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1. Introduction

Extremal graph theory is concerned with maximizing or minimizing some parameter over a
restricted class of graphs. Let G and F be k-uniform hypergraphs. We say that G is F-saturated
if G does not contain a copy of F but G + e does for any e € E(G). The most well-studied problem
in extremal graph theory is the Turan problem, which asks for the maximum number of edges in

a F-free hypergraph G on n vertices. This maximum is known as the extremal number or Turin
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number of 7, and is denoted ex(n, 7). Any F-free hypergraph G with ex,(|V(G)|, F) edges must
necessarily be F-saturated, so we can write

exy(n, F) = max{|E(G)| : |V(G)| = n, G is F-saturated}.

On the flipside, the saturation number of 7, denoted saty(n, ), is the least number of edges in a
F-saturated graph on n vertices, or

saty(n, F) = min{|E(G)| : |V(G)| = n, G is F-saturated}.

Saturation was first introduced by Erdds, Hajnal and Moon [7] for graphs, and then generalized for
hypergraphs by Bollobas [3] who showed that

saty(n, K\”) = (D B (" ) i " k)’ )

where IC(ek) denotes the complete k-uniform hypergraph on ¢ vertices. Since these seminal results,
much work has been done on the saturation function and many generalizations have been studied.
For a dynamic survey on saturation numbers, see [4].

In this work, we are interested in the saturation function for Berge hypergraphs, which are a
generalization of Berge paths and Berge cycles introduced by Gerbner and Palmer [8]. Given a graph
F and a hypergraph H embedded on the same vertex set, we say that # is a Berge-F if there is a way
to embed F and # on the same vertex set such that there exists a bijection ¢ : E(F) — E(#) that
has e C ¢(e) for all e € E(F). We note that many non-isomorphic hypergraphs may be a Berge-F and
a hypergraph may be a Berge copy of many non-isomorphic graphs. We will write saty(n, Berge-F)
for the least number of edges in a Berge-F-saturated k-uniform hypergraph on n vertices.

Saturation numbers for Berge hypergraphs were first studied by the first author and others in [6],
where some results on the saturation function for Berge paths, matchings, cycles, and cliques are
given. Since the seminal work on saturation for Berge hypergraphs, the topic has gotten significant
attention (see [1,2,9,11] for some of the results on the topic). Prior to this work, the following result
was the only known result on saturation for Berge cliques.

Theorem 1.1 ([6]). Forallk > 3 andn > k+ 1,

k—1

Our main theorem determines the asymptotics of Berge-K, for all fixed clique sizes ¢ and
uniformities k.

n—1
saty(n, Berge-K3) = ’V —‘ .

Theorem 1.2. For £ > 3 and k > 3,

-
saty(n, Berge-K;) ~ X n.

-1

The case ¢ = 3 is covered by Theorem 1.1. When £ > 4, the lower bound in Theorem 1.2 follows
from Theorem 2.1, while the upper bound follows from Theorem 3.9.

In addition to the main result, we also study the linearity of Berge saturation for general
graphs. For (2-uniform) graphs F, Kaszonyi and Tuza [10] showed that saty(n, F) = O(n), while
Pikhurko [12] showed that saty(n, F) = O(n*~!) for k-uniform hypergraphs 7, and this result is
best-possible, as seen for example in Eq. (1) stating the result from [3]. In [6] it was conjectured that
saty(n, Berge-F) = O(n), suggesting that the saturation function for Berge hypergraphs should grow
more like graph saturation than k-uniform hypergraph saturation. This conjecture was confirmed
for uniformities 3 < k < 5 in [5], but is still open in general.

We prove two results which show that many graphs have Berge saturation numbers which grow
at most linearly. The first theorem deals with graphs with large minimum degree.

Theorem 1.3. If§(F) > 'V(F)‘zi’“(” and k > 3, then
saty(n, Berge-F) = O(n).
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Our final result concerns graphs with large girth. Recall that the girth of a graph is the length
of the shortest cycle (which we will denote by g(G)), and the vertex feedback number is the least
number of vertices necessary to delete which leaves an acyclic graph (which we will denote by

f(G)).

Theorem 1.4. Let F be a graph with girth g and vertex feedback number f. If g > f and k > 3, then
saty(n, Berge-F) = O(n).

1.1. Definitions and organization

Let F be a graph and # be a k-uniform Berge-F embedded on the same vertex set, and let
¢ : E(F) — E(#H) be a bijection such that e C ¢(e) for all e € E(F). We call ¢ the Berge edge
map. When F and # are embedded in such a way that there exists a Berge edge map, we say that F
is a Berge-F witness. When F is a Berge-F witness for #, the vertices in V(F) are called core vertices
of the Berge-F hypergraph . Given a hypergraph # and a set e € 2V(*) such that e ¢ E(H), we
say H + e contains a new Berge-F if H + e contains a Berge-F that uses e.

