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a b s t r a c t

Let F be a graph and H be a hypergraph, both embedded on the
same vertex set. We say H is a Berge-F if there exists a bijection
φ : E(F ) → E(H) such that e ⊆ φ(e) for all e ∈ E(F ). We say
H is Berge-F-saturated if H does not contain any Berge-F , but
adding any missing edge to H creates a copy of a Berge-F . The
saturation number satk(n, Berge-F ) is the least number of edges
in a Berge-F-saturated k-uniform hypergraph on n vertices. We
show

satk(n, Berge-Kℓ) ∼
ℓ − 2
k− 1

n,

for all k, ℓ ≥ 3. Furthermore, we provide some sufficient condi-
tions to imply that satk(n, Berge-F ) = O(n) for general graphs F .

© 2023 Published by Elsevier Ltd.

1. Introduction

Extremal graph theory is concerned with maximizing or minimizing some parameter over a
estricted class of graphs. Let G and F be k-uniform hypergraphs. We say that G is F-saturated
f G does not contain a copy of F but G + e does for any e ∈ E(G). The most well-studied problem
n extremal graph theory is the Turán problem, which asks for the maximum number of edges in
F-free hypergraph G on n vertices. This maximum is known as the extremal number or Turán
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umber of F , and is denoted exk(n,F). Any F-free hypergraph G with exk(|V (G)|,F) edges must
ecessarily be F-saturated, so we can write

exk(n,F) = max{|E(G)| : |V (G)| = n, G is F-saturated}.

n the flipside, the saturation number of F , denoted satk(n,F), is the least number of edges in a
-saturated graph on n vertices, or

satk(n,F) = min{|E(G)| : |V (G)| = n, G is F-saturated}.

aturation was first introduced by Erdős, Hajnal and Moon [7] for graphs, and then generalized for
ypergraphs by Bollobás [3] who showed that

satk(n,K
(k)
ℓ ) =

(
n
k

)
−

(
n− ℓ + k

k

)
, (1)

here K(k)
ℓ denotes the complete k-uniform hypergraph on ℓ vertices. Since these seminal results,

uch work has been done on the saturation function and many generalizations have been studied.
or a dynamic survey on saturation numbers, see [4].
In this work, we are interested in the saturation function for Berge hypergraphs, which are a

eneralization of Berge paths and Berge cycles introduced by Gerbner and Palmer [8]. Given a graph
and a hypergraph H embedded on the same vertex set, we say that H is a Berge-F if there is a way
o embed F and H on the same vertex set such that there exists a bijection φ : E(F ) → E(H) that
as e ⊆ φ(e) for all e ∈ E(F ). We note that many non-isomorphic hypergraphs may be a Berge-F and
hypergraph may be a Berge copy of many non-isomorphic graphs. We will write satk(n, Berge-F )

or the least number of edges in a Berge-F-saturated k-uniform hypergraph on n vertices.
Saturation numbers for Berge hypergraphs were first studied by the first author and others in [6],

here some results on the saturation function for Berge paths, matchings, cycles, and cliques are
iven. Since the seminal work on saturation for Berge hypergraphs, the topic has gotten significant
ttention (see [1,2,9,11] for some of the results on the topic). Prior to this work, the following result
as the only known result on saturation for Berge cliques.

heorem 1.1 ([6]). For all k ≥ 3 and n ≥ k+ 1,

satk(n, Berge-K3) =
⌈
n− 1
k− 1

⌉
.

Our main theorem determines the asymptotics of Berge-Kℓ for all fixed clique sizes ℓ and
uniformities k.

Theorem 1.2. For ℓ ≥ 3 and k ≥ 3,

satk(n, Berge-Kℓ) ∼
ℓ − 2
k− 1

n.

The case ℓ = 3 is covered by Theorem 1.1. When ℓ ≥ 4, the lower bound in Theorem 1.2 follows
rom Theorem 2.1, while the upper bound follows from Theorem 3.9.

In addition to the main result, we also study the linearity of Berge saturation for general
raphs. For (2-uniform) graphs F , Kászonyi and Tuza [10] showed that sat2(n, F ) = O(n), while

Pikhurko [12] showed that satk(n,F) = O(nk−1) for k-uniform hypergraphs F , and this result is
best-possible, as seen for example in Eq. (1) stating the result from [3]. In [6] it was conjectured that
atk(n, Berge-F ) = O(n), suggesting that the saturation function for Berge hypergraphs should grow
ore like graph saturation than k-uniform hypergraph saturation. This conjecture was confirmed

or uniformities 3 ≤ k ≤ 5 in [5], but is still open in general.
We prove two results which show that many graphs have Berge saturation numbers which grow

t most linearly. The first theorem deals with graphs with large minimum degree.

heorem 1.3. If δ(F ) >
|V (F )|−α(F )

2 and k ≥ 3, then

sat (n, Berge-F ) = O(n).
k
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Our final result concerns graphs with large girth. Recall that the girth of a graph is the length
f the shortest cycle (which we will denote by g(G)), and the vertex feedback number is the least
umber of vertices necessary to delete which leaves an acyclic graph (which we will denote by
(G)).

heorem 1.4. Let F be a graph with girth g and vertex feedback number f . If g > f and k ≥ 3, then

satk(n, Berge-F ) = O(n).

