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Abstract

In a TAR (token addition/removal) reconfiguration graph, each vertex is a set of ver-
tices, with an edge between two vertices if one can be obtained from the other by
adding or removing one element. This paper considers the X-TAR graph of a base
graph G where the vertices of the X-TAR graph of G are the X-sets of G, which are
subsets of V(G) that satisfy certain conditions. Dominating sets, power dominating
sets, zero forcing sets, and positive semidefinite zero forcing sets are all examples
of X-sets. For graphs G and G’ with no isolated vertices, it is shown that G and G’
have isomorphic X-TAR graphs if and only if there is a relabeling of the vertices of
G’ such that G and the relabeled G’ have exactly the same X-sets. These results are
applied to show certain zero forcing TAR graphs are unique up to isomorphism of the
base graph. Furthermore, results related to the connectedness of the zero forcing TAR
graph are presented.
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1 Introduction

The study of reconfiguration examines relationships among solutions to a problem.
These solutions are modeled as vertices in a graph called a reconfiguration graph. A
reconfiguration rule describes the adjacency relationship in a reconfiguration graph.
There is a growing body literature about reconfiguration graphs in various contexts.
Typical questions addressed are structural (whether a reconfiguration graph is con-
nected, Hamiltonian, etc.), existence/uniqueness (whether a given graph can be a
reconfiguration graph of some base graph, and when a reconfiguration graph deter-
mines its base graph) and algorithmic. A recent survey paper by Mynhardt and
Nasserasr [15] describes the current state of understanding of the graph properties
of reconfiguration graphs, while a survey by Nishimura [17] discusses algorithmic
and complexity questions in a wide variety of reconfiguration settings.

For many graph theory problems, the solutions to be reconfigured are sets of vertices
of a base graph G defined by a property such as being a dominating set, power
dominating set, or zero forcing set of G. In such cases one natural and widely studied
reconfiguration rule is the token addition or removal rule in which two sets S and S’
are adjacent in the TAR reconfiguration graph (or TAR graph) if S’ can be obtained
from S by adding or removing one element. We focus on TAR reconfiguration graphs.
Properties of the TAR graph for dominating sets have been studied in [1, 2, 12, 13,
15, 16]. Different types of reconfiguration graphs for the parameters discussed here
have also been studied: the token exchange (or token jumping) reconfiguration graph
for dominating sets in [15, 18, 20] and for zero forcing sets in [11]; the token sliding
reconfiguration graph for dominating sets in [10, 15]. Reconfiguration problems for
irredundant sets and for graph colorings have also been studied (see, for example, the
survey [15] and and the references therein) but these are less closely related to the
work described here.

In [5], Bjorkman et al. introduced a universal framework for parameters that we
call X-set parameters (see Definition 1.2), and we call the associated TAR graphs
X-TAR graphs. Examples of X-set parameters include the domination number, the
power domination number, the zero forcing number, and the positive semidefinite
zero forcing number (definitions of these parameters are presented in Sect. 1.1), so
results proved for X-set parameters apply to all these parameters. Various elementary
consequences of the universal definition were established in [5] (see Theorem 1.9 for
an application of such results to the zero forcing TAR-graph). Here we establish deeper
results about X-TAR graphs, specifically about isomorphisms of X-TAR graphs.

For a given graph G and X-set parameter, the X-TAR graph of G is completely
determined by the X-sets of G, which are the vertices of the X-TAR graph of G.
Questions naturally arise regarding when X-TAR graphs of base graphs G and G’ are
isomorphic and what this says about G and G’. Obviously two base graphs with the
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same X -sets have isomorphic X-TAR graphs.! One of our main results is the converse
of this statement (when isolated vertices are excluded):

Theorem 1.1 Suppose base graphs G and G’ have no isolated vertices and their X -
TAR graphs are isomorphic. Then there is a relabeling of the vertices of G' such that
G and G’ have exactly the same X-sets.

Theorem 1.1 is an immediate consequence of Theorems 2.8 and 2.9 proved below.
The omission of isolated vertices does not significantly weaken the result, because the
effect of isolated vertices in the base graph on the X-TAR graph is easy to describe
(see Remark 1.3), and modulo that caveat this is the strongest possible result. Finding
arelabeling to obtain the same X-sets for G and G’ is likely not any easier than finding
an isomorphism of X-TAR graphs. However, we did find this result a bit surprising.
Of course, an isomorphism of X-TAR graphs can be viewed as a relabeling of the
vertices of one of the TAR graphs, but there does not seem to be any a priori reason
why the existence of a relabeling of the vertices of one of the base graphs so as to
have exactly the same X-sets should be a necessary condition for an isomorphism of
X-TAR graphs. Theorem 1.1 applies to the domination number, the power domination
number, the zero forcing number, and the positive semidefinite zero forcing number.

To prove Theorems 2.8 and 2.9, we introduce the concept of an X -irrelevant vertex
(or an X-irrelevant set of vertices) in Sect. 2.2. A vertex is X-irrelevant if it does not
appear in any minimal X-set. In Theorem 2.13, X-irrelevant sets are used to char-
acterize the automorphism group of an X-TAR graph. This characterization implies
that the X-TAR graph of G has an automorphism that maps an X-set to an X-set of
different cardinality if and only if G has at least one X-irrelevant vertex. The existence
(or nonexistence) of X-irrelevant vertices highlights significant differences among the
graph parameters discussed: There are graphs with X-irrelevant vertices for X-sets
being zero forcing sets or power dominating sets, whereas domination and positive
semidefinite zero forcing do not allow X-irrelevant vertices, because any vertex of
a base graph G can be in a minimal dominating set of G, and similarly for positive
semidefinite zero forcing (see Corollaries 2.18 and 2.20). This means that any auto-
morphism of a dominating TAR graph or a positive semidefinite zero forcing TAR
graph fixes the cardinalities of the vertices of the TAR graph.

Theorems 2.8 and 2.9 are useful in the study of which X-TAR graphs are unique (up
to isomorphism of the base graph and with isolated vertices prohibited). The details
are parameter-specific, and we examine this question for zero forcing TAR graphs in
Sect. 3.1.

Many studies of reconfiguration for a specific parameter address connectedness,
that is, whether any one feasible solution can be transformed into any other by
the reconfiguration rule. Unfortunately, connectedness properties seem to be very
parameter-specific, and thus unsuitable for the universal approach using X-TAR
graphs. The main results in this paper relate to isomorphisms of X-TAR graphs, as
discussed in Sect. 2. However, in Sect. 3.2 we present results related to connected-
ness for zero forcing TAR graphs. This includes exhibiting families of graphs that

! Note that nonisomorphic base graphs can have the same X-sets for each of the X -set parameters discussed
here.
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exceed known bounds for parameters describing connectedness of the zero forcing
TAR graphs (see Propositions 3.4 and 3.9).

In the next section we present basic graph theory definitions and precise definitions
of zero forcing number, positive semidefinite zero forcing number, domination num-
ber, and power domination number. Section 1.2 contains the definitions of an X-set
parameter, its TAR graph, and related parameters. In Sect. 1.3 we apply basic results
from [5] to the zero forcing TAR graph and determine the zero forcing TAR graphs
for several graph families.

1.1 Definitions and Notation

All graphs are simple, undirected, finite, and have nonempty vertex sets. Let G =
(V(G), E(G)) be a graph. The neighborhood of a vertex v of G is the set of all
vertices adjacent to v and is denoted by Ng(v). The closed neighborhood of v is
Ng[v] = Ng(v) U {v}. If S is a set of vertices of G, then Ng[S] = UyesNg[x]. The
order of a graph G is the cardinality of V (G). The maximum degree and minimum
degree of G are denoted A(G) and 6(G) respectively.

