)00284-2

	Abstract
	1 Introduction
	2 k-bounded Boolean Functions
	3 Partition Crossover (PX)
	3.1 A Linear Equation for Children
	3.2 The Hamming Distance Linear Equation
	3.3 An Example Lattice

	4 Lattices and the Big Valley Hypothesis
	4.1 Exploring the Big Valley Distribution

	5 The NK landscape Empirical Data
	6 Algorithmic Contributions
	6.1 The Lattice Discovery Theorem
	6.2 Lattices and Improving Moves
	6.3 Updating the Score Vector

	7 Conclusions
	References