1.1. Definitions and organization

Let F be a graph and H be a k-uniform Berge-F embedded on the same vertex set, and let
φ : E(F ) → E(H) be a bijection such that e ⊆ φ(e) for all e ∈ E(F ). We call φ the Berge edge
map. When F and H are embedded in such a way that there exists a Berge edge map, we say that F
is a Berge-F witness. When F is a Berge-F witness for H, the vertices in V (F ) are called core vertices
of the Berge-F hypergraph H. Given a hypergraph H and a set e ⊆ 2V (H) such that e /∈ E(H), we
say H+ e contains a new Berge-F if H + e contains a Berge-F that uses e.

Uniform hypergraphs are of primary concern in this paper, but in order to simplify proofs, we
find it useful to occasionally deal with non-uniform hypergraphs, usually a hypergraph where all
but one edge has k vertices, and the one other edge has 2 vertices. We note that the definition of a
Berge-F does not depend on H being uniform. In particular, we will say a pair uv ⊆ V (H) is ℓ-good
f H + uv contains a new Berge-Kℓ. Since we occasionally speak of non-uniform hypergraphs, we
ote here that if we refer to the complement H of a k-uniform hypergraph, this is assumed to be

the k-uniform complement.
In a k-uniform hypergraph H, a loose path of length 2 is a pair of edges that intersect in exactly

one vertex. The single vertex of degree 2 in the loose path of length 2 will be called a hinge vertex.
Given two vertices u, v ∈ V (H), we will write v ⪯ u if {e ∈ E(H) | v ∈ e} ⊆ {e ∈ E(H) | u ∈ e}. We
note that ⪯ is reflexive and transitive, but in general ⪯ may not be a partial order as it may not be
anti-symmetric.

We note that if F is a non-empty graph with isolated vertices and F ′ is the subgraph of F induced
by E(F ), then for all n large enough, satk(n, Berge-F ) = satk(n, Berge-F ′), so throughout the paper
we will silently assume that no graphs have isolated vertices. All asymptotics are with respect to
n → ∞, with all other parameters assumed to be constant unless specifically stated otherwise. All
logarithms written as log n are in base 2. The complete join of two 2-graphs, F and G, denoted F∨G,
is the graph whose vertex set is the disjoint union V (F ∨ G) = V (F ) ∪ V (G), and the edge set

E(F ∨ E) = E(F ) ∪ E(G) ∪ {xy | x ∈ V (F ), y ∈ V (G)}.

The rest of the paper is organized as follows. In Sections 2 and 3, we prove the lower bound and
upper bound for Theorem 1.2, respectively. In Section 4, we prove Theorems 1.3 and 1.4. Finally, in
Section 5, we briefly discuss the open problem of determining the exact values for the saturation
numbers for Berge-K4.

2. Lower bound for Berge-Kℓ saturation

We present here an asymptotic lower bound for satk(n, Berge-Kℓ). Fortunately, the same argu-
ment works for all k ≥ 2 and ℓ ≥ 3.

Theorem 2.1. For any k ≥ 2 and ℓ ≥ 3,

satk(n, Berge-Kℓ) ≥ (1+ o(1))
ℓ − 2
k− 1

n.

Proof. Let H be a k-uniform Berge-Kℓ-saturated hypergraph. Partition the vertex set V (H) =

∪ A ∪ B, where

X = {v ∈ V (H) | d(v) ≥ log2 n},
3
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⊆ V (H) \ X such that v ∈ A if and only if v is contained in at least ℓ − 2 edges that intersect X ,
and B = V (H) \ (X ∪ A). Note that if |X | > n/log n, then by counting degrees, |E(H)| >

|X | log2 n
k =

ω(n) ≥ (1+ o(1)) ℓ−2
k−1n, so we are done unless |X | ≤ n/log n = o(n).

We will show that |B| = o(n) as well. Indeed, first note that every non-edge f ⊆ B contains a pair
u, v ∈ f that is connected by ℓ − 2 Berge paths of length 2 since adding f to H creates a Berge-Kℓ.
Since u ̸∈ A, at least one of these Berge paths must contain a hinge vertex in A ∪ B. Each vertex
a ∈ A∪B can play the role of this hinge vertex for at most

(d(a)
2

)
(k−1)2

(
|B|
k−2

)
size k non-edges f ⊆ B

since we can choose two edges in the Berge path of length 2 in
(d(a)

2

)
and then the vertices u and v

in at most (k− 1) ways each, and finally the remaining k− 2 vertices in f in
(
|B|
k−2

)
ways. So, if p is

the total number of k-sets f ⊆ B that are not edges of H, then

p ≤

∑
a∈A∪B

(
d(a)
2

)
(k− 1)2

(
|B|

k− 2

)
≤ k2

(
|B|

k− 2

) ∑
a∈A∪B

(
log2 n

2

)
≤ k2

(
|B|

k− 2

)
n log4 n

2
. (2)

n the other hand, since every vertex b ∈ B has degree less than log2 n, by a degree count, B contains
t most |B| log2 n

k edges, and thus(
|B|
k

)
−

|B| log2 n
k

≤ p. (3)

f |B| ≥ n/log n, then the left side of (3) is greater than 1
2

(
|B|
k

)
. Comparing this to the right side of

2) with some rearranging, we get that
(|B| − k+ 2)(|B| − k+ 1)

k3(k− 1)
≤ n log4 n,

which is a contradiction for |B| ≥ n/log n. Thus, |B| = o(n) as claimed.
Thus, since |X |, |B| = o(n), we must have |A| = (1 + o(1))n. Now, let us count the number of

edges of H that contain at least one vertex in A and at least one vertex in X . Each such edge contains
at most k− 1 vertices in A, and each vertex in A is in at least ℓ− 2 such edges by definition of A, so
the total number of edges containing at least one vertex from X and at least one from A is at least

ℓ − 2
k− 1

|A| ≤ |E(H)|.