Let G be a graph and color all the vertices of G blue or white. Zero forcing is
a process that changes the color of white vertices to blue by applying the standard
color change rule, i.e., a blue vertex v can force a white vertex w to change color
to blue if w is the only white vertex in the neighborhood of v. A zero forcing set
isaset § € V(G) that can result in all the vertices of G turning blue by repeated
application of the standard color change rule starting with exactly the vertices in S
blue. In the context of TAR reconfiguration, “solutions” to zero forcing on a graph G
are zero forcing sets. The zero forcing number of G, denoted by Z(G), is the minimum
cardinality of a zero forcing set. The zero forcing TAR graph allows us to consider
all the zero forcing sets (of various sizes) and the relationships among them for a
particular base graph. It is well known (and easy to see) that §(G) < Z(G). The
study of zero forcing reconfiguration was initiated in [11], where the token exchange
zero forcing reconfiguration graph was studied. Note that for the zero forcing token
exchange reconfiguration graph, only minimum zero forcing sets are used as vertices
and two such sets are adjacent if one can be obtained from the other by exchanging
one vertex.

Positive semidefinite zero forcing is a variant of zero forcing defined by the PSD
color change rule: Let S be the set of blue vertices and let Wy, ..., Wi be the sets of
vertices of the k > 1 components of G — S (the graph obtained from G by deleting the
vertices in S). If u € S, w € W;, and w is the only white neighbor of u in G[W; U S,
then change the color of w to blue (where G[U] denotes the subgraph of G induced by
the vertices of U). A PSD zero forcing set is a set S C V(G) that can result in all the
vertices of G turning blue by repeated application of the PSD color change rule starting
with exactly the vertices in S blue. The PSD zero forcing number of G, denoted by
7. (G), is the minimum cardinality of a PSD zero forcing set. More information on
zero forcing and positive semidefinite zero forcing can be found in [14].

A set S of vertices of a graph G is a dominating set of G if Ng[S] = V(G) and the
domination number y (G) of G is the minimum cardinality of a dominating set of G. A
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set S of vertices of a graph G is a power dominating set of G if Ng[S] is a zero forcing
set of G, and the power domination number yp(G) of G is the minimum cardinality
of a power dominating set of G. The y-TAR graph 2™R(G) was studied in [1, 2,
12]. Bjorkman et al. introduced the study of the yp-TAR graph P I™™R(G) in [5],
where it was observed that some proofs for the domination TAR graph remained valid
for power domination. This led to the rewriting of these proofs in universal notation
similar to that used here.

1.2 X-Set Parameter Definitions and Initial Results

The next definition is adapted from [5] (the term X-set parameter is new but the list
of conditions in Definition 1.2 is taken from [5, Definition 2.1]).

Definition 1.2 An X-set parameter is a graph parameter X (G) defined to be the min-
imum cardinality of an X-set of G, where the X-sets of G are defined by a given
property and satisfy the following conditions:

(1) If Sisan X-setof G and S C S/, then S’ is an X-set of G.
(2) The empty set is not an X-set of any graph.
(3) An X-set of a disconnected graph is the union of an X-set of each component.

(4) If G has no isolated vertices, then every set of |V (G)| — 1 vertices is an X-set.

Note that Z(G), Z+(G), y (G), and yp(G) are all X-set parameters. Let X be an X-
set parameter. The following definitions are adapted from [5]. The X token addition
and removal reconfiguration graph (X-TAR graph) of a base graph G, denoted by
A TAR(G), has the set of all X-sets of G as the set of vertices, and there is an edge
between two vertices S and S> of 2 TAR(G) if and only if |S; & S2| = 1 where
AS B = (AU B)\ (AN B) denotes the symmetric difference of sets A and B.

Asnoted in [5], itis sufficient to study X-TAR reconfiguration graph for base graphs
with no isolated vertices. The disjoint union of graphs G and H is denoted by G L H
and r K1 denotes r isolated vertices.

Remark 1.3 [5] Let X be a property satisfying the conditions in Definition 1.2. If
G’ = G urKj, G has no isolated vertices and the isolated vertices of G’ are denoted
by z1, ..., zr, and then the mapping S — S U {z1, ..., z-} is a bijection of X-sets of
G to the X-sets of G’ and 2 TAR(G") = 2 TAR((G).

As mentioned above, determining when a TAR graph (or any reconfiguration graph)
is connected is important because it corresponds to determining if all solutions can be
reached from each other. Observe that 2" TAR(G) is connected for any graph G. The k-
token addition and removal reconfiguration graph for X of G, denoted by ,%”,(TAR (G),
is the subgraph of 2 TAR(G) induced by the set of all X-sets of cardinality at most k.
Thus determining for which k the graph %(TAR(G) is connected is a main theme of
the study of TAR graph reconfiguration. Connectedness is also a theme of other types
of reconfiguration.
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The least k such that %(TAR(G) is connected is denoted by xo(G). The least k such
that %TAR(G) is connected for k < i < |V(G)] is denoted by xo(G). The maximum
cardinality of a minimal X-set of G is the upper X-number of G and is denoted by
X(G).

Let G be a graph of order n > 2 with no isolated vertices. As noted in [5],
A(Z AR (G)) = n. Observe that an X-set S # V(G) of G has deg%Em(G)(S) =n
if and only if S \ {x} is an X-set for every x € S.

In order to reduce consideration of a problem to connected base graphs, we establish
the form of the X-TAR graph of a of disconnected graph. If G| and G, are disjoint, the
Cartesian product of G| and G, denoted by G1JG>, is the graph with V(GOG') =
V(G1) x V(G») such that (vq, v2) and (u1, u2) are adjacent if and only if (1) v = u;
and vyuy € E(Gy),or (2) vy = up and vju; € E(Gy).

Proposition 1.4 Let X be an X-set parameter and let G = G| U Gjy. Then
2 TR(G) = 2TR(G) O Z2TAR(Gy).

Proof Let Sand T be X-setsof G. Then S = S;uS, and T = T1UT5, where S; and T
are zero forcing sets of G, and S, and 7> are zero forcing sets of G,. Observe that §
and T are adjacent in 2 TAR (G) if and only if there exists a vertex v € V(G 1)UV (G3)
such that

e Si=Trand (Tr = S \ {v}or S =T> \ {v}), or
e S =T and(Ty = S1 \ {v}orS; =T\ {v}).

Further, 7» = S»\{v} or $» = 7>\ {v} if and only if S, is adjacent to 75 in 2 TAR(G»),
and Ty = S; \ {v} or §; = T1 \ {v} if and only S| is adjacent to 7} in 2 ™AR(G). O

1.3 Initial Observations on Zero Forcing TAR Graphs

In this section, we implement definitions in Sect. 1.2 for zero forcing.

Definition 1.5 The zero forcing token addition and removal (Zz-TAR) zgraph of a base
graph G, denoted by ZTAR(G), has the set of all zero forcing sets of G as the set
of vertices, and there is an edge between two vertices S; and S> of ZTAR(G) if and
only if |S1 © S$2| = 1. The zero forcing k-token addition and removal reconfiguration
graph of G, denoted by Q’}CTAR(G), is the subgraph of Z’TAR(G) induced by the set
of all zero forcing sets of cardinality at most k.