Uniform hypergraphs are of primary concern in this paper, but in order to simplify proofs, we
find it useful to occasionally deal with non-uniform hypergraphs, usually a hypergraph where all
but one edge has k vertices, and the one other edge has 2 vertices. We note that the definition of a
Berge-F does not depend on H being uniform. In particular, we will say a pair uv C V(#) is £-good
if # + uv contains a new Berge-K,. Since we occasionally speak of non-uniform hypergraphs, we
note here that if we refer to the complement # of a k-uniform hypergraph, this is assumed to be
the k-uniform complement.

In a k-uniform hypergraph %, a loose path of length 2 is a pair of edges that intersect in exactly
one vertex. The single vertex of degree 2 in the loose path of length 2 will be called a hinge vertex.
Given two vertices u, v € V(#), we will write v <uif {e € E(H) | v e e} C {e € E(H) | u € e}. We
note that < is reflexive and transitive, but in general < may not be a partial order as it may not be
anti-symmetric.

We note that if F is a non-empty graph with isolated vertices and F’ is the subgraph of F induced
by E(F), then for all n large enough, saty(n, Berge-F) = saty(n, Berge-F’), so throughout the paper
we will silently assume that no graphs have isolated vertices. All asymptotics are with respect to
n — oo, with all other parameters assumed to be constant unless specifically stated otherwise. All
logarithms written as log n are in base 2. The complete join of two 2-graphs, F and G, denoted F VG,
is the graph whose vertex set is the disjoint union V(F v G) = V(F) U V(G), and the edge set

E(FVE)=E(F)UEG)U{xy |x e V(F),y € V(G)}.

The rest of the paper is organized as follows. In Sections 2 and 3, we prove the lower bound and
upper bound for Theorem 1.2, respectively. In Section 4, we prove Theorems 1.3 and 1.4. Finally, in
Section 5, we briefly discuss the open problem of determining the exact values for the saturation
numbers for Berge-Kj.

2. Lower bound for Berge-K, saturation

We present here an asymptotic lower bound for sati(n, Berge-K,). Fortunately, the same argu-
ment works for all k > 2 and ¢ > 3.

Theorem 2.1. Forany k> 2 and £ > 3,
-2
k—1

saty(n, Berge-Ky) > (14 o(1)) n.

Proof. Let H be a k-uniform Berge-K,-saturated hypergraph. Partition the vertex set V(#) =
X UAU B, where

X ={veV(H)|dv) > log’n},



S. English, J. Kritschgau, M. Nahvi et al. European Journal of Combinatorics 118 (2024) 103911

A C V(H)\ X such that v € A if and only if v is contained in at least £ — 2 edges that intersect X,
and B = V(#) \ (X UA). Note that if |X| > n/logn, then by counting degrees, |[E(#)| > % =
w(n) > (1+ o(l))ﬁ%n, so we are done unless |[X| < n/logn = o(n).

We will show that |B| = o(n) as well. Indeed, first note that every non-edge f C B contains a pair
u, v € f that is connected by ¢ — 2 Berge paths of length 2 since adding f to # creates a Berge-K,.
Since u ¢ A, at least one of these Berge paths must contain a hinge vertex in A U B. Each vertex

a € AUB can play the role of this hinge vertex for at most (d(za))(k —1) (k'f‘z) size k non-edges f € B

since we can choose two edges in the Berge path of length 2 in (d‘z")) and then the vertices u and v
in at most (k — 1) ways each, and finally the remaining k — 2 vertices in f in (k'flz) ways. So, if p is
the total number of k-sets f C B that are not edges of #, then

d(a) 5 |B| ) |B| lngn 2 |B| nlog4n
p§a§8< 2 )(k_]) <k—2) =k (k—z) 2 ( 2 )Sk <k—2> . - @

acAUB
On the other 2hand, since every vertex b € B has degree less than log? n, by a degree count, B contains
|B| log® n

at most =—>— edges, and thus

|B| |B| log* n
_ <p 3
(k) k =P (3)

|B|
k

If |B| > n/logn, then the left side of (3) is greater than 5 (
(2) with some rearranging, we get that
(1Bl —k+2)(|B| —k+ 1)
k3(k — 1)
which is a contradiction for |B| > n/logn. Thus, |B| = o(n) as claimed.
Thus, since |X|, |B|] = o(n), we must have |A| = (1 + o(1))n. Now, let us count the number of
edges of A that contain at least one vertex in A and at least one vertex in X. Each such edge contains

at most k — 1 vertices in A, and each vertex in A is in at least £ — 2 such edges by definition of A, so
the total number of edges containing at least one vertex from X and at least one from A is at least