Since |A| = (1+ o(1))n, the theorem holds. □

3. Upper bound

In this section, we provide Berge-Kℓ-saturated constructions for all uniformities k ≥ 3 and all
lique sizes ℓ ≥ 4. The work is divided into three subsections. In Section 3.1, we state and prove
few simple observations which will be useful in the later sections. In Section 3.2, we construct
pecific small k-uniform Berge-Kℓ-saturated hypergraphs which also have the properties that every
air is ℓ-good, and that every set of ℓ − 1 vertices contains a Berge clique. Due to some technical
onstraints when ℓ = 4, we provide one construction for ℓ = 4 and one for ℓ ≥ 5. In Section 3.3,
e use the small hypergraphs constructed in Section 3.2 to find a Berge-Kℓ saturated hypergraph

with few edges on n vertices for all large n.

3.1. Upper bound tools

We present here two simple observations which will help show that our constructions are
Berge-Kℓ-saturated.

Observation 3.1. Let H be a hypergraph and let u, v ∈ V (H) be such that v ⪯ u. Let e ∈ 2V (H) be
such that v ∈ e. Let

e′ =
{
e if u ∈ e,

(e \ {v}) ∪ {u} if u ̸∈ e.

4
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or any graph F , if H + e contains a new Berge-F in which u is not core, then H + e′ contains a new
erge-F . Furthermore, there is a new Berge-F in H+ e and a new Berge-F in H+ e′ such that the two
erge-F ’s have the same core vertices except possibly with u as a core vertex instead of v.

roof. Assume H + e contains a Berge-F , call it F , that uses the edge e and in which u is not core.
f v is not core in F , then (F − e) + e′ is a Berge-F with the same witness as F . If v is core, then
ince every edge containing v also contains u, (F − e)+ e′ is a Berge-F with the same core vertices
s F , except with u in place of v. □

bservation 3.2. Let H be a hypergraph and let u, v ∈ V (H) be such that v ⪯ u. If H contains a
erge-F whose core vertices include v and not u, then H also contains a Berge-F with the same core
ertices, except with u in place of v.

roof. This follows immediately from the fact that every edge that contains v also contains u. □

.2. Small hypergraphs saturated with respect to pairs

Our first construction is for a small hypergraph that is Berge-K4-saturated with some nice extra
roperties.

onstruction 3.3. Fix k ≥ 3. Let D = {d1, d2, . . . , dk−3} (when k = 3 we allow D = ∅)
nd C = {c1, c2, c3, c4, c5} be disjoint sets of vertices. Let C(k, 4) be the k-uniform hypergraph with
(C(k, 4)) = C ∪ D, and

E(C(k, 4)) = {{ci, ci+1, ci+2} ∪ D | i ∈ [5]},

here the indices i are taken modulo 5.

It is worth noting that C(3, 4) is the 3-uniform tight cycle on 5 vertices. We now show that C(k, 4)
as the property that every pair is 4-good and every three vertices form a Berge clique. It is also
asy to see that C(k, 4) is Berge-K4-saturated, but we do not explicitly prove this until Section 3.3.

emma 3.4. Let k ≥ 3 and let C := C(k, 4). Then

1. Every pair in V (C) is 4-good, and
2. Every set of three vertices in V (C) are the core vertices of a Berge-K3.

roof. First, we prove 1. Let xy ⊆ V (C). First, let us consider the case where xy = cicj for some
i, j ∈ [5]. We may assume without loss of generality that j ∈ {i+1, i+2} (modulo 5). In either case,
+ cicj contains a Berge-K4 with core vertices ci−1, ci, ci+1 and ci+2 with Berge edge map

ci−1ci ↦→ ci−2ci−1ci ∪ D,

ci−1ci+1 ↦→ ci−1cici+1 ∪ D,

ci−1ci+2 ↦→ ci+2ci+3ci−1 ∪ D
ci+1ci+2 ↦→ ci+1ci+2ci−2 ∪ D,

cici+1 ↦→

{
cici+1 if j = i+ 1,
cici+1ci+2 ∪ D if j = i+ 2,

cici+2 ↦→

{
cici+1ci+2 ∪ D if j = i+ 1,
cici+2 if j = i+ 2.

Now, if exactly one of x or y is in D, say x ∈ D, y = ci, then note that ci+1 ⪯ x, so by
Observation 3.1, since C+ cici+1 contains a Berge-K4 with core vertices ci−1, ci, ci+1 and ci+2, H + xy
contains a Berge-K as well.
4