Definition 1.6 The maximum cardinality of a minimal zero forcing set of a graph G
is the upper zero forcing number of G and is denoted by Z(G). The least k such
that Q’}(TAR(G) is connected is denoted by zo(G). The least k such that D@iTAR(G) is
connected for each i =k, ..., |V (G)] is denoted by zo(G).

It was shown in [4] that a graph with no isolated vertices has more than one minimum
zero forcing set and no vertex is in every minimum zero forcing set. Let G be a graph
that has no isolated vertices. Since a minimal zero forcing set of cardinality £ has no
neighbors in Q’}(TAR(G), D@‘ZTAR (G) is not connected whenever there is a minimal zero

forcing set of cardinality k. In particular, fg@%(G) and Q”ZT(AGli(G) are not connected.
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Fig.1 ZTAR(K, 3) {0,1,2,3}

{mM/i 33}

|/ \I

{1 2} {2 3} {1, 3}

Brimkov and Carlson constructed an example of an infinite family of graphs G, with
Z(G,) =5and Z(G,) =n — 2 in [7].

Next we determine the zero forcing TAR graphs and related parameters for two
families of graphs (additional families are discussed in Sect. 3.) The complete graph
is denoted by K, and K , denotes the star with r leaves (where a leaf is a vertex of
degree one); the center vertex of K , is the vertex of degree r.

Example 1.7 Let n > 2. It is well known (and immediate from §(K,) = n — 1)
that Z(K,) = n — 1 (implying Z(K,) = n — 1) and the zero forcing sets of K,
consist of all subsets of vertices of K, that contain at least n — 1 vertices. Thus
FTAR(K) = K 1.n- Since Z TAR(G) is disconnected for any connected graph of
order at least two, z9(K,) = z_o(K ) =n.

Figure 1 illustrates the next result. Throughout this paper, we discuss both base
graphs and their TAR graphs. To avoid confusion, we use open circles for vertices of
a base graph (with the label written in the circle if a label is present) and black dots
for vertices of TAR reconfiguration graphs, with the vertex labels (which are sets of
base graph vertices) written nearby.

Proposition 1.8 Letr > 2. Then Z™R(K | ,) = K1, O K». Furthermore, Z(K1 ;) =
Z(Ky,) =r —1land z0(K1,) = z0(K1,r) = 1.

Proof Let V(K1) = {0, 1, ..., r}where 0is the center vertex. The collection of zero
forcing sets of K , can be partitioned as

Ti = (V(K1,)} U{S € V(K1,) : S| =rand 0 € §)
and
Lh={V(Ki)\{O}U{S S V(Ky,):|S|=r—1and0 ¢ S}.

Observe that the induced subgraph of % TAR(K 1.r) on either Ty or T is K1 . Further,
zero forcing sets S € T and S; € T, are adjacent in 2 TAR(G) if and only if
Sy = 81\ {0}. Thus ZTAR(K| ) = Ky, O K>.

It is immediate from the list of zero forcing sets that Z(Kl,r) =Z(K1,)=r—1
and zo(K1,r) = zo(Ky,/) = 1. o

Next we apply results established for TAR graphs of X-set parameters and known
properties of zero forcing to the zero forcing TAR graph and related parameters. The ¢
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dimensional hypercube Q, can be defined recursively in terms of the Cartesian product
as Qo = Ky and Q; = Q; 1 0 K>.

Proposition 1.9 [5] Let G be a graph of order n > 2 with no isolated vertices. Then
A(ZT™R(G)) = n.

Ifn > 2, then $(Z™R(G)) = n — Z(G).

Z(G) + 1 = 20(G) = min{Z(G) + Z(G), n}.

IfZ(G) = 1, then z0(G) = Z(G) + 1.

For every k > 7.(G), %CTAR(G) is a subgraph of Q. Thus EZ’}CTAR(G) is bipartite.
No zero forcing TAR graph is isomorphic to a hypercube.

SN RN~

Proposition 1.9 allows us to show that the values of certain parameters of the base
graphs of isomorphic zero forcing TAR graphs must be equal.

Corollary 1.10 [5] Let G and G’ be graphs with no isolated vertices. If FTAR(G)
~ ZTAR(G'), then

L V(G| =IV(G),
2. Z(G) = Z(G"), and
3. Z(G) =Z(G").

Note that Proposition 1.4 also applies to the zero forcing TAR graph.

2 X-TAR Graph Isomorphisms and Irrelevant Sets

We show that for graphs G and G’ with no isolated vertices, 2 "AR(G) = 2 TAR (G
implies there is a relabeling of the vertices of G’ such that G and G’ have exactly
the same X-sets (see Theorem 2.9). Irrelevant sets are introduced in Section 2.1 to
prove that if 2 TAR(G) = 2 TAR(G"), then there is an isomorphism that preserves the
cardinality of X-sets (see Theorem 2.8). The focus of Section 2.1 is proving Theorems
2.8 and 2.9, but irrelevant sets are interesting in their own right (and exhibit significant
differences among various X-set parameters). These ideas are discussed in Sect. 2.2.

2.1 Isomorphisms of the X-TAR Graph

There is a natural poset structure on the vertices of an X-TAR graph whose partial
ordering is determined by set inclusion. This poset structure can be used to better
understand the isomorphisms between X-TAR graphs. We begin this subsection with
aresult showing that the vertices of induced hypercubes of X-TAR graphs are intervals
in the aforementioned poset. To formally state this result, we recall some basic poset
terminology found in [19].

Let Y be a set and P = (Y, <) be a poset. An element u € Y is maximal
(respectively, minimal) if u # y (respectively, u # y) for each y € Y. Elements
u,v € Y are comparable provided u < vorv < u.If u < v in P, then the set
[u,v] ={y:u <y < wv}iscalled an interval. A chain is a poset such that each pair
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of elements is comparable. The length of a chain C is [C| — 1 and the length of the
interval [u, v] is the maximum length of a chain in [, v] and is denoted by £(u, v).

For a set T, let P(T) denote the power set of T. We remark that 2~ TAR(G) is a
join-semilattice contained in (P(V (G)), €) and £(S, S") = dist(S, S’) for any interval
[S, '] in 2 TAR(G) since S and S’ are comparable (where dist(S, S’) is the distance
in the graph 2 TAR(G)).

Lemma 2.1 Let X be an X-set parameter, let t > 0 be an integer, let G be a graph on
n vertices, and let H be an induced subgraph of 2 TAR(G). If H= Qy, then V(H)
is an interval of length t in the poset (P(V (G)), Q).

Proof Assume H = Q. The claim is obvious for t = 0, 1. Suppose that t > 2. We
begin by showing that (V (H), €) has exactly 1 maximal element.

Assume, to the contrary, that (V (H), €) has at least 2 maximal elements u and v.
Since H is connected, there exists a path from « to v in H. Every path P from u to v
in H can be written in the form uy - - - y;v. For each such P, let dp to be the smallest
index k such that yy_1 € yx, where yp = u and y;+1 = v. Note that since « and v are
maximal in (V(H), ©), dp > 2 is always defined.

Let d be the minimum dp amongst all paths P from u to v in H. Pick a path
P* in H of the form uxj - - - x;v such that dp+ = d, and let xo = u and x;+| = v.
Then x;_1 € x4_» because x;_» Q Xx4—1 and x4_» is adjacent to x4—1. Since x47_2
and x4 have x;_1 as a common neighbor and each pair of vertices in a hypercube
share exactly 0 or 2 common neighbors, there exists some vertex w # xy—1 in H
that is adjacent to xz_; and x4. By our choice of d, w C x4 and w C x4 or else
P =uxy...xq—owxg ...x;v would be a path with dp/ < dp+ since w = x4 U xg4.
Hence x;_> N x; = w. This is absurd since x7—> N x5 = x4—1 and w # xg4—1.

