
1

Learning-based Dynamic Memory Allocation Schemes for Apache
Spark Data Processing

Danlin Jia1, Li Wang1, Natalia Valencia2, Janki Bhimani2, Bo Sheng3 and Ningfang Mi1

1Department of Electrical and Computer Engineering, Northeastern University
2School of Computing and Information Sciences, Florida International University

3Department of Computer Science, University of Massachusetts Boston

Abstract—Apache Spark is an in-memory analytic framework that has been adopted in the industry and research fields. Two memory
managers, Static and Unified, are available in Spark to allocate memory for caching Resilient Distributed Datasets (RDDs) and
executing tasks. However, we find that the static memory manager (SMM) lacks flexibility, while the unified memory manager (UMM)
puts heavy pressure on the garbage collection of the JVM on which Spark resides. To address these issues, we design a
learning-based bidirectional usage-bounded memory allocation scheme to support dynamic memory allocation with the consideration
of both memory demands and latency introduced by garbage collection. We first develop an auto-tuning memory manager (ATuMm)
that adopts an intuitive feedback-based learning solution. However, ATuMm is a slow learner that can only alter the states of Java
Virtual Memory (JVM) Heap in a limited range. That is, ATuMm decides to increase or decrease the boundary between the execution
and storage memory pools by a fixed portion of JVM Heap size. To overcome this shortcoming, we further develop a new reinforcement
learning-based memory manager (Q-ATuMm) that uses a Q-learning intelligent agent to dynamically learn and tune the partition of
JVM Heap. We implement our new memory managers in Spark 2.4.0 and evaluate them by conducting experiments in a real Spark
cluster. Our experimental results show that our memory manager can reduce the total garbage collection time and thus further improve
Spark applications’ performance (i.e., reduced latency) compared to the existing Spark memory management solutions. By integrating
our machine learning-driven memory manager into Spark, we can further obtain around 1.3x times reduction in the latency.

Index Terms—JVM Memory Management, Distributed Data Processing, Machine Learning, Apache Spark, Q-learning.

✦

1 INTRODUCTION

The unprecedented proliferation of data has triggered
a significant development of scalable analytics stacks in
recent years. Developers and researchers strive to boost
data-processing speed in hardware and software. However,
processing a massive volume of data has entirely relied on
the performance of computing facilities and the efforts of
users and can only achieve a suboptimal performance [1].
Thus, distributed frameworks (e.g., Hadoop [2]) that share
computational resources on a cluster have been proposed
to handle the overwhelming data. However, it has been
noticed that in Apache Hadoop, many I/O requests are
generated for accessing the intermediate data, To address
this issue, in-memory analytic frameworks (e.g., Apache
Spark [3]) have been developed to improve data processing
performance.

Apache Spark [3], one of the most successful in-memory
analytic frameworks, has been going through a boom in the
past few years. Specifically, Apache Spark implements an
abstraction of a data structure called Resilient Distributed
Datasets (RDD) [4], which can be manipulated in parallel
on different executors. Each RDD is created from an input
dataset or another RDD and is immutable. Based on these
two features, Spark builds a lineage of an application to
track each computation stage and recover from faults in a
tolerant way. Furthermore, Spark stores intermediate data
(i.e., RDDs) in RAM, which reduces communication over-
head between Spark executors, especially for some iterative

This work was partially supported by the National Science Foundation (NSF)
Awards CNS-2008324, CNS-2323100, CNS-1452751 and CNS-2008072.

and interactive machine learning applications. In this way,
Spark avoids the overhead of I/O operations and improves
overall performance. Therefore, one of the most crucial
factors in Spark is the management of memory resources.
An effective memory management scheme can shrink an
application’s latency (i.e., the total execution length) and
improve performance dramatically. Unfortunately, Apache
Spark hides the default scheme in memory management
from users, who have few opportunities to monitor and
configure the memory space.

In this work, we first investigate two existing Spark
memory managers: Static memory manager (SMM) and
Unified memory manager (UMM). Specifically, SMM ap-
plies predefined configurations to allocate fixed memory
partitions for Spark applications, which heavily relies on
the user’s efforts and knowledge of the application’s char-
acteristics for memory optimization. On the other hand,
UMM can dynamically allocate memory based on the run-
time memory demands. However, UMM introduces heavy
Garbage Collection (GC) as it tends to overprovision mem-
ory for runtime objects. We further run representative data
processing benchmarks to collect the latency of applications
under these two memory managers. We find that the Spark
performance is significantly affected by the memory parti-
tion, which may lead to either long Java garbage collection
(GC) or long delay in intermediate data access. Based on the
analysis of the defects of the existing memory managers, we
design a learning-based bidirectional usage-bounded mem-
ory management scheme that monitors the run-time exe-
cution performance and dynamically re-allocates memory
space to Spark execution and RDD storage. We first propose

2

a basic version of our new autotuning memory manager,
named ATuMm, which leverages an intuitive feedback-
control solution to improve Spark performance by dynami-
cally adjusting memory pools with a fixed adjustment step.

To obtain an optimal learning speed, the users of
ATuMm need to tune the adjustment step manually. How-
ever, it is not trivia to configure this adjustment step. Signif-
icantly when the memory demands of an application vary
frequently, an inappropriate adjustment step might limit
the benefit of ATuMm. To address this issue, we further
propose a Q-learning-based Spark memory manager, called
Q-ATuMm, which aims to develop an intelligent agent to
help make decisions of the adjustment step automatically.
The goal of Q-ATuMm is to utilize a machine learning
algorithm (e.g., Q-learning [5]) to adjust memory partitions
in Spark dynamically and efficiently. We remark that Q-
learning offers several advantages compared to other ma-
chine learning algorithms, especially in scenarios involving
sequential decision-making and dynamic environments.

The main contributions of this work are as follows.
• Understanding of two existing memory managers

in Spark. We study the infrastructure of two Apache
Spark memory managers to understand how these
two managers allocate memory space to the stor-
age and execution pools. We further conduct real
experiments to analyze the performance of these two
managers.

• Design and implementation of an auto-tuning
memory manager. We propose a new Spark memory
manager, named ATuMm, that dynamically tunes the
size of storage and execution memory pools based on
the performance of current and previous tasks. We
implement and evaluate ATuMm in Spark 2.4.0 and
show that our new memory manager significantly
improves the Spark performance.