5
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Finally, if both x, y ∈ D, then we note that c1 ⪯ x and c2 ⪯ y, so applying Observation 3.1 twice,
e first note that since C + c1c2 contains a Berge-K4 with core vertices c5, c1, c2 and c3, C + c1y

contains a Berge-K4 with core vertices c5, c1, y and c3, and then C + xy contains a Berge-K4.
Now let us focus on 2. Let xyz ⊆ V (C). First, we will consider the case when xyz ⊆ C . Due to

ymmetry, we may assume that xyz = c1c2c3 or xyz = c1c2c4. If xyz = c1c2c3, then

c1c2 ↦→ c5c1c2,
c1c3 ↦→ c1c2c3,
c2c3 ↦→ c2c3c4,

is a Berge edge map for a Berge-K3 with core vertices x, y, z. If xyz = c1c2c4, then

c1c2 ↦→ c5c1c2,
c1c4 ↦→ c4c5c1,
c2c4 ↦→ c2c3c4,

again gives us a Berge-K3.
If xyz ̸⊆ C , since ci ⪯ dj for all i ∈ [5], j ∈ [k − 3], by repeated application of Observation 3.2,

starting with any triple contained in C (that also contains any elements of xyz that are in C), we
can replace vertices in C with the vertices of xyz that are in D, each step retaining the property that
the triple is the core of a Berge-K3, resulting in a Berge-K3 with core vertices xyz. □

The following construction and lemma are analogous to Construction 3.3 and Lemma 3.4, but for
the case ℓ ≥ 5.

Construction 3.5. Fix k ≥ 3, ℓ ≥ 5. Let D = {d1, d2, . . . , dk−3} and C = {c1, c2, c3, . . . , cℓ}. Start
with a copy of the (2-uniform) graph K := Kℓ − c1c2 on the vertex set C, and extend the edges of K to
k-uniform hyperedges in the following way. Let e ∈ E(K ).

1. If c1 ∈ e, c2 /∈ e, then extend e to e ∪ {c2} ∪ D.
2. If e = {c2, c3}, then extend e to e ∪ {c4} ∪ D.
3. If e = {c2, c4}, then extend e to e ∪ {c5} ∪ D.
4. If c1 /∈ e, c2 ∈ e, and c3, c4 /∈ e, then extend e to e ∪ {c3} ∪ D.
5. If c1, c2 /∈ e, then extend e to e ∪ {c1} ∪ D.

Let C(k, ℓ) be the resulting k-uniform hypergraph.

Lemma 3.6. Let k ≥ 3, ℓ ≥ 5 and let C := C(k, ℓ). Then

1. Every pair in V (C) is ℓ-good, and
2. Every set of ℓ − 1 vertices in V (C) are the core vertices of a Berge-Kℓ−1.

Proof. Let K , C and D be defined as in Construction 3.5. Notice that the extension of the edges in
E(K ) to edges in E(C) gives a bijection φ : E(C) → E(K ). In order to show that every pair xy in C is
ℓ-good, we show that there is a modification of φ that witnesses a Berge-Kℓ using the edge xy.

Case 1: xy ⊆ C . Let K ∗ be the copy of Kℓ with vertex set C . In this case, we will show that K ∗ is
a witness to a Berge-Kℓ in C + xy. Notice that if xy = c1c2, then φ in addition to xy ↦→ c1c2 gives a
Berge-Kℓ.

Case 1.1: c1 ∈ xy, c2 ̸∈ xy, say x = c1. Then by Construction 3.5 (1), φ−1(xy) = c1yc2 ∪ D, so we
let φxy : E(C) ∪ {xy} → E(K ∗) be given by

φxy(e) =

⎧⎨⎩
xy = c1y if e = xy,
c1c2 if e = c1c2y ∪ D,

φ(e) otherwise..

Case 1.2: c2c3 = xy, say c2 = x and c3 = y. We have that φ−1(xy) = c2c3c4 ∪ D, while
−1(c c ) = c c c ∪ D, and finally φ−1(c c ) = c c c ∪ D. Thus, we let φ : E(C) ∪ {xy} → E(K ∗)
φ 3 4 1 3 4 1 3 1 2 3 xy

6
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φxy(e) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xy = c2c3 if e = xy,
c3c4 if e = c2c3c4 ∪ D,

c1c3 if e = c1c3c4 ∪ D,

c1c2 if e = c1c2c3 ∪ D,

φ(e) otherwise.

Case 1.3: c2c4 = xy, say c2 = x and c4 = y. We have that φ−1(xy) = c2c4c5 ∪ D, while
φ−1(c4c5) = c1c4c5 ∪ D, and finally φ−1(c1c4) = c1c2c4 ∪ D. Thus, we let φxy : E(C) ∪ {xy} → E(K ∗)
be given by

φxy(e) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xy = c2c4 if e = xy,
c4c5 if e = c2c4c5 ∪ D,

c1c4 if e = c1c4c5 ∪ D,

c1c2 if e = c1c2c4 ∪ D,

φ(e) otherwise.

Case 1.4: c2 ∈ xy, c1, c3, c4 ̸∈ xy, say c2 = x. Note that φ−1(xy) = c2yc3 ∪ D, while φ−1(c3y) =
c3yc1 ∪ D, and φ−1(c1y) = c1yc2 ∪ D. This leads us to φxy : E(C) ∪ {xy} → E(K ∗) given by

φxy(e) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xy = c2y if e = xy
c3y if e = c2yc3 ∪ D
c1y if e = c3yc1 ∪ D
c1c2 if e = c1yc2 ∪ D
φ(e) otherwise.

Case 1.5: c1c2∩xy = ∅. Then φ−1(xy) = c1xy∪D, and φ−1(c1x) = c1xc2∪D. Let φxy : E(C)∪{xy} →
E(K ∗) be given by

φxy(e) =

⎧⎪⎪⎨⎪⎪⎩
xy if e = xy,
c1x if e = c1xy ∪ D,

c1c2 if e = c1xc2 ∪ D,

φ(e) otherwise.