Thus, H has exactly 1 maximal element 7. A similar argument shows H has exactly
1 minimal element S in the subset partial ordering of .2 ™AR(G). Thus, S C R C T
for every R € V(H). Since H = Qy, dist(S, T) < diam(Q;) = ¢. So there are
at most 2 elements in the interval [S, T]. But |V (H)| = |V(Q;)| = 2'. Therefore,
dist(S,T) =tand V(H) =[S, T]. O

We remark that the proof of Lemma 2.1 is really an argument about cover graphs.
For a poset (Y, <) and x, y € Y, we say that y covers x provided x < y and there is
no z € Y such that x < z < y. The cover graph of P is the simple graph with vertices
in Y and an edge uv if and only if u# covers v, or v covers u. Lemma 2.1 says that if
G = Oy, then V(G) is an interval in (P(Y), Q).

Lemma2.2 Let X be an X-set parameter, let G and G’ be graphs. Suppose ¢ :
2 TAR(GY — ZTAR(G) is an isomorphism. Let S’ = ¢(V(G)). If Y’ is a minimal
X-setof G/, thenY' C §'.

Proof Let Y’ be a minimal X-set of G’. Define Y = ¢~ !(Y’). The interval [Y, V (G)]
in (P(V(G), ©) forms an induced Q, in 2 ™R(G) for some integer t > 0. By
Lemma 2.1, ¢([Y, V(G)]) is an interval [Z’, W] in (P(V(G")), ). Since Y’ is a
minimal X-set of G’, Z' = Y’. Thus, Y’ C 5. O

Some zero forcing TAR graphs have automorphisms that do not preserve the cardi-
nality of the zero forcing sets that are the vertices of the TAR graph (see Example 2.4).
The next definition allows us to manage that issue.

@ Springer



86 Page100f23 Graphs and Combinatorics (2023) 39:86

Definition 2.3 Let G be a graph. We say that a vertex v € V(G) is X-irrelevant if
x ¢ S forevery minimal X-set S of G. Aset R C V(G) is an X-irrelevant set if every
vertex of R is X-irrelevant.

Irrelevant vertices exist for zero forcing as seen in the next example, but not for
domination as discussed in Sect. 2.2.

Example 2.4 The proof of Proposition 1.8 shows the center vertex of Kp , is a Z-
irrelevant vertex and is in fact the only Z-irrelevant vertex of K ;.

Definition 2.5 Let G be a graph and R € V(G). We define the map
v V(ZR(G)) — P(V(G)) via vr(S)=SOR.

For an X-irrelevant set R, the map vg maps X-sets to X -sets, and is thus an automor-
phism of 2" TAR(G). This is illustrated in the next example and shown in Theorem 2.7.
Observe that vg maps S to S’ with |S’| # |S| if R is nonempty.

Example 2.6 Consider K , with center vertex 0. Recall that 2 TAR (g, ~) =K ,0K>
(see Fig. 1 for Q”TAR(K1,3)). For R = {0}, vg is the automorphism of K; ,[JK»
obtained by reversing the two vertices of K.

Theorem 2.7 Let X be an X -set parameter, let G be a graph, and let R C V (G). Then
Vg is a graph automorphism of 2 AR (G) if and only if R is X -irrelevant.

Proof Suppose that vg is an automorphism. By Lemma 2.2 every minimal X -set of G
is a subset of vg(V(G)) = V(G) \ R. Thus, R is X-irrelevant.

Suppose that R is X-irrelevant. Let S be an X-set of G. Then there exists some
minimal X-set 7 C S. Since R is X-irrelevant, T € S\ R € S. Thus, vg(S) 2 S\ R
is an X-set of G. By construction, adjacency is preserved by vg. Therefore, vg is an
automorphism. O

We are now ready to state one of our main results, namely that if there is an iso-
morphism between X-TAR graphs that does not preserve the sizes of the X -sets, then
the difference in size is due to an X-irrelevant set. Moreover, there is an isomorphism
between these X-TAR graphs that preserves the size of the X-sets.

Theorem 2.8 Let X be an X-set parameter, let G and G’ be graphs with no isolated
vertices, and let g : 2 TAR(G) — 2 TAR(G") be an isomorphism. Then R' = V (G')\
@ (V(G)) is X-irrelevant and ¢ = vy o ¢ is an isomorphism such that |¢(S)| = |S]|
for every S € V(2 ™R(G)).

Proof Letn = |V (G)|.If @(V(G)) = V(G’),then R’ = (is X -irrelevant. So suppose
that g(V(G)) = &', where S’ # V(G’). Since ¢ is an isomorphism, Lemma 2.2
implies every minimal X-set of G’ is a subset of " and hence R’ is X-irrelevant.
By Theorem 2.7, vg/ is an automorphism of 2 TAR(G"). Thus, ¢ = vg' o @ is an
isomorphism such that ¢ (V(G)) = V(G').

Note that |V (G')| = n and X(G’) = X(G). Let S € V(Z ™R(G)). The interval
H = [S,V(G)] € Z™R(G) is an induced hypercube in .2 TAR(G), so ¢(H) is
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an induced hypercube in 2 TAR(G’). By Lemma 2.1 and since ¢(V(G)) = V(G),
e(H) =[S, V(G))] in 2 ™R(G") and dist(S’, V(G")) = dist(S, V(G)). We show
by induction on |S] that |¢(S)| = |S|. We say S is a k-X-set if S is an X-set and
|S| = k.

For the base case, assume |S| = X(G), so dist(S’, V(G')) = dist(S, V(G)) =
n— X(G) = |V(G")| — X(G"). This implies |S'| = X(G") = X(G) = |S|. The same
reasoning applies using ¢!, since ¢! (V(G’)) = V(G). Thus ¢ defines a bijection
between minimum X-sets of G and minimum X -sets of G'.

Now assume ¢ defines a bijection between i-X-sets of G and i-X-sets of G’ for
X(G) < i < kand let S be a (k + 1)-X-set of G. This implies |[p(W)| > k + 1
for W € [S, V(G)]. By Lemma 2.1, o([S, V(G)]) =[S, V(G")] in 2 ™R(G’) and
dist(S’, V(G")) =n —k — 1. Thus §" is a (k + 1)-X-set of G. O

In the next theorem, we show that if two graphs G and G’ (with no isolated vertices)
have isomorphic X-TAR graphs, then there is a bijection between the vertices of G and
the vertices of G’ that results in the correspondence of the X-sets. Note this bijection
need not be a graph isomorphism between G and G'. A cycle and a cycle plus one
edge provide an example of nonisomorphic graphs with the same zero forcing sets
(see Example 3.3). We first give some useful notation. For any map ¥ : A — A’ and
subset B € A we write ¥ (B) to mean the image of B, i.e., ¥ (B) = {¢/(b) : b € B}.
This is particularly useful when working with a map ¥ : V(G) — V(G’) that
maps X-sets of G to X-sets of G', since this convention naturally induces a map
¥ VIZTRG) —» VIZTRG)).