• Optimization of memory management by develop-
ing an intelligent agent. We develop an intelligent
agent by using the Q-Learning algorithm and inte-
grate the agent in Spark as a new memory manager,
named Q-ATuMm. We show that Q-ATuMm can fur-
ther improve the performance via our new machine
learning agent for both iterative data processing ap-
plications and ad-hoc database queries.

• Analysis of memory usage and GC of Spark mem-
ory managers. We investigate the execution mem-
ory usage and garbage collection of all four Spark
memory managers (i.e., SMM, UMM, ATuMm, and
Q-ATuMm). We discover that both ATuMm and Q-
ATuMm decrease garbage collection time by prevent-
ing overloaded execution memory. Also, we observe
that Q-ATuMm has lower latency than ATuMm.

In the remainder of this paper, we will discuss the issues of
two existing memory managers and related work which mo-
tivates our design of a new memory management scheme in
Sec. 2. In Sec. 3 and Sec. 4, we present the detailed algorithm
and the evaluation of our two new memory managers.
Conclusion is presented in Sec. 5.

2 MOTIVATION AND RELATED WORK
In this section, we study the performance of Spark appli-

cations managed by two existing Spark memory managers
(i.e., SMM and UMM). In both memory managers, as shown

in Fig. 1, a portion of Java heap (i.e., memory in the dashed
rectangle) is dedicated for processing Spark applications
(called Accessible Memory), while the rest of memory is
reserved for Java class references and metadata usage (called
User Memory). Accessible memory is further divided into
two partitions, Storage Memory and Execution Memory.
The boundary between the storage memory and execution
memory is fixed (i.e., static) in SMM, but flexible in UMM.
Storage memory is used for caching RDDs, while execution
memory is used for runtime task processing. If storage
memory is already fully utilized when a new RDD needs to
be cached, some old RDDs will be evicted according to the
LRU (Least Recently Used) algorithm. On the other hand, if
execution memory is full, all intermediate objects generated
at runtime will be serialized and spilled into the disk to
release memory space for subsequent task processing.

User
Memory

JVM Heap

Storage
Memory

Execution
Memory

Figure 1: Memory Partition of Spark Memory Managers

2.1 SMM: Static Memory Partition Analysis
To understand how memory partition can affect Spark

performance, we conduct a set of experiments in a Spark
cluster consisting of four homogeneous workers (see the
setup in Sec. 4.2), with PageRank [6] as a representative
benchmark. We set the boundary, which we also refer to as
storage fraction (i.e., the ratio of storage memory to accessible
memory), from 10% to 90% of accessible memory space
under SMM. Since the total accessible memory dedicated
to Spark applications remains constant, execution memory
is decreased when storage memory is increased.

9.8

6.4
7.1

7.9
8.7

7.3

5.5 5.2
6

7.1

0

2

4

6

8

10

12

10% 20% 30% 40% 50% 60% 70% 80% 90% UMM

La
te
nc
y
(m

in
)

Figure 2: Latency of application under SMM and UMM. SMM
increases storage fraction from 10% to 90%.

Fig. 2 first illustrates the experiment results for SMM
with different storage fractions. We can observe that the
Spark performance varies with different memory partitions.
Intuitively, if the storage memory is too small to cache RDDs
that will be reused in the following computations, the RDD
processing time cannot be saved. On the other hand, if we
assign too much space to storage memory, then the confined
execution memory pool may trigger a high overhead of I/O
communications. However, neither one of these two effects
dominates the other, and the resulting joint performance
depends on the characteristics of the workload. As shown
in Fig. 2, the latency is not a monotonic function of the
storage memory size. Therefore, we conclude that SSM
yields varying performance with different storage fractions
and cannot automatically achieve optimal performance.

3

2.2 Static VS. Dynamic: Latency Comparison

SMM cannot fit all kinds of workloads well because of
its lack of flexibility. Compared with SMM, UMM allocates
memory resources dynamically according to resource de-
mands. Furthermore, UMM gives a higher priority to exe-
cution memory than to storage memory. Execution memory
can force the storage memory pool to shrink if storage
memory exceeds 50% of total accessible memory, even if
it is fully utilized. Based on this mechanism, UMM guaran-
tees sufficient memory for executing run-time tasks, which
avoids the content of execution memory from being spilled
into the disk to the greatest extent.

We find that UMM still cannot consistently achieve the
best performance, although it strives to adjust the storage
fraction based on resource demands dynamically. For exam-
ple, the last bar in Fig. 2 further shows the latency of UMM.
We can see that UMM does help improve the performance
by obtaining lower latency than SMM with some storage
fractions (e.g., 10% and 50%). Whereas UMM cannot beat
SSM with a storage fraction of 20% and 70%∼90%, and thus
cannot achieve optimal performance.

2.3 UMM Limitation: GC Impact

To explore the cause of UMM’s ineffectiveness, we con-
duct a set of experiments to investigate the impact of
garbage collection (GC) on Spark application latency. We
plot the GC times of SMM with different storage fractions
and that of UMM in Fig. 3. We observe that SMM has a
much lower GC time when storage fraction is set to 20%,
30%, and ≥ 70%. In contrast, the GC time under UMM
is as high as 120 seconds, about six times the lowest GC
time obtained by SMM with a storage fraction of 90%. By
combining the results in Fig. 3 and Fig. 2, we note that the
GC time has considerable impacts on Spark performance
and UMM’s performance degradation results from such a
long GC time.

We discover that long GCs occur under UMM because
UMM expands the execution memory pool aggressively,
resulting in a large amount of intermediate data in execution
memory. The Java garbage collector then needs to maintain
these in-memory intermediate data and thus increases the
overall GC time. Such high GC time finally introduces extra
latency to a Spark application’s execution. Besides, there
exist no explicit methods to eliminate these long GCs by con-
figuring UMM by users. This observation motivates us to
consider both GC time and execution time for dynamically
adjusting memory partition. The impact of GC on Spark’s
performance is also investigated in existing works, which
will be discussed in Sec. 2.5.

144

45

72

126 126
138

32 29
19

120

0
20
40
60
80
100
120
140
160

10% 20% 30% 40% 50% 60% 70% 80% 90% UMM

G
C
Ti
m
e
(s
)

Figure 3: GC time comparison. SMM increases storage fraction from
10% to 90%.