In all subcases, φxy gives a Berge-Kℓ.
Case 2:|xy ∩ C | = 1. Assume without loss of generality that x ∈ C and y ∈ D. let c ∈ C \ {x} be

any vertex, and note c ⪯ y. By Case 1, C + xc contains a Berge-Kℓ with all core vertices in C (in
particular, y is not core). Then by Observation 3.1, C + xy contains a Berge-Kℓ.

Case 3: xy ⊆ D. Note that c1 ⪯ x and c2 ⪯ y. By Case 1, C+ c1c2 contains a Berge-Kℓ with all core
vertices in C . Then by Observation 3.1, C + xc2 contains a Berge-Kℓ with all core vertices in C ∪ {x},
and so by Observation 3.1 again, C + xy contains a Berge-Kℓ.

Now let us prove statement 2. of Lemma 3.6. First, let X ⊆ C be a set of ℓ − 1 vertices, and let
c ∈ C \X and x ∈ X . By Case 1 of statement 1. of Lemma 3.6, C+cx contains a Berge-Kℓ with all core
vertices in C . In particular, every vertex in X is core, and cx ̸⊆ X , so C must contain a Berge-Kℓ−1
on X .

Now assume X ⊆ V (C), |X | = ℓ − 1, but with X ̸⊆ C . Recall ci ⪯ dj for all i ∈ [ℓ], j ∈ [k − 3].
Therefore, starting with any set X ′ of ℓ − 1 vertices with X ∩ C ⊆ X ′

⊆ C , we can replace the
vertices in X ′

\X with vertices in X ∩D one at a time by repeated application of Observation 3.2. At
each step, we retain the property that the current set of ℓ − 1 vertices is the core of a Berge-Kℓ−1,
resulting in a Berge-Kℓ−1 on X . □

3.3. Saturated construction for large n

Here we provide the final construction which will provide the desired upper bound in
Theorem 1.2.
7
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Fig. 1. The construction S(n, k, 4).

Construction 3.7. Fix k ≥ 3 and ℓ ≥ 4, and let n ≥ 10k2ℓ. Let C := C(k, ℓ), and let c1, c2, . . . , cℓ−2
be ℓ − 2 distinct vertices from C. Let a, b ∈ Z≥0 be such that

a(k− 1)+ b(k− 2) = n− |V (C)| − 1 (4)

and 1 ≤ b ≤ k− 1. We then construct the hypergraph S := S(n, k, ℓ) with vertex set

V (S) = V (C) ∪
a⋃

i=1

Ai ∪

b⋃
i=1

Bi ∪ {v}

where |Ai| = k − 1 for all i ∈ [a] and |Bi| = k − 2 for all i ∈ [b], noting that |V (S)| =

|V (C)| + a(k− 1)+ b(k− 2)+ 1 = n. Let

E(S) = E(C) ∪ {Ai ∪ {cj} | i ∈ [a], j ∈ [ℓ − 2]} ∪ {Bi ∪ {v, cj} | i ∈ [b], j ∈ [ℓ − 2]}. (5)

See Fig. 1 for a drawing of S(n, k, 4).

The bound n ≥ 10k2ℓ is not the best possible, it is simply an easy-to-state bound that is large
enough to guarantee that a choice of integers a, b in Construction 3.7 exists.

We now show that S(n, k, ℓ) is Berge-Kℓ-saturated, which will provide the desired upper bound
in Theorem 1.2.

Lemma 3.8. The hypergraph S := S(n, k, ℓ) is Berge-Kℓ-saturated for all k ≥ 3, ℓ ≥ 4 and n ≥ 10k2ℓ.

Proof. First let us show that S is Berge-Kℓ-free. Indeed, the only vertices that have degree at least
ℓ−1 are in V (C)∪{v}. The vertex v only has ℓ−2 neighbors with degree at least ℓ−1, so v cannot
be a core vertex of any Berge-Kℓ, so any Berge-Kℓ would be contained in V (C), but only

(
ℓ

2

)
−1 edges

of S have at least two vertices in V (C), so no Berge-Kℓ exists in S .
Now, let e ∈ E(S). By Lemmas 3.4 (1) and 3.6 (1), every pair in V (C) is ℓ-good, so we may assume

|e ∩ V (C)| ≤ 1.
Case 1: Suppose there exists a pair X, Y ∈ {Ai | i ∈ [a]} ∪ {Bi | i ∈ [b]} with X ̸= Y such that

X ∩ e ̸= ∅ and Y ∩ e ̸= ∅. For simplicity let us assume X, Y ∈ {Ai | i ∈ [a]}, as the case where one or
more of X or Y are in {Bi | i ∈ [b]} is nearly identical. Let x ∈ X ∩ e and y ∈ Y ∩ e. We claim there is
a Berge-K with core vertices {x, y, c , c , . . . , c }. Indeed, by Lemmas 3.4 (2) and 3.6 (2), there is
ℓ 1 2 ℓ−2

8
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Berge-Kℓ−2 with core vertices {c1, c2, . . . , cℓ−2} using edges from C only. Then the edges X ∪ {ci}
nd Y ∪ {ci} can play the role of xci and yci respectively for each i ∈ [ℓ − 2] (in the case where
∈ {Bi | i ∈ [b]}, we use the edges X ∪ {v, ci}), and finally e can play the role of xy, completing the
erge-Kℓ.
Case 2: Suppose that e ∩ (V (C) \ {c1, c2, . . . , cℓ−2}) ̸= ∅. Let c ∈ e ∩ (V (C) \ {c1, c2, . . . , cℓ−2}) and

et x ∈ e \ {c}. Note that x ̸∈ V (C) since |e ∩ V (C)| ≤ 1. We will assume x ∈ A1 since if x ∈ Ai for
i ∈ [a] \ {1}, x ∈ Bi for i ∈ [b] or x = v, the case is nearly identical. We claim there is a Berge-Kℓ

with core vertices in {x, c, c1, c2, . . . , cℓ−2}. Indeed, by Lemmas 3.4 (2) and 3.6 (2), there exists a
Berge-Kℓ−1 with core vertices in {c, c1, c2, . . . , cℓ−2} and only using edges from C. Then the edge
A1 ∪ {ci} can play the role of xci for i ∈ [ℓ− 2], while the edge e plays the role of xc , completing the
Berge-Kℓ.