Theorem 2.9 Let X be an X-set parameter, let G and G’ be graphs with no isolated
vertices, and suppose ¢ : X PR(G) — X TAR(G') is a graph isomorphism. Then
l@(S)| = |S|forevery X-set S ifand only if there exists a bijectionyr : V(G) — V(G')
such that ¥ (S) = ¢(S) for every X-set S of G.

Suppose |@(S)| = |S| for every X-set S and r : V(G) — V(G') is a bijection such
that ¥ (S) = @(S) for every X-set S of G. Then there is a relabeling of the vertices
of G’ such that the relabeled graph has the same X-sets as G and the same X-TAR
graph as G.

Proof Letn = |V (G)|. For any graph H and v € V(H), define S, = V(H) \ {v}. For
v € V(G) and v' € V(G'), note that S, is an X-set of G and S,/ is an X-set of G’.

Begin by assuming |¢(S)| = |S]| for every X-set S. Since |¢(S,)| = n — 1 for
every v € V(G), we may define v (v) = v’ where v’ is the unique vertex such that
©(Sy) = S,. Note that ¢ : V(G) — V(G’) is a bijection.

The proof that ¥ (S) = ¢(S) for every X-set S of G proceeds iteratively from
|S] = n to |S]| = X(G). By the choice of ¢ and the definition of ¥, we have ¢(S)
= Y (S) for |[S| = n,n — 1. Assume ¢(S) = ¥ (S) for each X-set S of order k
for some kK withn — 1 > k > X(G). Let § be an X-set of order k — 1. Since
k —1 < n — 2, there exist distinct vertices a, b € V(G) \ S such that S U {a} and
S U {b} are X-sets of order k. Since S is adjacent to S U {a} and S U {b} in 2 TAR(G),
and |@(S U {a})| = |@(S U {b})| > |@(S)], there exist distinct a’, b’ € V(G') \ ¢(S)
such that ¢(S U {a}) = ¢(S) U {a’} and (S U {b}) = ¢(S) U {b’}. Thus,

@(S) = (S U{ah) Ne(SU{b}) = Y (SU{ah) Ny (SU DY =¥ (S),
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where the last equality follows since v is a bijection.

Now assume there exists a bijection ¥ : V(G) — V(G’) such that ¥ (S) = ¢(S)
for every X-set S of G. Then |S| = | (S)| = |¢(S)]| as desired.

Finally, suppose |¢(S)| = |S| for every X-set S and ¥ : V(G) — V(G') is a
bijection such that ¥ (S) = ¢(S) for every X-set S of G. Define G” from G’ by
relabeling vertices of G’ so that v/ € V(G’) is labeled by ¥~ !(v/). Then G” = G’
and G” and G have the same X -sets. O

One of the advantages of the universal approach is that universal results apply to
many different kinds of TAR graphs. Theorem 2.9 shows that if G and G’ have no
isolated vertices and the zero forcing (respectively, domination, power domination,
PSD zero forcing) TAR graphs of G and G’ are isomorphic, then G’ can be relabeled
so that G and G’ have exactly the same zero forcing (respectively, dominating, power
dominating, positive semidefinite zero forcing) sets.

The next two results focus on mappings and minimal X-sets and are used in the
proof of Theorem 2.13.

Proposition 2.10 Let X be an X-set parameter and let G and G’ be graphs with no
isolated vertices. Suppose ¢ : 2 AR(G) — Z TAR(G') is a graph isomorphism such
that |¢(S)| = |S|. Then ¢ maps minimal X -sets to minimal X -sets (of the same size).

Proof 1f S is minimal X-set of G, then deg g-1ar () (S) =n — [S]. If T is an X-set of
G that is not minimal in .2 TAR(G), then deg 9mar(G)(T) = n—|T|+ 1 (since T has
a subset neighbor). Analogous statements are true for G'. O

Proposition 2.11 Ler X be an X-set parameter and let G and G’ be graphs with no
isolated vertices. Suppose W : V(G) — V(G’) is a bijection.

(1) Suppose  maps X-sets of G to X-sets of G'. Then the induced mapping
v VIZTRG)) — VZTR(GY) is an isomorphism of 2 ™R(G) and
V(ZTR(G)). If every X-set of G' is the image of an X-set of G, then
v VIZ™RG)) — V(ZTAR(GY) is an isomorphism of 2 ™R(G) and
%‘TAR(G/).

(2) Suppose Y maps minimal X-sets of G to minimal X-sets of G'. Then v maps
X-sets of G to X-sets of G'. If every minimal X -set of G’ is the image of a minimal
X-set of G, then v is a bijection from X-sets of G to X-sets of G'.

(3) Suppose yr maps minimal X -sets of G to minimal X -sets of G'. Then the induced
mapping ¥ : V(ZR(G)) — V(ZTR(G")) is an isomorphism of 2 AR (G)
and Y (2 ™R(G)). If every minimal X -set of G’ is the image of a minimal X -set
of G, then y : V(Z ™R(G)) — V(2 TAR(G")) is an isomorphism of 2 AR (G)
and 2 ™R(G).

Proof (1): Since vy maps X-sets of G to X-sets of G’, ¥ induces a bijection between
the vertices of 2 TAR(G) and a subset of the vertices of 2 TAR(G’) (X-sets of G’ of
the form v (S) where S is an X-set of G). Assume that i, $» € V(2 ™R(G)) are
adjacent in 2" TAR(G). Without loss of generality, |S1 \ S2| = 1. Since v is a bijection,
[¥(S1) \ ¥ (S2)| = 1. Thus, ¥ (S1) and ¥ (S») are adjacent in .2 TAR(G"). Hence v is
an isomorphism from .2 TAR(G) to ¥ (2 ™AR(G)).
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(2): Let S € V(2 ™R(G)) be an X-set. There is a minimal X-set 7 S of G and
Y (T) C ¥ (S). Since ¥ (T) is a minimal X-set of G', ¥ (S) is an X-set of G'.
Statement (3) is immediate from statements (2) and (1) O

It is possible to have a vertex bijection v that maps minimal zero forcing sets of
G to minimal zero forcing sets of G’ but not vice versa, as the next example shows
(using the identity function as ).

Example 2.12 Consider the graph K 3 with vertices {0, 1, 2, 3} where 0 is the center
vertex, and the paw graph P constructed from K 3 by adding the edge 23. The minimal
zero forcing sets of K 3 are {1, 2}, {1, 3}, and {2, 3}. The minimal zero forcing sets of
P are {0, 2}, {0, 3}, {1, 2}, {1, 3}, and {2, 3}. The zero forcing TAR graphs are shown
in Fig. 2. The dotted lines in 2R ( P) indicate edges of this graph that are not present
in ZTAR(K 3).

2.2 X-Irrelevant Vertices and Automorphisms of X-TAR Graphs

In this section we explore the existence (or non-existence) of X-irrelevant vertices
for various X -set parameters and consequences for automorphisms of X-TAR graphs
and we apply these results to zero forcing, power domination, domination, and PSD
zero forcing. Let My (G) denote the set of bijections ¥ : V(G) — V(G) that send
minimal X-sets of G to minimal X-sets of G of the same size.

Theorem 2.13 Let G be a graph with no isolated vertices. Then the automorphism
group of 2 TAR(G) is generated by

{vr : Ris X -irrelevant} U Mx (G).

Proof By Theorem 2.7 vg € aut(2 "AR(G)) for every X-irrelevant set R. By Proposi-
tion 2.11(3), ¥ € aut(2 ™R(G)) for every ¥ € Mx(G) (since G’ = G here, having
¥ map minimal X-sets to minimal X-sets is sufficient).