2.4 Need for Learning-based Solutions
The basic version of our new memory manager

(ATuMm) is designed based on an intuitive feedback-control
solution, which uses the current task’s execution as the
feedback to decide the increase or decrease in the boundary
between the execution and storage memory pools with a
fixed adjustment step. To obtain an optimal learning speed,
the user must manually configure the adjustment step,
which requires pre-knowledge about the workload and the
system characteristics. Even with an optimal adjustment
step, our ATuMm may not consistently achieve the best
performance. One reason is the fixed adjustment step that
cannot work well for applications with varying memory
demands. Another reason is that ATuMm makes the tuning
decisions heavily depending on the execution status of the
current task. Motivated by the above limitations, we need
to design a more comprehensive learning solution that can
have an intelligent agent to “smartly” calculate rewards for
dynamically tuning the adjustment step and thus optimiz-
ing the learning speed. We select Q-learning algorithm as
our intelligent memory management agent for the following
reasons. First, Q-learning is model-free, meaning it doesn’t
require a complete understanding of the underlying system
dynamics. This makes it suitable for situations where the
environment is complex, uncertain, or difficult to model
accurately. Second, Q-learning employs temporal difference
learning, allowing it to learn from each individual inter-
action with the environment. This characteristic makes it
well-suited for online learning and environments where
data arrives sequentially. Third, compared to other powerful
but complicated ML/DL models, i.e., convolutional neural
networks and transformers, Q-learning is light to integrate
with existing systems and offers low learning overhead.
2.5 Gap in the Existing Works

We summarize existing works in Table 1. MEMTUNE
presents an algorithm that adjusts memory allocation based
on the characterizations of tasks (i.e., storage-sensitive or
execution-sensitive). This work considers the impact of JVM
on Spark performance to decide how to balance memory
allocation for obtaining a good performance. But, this work
only focuses on analyzing the sensitivity of tasks and takes
different actions, such as reserving more memory for storage
requirements if tasks are storage-sensitive. Another work
DSMM, dynamically sets the storage fraction by simply
comparing the size of the data set with its memory usage.
Compared to our work, these two works fail to track the
memory requirement diversity at run-time, which still relies
on preknowledge of the application’s characteristics.

SMBSP applies Artificial Neural Network (ANN) to
configure Spark’s parameters automatically, including com-
putation, cache, and storage configurations. MLAT is an-
other work that utilizes machine learning to auto-config
Spark’s parameters. This work learns proper configurations
for different Spark clusters as well. However, these two
works optimize Spark’s performance at a coarser level and
lack consideration of runtime workload characteristic ad-
justment compared to our work. We also note that our work
contributes to optimizing Spark’s caching logic and can be
adapted easily to [9] and [10].

PokéMem and MCS consider the impact of GC on
Spark’s performance and strive to optimize memory man-

4

Table 1: Comparison of existing Spark memory optimization works

Optimization Level Workload Characterizing Machine Learning Garbage Collection
MEMETUNE [7] Memory Sensitivity Analysis N/A N/A

DSMM [8] Memory Data Size Analysis N/A N/A
SMBSP [9] Framework N/A Artificial Neural Network N/A
MLAT [10] Framework N/A Regression & Clustering N/A

PokéMem [11] Memory Data Size Analysis N/A Considered
MCS [12] Memory N/A N/A Considered

Q-ATuMm Memory Learning-based Analysis Q-Learning Considered

agement via controlling GC. PokéMem focuses on reducing
memory pressure by estimating the data size of objects
created by third-party libraries. However, the estimation
model is data structure- and library-dependent. MCS is
close to our work which defines constraints to limit the
priority of execution memory. However, it lacks dynamic
adjustment of these constraints.

3 NEW LEARNING-BASED MEMORY MANAGER
DESIGN

In this section, we present our new learning-based mem-
ory allocation scheme, which aims to improve the overall
latency for Spark applications by considering both resource
demands and garbage collection impact in dynamic memory
resource allocation. Fig. 4 shows the overview of our design
and illustrates the overall block diagram of Spark modules
on an ”Executor”. A Spark cluster often consists of multiple
“Executors”. Each “Executor” hosts a set of running tasks
and manages their storage and execution memory pools
independently. In addition, there are two managers in Spark
that are responsible for the memory requests sent from
the “Executor” module. Specifically, the “Block Manager”
manages the storage memory requirements, and the “Task
Memory Manager” manages the execution memory require-
ments.

Figure 4: New Memory Allocation Scheme Architecture

In our memory allocation scheme, we develop two new
main modules, called Auto Tuning Algorithm (i.e., ATuMm
or Q-ATuMm), and Memory Management Algorithm, and
integrate them with the existing Spark modules, as shown
in Fig. 4. The “Executor” periodically calls the “Auto Tun-
ing Algorithm” to adjust the storage fraction and set the
limit (or the maximum allowed) of execution memory. The
”Memory Management Algorithm” further responds to the
memory requirements sent by the “Block Manager” and
“Task Memory Manager” modules by considering both free
storage/execution memory space and the decision made by
the “Auto Tuning Algorithm”. Upon completing each task,
the “Auto Tuning Algorithm” receives the runtime logs of

the completed task and the previously completed tasks from
the “Executor” module. Based on these logs, the algorithm
adjusts (1) the boundary between the storage and execution
memory pools and (2) the maximum allowed memory space
to the execution pool. The adjustment decisions are then
passed to the “Executor” for the next task execution. The
above adjusting process repeatedly occurs until the last task
at the “Executor” completes. Meanwhile, the “Memory Re-
quirement Algorithm” bases on the memory requirements
from the “Executor” to allocate the memory space for the
RDD cache (i.e., storage memory) and task execution (i.e.,
execution memory). The storage fraction is then accordingly
updated by this algorithm based on runtime memory de-
mands.

3.1 Memory Requirement Algorithm
The Memory Management Algorithm is designed to

allocate memory space for RDD caching and task execution.
In particular, this algorithm receives the online memory
requirements from the “Block Manager” and the “Task
Memory Manager” modules. Specifically, our scheme main-
tains two parameters: “StorageFraction” and “heapStorage-
Memory”. While the former decides the maximum available
memory of the storage memory pool, the latter limits the
maximum available memory of the execution memory pool.
According to the current storage partition and “heapStor-
ageMemor”, this algorithm allocates available memory to
the two manager modules (i.e., “Block Manager” and “Task
Memory Manager”) to meet their requirements.