Case 3: Suppose v ∈ e and neither Case 1 nor Case 2 happen. We claim that there exists a set
X ∈ {Ai | i ∈ [a]} such that e ∩ X ̸= ∅. Indeed, for the sake of contradiction, suppose there does not
exist a set X ∈ {Ai | i ∈ [a]} such that e ∩ X ̸= ∅. Recall that e can contain at most one vertex in C.
Since we are not in Case 2, any vertex in e ∩ C would need to be ci for some i ∈ [ℓ − 2]. Since we
are not in Case 1, e cannot contain vertices from two Bj’s, so all the other vertices in e must come
from a single Bj, j ∈ [b], however then e = {ci, v} ∪ Bj ∈ E(H), a contradiction. We may assume,
without loss of generality, that A1 ∩ e ̸= ∅, say a ∈ A1 ∩ e. Then, similar to Case 1, we can find a
Berge-Kℓ with core vertices in {a, v, c1, c2, . . . , cℓ−2}. Indeed, by Lemmas 3.4 (2) and 3.6 (2), there is
Berge-Kℓ−2 with core vertices {c1, c2, . . . , cℓ−2} using only edges from C. Then the edges A1 ∪ {ci}
nd B1 ∪ {v, ci} can play the role of aci and vci, respectively for each i ∈ [ℓ − 2]. Finally, e can play
he role of av, completing the Berge-Kℓ.

Case 4: None of the cases 1, 2 or 3 happen. We claim that this does not occur. Indeed, v ̸∈ e
ince we are not in Case 3. Furthermore, at most one vertex in C is in e, and if any are, that vertex
ust be from {c1, c2, . . . , cℓ−2} since we are not in Case 2. Since we are not in Case 1, e intersects
t most one set X ∈ {Ai | i ∈ [a]} ∪ {Bi | i ∈ [b]}. Thus, the only way e has k vertices is if e = X ∪ {cj}
or some X ∈ {Ai | i ∈ [a]} ∪ {Bi | i ∈ [b]} and j ∈ [ℓ − 2]. Furthermore, X must be one of the Ai’s
ince the Bi’s only have k − 2 vertices, but Ai ∪ {cj} ∈ E(S) for all i ∈ [a], j ∈ [ℓ − 2], contradicting
he assumption that e ∈ E(S). □

The following theorem summarizes the results of Section 3. Our results could imply a slightly
tronger bound than provided below, but we did not attempt to fight for lower-order terms, so this
ound suffices for our purposes.

heorem 3.9. Fix k ≥ 3, ℓ ≥ 4 and let n ≥ 10k2ℓ. Then

sat(n, Berge-Kℓ) ≤
ℓ − 2
k− 1

n+
(

ℓ

2

)
− 1 (6)

roof. By Lemma 3.8, S := S(n, k, ℓ) is Berge-Kℓ-saturated. Let C := C(k, ℓ). By (5), we can see that

|E(S)| = |E(C)| + (a+ b)(ℓ − 2), (7)

here a and b are the integers defined in (4). Recall that |E(C)| =
(
ℓ

2

)
− 1. From (4), we have that

a+ b =
n− |V (C)| − 1+ b

k− 1
≤

n
k− 1

, (8)

where the inequality follows from the fact that b ≤ k− 1 and the fact that

|V (C)| =
{
k+ 2 if ℓ = 4,
k+ ℓ − 3 if ℓ ≥ 5.

Combining (7) and (8) gives us (6). □
9
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. Results on linearity for Berge-F saturation

In this section, we prove Theorems 1.3 and 1.4. We start with a construction which will help us
rove Theorem 1.3.

onstruction 4.1. Fix k ≥ 3, let F be a (2-uniform) graph with |V (F )| ≥ α(F ) + 2, and let
≥ 10k|V (F )|3. Set ν := |V (F )| − α(F )− 1 for convenience. Assume that k > ν, and let a, t ∈ Z≥0 be
uch that

a(k− ν + 1)+ t = n− ν (9)

nd 0 ≤ t < k− ν + 1. We then construct the hypergraph H := H(n, k, F ) with vertex set

V (H) = V1 ∪

a⋃
i=1

Ai ∪ T ,

here |V1| = ν, |Ai| = k− ν + 1 for all i ∈ [a], and |T | = t. Let V1 = {v1, v2, . . . , vν}. Let

E(H) = {(V1 ∪ Ai) \ {vj} | i ∈ [a], j ∈ [ν]}.