). Comparing this to the right side of

< nlog4 n,

-2
— Al < |[E(H)I.
k—1

Since |A| = (1 + o(1))n, the theorem holds. O
3. Upper bound

In this section, we provide Berge-K,-saturated constructions for all uniformities k > 3 and all
clique sizes £ > 4. The work is divided into three subsections. In Section 3.1, we state and prove
a few simple observations which will be useful in the later sections. In Section 3.2, we construct
specific small k-uniform Berge-K,-saturated hypergraphs which also have the properties that every
pair is £-good, and that every set of £ — 1 vertices contains a Berge clique. Due to some technical
constraints when ¢ = 4, we provide one construction for £ = 4 and one for £ > 5. In Section 3.3,
we use the small hypergraphs constructed in Section 3.2 to find a Berge-K, saturated hypergraph
with few edges on n vertices for all large n.

3.1. Upper bound tools

We present here two simple observations which will help show that our constructions are
Berge-K,-saturated.

Observation 3.1. Let # be a hypergraph and let u, v € V(#) be such that v < u. Let e € 2V pe
such that v € e. Let
o {e ifuee,
(eN{vhU{u} ifuge.
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For any graph F, if H + e contains a new Berge-F in which u is not core, then H + €’ contains a new
Berge-F. Furthermore, there is a new Berge-F in H + e and a new Berge-F in H + €’ such that the two
Berge-F’s have the same core vertices except possibly with u as a core vertex instead of v.

Proof. Assume H + e contains a Berge-F, call it F, that uses the edge e and in which u is not core.
If v is not core in F, then (F — e) + ¢ is a Berge-F with the same witness as F. If v is core, then
since every edge containing v also contains u, (¥ —e)+ ¢’ is a Berge-F with the same core vertices
as F, except with u in place of v. O

Observation 3.2. Let H be a hypergraph and let u, v € V(H) be such that v < u. If H contains a
Berge-F whose core vertices include v and not u, then # also contains a Berge-F with the same core
vertices, except with u in place of v.

Proof. This follows immediately from the fact that every edge that contains v also contains u. O

3.2. Small hypergraphs saturated with respect to pairs

Our first construction is for a small hypergraph that is Berge-K4-saturated with some nice extra
properties.

Construction 3.3. Fix k > 3. Llet D = {dy,d,,...,dx_3} (When k = 3 we allow D = ()
and C = {cy, 2, 3, C4, C5} be disjoint sets of vertices. Let C(k, 4) be the k-uniform hypergraph with
V(c(k,4)) = CUD, and

E(c(k, 4)) = {{ci, ¢ir1, Cix2} UD | i € [5]},
where the indices i are taken modulo 5.

It is worth noting that C(3, 4) is the 3-uniform tight cycle on 5 vertices. We now show that c(k, 4)
has the property that every pair is 4-good and every three vertices form a Berge clique. It is also
easy to see that C(k, 4) is Berge-K4-saturated, but we do not explicitly prove this until Section 3.3.

Lemma 3.4. Let k > 3 and let C := C(k, 4). Then

1. Every pair in V(C) is 4-good, and
2. Every set of three vertices in V(C) are the core vertices of a Berge-Ks.

Proof. First, we prove 1. Let xy C V(C). First, let us consider the case where xy = c;¢; for some
i,j € [5]. We may assume without loss of generality thatj € {i+ 1, i+ 2} (modulo 5). In either case,
C + cicj contains a Berge-K, with core vertices ¢;_1, ¢;, ¢i+1 and ¢;;, with Berge edge map
Ci—1Ci = Ci2Ci—1¢; U D,
Ci—1Ciy1 => Cio1CiCip1 U D,
Ci—1Cit2 > Ciy2Ciy3Ci1 UD

Ci+1Cit2 > Cip1Ciy2Ciz U D,

CiCi ifj=i+1,
CiCiy1 il . ] .+
CiCiy1Ci2 UD  ifj=1i+2,
CiCip1Ciyp UD  ifj=i+1,
CiCia > iti+1ti4-2 ) ] ‘+
CiCit2 ifj=1i+2.
Now, if exactly one of x or y is in D, say x € D,y = ¢, then note that ¢i;; =< X, so by

Observation 3.1, since C + cic;+1 contains a Berge-K4 with core vertices ¢;_1, ¢, Ci+1 and ¢iy2, H + Xy
contains a Berge-K, as well.



S. English, J. Kritschgau, M. Nahvi et al. European Journal of Combinatorics 118 (2024) 103911

Finally, if both x, y € D, then we note that c; < x and ¢, <y, so applying Observation 3.1 twice,
we first note that since C + cyc; contains a Berge-K; with core vertices cs, ¢q, ¢; and c3, C + c1y
contains a Berge-K, with core vertices cs, c1, y and c3, and then C + xy contains a Berge-Kj.