Alg. 1 describes the main procedures of this memory
management mechanism.

Algorithm 1: Memory Requirement Algorithm.
1 Procedure acquireExecutionMemory(reqExe)
2 extraNeed=reqExe-freeExecutionMemory
3 if extraNeed>0 then
4 memoryBorrow=min(extraNeeded,storageMemoryPoolSize-

heapStorageMemory,freeStorageMemory)
5 decreaseStoragePoolsize(memoryBorrow)
6 increaseExecutionPoolsize(memoryBorrow)
7 acquired = executionMemory-

Pool.acquire(freeExecution+memoryBorrow)
8 else
9 acquired=executionMemoryPool.acquire(reqExe)

10 return acquired

11 Procedure acquireStorageMemory(reqSto)
12 memoryToFree=max(0, reqSto−freeStorageMemory)
13 if memoryToFree>0 then
14 freeStorageMemory(memoryToFree)

15 acquired = storageMemoryPool.acquire(reqSto)
16 if heapStorageMemory<usedStorageMemory then
17 heapStorageMemory=usedStorageMemory

18 return acquired

– Procedure requireExecutionMemory() takes “reqExe” as the
input, which is the execution memory size required by “Task

5

Memory Manager”, and returns the actual allocated execu-
tion memory. Specifically, execution memory requirements
can be one of the three scenarios shown in Fig. 5. In the
figure, we plot the Spark memory pool on an ”Executor”,
where a solid line represents the potential boundary be-
tween execution memory and storage memory. A dashed
line represents the value of “heapStorageMemory”, indicat-
ing the least reserved space for storage memory. Besides, we
also mark the used execution and storage memory space.
In the first scenario, the required execution memory is less
than the free execution memory, see Fig. 5-(a). Then, the
procedure allocates all needed memory to “Task Memory
Manager”.

The second scenario is shown in Fig. 5-(b), where the re-
quired execution memory exceeds the free execution mem-
ory but not beyond the limit of “heapStorageMemory”.
Procedure requireExecutionMemory() still allocates all needed
memory to “Task Memory Manager” and meanwhile ex-
pands the execution memory pool by moving down the
boundary bar (see the solid line in the bottom plot of
Fig. 5-(b)). Finally, suppose the required execution mem-
ory exceeds the boundary of “heapStorageMemory”. In
that case, the procedure only allocates the memory up to
“heapStorageMemory” (see the dashed line in the bottom
plot of Fig. 5-(c)) and also moves down the boundary bar
to “heapStorageMemory”. Our algorithm prevents memory
over-allocation for task execution by limiting the memory
that can be allocated to execution memory. For example,
in both scenarios (b) and (c), the execution memory pool
occupies part of storage memory after allocating memory
to the execution memory pool. However, in scenario (c), we
use “heapStroageMemory” to avoid the execution memory
pool invading the storage memory pool. In this way, GC
time can be reduced as discussed in Sec. 2.
– Procedure requireStorageMemory() receives the required stor-
age memory size (“reqSto”) from the “Block Manager”
module for allocating actual memory to cache RRDs. Simi-
larly, we have three possible conditions of storage memory
requirements, depicted in Fig. 6. If the required storage
memory is less than free storage memory as shown in Fig. 6
(a) and (b), then all required memory will be allocated to
“Block Manager” (no matter beyond “heapStorageMemory”
or not). In contrast, if the required storage memory is more
than the free storage memory (see Fig. 6(c)), then only the
memory space up to the boundary bar will be allocated
to “Block Manager,” and meanwhile, RDD eviction will be
triggered to release some memory for caching new RDDs.
In both scenarios 2 and 3, we further update the variable
“heapStorageMemory” to be equal to the actual storage
memory pool size.

It is noticeable that “Memory Management Algorithm”
does change the storage fraction under some scenarios, such
as the ones shown in Fig. 5(b) and (c). Thus, the storage frac-
tion is jointly determined by both “Memory Management
Algorithm” and “Auto Tuning Algorithm”.
3.2 Auto Tuning Algorithm

Here, we first present the basic version of our auto-
tuning algorithm, named ATuMm, which uses a feedback-
control way to dynamically adjust the boundary of two
memory pools with a fixed adjustment step. Then, we
propose a Q-learning-based algorithm, named Q-ATuMm,

Used Execution

Used Storage

Returned

a) Require less than free
Execution memory

b) Require more than free
Execution memory

c) Require more than
limitation of

“heapStorageMemory”

Execution

Storage

Used Execution

Used Storage

Returned

Execution

Storage

Used Execution

Used Storage

Returned

Execution

Storage

Used Execution

Used Storage

Execution

Storage

Required
Used Execution

Used Storage

Execution

Storage

Required

Used Execution

Used Storage

Execution

Storage

Required

Figure 5: Execution Requirement Conditions

Used Execution

Used Storage
Returned

a) Require less than free
Storage Memory

b) Require more than
“heapStorageMemory”

c) Require more than free
Storage Memory

Execution

Storage

Used Execution

Used Storage

Returned

Execution

Storage

Used Execution

Used Storage

Returned

Execution

Storage

Used Execution

Used Storage

Execution

Storage

Required

Used Execution

Used Storage

Execution

Storage

Required

Used Execution

Used Storage
Required

Execution

Storage

Figure 6: Storage Requirement Conditions

which uses an intelligent agent to optimize the learning
speed by automatically tuning the adjustment step.

3.2.1 Basic Version: ATuMm
When a task on the “Executor” completes, the “Auto

Tuning Algorithm” takes the GC time, the execution time
of the completed task, and the current storage fraction as
inputs and then compares the performance of the completed
task (in terms of the ratio of GC time to execution time) with
that of the previous tasks to make the adjustment decision.
In particular, the “Auto Tuning Algorithm” returns two
variables: (1) a new storage fraction (“curStorageFraction”)
for the potential memory partition, and (2) a new “heapStor-
ageMemory” variable to indicate the least memory reserved
for storage memory. Using these two variables, ATuMm can
adjust the memory partition with a limit on the maximum
memory that can be allocated to execution memory.Alg. 2
shows the pseudo-code of the “Auto Tuning Algorithm”.

Both setUp() and setDown() repartition the accessible
memory to the storage and execution pools based on the
decision made by barChange(). We also remark that the
variable “heapStorageMemory” is new in our design, which
plays a critical role in avoiding long GC time resulting
from over-allocated execution memory. Later, we present
how this variable is used in the “Memory Requirement
Algorithm” to control the actual memory space for RRD
caching and task execution.