We do not always expect H(n, k, F ) to be Berge-F-free, but the following lemma shows that if it
s Berge-F-free, the saturation numbers for Berge-F grow linearly.

emma 4.2. Let F be a graph with |V (F )| ≥ α(F )+2, k > |V (F )|−α(F )−1 =: ν and n ≥ 10k|V (F )|3.
f H := H(n, k, F ) is Berge-F-free, then

satk(n, Berge-F ) = O(n).

roof. Let α := α(F ) and A :=
⋃a

i=1 Ai.
First, we claim that for any set {a1, a2, . . . , aα+1} ⊂ A in which ai and aj are from different Ak’s,

here exists a Berge-(Kν ∨ Kα+1) in H with core vertices {v1, v2, . . . , vν} ∪ {a1, a2, . . . , aα+1} and in
hich the vi’s correspond to the Kν . Indeed, let us assume without loss of generality that ai ∈ Ai.
ow, for each i ∈ [α + 1] and j ∈ [ν], we can use the edge (V1 ∪ Ai) \ {vj−1} to connect ai to vj

(indices of the vj’s taken modulo ν), giving us a Berge Kν,α+1. Then, from (9), we can see that

a =
n− ν − t
k− ν + 1

≥
n− k
k

> ν2
+ α + 1,

here in the last inequality, we use our bound on n and that ν2
+ α + 2 < 10|V (F )|3. In particular,

his implies that we have at least ν2 >
(
ν

2

)
sets Ai with i > α + 1. Therefore, there are plenty of

dges of the form (V1 ∪ Ai) \ {vj} for i ∈ [a] \ [α + 1] and j ∈ [ν] to create the Berge-Kν on V1. This
ompletes the proof of the claim.
Now, arbitrarily add edges to H that do not create a Berge-F until the hypergraph is Berge-F-

aturated, and call the resulting hypergraph H′. Let x ∈ A be a vertex. For the sake of contradiction,
ssume that

dH′ (x)− dH(x) >

(
|V1| + t + (α − 1)k2

k− 1

)
.

his implies that x has α neighbors, which we will denote by x1, . . . , xα ∈ A such that

1. xi and xi′ are not contained in the same Aj for i ̸= i′, j ∈ [a], and
2. there exists an injection φ from {x1, . . . , xα} into {e ∈ E(H′)\E(H) | x ∈ e} such that xi ∈ φ(xi)

for i ∈ [α].

ndeed, since dH′ (x) − dH(x) >
(
|V1|+t
k−1

)
, x must have a neighbor outside of V1 ∪ T , say x1, with

an edge e1 ∈ E(H′) \ E(H) such that x, x1 ∈ e1. The edge e1 intersects at most k of the Ai’s. Let
B1 denote the union of all the Ai’s which intersect e1, and note that |B1| ≤ k|A1| ≤ k2. Since

′

(
|V1|+t+k2)
dH (x1) − dH(x1) > k−1 , x must have a second neighbor, say x2, not in V1 ∪ T ∪ B1, and

10
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et e2 ∈ E(H′) \ E(H) be such that x, x2 ∈ e2, noting that e2 ̸= e1. Then we can define B2 to be the
nion of all the Ai’s that intersect e1 or e2, and note that |B2| ≤ 2k|A1| ≤ 2k2. Continuing inductively,
e can find x3, . . . , xα , as claimed.
These edges in E(H′) \ E(H), along with the Berge-(Kν ∨ Kα+1) in H with core vertices

v1, v2, . . . , vν, x1, x2, . . . , xα, x} give us a Berge-(Kν+1 ∨ Kα), which contains a Berge-F , a contra-
iction. Thus, dH′ (x)− dH(x) ≤

(
|V1|+t+(α−1)k2

k−1

)
for every vertex x ∈ A.

We can now wastefully bound |E(H′)|. Indeed, we have that |E(H)| = νa ≤ νn = O(n), and

|E(H′) \ E(H)| ≤ |{e ∈ V1 ∪ T }| + |{e ∈ E(H′) \ E(H) | e ∩ A ̸= ∅}|

≤

(
|V1| + t

k

)
+ ak

(
|V1| + t + (α − 1)k2

k− 1

)
≤ k

(
|V1| + t + (α − 1)k2

k− 1

)
n = O(n).

hus,

satk(n, Berge-F ) ≤ |E(H′)| = |E(H)| + |E(H′) \ E(H)| = O(n). □

We will need a result from [1] to deal with an edge case in Theorem 1.3. The result below is
ignificantly weaker than the result in [1], but it suffices for our purposes.

heorem 4.3 ([1]). For any k ≥ 3, ℓ ≥ 1,

satk(n, Berge-K1,ℓ) = O(n).

We also need a result that handles the case when k ≤ ν. Let β(F ) denote the vertex cover number
f F .

heorem 4.4 ([5]). Fix k ≥ 3. If F is a graph with β(F ) ≥ k+ 1, then satk(n, Berge-F ) = O(n).

We can now prove the first of our two results on linearity.

roof of Theorem 1.3. First note that if α(F ) = |V (F )|, then F contains no edges and the saturation
unction is not defined. Furthermore, if α(F ) = |V (F )| − 1, then F is a star, and by Theorem 4.3, the
esult follows. Thus, we may assume |V (F )| ≥ α(F ) + 2. Suppose that |V (F )| − α(F ) − 1 =: ν ≥ k.
Then using the fact that |V (F )| = α(F )+β(F ), we get β(F )−1 ≥ k. In this case, Theorem 4.4 shows
hat satk(n, Berge-F ) = O(n). Thus, we will assume that k > ν.