Now let us focus on 2. Let xyz C V(C). First, we will consider the case when xyz C C. Due to
symmetry, we may assume that Xyz = c¢1¢,C3 or xyz = ¢1C2¢4. If Xyz = cic5c3, then

C1C > C5C1C3,
€1C3 > €1C2C3,
CyC3 > (CC3Cy,
is a Berge edge map for a Berge-K5 with core vertices x, y, z. If xyz = cyca¢4, then

C1Cy = (C5C1Ca,
C1C4 > C4Cs5Cq,
CyC4 > C2C3C4,

again gives us a Berge-Ks.

If xyz € C, since ¢; < d; for all i € [5],j € [k — 3], by repeated application of Observation 3.2,
starting with any triple contained in C (that also contains any elements of xyz that are in C), we
can replace vertices in C with the vertices of xyz that are in D, each step retaining the property that
the triple is the core of a Berge-K3, resulting in a Berge-K3 with core vertices xyz. O

The following construction and lemma are analogous to Construction 3.3 and Lemma 3.4, but for
the case ¢ > 5.

Construction 3.5. Fixk > 3, ¢ > 5. Let D = {dy,d,,...,dr_3} and C = {cy, ¢y, C3, ..., Ce}. Start
with a copy of the (2-uniform) graph K := K, — c;1c, on the vertex set C, and extend the edges of K to
k-uniform hyperedges in the following way. Let e € E(K).

1. Ifc; € e,cy ¢ e, then extend e to e U {c,} UD.

2. If e = {c3, c3}, then extend e to e U {c4} U D.

3. If e = {c3, 4}, then extend e to e U {c5} UD.

4. Ifcy ¢ e,c; €e and cs, ¢4 ¢ e, then extend e to e U {c3} UD.
5. If c1, ¢y ¢ e, then extend e to e U {c1} UD.

Let C(k, £) be the resulting k-uniform hypergraph.

Lemma 3.6. Letk > 3, ¢ > 5 and let C .= C(k, £). Then

1. Every pair in V(C) is £-good, and
2. Every set of £ — 1 vertices in V(C) are the core vertices of a Berge-K,_.

Proof. Let K, C and D be defined as in Construction 3.5. Notice that the extension of the edges in
E(K) to edges in E(C) gives a bijection ¢ : E(C) — E(K). In order to show that every pair xy in C is
£-good, we show that there is a modification of ¢ that witnesses a Berge-K, using the edge xy.

Case 1: xy C C. Let K* be the copy of K, with vertex set C. In this case, we will show that K* is
a witness to a Berge-K, in C + xy. Notice that if xy = c;c;, then ¢ in addition to xy — c;c; gives a
Berge-K,.

Case 1.1: ¢; € xy, ¢; & Xy, say x = c¢;. Then by Construction 3.5 (1), ¢~ (xy) = c1yc; UD, so we
let ¢y : E(C)U {xy} — E(K*) be given by

xy =cry ife=xy,
dxy(e) = {cic ife=cicyUD,
o(e) otherwise..
Case 1.2: c;c3 = xy, say ¢; = x and ¢3 = y. We have that ¢~ !(xy) = cyc3c4 U D, while
¢~ (c3¢a) = c163¢4 U D, and finally ¢~ 1(ci¢3) = cicac3 U D. Thus, we let ¢y, : E(C) U {xy} — E(K*)
6
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be given by
Xy = cyc3 if e = xy,
C3C4 if e =cyc3c4 UD,
ry(€) = § c103 if e = cic3c4 UD,
C1Cy if e=cicoc3 UD,
d(e) otherwise.

Case 1.3: c;c4, = xy,say ¢; = x and ¢4 = y. We have that ¢~ !(xy) = cycsc5 U D, while
¢~ (cacs) = c1¢acs U D, and finally ¢~ '(c1ca) = c1c2¢4 U D. Thus, we let ¢y, : E(C) U {xy} — E(K*)
be given by

Xy = C2C4 ife= Xy,

C4Cs if e = cyc4c5 UD,

dxy(€) = | CiCs if e=cycyc5 UD,
C1Cp if e =cycoc4 UD,
o(e) otherwise.

Case 1.4: c; € xy, ¢y, C3, C4 & Xy, say ¢; = x. Note that ¢~ !(xy) = c;yc3 U D, while ¢~ 1(c3y) =
c3yc1 UD, and ¢~ (c1y) = c1ycy U D. This leads us to ¢y, : E(C) U {xy} — E(K*) given by

xy=cy ife=xy

c3y ife=cycs UD

Py(e) = qcry ife=csyc;UD
C1Cp ife=cyco UD
o(e) otherwise.

Case 1.5: cic;Nxy = . Then ¢~ !(xy) = c1xyUD, and ¢~ '(c1x) = c1xc2UD. Let ¢y, : E(C)U{xy} —
E(K*) be given by
xy ife=xy,
cix  ife=cixyUD,
cic; ife=cyxc; UD,
¢(e) otherwise.