6

Algorithm 2: ATuMm.
1 Procedure barChange(GCTime, executionTime)
2 curRatio=GCTime/executionTime
3 if curRatio=preRatio then
4 return None
5 else if (curRatio<preRatio and preUpOrDown=true) or

(curRatio>preRatio and preUpOrDown=false) then
6 update preUpOrDown to ture, update preRatio
7 return (setUp(step))
8 else
9 update preUpOrDown to false, update preRatio

10 return (setDown(step))

11 Procedure setUp(step, preStorageFraction)
12 if preStorageFraction+step<100% then
13 curStorageFraction=preStorageFraction+step
14 if usedStoragePoolSize/totalStoragePoolSize>80% then
15 heapStorageMemory=heapStorageMemory+
16 step∗accessibleMemory

17 update preStorageFraction
18 return heapStorageMemory, curStorageFraction

19 Procedure setDown(step, preStorageFraction)
20 if preStorageFraction−step>0 then
21 curStorageFraction=preStorageFraction−step
22 memoryEvict=memoryUsed−curStorageFraction
23 if memoryEvict>0 then
24 freeStorageMemory(memoryEvict)

25 heapStorageMemory=heapStorageMemory−
26 step∗accessibleMemory
27 if heapStorageMemory>=curStorageFraction∗accessibleMemory

then
28 heapStorageMemory=curStorageFraction∗accessibleMemory

29 update preStorageFraction

30 return heapStorageMemory, curStorageFraction

– Procedure barChange() receives GC time and execution
time of the current task from the “Executor” module. We
consider the ratio of GC time to execution time as a mea-
surement of Spark performance. A low ratio indicates a
“good performance”, vise verse. Then, barChange() makes an
adjustment decision from one of three possible actions (i.e.,
keep still, increase storage fraction, and decrease storage
fraction). In particular, we use two variables, “preRatio”
and “preUpOrDown” to record the ratio of GC time to the
execution time of previous tasks and the last adjustment
decision, respectively. We compare “curRatio” with “preRa-
tio” to calculate the reward of the last adjustment. If the
current task yields a better performance (i.e., “curRatio” is
lower than “preRatio”), the boundary-moving decision that
we previously made (i.e., “preUpOrDown”) gets a reward.
Thus, we decide to keep moving the boundary further in
the same direction as the last task. Otherwise, we move
the boundary in a direction that is opposite to that of the
last adjustment. Besides these two actions, if the Spark
performance converges (i.e., the current ratio is equal to the
previous ratio), the boundary keeps still. After taking the
new action, the storage fraction changes, and two variables
(i.e., “preRatio” “preUpOrDown”) are updated for the next
decision.
– Procedures setUp() and setDown() control how to expand
or shrink the storage and execution memory pools base on
the decision made in barChange(). As mentioned in Sec. 2,
Spark memory is divided into two pools, i.e., storage mem-
ory and execution memory. We thus consider there exists
a partition “bar” between storage and execution memory
in Spark. Setting the bar up means enlarging the storage
memory pool and shrinking the execution memory pool,

while setting the bar down means decreasing the storage
memory pool and expanding the execution memory pool.
In ATuMm, users can configure the percentage of accessible
memory (indicated as “step”) that will be increased or
decreased in each adjustment.

It is challenging to move the partition bar if both
storage and execution memory pools are fully utilized. A
mechanism is required to determine which objects should
be evicted. LRU (Least Recently Used), an existing RDD
caching algorithm, is applied by the Spark block manager
for storage memory. We adopt this caching algorithm to
manage the RDD evictions from storage memory. For ex-
ecution memory, barChange() is called only when a task
has finished its computation and released all its occupied
memory resources. Thus, there is no need to evict objects
from the execution memory pool. This is also one reason
we choose to adjust the memory boundary after each task’s
completion.

Procedure setUp() takes “preStorageFraction” and the
predefined parameter “step” (e.g., 5%) as inputs to de-
termine a new storage fraction (“curStorageFraction”) to
repartition the memory and a bound (“heapStorageMem-
ory”) to reserve the least storage memory space. In detail,
setUp() increases the storage fraction by “step” (see lines 12
and 13 in Alg. 2) if the new storage memory pool size is
less than the overall available memory space. Meanwhile,
setUp() updates “heapStorageMemory” only if 80% of the
storage memory is used (see lines 14, and 15 in Alg. 2).
The difference between the storage memory pool size and
“heapStorageMemory” will be the potential memory space
allocated to execution memory.

Procedure setDown() has the same inputs and outputs
as setUp() to shrink the storage memory pool. In details,
setDown() decreases the storage fraction by “step” (see line
20 in Alg. 2). However, it needs to consider RDD evictions to
release the reduced storage memory additionally (see lines
21 and 22 in Alg. 2). For example, if the current storage
memory pool is 5GB with 4.5GB used, and the potential
storage memory becomes 4GB, then the memory space
(‘memoryEvict”) that needs to be released is 0.5GB. set-
Down() then needs to trigger the caching algorithm to evict
cached RDDs to shrink the storage memory pool. Finally,
setDown() updates (or decreases) “heapStorageMemory”by
“step” of accessible memory. If “heapStorageMemory” is
more than the new storage memory, then setDown() sets
‘heapStorageMemory” to be equal to the new storage mem-
ory (see line 25 in Alg. 2).
3.2.2 Q-Learning Based Version: Q-ATuMm

As discussed in Sec. 2.4, ATuMm suffers from the in-
flexibility of the adjustment step. In order to optimize the
adjustment speed, we further refine our auto tuning algo-
rithm by using reinforcement learning techniques to auto-
matically set the adjustment step for changing the memory
boundaries. On the other hand, Spark applications process
data in batches, possessing consistent memory and compu-
tation characteristics, which can be learned by reinforcement
learning efficiently. Q-learning is a specific algorithm within
the broader field of reinforcement learning, which receives
feedback from the objective and makes decisions to optimize
the rewards. As shown in Fig. 7, an agent interacts with
an environment by taking actions, then the environment

7

Agent
(Memory Manager)

Environment
(Spark runtime)

Policy

State

Action
(Changing State)

Reward
(Latency & GC)

Figure 7: Reinforcement Learning (Q-Learning) Algorithm in Q-ATuMm. We
define 1) agent represents the memory manager, 2) environment is Spark runtime,
3) state represents “StorageFraction” and “heapStorageMemory” that limit the
allocation of storage and execution memory, 4) action is changing state, and 5)
reward is calculated from latency and GC time.

returns a reward of the action to the agent and updates
the state of the environment. By exploiting different actions
across all possible states, the agent can produce an optimal
policy to manipulate the states of the environment.