Let H := H(n, k, F ) as in Construction 4.1. We claim that H is Berge-F-free. Assume to the
ontrary that there is a copy of F which witnesses Berge-F in H. We have that |V (F ) ∩ A| ≥

V (F )| − ν = α(F ) + 1, and further there must exist an i ∈ [a] such that |V (F ) ∩ Ai| ≥ 2 since
therwise the α(F ) + 1 vertices in V (F ) ∩ A would form an independent set in F which is too
arge. Say x, y ∈ Ai. We must have dF (x) + dF (y) − 1 ≤ ν since there are only ν edges of H that
ntersect Ai and only one can play the role of xy, contributing to the degree of both vertices, but
F (x)+ dF (y)− 1 ≥ 2δ(F )− 1 > |V (F )| − α(F )− 1 = ν, a contradiction.
Thus, H is Berge-F-free, so by Lemma 4.2, the result holds. □

We state here a construction from [5] for a k-uniform hypergraph on a vertex set V of size n
where n is sufficiently large), which will be used to prove our final result. We will let f (G) denote
he vertex feedback number of the graph G.

onstruction 4.5 ([5]). Let G be any graph and let n be sufficiently large. If f (G) = 0, then for any
, let Hk(n, a,G,∅) denote the empty graph on vertex set V . If f (G) ≥ 1, let S be a minimum vertex
eedback set of G, and let |E(G[S])| = ℓ. Let the (initially empty) vertex set V be partitioned into three
ets V = V1 ∪ V2 ∪ V3, where |V1| = f (G), and |V2| = (k − 2)ℓ. We first add ℓ edges between V1 and
2 to create a Berge-G[S] with core vertices in V1. Indeed, arbitrarily label the vertices in V1 with labels
rom the vertex set of G[S], and then for each 2-edge uv of G[S], add a k-edge that contains the vertices
11
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abeled u and v in V1, and k− 2 vertices in V2 so that after all ℓ edges are added, each vertex in V2 has
egree 1.
Now, choose some integer 1 ≤ a ≤ k− 1 such that a+ f (G) ≥ k. If a does not divide |V3|, arbitrarily

hoose (|V3| mod a) vertices, and remove them to form the set V ′

3 ⊂ V3, with |V ′

3| = ra for some r ∈ Z.
artition V ′

3 into r sets of size a, and let M be the collection of these a-sets. For each a-set A in M, add
he

(
|V1|
k−a

)
edges that contain A and k− a vertices from V1. Call this construction Hk(n, a,G, S).

Our poof of Theorem 1.4 will use a = k− f (G)+ 1 or a = k− 1. However, the original statement
f the construction of Hk(n, a,G, S) in [5] takes a as a more general parameter and facilitates the
tatement of their theorem.

heorem 4.6 ([5]). Let F be a graph with vertex feedback set S, |S| = f (F ). Let 1 ≤ a ≤ k− 1 be such
hat a+ f (F ) > k. If H(n, a, F , S) does not contain a Berge-F , then

satk(n, Berge-F ) = O(n).

We are now ready to prove Theorem 1.4

roof of Theorem 1.4. Let S be a minimum vertex feedback set of F . First, consider the case when
≤ k so that 1 ≤ a = k− f +1 ≤ k. Let H := Hk(n, k− f +1, F , S). We claim that H is Berge-F-free.

Indeed, suppose for the sake of contradiction, that H contains a Berge-F , and let F be a witness to
this Berge-F . For any A ∈ M, only

(
|V1|
k−a

)
=

( f
f−1

)
= f < g edges of H are incident with vertices in A,

so no cycle of F can be contained in a set A. This implies that V1 is a vertex feedback set of F , and
since |V1| = f , V1 is a minimum vertex feedback set of F .

Similarly, if f > k, then we choose a = k− 1 and let H := Hk(n, k− f + 1, F , S). We claim that H
is Berge-F-free. Indeed, suppose for the sake of contradiction, that H contains a Berge-F , and let F
e a witness to this Berge-F . For any A ∈ M, only

(
|V1|
k−a

)
=

(f
1

)
= f < g edges of H are incident with

ertices in A, so no cycle of F can be contained in a set A. This implies that V1 is a vertex feedback
et of F , and since |V1| = f , V1 is a minimum vertex feedback set of F .
In either case, we proceed with the following argument. For any v ∈ V1, v must be in a cycle
in F that does not contain any other vertices in V1, since otherwise V1 \ {v} would be a smaller
ertex feedback set. However, this implies that C is contained in {v} ∪A for some A ∈ M, but there
re only f < g hyperedges of H that intersect A, so there are not enough hyperedges to create a

Berge copy of the cycle C , and we arrive at a contradiction.
Thus H is Berge-F-free, and by Theorem 4.6, the result follows. □

5. Concluding remarks

The saturation number for Berge-K3 is known exactly, whereas here we were only able to
determine the asymptotics of the saturation number for larger cliques. It would be nice to be able
to find the exact value, at least in some small cases. The most tractable case is sat3(n, Berge-K4). By
counting edges in S(n, 3, 4) from Construction 3.7 more carefully than is done in Theorem 3.9, we
an get the following:

emark 5.1. For all n ≥ 10,

sat3(n, Berge-K4) ≤
{
n if n is odd,
n+ 1 if n is even.

It seems difficult to push the lower bound to match this, but it would be quite interesting to see
ork in this direction.

roblem 5.2. Determine sat3(n, Berge-K4) exactly. In particular, is sat3(n, Berge-K4) = n when n is
dd?
12
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