¢xy(e) =

In all subcases, ¢y, gives a Berge-K,.

Case 2:|xy N C| = 1. Assume without loss of generality that x € Candy € D. let ¢ € C \ {x} be
any vertex, and note ¢ < y. By Case 1, C + xc contains a Berge-K, with all core vertices in C (in
particular, y is not core). Then by Observation 3.1, C + xy contains a Berge-K,.

Case 3: xy C D. Note that ¢c; < x and ¢; < y. By Case 1, C+ cqc; contains a Berge-K, with all core
vertices in C. Then by Observation 3.1, C + xc, contains a Berge-K, with all core vertices in C U {x},
and so by Observation 3.1 again, C + xy contains a Berge-K;.

Now let us prove statement 2. of Lemma 3.6. First, let X C C be a set of £ — 1 vertices, and let
c € C\X and x € X. By Case 1 of statement 1. of Lemma 3.6, C + cx contains a Berge-K, with all core
vertices in C. In particular, every vertex in X is core, and cx Z X, so C must contain a Berge-K;_1
on X.

Now assume X € V(C), |X| = £ — 1, but with X & C. Recall ¢; < d; for all i € [¢],j € [k — 3].
Therefore, starting with any set X’ of £ — 1 vertices with X N C € X’ C C, we can replace the
vertices in X'\ X with vertices in X N\ D one at a time by repeated application of Observation 3.2. At
each step, we retain the property that the current set of £ — 1 vertices is the core of a Berge-K,_1,
resulting in a Berge-K,_; on X. O

3.3. Saturated construction for large n

Here we provide the final construction which will provide the desired upper bound in
Theorem 1.2.
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Fig. 1. The construction S(n, k, 4).

Construction 3.7. Fix k > 3 and £ > 4, and let n > 10k?¢. Let C := C(k, £), and let ¢1,Cy, ..., Co_n
be ¢ — 2 distinct vertices from C. Let a, b € Z>¢ be such that

alk—1)4+blk—2)=n—|V(C)|—1 (4)
and 1 < b < k — 1. We then construct the hypergraph S := S(n, k, £) with vertex set

a b
V(S)=V(C)U UAi U UB,» U {v}
i=1 i=1

where |Aj] = k — 1 foralli € [a] and |Bj] = k — 2 for all i € [b], noting that |V(S)| =
\V(C)| +alk— 1)+ bk —2)4+1=n. Let
E(S)=E(C)U{AiU{g} lielal,je £ -2} U{BiU{v, ¢} | i€ [bl,je€—2]} (5)

See Fig. 1 for a drawing of S(n, k, 4).

The bound n > 10k?¢ is not the best possible, it is simply an easy-to-state bound that is large
enough to guarantee that a choice of integers a, b in Construction 3.7 exists.

We now show that S(n, k, £) is Berge-K,-saturated, which will provide the desired upper bound
in Theorem 1.2.

Lemma 3.8. The hypergraph S := S(n, k, £) is Berge-K,-saturated for all k > 3, £ > 4 and n > 10k>(.

Proof. First let us show that S is Berge-K,-free. Indeed, the only vertices that have degree at least
¢ —1 are in V(C)U {v}. The vertex v only has ¢ — 2 neighbors with degree at least £ — 1, so v cannot
be a core vertex of any Berge-Ky, so any Berge-K, would be contained in V(C), but only (g) —1 edges
of S have at least two vertices in V(C), so no Berge-K; exists in S.

Now, let e € E(S). By Lemmas 3.4 (1) and 3.6 (1), every pair in V(C) is £-good, so we may assume
lenV(C) <1

Case 1: Suppose there exists a pair X,Y € {A; | i € [a]} U {B; | i € [b]} with X # Y such that
XNe#@and Y Ne # @. For simplicity let us assume X, Y € {A; | i € [a]}, as the case where one or
more of X or Y are in {B; | i € [b]} is nearly identical. Let x € X Ne and y € Y Ne. We claim there is
a Berge-K, with core vertices {x, y, ¢y, C2, ..., C,—2}. Indeed, by Lemmas 3.4 (2) and 3.6 (2), there is

8
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a Berge-K,_, with core vertices {c1, ¢, ..., c,_>} using edges from C only. Then the edges X U {c;}
and Y U {c;} can play the role of xc; and yc; respectively for each i € [£ — 2] (in the case where
X € {B; | i € [b]}, we use the edges X U {v, ¢;}), and finally e can play the role of xy, completing the
Berge-K,.