Q-learning maintains a Q-table, where the columns and
rows represent states and actions. The values (i.e., value
function) in the Q-table represent the expectation of benefits
of applying an action, given a state. The agent updates
the value function based on an equation (particularly Bell-
man equation [13]). Specifically, Q-learning maintains an
exploration-exploitation balance, ensuring that the agent
explores new actions and state-action pairs while exploiting
learned information to make optimal decisions. Theoreti-
cally, an epsilon-greedy exploration strategy, as used in the
Bellman equation, guarantees that all state-action pairs are
visited infinitely often, which is crucial for convergence.
Another important factor in Q-learning is the convergence
rate. The convergence rate of Q-learning depends on factors
such as the learning rate schedule and the characteristics
of the environment. In practice, while Q-learning converges
asymptotically, convergence speed can vary, and certain
modifications, like learning rate annealing, can influence the
convergence rate. We evaluate the impact of learning rate
and other hyper-parameters in Sec. 4.3.4.

In Q-ATuMm, when the “Executor” finishes a task, the
agent (i.e., memory manager) calculates the reward of the
last action based on the execution time and GC time of
the current task. Then Q-ATuMm updates the policy and
makes a decision about which is the next state. Specifically,
InitializeAgent() initializes all parameters before running ap-
plications. QLearningAgent() uses the garbage collection time
and execution time of the completed task to calculate the
reward of the current action and calls UpdateQTable() to
update values of the current state and action in Q-table.
QLearningAgent() then decides the action to execute the
following task by either exploring a new action or exploiting
a known action. We note that Q-ATuMm creates a two-
dimension discrete action space, where each element in
the action space represents a pair of “StorageFraction” and
“heapStorage-Memory”, as introduced in Sec. 3.1. We define
“StorageFraction” and “heapStorage-Memory” as ratios of
the overall heap size, ranging from 1% to 99%. The status
space is the same as the action space. Alg. 3 describes the
details of Q-ATuMm. Q-ATuMm trains the model on-the-fly.
– Procedure initializeAgent() initializes the state space, the
action space and the Q-table. We denote α as the learning
rate, representing the length of the step to update the value
function. ϵ is the exploration ratio, which indicates how

Algorithm 3: Q-ATuMm.
1 Procedure initializeAgent()
2 Initialize stateSpace
3 Initialize actionSpace
4 Initialize QTable
5 Initialize α, ϵ, γ
6 Initialize stateIndex, actionIndex

7 Procedure QLearningAgent(GCTime, executionTime, stateIndex,
actionIndex)

8 reward=taskTime/(GCTime+δ)
9 QTable(stateIndex, actionIndex) = updateQTable(reward,

stateIndex, actionIndex)
10 rnd = random(0, 1.0)
11 if rnd< ϵ then
12 actionIndex = random(0, actionSpace.length)
13 else
14 actionIndex = GetIndex(QTable(stateIndex).max)

15 action = actionSpace(actionIndex)
16 state = stateSpace(stateIndex)
17 return action

18 Procedure updateQTable(reward, stateIndex, actionIndex)
19 QValue = QTable(stateIndex, actionIndex)
20 stateValue = γ*(QTable(stateIndex).max - QValue)
21 QValue = QValue + α*(reward+stateValue)
22 return QValue

much the agent prefers to explore unknown actions. We
denote γ as a discount factor reflecting how much the future
rewards contribute to the current update.
– Procedure QLearningAgent() receives the garbage collec-
tion and execution time of the task, with the state of cur-
rent “stateIndex” and “stateAction”, which locate the value
function in the Q-table to update. Because our goal is to
minimize garbage collection and reduce the overall latency,
QLearningAgent() defines the reward as the ratio of the
execution time (GC time plus others) to the GC time plus a
constant number (i.e., δ = 0.01) to avoid zero denominators
(see line 8 in Alg. 3). UpdateQTable() is then called to update
the value function in the Q-table. QLearningAgent() uses a
parameter ϵ to decide to explore a random action or to
exploit the action with the largest benefit (see lines 11-14
in Alg. 3). A larger ϵ means the agent prefers to explore un-
known actions. Finally, QLearningAgent() returns the action
to the “Executor” to execute the following tasks.
– Procedure updateQTable() takes the reward as an input to
calculate the new value in Q-table based on the Bellman
equation [13]. First, UpdateQTable() locates the value in Q-
table and then computes the “stateValue” to estimate the
reward of the next state. It is worth pointing out that the pa-
rameter γ is used to decide how important future decisions
are. A larger γ indicates the agent relies more on the future
reward than the current one. Finally, UpdateQTable() updates
the “Q value” with the current reward and the estimated
future reward. The parameter α is used as the learning rate
to control how fast the agent learns from the rewards. There
is a trade-off between learning speed and accuracy. A larger
learning rate can allow the agent to learn and move faster to
the optimal solution, but meanwhile, has a higher possibility
of causing the agent to be trapped in a locally optimal point.

4 EVALUATION

In this section, we discuss the implementation and the
evaluation of ATuMm and Q-ATuMm in a real Spark cluster.
We aim to investigate the performance in terms of latency,
memory usage, and garbage collection at run-time. We use

8

default UMM and SMM mode as our baseline, which is
discussed in Sec. 2.

4.1 Testbed

We conduct our experiments in a Spark cluster with one
driver and four workers that are homogeneous to each other.
The cluster is deployed on the Dell PowerEdge T310 and
hypervised by VMware Workstation 12.5.0. Each node in the
Spark cluster is assigned 1 CPU, 1GB memory, and 50GB
disk space. Table 2 summarizes the details of our testbed
configuration.