We now show that {vg : R is X-irrelevant}U My (G) generates aut(2 2R(G)). Let
¢ by an automorphism of 2R (G). Suppose first that V (G) is fixed by ¢. Then | S| =
n—dist(V(G), S) = n—dist(V(G), ¢(S)) = |¢(S)| foreach § € V(2 ™R(G)). By
Theorem 2.9 there exists a bijection ¢ : V(G) — V(G) such that ¥ (S) = ¢(S) for
every X-set S of G. By Proposition 2.10, ¥ maps minimal X-sets to minimal X-sets
of the same size.
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Fig.3 The graphs K3 0 2K and G(5, 2)

Suppose that V (G) is not fixed by ¢. By Theorem 2.8 and the preceding argument,
there exists a bijection v € Mx(G) such that ¢ = vg o ¢, where R = V(G) \ ¢(G).
Thus, ¢ = v;l o Y. O

Not every automorphism of 2 TAR(G) induced by a mapping on G comes from an
automorphism of G itself, as seen in the next example.

Example 2.14 Consider the path P4 with vertices 1, 2, 3, 4 and edges 12, 23, 34. Define
Y :V(G) = V(G)by ¥(1) =4, v (2) =2,%(3) =3 and ¥ (1) = 4. The minimal
zero forcing sets are {1}, {4}, and {2, 3}, so ¥ maps minimal forcing sets to minimal
forcing sets. Thus v defines an automorphism of 2 TAR(P,). However, v is not an
automorphism of Py.

The next result provides many examples of graphs with nonempty Z-irrelevant sets
(and includes K , discussed in Example 2.4). Let H and G be graphs, and foreach v €
V(H),let G, denote acopy of G suchthat H and G, v € V (H) are all disjoint graphs.
The corona of H with G, denotedby HoG,has V(HoG) = V(H)UUvev(H) V(Gy)
and E(H 0 G) = E(H) UU,cy ) E(Gv) UU,ey ) fvx : x € V(Gy)}. The graph
K3 0 2K is shown in Fig. 3.

Proposition 2.15 Let H be a connected graph and G = H orK| withr > 2. Then
T C V(G) is a Z-irrelevant set of G if and only if T C V(H).

Proof Let V(H) = {vy,..., v} and denote the leaves adjacent to v; by x; ; for
j=1,...,r. Then S € V(G) is a zero forcing set of G if and only if S contains
at least » — 1 of the vertices x; 1,...,x;, foralli = 1,...,k. Thus T C V(G) is
Z-irrelevant set if and only if T C V (H). O

Next we apply the results in Sect. 2.1 to other X-set parameters. The power dom-
ination TAR graph of a graph G was introduced in [5]. We define a family of graphs
with nonempty yp-irrelevant sets. For r > 3 and 1 < £ < r — 2, construct G(r, £)
from K, o K by deleting r — € leaves. The graph G (5, 2) is shown in Fig. 3.

Proposition2.16 Forr > 3 and 1 < £ < r — 2, let L denote the set of leaves of
G(r,0). ThenT C V(G(r, X)) is a yp-irrelevant set of G(r, £) if and only if T C L.

Proof The set L is not a power dominating set of G (r, £) because no vertex dominated
by L is adjacent to exactly one vertex of G(r, £) that is not dominated by L, and L
does not dominate G. But any one vertex of K, is a power dominating set. O
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In contrast to zero forcing and power domination, neither domination nor PSD zero
forcing has irrelevant vertices, as we now show. Let G be a graph and v € V(G). A
minimal dominating set containing v can be constructed by starting with § = {v} and
repeatedly adding w ¢ Ng[S] until Ng[S] = V(G). This immediately implies the
next result.

Proposition 2.17 If G is a graph and S C V(G) is y-irrelevant, then S = .
The next result is immediate from Proposition 2.17 and Theorems 2.8 and 2.9.

Corollary 2.18 Let G and G’ be graphs with no isolated vertices, and suppose ¢ :
IAR(G) — Z™R(G') is a graph isomorphism. For every dominating set S of G,
l@(S)| = |S|. Furthermore, there exists a bijection v : V(G) — V(G’) such that
v (S) = ¢(S) for every dominating set S of G.

Let EZFEAR (G) denote the positive semidefinite zero forcing TAR graph of G, which
has positive semidefinite zero forcing sets as vertices. No work on this reconfiguration
graph has appeared, but the positive semidefinite zero forcing number is an X-set
parameter. Since the results stated for zero forcing in Proposition 1.9 and Corollary 1.10
were established for X-set parameters in [5], they remain true when 2 TAR(G) and
related zero forcing parameters are replaced by Q’fAR (G) andrelated PSD zero forcing
parameters. Known results about positive semidefinite zero forcing and Theorems 2.8
and 2.9 provide information about isomorphisms of ffEAR (G).

Proposition 2.19 [14, Theorem 9.36] Let G be a graph. Then for any vertexv € V(G),
there exists a minimum positive semidefinite zero forcing set S such that v € S.

Corollary 2.20 Ler G and G’ be graphs with no isolated vertices, and suppose ¢ :
Q‘”IAR(G) — Q”EAR(G’ ) is a graph isomorphism. For every positive semidefinite
zero forcing set S of G, |¢(S)| = |S|. Furthermore, there exists a bijection ¥ :
V(G) — V(G') such that ¥ (S) = @(S) for every positive semidefinite zero forcing
set S of G.

3 The Zero Forcing TAR Graph

In this section we return to the study of zero forcing TAR graphs introduced in Sect. 1.3.
In Sect. 3.1 we establish that certain zero forcing TAR graphs are unique up to isomor-
phism of the base graph (assuming the base graph has no isolated vertices) and also
give an example of nonisomorphic base graphs with same zero forcing TAR graphs.
We study the connectedness of Q’}(TAR(G) and related parameters in Sect. 3.2, includ-
ing presenting a family of graphs H where zo(H) exceeds the lower bound Z(H) + 1
by an arbitrary amount.

We begin with a simple application of our universal isomorphism results to zero
forcing polynomials. Let G be a graph of order n and let z(G; k) denote the number
of zero forcing sets of cardinality k. Boyer et al. defined the zero forcing polynomial
of G tobe Z(G; x) = ZZ:Z«;) 2(G; k)x* in [6]. Theorem 2.8 (or Theorem 2.9)
applied to zero forcing implies that if ZTAR(G) = ZTAR(G’) for graphs G and G’
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with no isolated vertices, then the zero forcing polynomials of G and G’ are equal.
The converse to this statement is false. Small examples of graphs with the same zero
forcing polynomial and nonisomorphic zero forcing TAR graphs are easy to find with
software, and one such example is presented next.

Example 3.1 The graphs G and H in Fig. 4 have
Z(G;x) = Z(H; x) = x% + 6x° + 13x* + 8x3

(see [8] for the computations). The minimal zero forcing sets of G are {1, 2, 4}, {1,
2,6}, {1,4,5},{1,5,6}, {2,4,5},{2,4,6},{2,5,6}, {4, 5, 6} and the minimal zero
forcing sets of H are {1, 2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {2,4,6}, {2,5,6}, {3, 4,
6}, {3,5,6},{2,3,4,5}. Thus Z(G) = 3, Z(H) = 4, and Z™R(G) 2 ZTAR(H).