Case 2: Suppose that e N(V(C)\ {c1,C2,...,Ce—2}) Z@.Letc € e N(V(C)\ {c1,Ca, ..., Ce—2}) and
let x € e\ {c}. Note that x ¢ V(C) since |eNV(C)| < 1. We will assume x € A; since if x € A; for
i €lal\ {1}, x € B; for i € [b] or x = v, the case is nearly identical. We claim there is a Berge-K,
with core vertices in {x, c, ¢y, C3, ..., C,—2}. Indeed, by Lemmas 3.4 (2) and 3.6 (2), there exists a
Berge-K,_1 with core vertices in {c, ¢, ¢3, ..., C,_3} and only using edges from C. Then the edge
A1 U/{c;} can play the role of xc; for i € [£ — 2], while the edge e plays the role of xc, completing the
Berge-K,.

Case 3: Suppose v € e and neither Case 1 nor Case 2 happen. We claim that there exists a set
X € {A; | i € [a]} such that e N X # . Indeed, for the sake of contradiction, suppose there does not
exist a set X € {A; | i € [a]} such that e N X # (. Recall that e can contain at most one vertex in C.
Since we are not in Case 2, any vertex in e N C would need to be ¢; for some i € [£ — 2]. Since we
are not in Case 1, e cannot contain vertices from two B;’s, so all the other vertices in e must come
from a single B;, j € [b], however then e = {¢;, v} U B; € E(H), a contradiction. We may assume,
without loss of generality, that A; Ne # @, say a € A; N e. Then, similar to Case 1, we can find a
Berge-K, with core vertices in {a, v, ¢1, 3, .. ., ¢, }. Indeed, by Lemmas 3.4 (2) and 3.6 (2), there is
a Berge-K,_, with core vertices {cy, ca, ..., C,—2} using only edges from C. Then the edges A; U {c;}
and B; U {v, ¢;} can play the role of ac; and vc;, respectively for each i € [¢ — 2]. Finally, e can play
the role of av, completing the Berge-Kj,.

Case 4: None of the cases 1, 2 or 3 happen. We claim that this does not occur. Indeed, v ¢ e
since we are not in Case 3. Furthermore, at most one vertex in C is in e, and if any are, that vertex
must be from {cy, ¢5, ..., c,_3} since we are not in Case 2. Since we are not in Case 1, e intersects
at most one set X € {A; | i € [a]}U{B; | i € [b]}. Thus, the only way e has k vertices is if e = X U {¢;}
for some X € {A; | i € [a]} U {B; | i € [b]} and j € [£ — 2]. Furthermore, X must be one of the A;'s
since the B;’s only have k — 2 vertices, but A; U {¢;} € E(S) for all i € [a], j € [£ — 2], contradicting
the assumption that e € E(S). O

The following theorem summarizes the results of Section 3. Our results could imply a slightly
stronger bound than provided below, but we did not attempt to fight for lower-order terms, so this
bound suffices for our purposes.

Theorem 3.9. Fix k > 3, £ > 4 and let n > 10k%£. Then

-2 L
sat(n, Berge-K,) < n+ -1 (6)
k—1 2

Proof. By Lemma 3.8, S := S(n, k, £) is Berge-K,-saturated. Let C := C(k, £). By (5), we can see that

[E(S)| = [E(C)| + (a + b)(€ — 2), (7)

[4

where a and b are the integers defined in (4). Recall that [E(C)| = (2

) — 1. From (4), we have that
_n-vei-t1+b _ n

k—1 k-1
where the inequality follows from the fact that b < k — 1 and the fact that

a+b (8)

k+2 if £ =4,

vie) =
vee) {k+€—3 if £ > 5.

Combining (7) and (8) gives us (6). O
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4. Results on linearity for Berge-F saturation

In this section, we prove Theorems 1.3 and 1.4. We start with a construction which will help us
prove Theorem 1.3.

Construction 4.1. Fix k > 3, let F be a (2-uniform) graph with |V(F)| > «a(F) + 2, and let
n > 10k|V(F)|>. Set v := |V(F)| — a(F) — 1 for convenience. Assume that k > v, and let a, t € Z>q be
such that

ak—v+D+t=n—v (9)

and 0 <t < k — v + 1. We then construct the hypergraph H := H(n, k, F) with vertex set

a
V)=V Ul JAuT,
i=1
where |Vi| = v, |Al =k—v+1forallie[a],and |T| =t. Let V1 = {vq, vo, ..., v,}. Let

E(H) ={(Vi UA)\{y} | i € [al.j € [v]}.

We do not always expect #(n, k, F) to be Berge-F-free, but the following lemma shows that if it
is Berge-F-free, the saturation numbers for Berge-F grow linearly.

Lemma 4.2. Let F be a graph with |V(F)| > a(F)+2, k > |V(F)| —«(F)—1 =: v and n > 10k|V(F)>.
If H := H(n, k, F) is Berge-F-free, then

saty(n, Berge-F) = O(n).

Proof. Let o := «(F) and A := | J_, A:.