Table 2: Testbed Configuration

Component Specs
Host Server Dell PowerEdge T310

Host Processor Speed 2.93GHz
Host Memory Capacity 16GB DIMM DDR3
Host Memory Data Rate 1333 MHz

Host Storage Device Western Digital WD20EURS
Host Disk Bandwidth SATA 3.0Gbps

Host Hypervisor VMware Workstation 12.5.0
Processor Core Per Node 1 Core
Memory Size Per Node 1 GB

Disk Size Per Node 50 GB

We implement ATuMm and Q-ATuMm as new portable
memory manager modules, besides SMM and UMM, in
Apache Spark 2.4.0, which contain functions interacting
with other Spark modules. It is noticeable that our new
memory manager can also be integrated into Spark from
the version of 1.6.0 to 2.4.0. The source code is available on
GitHub1. The LOC is 2,428 in total. Specifically, we develop
functions acquireStorageMemory() and acquireExecutionMem-
ory() to allocate storage and execution memory to “Block
Manager” and “Task Memory Manager”, respectively. We
also integrate a profile collector in the “Executor” module
to collect task logs. Specifically, ATuMm applies function
barChange() to receive these task logs and calls functions
increaseStorageFraction() or decreaseStorageFraction() to adjust
memory partition. Meanwhile, Q-ATuMm uses function
updateQTable() to maintain the Q-Table for the agent to
perform reinforcement learning. Furthermore, we integrate
a memory usage analyzer in ATuMm and Q-ATuMm to
collect the run-time memory usage information. Users can
replace the existing Spark memory manager to ATuMm
or Q-ATuMm by simply setting a configurable parameter
before submitting a Spark application.

4.2 ATuMm Evaluation

We set the accessible memory and the initial storage frac-
tion of ATuMm as the same as those of UMM (i.e., accessible
memory is 60% of JVM heap, and storage memory is initial-
ized as 50% of accessible memory). The step to increase or
decrease storage fraction in each adjustment is configured
as 5% of accessible memory by default. Furthermore, the
window size representing the number of previous tasks is
set as 20% of activated tasks by default. Users can pre-
configure these parameters in ATuMm before launching any
Spark applications.

1. https://github.com/DanlinJia/spark core ATMM

4.2.1 Latency Analysis
We evaluate and compare the performance of Spark

applications under three memory managers (SMM, UMM,
and ATuMm) by conducting experiments with different
applications. We choose PageRank and K-means as bench-
marks because these two applications are two ubiquitous
techniques, which are widely applied in machine learning
and data mining applications [6], [14]. Considering the
duration of experiments, we report results for a workload
of 1GB input data for applications.

Fig. 8 (a) and (b) illustrate the latency of PageRank and
K-means under different memory managers. We set various
storage fraction under SMM manually, and compare the
latency of SMM with that of UMM and ATuMm. In Fig. 8-
(a), we observe that the performance of UMM beats SMM
with some storage fractions (e.g., 40% to 60%). However,
when SMM sets the storage fraction to 80%, it reaches
the best performance, which achieves 27% shorter latency
compared to UMM. More importantly, the latency of our
ATuMm is close to the lowest among all, and our ATuMm
beats UMM as well. Moreover, as shown in Fig. 8-(b), our
ATuMm can achieve the best performance (i.e., the lowest
latency), compared with both UMM and SMM. We conclude
that ATuMm outperforms the other two existing memory
managers with the same computation resources allocated.

4.2.2 Sensitivity Analysis
We also conduct a set of experiments to investigate

the sensitivity of input data size, where we compare the
performance of PageRank under three memory managers
in the default mode with different input data sizes, such as
1GB, 2GB, 3GB and 7GB. As shown in Fig. 8-(c), ATuMm
achieves the best performance when the input data sizes
are 1GB, 2GB, and 3GB. Compared to UMM, ATuMm im-
proves the latency by 25%. We interpret this improvement
by observing that ATuMm leverages the GC time to repeat-
edly adjust the boundary between storage and execution
memory, which prevents the Spark applications from a long
GC duration as UMM introduced. When input data grows
up to 7GB, the overwhelming workload takes full usage of
execution memory to process input data. Both UMM and
ATuMm expand the execution memory pool aggressively to
satisfy the massive execution memory requirements. As a
result, UMM and ATuMm obtain similar performance (e.g.,
78 minutes for 7GB input data), which is better than that of
SMM.

4.2.3 Memory Usage and Garbage Collection Analysis
We further look closely at the execution details of three

Spark memory managers by plotting their memory usages
in Fig. 9, where PageRank is running with 3GB input data.
Fig. 9-(a)∼(c) present the storage memory usage across time
under the three memory managers, while Fig. 9-(d)∼(f)
depict the corresponding execution memory usage. In each
plot, the dashed line is the maximum memory size acces-
sible for the corresponding memory (such as storage or
execution), and the solid line is the actual usage of the
memory pool.

From Fig. 9-(a)∼(c), we observe that the storage memory
utilization is similar for all three memory managers, which
increases up to the maximum allowed storage pool size as

9

5.4
7.1

9.8

6.4 7.1 7.9 8.7
7.3

5.5 5.2 6

0
2
4
6
8

10
12
14

ATuM
m

UMM
10

%
20

%
30

%
40

%
50

%
60

%
70

%
80

%
90

%

La
te

nc
y

(m
in

)

a) Latency of PageRank

ATuMm UMM SMM

1.3
2.6 2.6

1.5 1.4 1.7

3.8

7

2.7

6.1
7.1

0

2

4

6

8

10

12

ATuM
m

UMM
10

%
20

%
30

%
40

%
50

%
60

%
70

%
80

%
90

%

La
te

nc
y

(m
in

)

b) Latency of K-means

ATuMm UMM SMM

5.4

23
30

78

7.1

30
36

78

6.4

24
36

84

0
10
20
30
40
50
60
70
80
90

100

1GB 2GB 3GB 7GB

La
te

nc
y

(m
in

)

c) Latency of PageRank
with different input data size

ATuMm UMM SMM

Figure 8: Execution Time of Applications Under SMM, UMM and ATuMm

d) SMMExecution Memory Usage e) UMMExecution Memory Usage

0
100
200
300
400
500

0 1174 2408 2471 2504

Ex
ec

ut
io

n
M

em
or

y
U

sa
ge

(M
B

)

Time (s)

Used Memory Memory Pool size

0
100
200
300
400
500

0 1082 2131 2173

Ex
ec

ut
io

n
M

em
or

y
U

sa
ge

(M
B

)

Time (s)