3.1 Uniqueness and Nonuniqueness

For a graph H with no isolated vertices, we say its zero forcing TAR graph is unique if
FTAR(G) = ZTAR(H) implies G = H for any graph G with no isolated vertices. In
this section we present examples of unique Z-TAR graphs. We also present examples
of nonisomorphic graphs G and H with no isolated vertices such that ZTAR(G) =
< TAR(H ), or equivalently, the vertices of G can be labelled so that G and H have the
same zero forcing sets.

Itis immediate that the Z-TAR graphs of the path and the complete graph are unique,
because the path is the only graph G with Z(G) = 1 and K, is the only graph G of
order n with no isolated vertices having Z(G) = n — 1. It is less obvious that K , has
a unique Z-TAR graph, as we show in the next result. The proof uses some additional
definitions and known properties of zero forcing. Let G be a graph. For a given zero
forcing set S, carry out a forcing process to color all vertices of G blue, recording
the forces; the set of these forces is denoted by F. A set of forces F of S defines a
reversal of S, namely the set of vertices that do not perform a force (using the set of
forces F). It is known that the reversal of a zero forcing set is also a zero forcing set
[14, Theorem 9.10(1)]. The next process is sometimes called neighbor trading e.g.,
in [11]. Let S be a zero forcing set of G. Suppose v € S, v — w can be the first force
performed in a forcing process, and deg;(v) > 2. Let u € Ng(v) and u # w. Then
u e Sand S\ {u} U{w} is a zero forcing set (of the same cardinality) with first force
v — w replaced by v — u and the other forces remaining the same.

Proposition 3.2 Let G be a graph on n > 3 vertices with no isolated vertices. If
ZFR(G) = Ky ,0K>, then G = K1 .
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Table 1 Number of graphs with unique zero forcing TAR graph for small orders

# Vertices in G 2 3 4 5 6 7 8

# Graphs with unique ZTAR(G) 1 2 4 7 34 303 5318
# Graphs with no isolated vertices 1 2 7 23 122 888 11302
Ratio (# unique/# no isolated) 1 1 0.5714 0.3043 0.2787 0.3412 0.4705

Proof Recall that Z’TAR(K 1.r) = Ki;,0OK> by Proposition 1.8. Now suppose
ZTAR(G) = K., O K». By Proposition 1.4, ZTAR (G uG,) = ZTAR(G,) 0 ZT™R
(G»). Since K3 is a hypercube, there does not exist a graph G, with QPTAR(GZ) =K
by Proposition 1.9(6). Thus we may assume G is connected.

Since ZTAR(G) = D%”TAR(KL,), the order of G is r + 1 and we label the vertices
of G so that the zero forcing sets of G are exactly the zero forcing sets of K1 , where
the vertices of both graphs are {0, ..., r} and O is the center vertex of K ,. Note that
every minimal zero forcing set of K ,, and thus of G, is a minimum zero forcing
set. Recall from Example 2.4 that the center vertex O is Z-irrelevant, i.e., not in any
minimal zero forcing set.

Let B be a minimum zero forcing set of G. Since Z(G) = |V (G)| — 2, exactly
two forces are performed to color all vertices blue starting with the vertices in B blue.
Since a vertex that does not force is in the zero forcing set of the reversal of the set
of forces, 0 must perform a force and the set of forces must be {i — 0,0 — j}.
If deg; i > 2, then by neighbor trading 0 would be in a minimum zero forcing
set. Thus deg;i = 1. By considering the reversal, deg; j = 1. If n = 3, then
G = K2, so assume n > 4 (i.e.,, r > 3). Then there is another vertex k, which
must be adjacent to 0 and not adjacent to i or j. If r = 3,then G = Ky ,.If r > 4
then there exists another vertex £. Since £ ¢ Ng(i) and £ ¢ Ng(j), £ € Ng(0) or
£ € Ng (k). Let x denote the graph obtained from K3 by adding adding two leaves to
one vertex. If £ € Ng(0) N Ng(k), then G[{0, i, j, k, £}] = x, which is a forbidden
induced subgraph for Z(G) = |V(G)| — 2 [14, Theorem 9.12(6)]. If £ € N (k) and
£ ¢ Ng(0), then G[{0,i, k, £}] = P4, which is a forbidden induced subgraph for
Z(G) = |V(G)| — 2. Thus G[{0, i, j, k, £}] = K 4. The argument for £ shows any
additional vertices must also be leaves and G = K1 ;. O

For a graph G and vertices u and v that are not adjacent in G, the graph G + uv is
the graph with vertex set V (G) and edge set E(G) U {uv}.

Example 3.3 Let n > 4. For any two nonadjacent vertices u and v of C,,, & TAR(C )
= ZT™R(C, + uv) because a set of vertices S is a zero forcing set if and only if S
contains two vertices that are consecutive on the cycle for both C,, and C,, 4+ uv. Note
also that Z(C,) = Z(C,) = 2 and zo(C,) = 20(C) = 3.

Table 1 shows the number of (nonismorphic) graphs without isolated vertices of
order at most eight that have unique Z-TAR graphs (this data was computed in [8]).
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3.2 Connectedness Properties of the Zero Forcing TAR Graph

The focus of this section is connectedness properties of the zero forcing TAR graph.
We exhibit a family of graphs H where zo(H) exceeds the lower bound Z(H) + 1
by an arbitrary amount and another family of graphs G where zo(G) is strictly less
than zo(G). These examples are interesting because the more common situation is
20(G) = z20(G) = Z(G) + 1. The path graph illustrates this: Let n > 4 and consider
the path P, with vertices in path order. Then S € V (P,) is a zero forcing set if and
only if S contains an endpoint or S contains two consecutive vertices of the path. The
set {2, 3} is a zero forcing set, but is not adjacent to any zero forcing set in ;@PZTAR(P,,).
Thus Z(G) = 2and .fszAR (P,) isnot connected. Since adding an end vertex makes any
set a zero forcing set, Q’}(TAR(G) is connected for k > 3. Thus zo(P,) = zo(Py) = 3.

For TAR reconfiguration of the X-set parameters domination and power domina-
tion, examples are known such that xo(G) exceeds the lower bound X(G) + 1 (see
[5, 12]). Naturally, such examples are specific to the X-set parameter being studied,
and knowing examples for one X -set parameter does not generally help construct such
examples for other X-set parameters. Next we construct a family of examples such
that Z(G) +r < z0(G) < min{Z(G)+Z(G), |V(G)|} for r > 2. Software such as [8]
is a useful tool for finding examples (and found H (2), which we then generalized).

Define H (r) to be the graph with 2r + 4 vertices such that both sets Vi = {1, ...,
r+2}and Vo = {r + 3, ..., 2r 4+ 4} form cliques and there is a matching between
the vertices {1, ...,r} and {r 4+ 3, ..., 2r + 2}. The graphs H(2) and Q%TAR(H(Z))
are shown in Figure 5. Note that the diagrams in this figure do not respect the poset
structure of 2R (H (2)).

Proposition3.4 For r > 2, Z(H(r)) = Z(H(r)) = r + 2 and z_o(H(r))
=z20(H(r) =2r +2=Z(H(r)) +r.