First, we claim that for any set {a, ay, ..., dy+1} C A in which g; and q; are from different A;’s,
there exists a Berge-(K, Vv K,+1) in H with core vertices {vq, vy, ..., v,} U{ay,ay, ..., dy+1} and in
which the v;’s correspond to the K. Indeed, let us assume without loss of generality that a; € A;.
Now, for each i € [@ + 1] and j € [v], we can use the edge (V; U A;) \ {vj_1} to connect g; to v;
(indices of the vj’s taken modulo v), giving us a Berge K, 1. Then, from (9), we can see that

a n—v—t>n—k 2 g1
= > v o R
k—v+17 &k

where in the last inequality, we use our bound on n and that v 4+« +2 < 10|V(F)|>. In particular,
this implies that we have at least v? > (;) sets A; with i > « + 1. Therefore, there are plenty of
edges of the form (V; UA;) \ {v;} fori € [a] \ [« 4 1] and j € [v] to create the Berge-K, on V;. This
completes the proof of the claim.

Now, arbitrarily add edges to H that do not create a Berge-F until the hypergraph is Berge-F-
saturated, and call the resulting hypergraph #'. Let x € A be a vertex. For the sake of contradiction,
assume that

dzy(X) — dyy(x) > (

Vi 4+t + (o — 1)K?
k—1 ’
This implies that x has o neighbors, which we will denote by x1, ..., X, € A such that

1. x; and xy are not contained in the same A; for i # 7, j € [a], and
2. there exists an injection ¢ from {x1, ..., x,} into {e € E(H')\E(H) | x € e} such that x; € ¢(x;)
fori e [a].

Indeed, since dy/(x) — dy(x) > (“,’(L'T‘), x must have a neighbor outside of V; U T, say x;, with

an edge e; € E(#/) \ E(H) such that x, x; € e;. The edge e; intersects at most k of the A;’s. Let
B; denote the union of all the Ay’s which intersect e;, and note that |B;| < k|A;] < k. Since

day(x1) — dy(x1) > ('V“kttsz), x must have a second neighbor, say x,, not in V; U T U By, and

10
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let e; € E(H) \ E(#) be such that x, x, € e,, noting that e, # e;. Then we can define B; to be the
union of all the A;’s that intersect e; or e,, and note that |B,| < 2k|A;| < 2k?. Continuing inductively,
we can find xs, ..., X4, as claimed. L

These edges in E(#H') \ E(#), along with the Berge-(K, V Ky+1) in % with core vertices
{v1,v2, ..., vy, X1, X2, ..., Xg, X} give us a Berge-(K,,1 V K,), which contains a Berge-F, a contra-
diction. Thus, ds(x) — dy(x) < (‘V””,ff‘;‘_”kz) for every vertex x € A.

We can now wastefully bound |E(#’)|. Indeed, we have that |[E(#)| = va < vn = O(n), and

[EH)\E(H)| < lfe € Vi UT} + [{e € E(H) \ E(H) | e NA # 0}

V. _ 2
< Vil +t +ak Vil + t + (¢ — 1)k
k k—1

Vil +t — 1k?
§k<| 1l + k-i-((;l k )n:O(n).

Thus,
saty(n, Berge-F) < |E(H')| = |E(H)| 4 [E(®') \ E(H)| = O(n). O

We will need a result from [1] to deal with an edge case in Theorem 1.3. The result below is
significantly weaker than the result in [1], but it suffices for our purposes.

Theorem 4.3 ([1]). Forany k > 3, £ > 1,
saty(n, Berge-Ky ¢) = O(n).

We also need a result that handles the case when k < v. Let 8(F) denote the vertex cover number
of F.

Theorem 4.4 ([5]). Fix k > 3. If F is a graph with B(F) > k + 1, then saty(n, Berge-F) = O(n).

We can now prove the first of our two results on linearity.

Proof of Theorem 1.3. First note that if «(F) = |V(F)|, then F contains no edges and the saturation
function is not defined. Furthermore, if «(F) = |V(F)| — 1, then F is a star, and by Theorem 4.3, the
result follows. Thus, we may assume |V(F)| > «a(F) + 2. Suppose that |V(F)| —a(F) — 1 =:v > k.
Then using the fact that |V(F)| = «(F)+ B(F), we get B(F)— 1 > k. In this case, Theorem 4.4 shows
that saty(n, Berge-F) = O(n). Thus, we will assume that k > v.

Let # := H(n, k, F) as in Construction 4.1. We claim that # is Berge-F-free. Assume to the
contrary that there is a copy of F which witnesses Berge-F in #. We have that |V(F)NA| >
[V(F)] — v = «F) + 1, and further there must exist an i € [a] such that |V(F)NA;] > 2 since
otherwise the «a(F) + 1 vertices in V(F) N A would form an independent set in F which is too
large. Say x,y € A;. We must have dr(x) 4+ de(y) — 1 < v since there are only v edges of # that
intersect A; and only one can play the role of xy, contributing to the degree of both vertices, but
dr(x) +dp(y) — 1> 28(F) — 1 > |V(F)| — «(F) — 1 = v, a contradiction.