Proof Observe that the vertices r + 1, r +2, 2r + 3 and 2r +4 have degree r + 1 and all
other vertices of H (r) havedegreer+2soé(H(r)) = r+1.LetU; = {r+1,r+2}and
Uy = (2r+3, 2r+4}.1fv € V;, then [Ny oy (v)NV;| = r+1.LetS C V(H (r)) andlet
S; = SNV; fori = 1, 2. We show that for a set S of vertices such that | S| > |S>], S'is
a zero forcing set of H (r) if and only if [S1| > r + 1 and |S> N U3| > 1 (the argument
where |S>| > r + 1 is similar). Once this is established, Z(H (r)) = Z(H(r)) =

r + 2 with every minimal zero forcing set S having (|S1| = r + 1 and |$2| = 1) or
(|S2] = r + 1 and |S1| = 1). Furthermore, %Trf}(H(r)) has 2 components, one

containing zero forcing sets S with |S1| > |S>| and the other with |S2| > |S1]|, whereas
%{ﬁ%(H (r)) is connected.

Suppose first that | S| = + 1, |[S2| = 1, and S C U,. There must be a vertex
u € Uy NSy, and u can force the one white vertex of S;. Theni — r + 2 + i for
i =1, ..., r.Finally any blue vertex of V> can force the one remaining white vertex
in V5. Thus S is a zero forcing set.

Now suppose S is a zero forcing set. Let v be the vertex that performs the first force,
and without loss of generality v € V]. Since v and all but one of its neighbors must
be in §, S contains at least » + 1 of the vertices in S. Since at most r vertices of V»
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Fig.5 The graphs H (2) (top) and 2R (H (2)) (bottom)

Fig.6 A graph H satisfying
20(Hp) > zo(Hp)

@ ®

can be forced by vertices in V7, S must contain a vertex of V, that has no neighbor in
V1, 1.e., S must contain at least one vertex of U,. |

A computer search on graphs up to 8 vertices (with no isolated vertices) found
exactly 2 graphs G such that zo(G) > zo(G). For example, the graph H; in Fig. 6 has
20(Hz) = 7 and zo(H>) = 5 because there are minimal zero forcing sets of orders 4
and 6 but not 5, and Q”STAR(HZ) and Q@TAR(HZ) are connected (and |V (Hy)| = 8);
see [8].
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Next we show that the graph H> can be used to create an infinite family of graphs
H, suchthat zo(H,) > zo(H;). Observe that N, (u2) = Np, (u1). Construct H, from
H, by adding vertices u3, ..., u, with Ny, (ux) = Np, (u) for k = 3,...,r. Note
that |V(H,)| =r + 6.

In general, vertices vy and v; in a graph G are called twins if Ng(vi) = Ng(v2)
(what we define as twins are often called independent twins). A set of twins is a set

{vi, ..., v} € V(G) such that v; and v; are twins forall 1 <i < j <k.
Observation 3.5 If G is a graph with a set of twins {uy, . .., u,}, then any zero forcing
set of G must contain at least r — 1 of the vertices {uy, ..., u,}.

Proposition 3.6 Let G be a graph that has a set of twins T = {uy, ..., u,} withr > 3,

and let G; = G — u;. If S; is a zero forcing set of G, then S = S; U {u;} is a zero
forcing set of G. If S is a zero forcing set of G and u; € S, then S; = S\ {u;} is a zero
forcing set of G;. Thus there is a bijection between zero forcing sets of G; and zero
forcing sets of G that contain u;, and a zero forcing set S; of G; is minimal if and only
if S = 8; U{u;} is a minimal zero forcing set of G.

Proof It is immediate that S; being a zero forcing set of G; implies S = S; U {u;} is
a zero forcing set of G (without any assumption about twins). Let S be a zero forcing
setof G. Since r > 3, § must contain at least two vertices in 7', say u; and u ;. Choose
a set of forces .# that color every vertex of G blue. We show that at least one of u; and
u ; does not perform a force. Neither u; nor u; can perform a force until all but one of
their common set of neighbors are blue. So if u; forces the one white neighbor blue,
then u; cannot perform a force and if u; forces, then u; can’t (it is possible neither
forces). Thus we may assume u; does not perform a force. Then S; = S\ {u;} is a
zero forcing set of G; using the set of forces .%. The last sentence is immediate. O

The technique of removing a nonforcing vertex v from a zero forcing set S of G to
obtain a zero forcing set S \ {v} for G — v is well known (see, for example, the proof
of Theorem 2.7 in [9]). When there are only two twins, it is not true that S; = S\ {u;}
must be a zero forcing set of G;, because it is possible that only one of #; and u» is in
S and that vertex is required to perform a force.

This is illustrated in the next example.

Example 3.7 Consider the double star DS(2,2) constructed by adding an edge
between the centers of two disjoint copies of K ». If the leaves of one star are u;
and uy, then Z(DS(2,2)) =2 =Z(DS(2,2) — uy) (see [8]).

Lemma 3.8 Let G be a graph that has a set of twins T = {uy, ..., u,}withr > 3, and

let Gi = G — u;. If.@fkTAR(G,') is connected for some i, then %Tf]R(G) is connected.

Proof The graphs G; are isomorphic and hence the i”}(TAR(G j) are isomorphic as
well. Thus if Q‘;(TAR(G,') is connected for some i, then D%’;(TAR (G ) is connected for all
J-

For S C V(G) withu; € S,let S; = S\ {u;}. Since r > 3, any zero forcing set S
of G must contain at least two vertices in T, say u; and u ;. By Proposition 3.6, a set
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S € V(G) that contains u;, u; is a zero forcing set of G if and only if S \ u; is a zero
forcing set of G; and S \ u is a zero forcing set of G ;.

Let S, S” be two zero forcing sets of G of size k + 1 or less. Since r > 3 and
each can omit at most one vertex in 7', their intersection must contain at least one u;.
Then S \ u;, "\ u; are zero forcing sets for G;. Since by assumption Q’}(TAR(G ;) 18
connected, that means that there is a path between S\ u; and S’ \ u; in Q’}{TAR(G,-) and

hence a path between S, S’ in Q’}(TflR(G). O

Proposition3.9 Forr > 2, Z(H,) = r + 2, Z(H,) = r + 4, zo(Hy) = r + 3, and
z0(H,) =1 +5.

Proof The proof is by induction. The base case is H = Hj, which has minimal zero
forcing sets of sixes 4 and 6 and has ffSTAR (H>) is connected. Apply Proposition 3.6 to
show that H, has minimal zero forcing sets of sizes r 4+ 2 and r +4. Apply Lemma 3.8
to show fz’frTAR(Hr) and Z AR (H,) are connected. Thus zo(H;) = r + 3 (because

+3 r+5 o
QFZT(/?}}(G) is disconnected for every G). Since |V (H,)| =r + 6, Z(H,) =r + 4 and
zo(Hy) =r +5. O

4 Concluding Remarks

We have established that the X-TAR graphs of G and G’ are isomorphic if and only
if there is a relabeling of the vertices of G’ such that G and G’ have exactly the same
X-sets. However, we have not investigated the question of how to determine whether
two X-TAR graphs are isomorphic (beyond providing obvious necessary conditions).
This question would be interesting to investigate.

We have only begun the study of zero forcing TAR graphs. One question we have not

addressed is determining whether a graph can be realized as a zero forcing TAR graph
(for a graph that satisfies the necessary condition of being a subgraph of a hypercube).
We have presented examples of ZTAR(G) for various G, e.g., K1, = FTAR (g .
As noted in [5], 2 TAR(G) is not isomorphic to any hypercube for any graph of order
n > 2. But these are just examples of graphs that can and cannot be realized as zero
forcing TAR graphs, and a more systematic study would be of interest. Additional
structural study, such as properties of the base graph that ensure the existence of
Hamilton paths in 2 TAR((3), would also be of interest.
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