Thus, H is Berge-F-free, so by Lemma 4.2, the result holds. O

We state here a construction from [5] for a k-uniform hypergraph on a vertex set V of size n
(where n is sufficiently large), which will be used to prove our final result. We will let f(G) denote
the vertex feedback number of the graph G.

Construction 4.5 ([5]). Let G be any graph and let n be sufficiently large. If f(G) = O, then for any
a, let Hi(n, a, G, @) denote the empty graph on vertex set V. If f(G) > 1, let S be a minimum vertex
feedback set of G, and let |[E(G[S])| = ¢. Let the (initially empty) vertex set V be partitioned into three
sets V = Vi1 UV, U V3, where |Vq| = f(G), and |V,| = (k — 2)¢. We first add ¢ edges between V; and
V;, to create a Berge-G[S] with core vertices in Vy. Indeed, arbitrarily label the vertices in V1 with labels
from the vertex set of G[S], and then for each 2-edge uv of G[S], add a k-edge that contains the vertices

11
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labeled u and v in V4, and k — 2 vertices in V, so that after all £ edges are added, each vertex in V, has
degree 1.

Now, choose some integer 1 < a < k— 1 such that a+ f(G) > k. If a does not divide |V3|, arbitrarily
choose (|V3| mod a) vertices, and remove them to form the set V5 C V3, with |V;| = ra for somer € Z.
Partition Vj into r sets of size a, and let M be the collection of these a-sets. For each a-set A in M, add

the (}(\/_1‘\7) edges that contain A and k — a vertices from V. Call this construction Hy(n, a, G, S).

Our poof of Theorem 1.4 will use a = k— f(G)+ 1 or a = k — 1. However, the original statement
of the construction of #,(n, a, G, S) in [5] takes a as a more general parameter and facilitates the
statement of their theorem.

Theorem 4.6 ([5]). Let F be a graph with vertex feedback set S, |S| = f(F). Let 1 < a < k — 1 be such
that a + f(F) > k. If #(n, a, F, S) does not contain a Berge-F, then

saty(n, Berge-F) = O(n).

We are now ready to prove Theorem 1.4

Proof of Theorem 1.4. Let S be a minimum vertex feedback set of F. First, consider the case when
f<ksothat1<a=k—f+1<k LetH :=Hin, k—f+1,F,S). We claim that H is Berge-F-free.
Indeed, suppose for the sake of contradiction, that H contains a Berge-F, and let F be a witness to
this Berge-F. For any A € M, only (1) = (ffl) =f < g edges of H are incident with vertices in A,
so no cycle of F can be contained in a set A. This implies that V; is a vertex feedback set of F, and
since |Vq| = f, V7 is a minimum vertex feedback set of F.

Similarly, if f > k, then we choose a = k— 1 and let H := Hi(n, k—f + 1, F, S). We claim that H
is Berge-F-free. Indeed, suppose for the sake of contradiction, that H contains a Berge-F, and let F
be a witness to this Berge-F. For any A € M, only (,'(V_’;) = (fl) = f < g edges of H are incident with
vertices in A, so no cycle of F can be contained in a set A. This implies that V; is a vertex feedback
set of F, and since |V;| = f, V; is a minimum vertex feedback set of F.

In either case, we proceed with the following argument. For any v € V7, v must be in a cycle
C in F that does not contain any other vertices in V;, since otherwise V; \ {v} would be a smaller
vertex feedback set. However, this implies that C is contained in {v} UA for some A € M, but there
are only f < g hyperedges of H that intersect A, so there are not enough hyperedges to create a
Berge copy of the cycle C, and we arrive at a contradiction.

Thus H is Berge-F-free, and by Theorem 4.6, the result follows. O

5. Concluding remarks

The saturation number for Berge-K3 is known exactly, whereas here we were only able to
determine the asymptotics of the saturation number for larger cliques. It would be nice to be able
to find the exact value, at least in some small cases. The most tractable case is sat;(n, Berge-K,). By
counting edges in S(n, 3, 4) from Construction 3.7 more carefully than is done in Theorem 3.9, we
can get the following:

Remark 5.1. For all n > 10,

n if n is odd
sats(n, Berge-Ky) < e '
ats(n, Berge-Ky) < {n +1 ifniseven.

It seems difficult to push the lower bound to match this, but it would be quite interesting to see
work in this direction.
Problem 5.2. Determine sats(n, Berge-K,) exactly. In particular, is sat3(n, Berge-K;) = n when n is
odd?
12
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