Used Memory Memory Pool size

f) ATMMExecution Memory Usage

a) SMM Storage Memory Usage b) UMM Storage Memory Usage c) ATMM Storage Memory Usage

0
50

100
150
200
250
300

0 1174 2408 2455 2490 2512
St

or
ag

e M
em

or
y

U
sa

ge
 (M

B)

Time (s)

Used Memory Memory Pool Size

0
50

100
150
200
250

0 643 1902 2144 2165 2190

St
or

ag
eM

em
or

y
U

sa
ge

(M
B)

Time (s)

Used Memory Memory Pool Size

0
100

200
300

400
500

293 875 1540 1822 1907Ex
ec

ut
io

n
M

em
or

y
U

sa
ge

(M
B

)

Time (s)

Used Memory Memory Pool Size

0
50

100
150
200
250
300

0 235 1033 1836 1899 1972

St
or

ag
e

M
em

or
y

U
sa

ge
 (

M
B)

Time (s)

Used Memory Memory Pool Size

c) ATuMmStorage Memory Usage

f) ATuMmExecution Memory Usage

Figure 9: Memory Usage Analysis of SMM, UMM and ATuMm

a)SMMGC b)UMMGC c) ATMMGC

Total GC Time: 14min Total GC Time: 20min Total GC Time: 8.4min

0

10
20
30
40
50

1 185 730 1367 1965 2103Si
ng

le
 G

C
 D

ur
at

io
n

(s
)

Time (s)

0

20

40

60

80

22 318 1035 1773 2408Si
ng

le
 G

C
 D

ur
at

io
n

(s
)

Time (s)

0
5

10
15
20
25
30

20 128 299 624 1012 1409 1744 1944Si
ng

le
 G

C
 D

ur
at

io
n

(s
)

Time (s)

c) ATuMmGC

Figure 10: GC Analysis of SMM, UMM and ATuMm

time goes by. This is because RDDs are cached periodically
in PageRank. Whereas, the storage memory pool sizes are
different under three memory managers at different times.
That is, both UMM and ATuMm dynamically change the
storage memory pool sizes instead of the fixed one as SMM
does. As shown in Fig. 9-(a), the static storage memory pool
starts to evict RDDs when the utilization of the storage
memory pool is full. However, in Fig. 9-(b), UMM drops
the size of its storage memory pool to almost zero and then
increase its storage pool when RDDs are cached. The storage
memory pool changes more dynamically under ATuMm,
as shown in Fig. 9-(c). ATuMm first drops the storage
fraction gradually as the execution memory pool expands,
and then increases it as RDDs are cached. It is noticeable
that ATuMm not only increases the storage memory pool
based on storage memory requirements to cache RDDs, but
also adjusts the pool size more rapidly than UMM to limit
the execution memory pool size.

We further show our analysis of the execution memory
usage under three memory managers in Fig. 9-(d)∼(f). SMM
fixes the execution memory pool size regardless of work-
load diversity, while UMM and ATuMm alter the execution

memory pool size based on demands. Fig. 9-(e) shows that
the execution memory pool of UMM expands aggressively
and occupies almost all accessible memory when the first ex-
ecution requirement comes. Contrarily, in Fig. 9-(f), ATuMm
increases gradually across time until it satisfies all execution
requirements. This is because UMM expands the execution
memory pool only based on execution memory require-
ments, while ATuMm further considers the impact of GC on
Spark performance to control the expansion of the execution
memory pool. In addition, as the execution memory usage
drops, UMM still gives the execution memory pool as much
memory space as possible (i.e., all memory except that for
caching RDDs). Conversely, ATuMm decreases the execu-
tion memory pool size more rapidly to limit the memory al-
located to the execution memory pool. By this way, ATuMm
can effectively prevent Spark applications from long GC
durations introduced by overloaded execution memory. We
can observe that the execution memory pool size converges
to around 200MB, which guarantees enough memory for
task execution and further offers a relatively low GC time.

We next present our observation regarding GC time. To
show our observations, we use the PageRank application

10

with 3GB input data as representative and compare GC
time using three memory managers. Fig. 10 shows the
duration of garbage collection during the runtime of the
application, where each spike represents an occurrence of
a full GC (i.e., JVM stops all tasks and scans the whole heap
to remove unreferred objects) that majorly contributes to GC
time [15]. Fig. 10-(a) shows that the maximum full GC time
of SMM is around 40 seconds. While, under UMM, a full
GC can take more than 70 seconds, see Fig. 10-(b). More
importantly, we can observe that the full GCs under ATuMm
are all below 30 seconds in Fig. 10-(c), which is smaller
than both SMM and UMM. Besides, We observe that fewer
spikes occurred under ATuMm than under UMM and SMM,
which means that the frequency of full GCs under ATuMm
is also lower than SMM and UMM. We also record the total
GC time of SMM, UMM, and ATuMm, which is 14min,
20min and 8.4min, respectively. Since we use 4 executors
in the experiment, the GC time of each executor should be
divided by 4, which is considered as the contribution of GC
to the overall execution time. Thus, we can conclude that
ATuMm is able to significantly reduce the maximum and the
total time of GCs when compared to SMM and UMM and
thus accelerates the execution of Spark applications with
minimum makespan (i.e., total execution length).

4.3 Q-ATuMm Evaluation

We further implement and evaluate our Q-learning
based version Q-ATuMm. We construct experiments on
different categories of workloads (i.e., data-intensive appli-
cations and business queries) to evaluate the performance
of Q-ATuMm, compared with that of SMM, UMM, and
ATuMm. We tune the three hyper-parameters (i.e., learning
rate, exploration ratio, and discount factor as shown in
Sec.3.2.2) in Q-ATuMm to achieve the best performance. The
discussion on these hyper-parameters will be shown later in
this section.

4.3.1 PageRank Analysis
We first construct the same experiments with PageRank

on Q-ATuMm as shown in 4.2.1. In order to trigger intensive
data loading and processing, we increase the input data
size to 5GB. We observed that the application has fewer
iterations to execute when the input size is small. Therefore,
the Q-learning algorithm has fewer samples to learn. The
performance of Q-ATuMm is worse with small data size.
We also fix the number of iterations in PageRank as 20 in all
experiments.

Figure 11: Latency of PageRank under SMM, UMM, ATuMm, and Q-
ATuMm.

Fig. 11 illustrates the latency of PageRank under the four
different memory managers. We manually set SMM storage
fractions from 0.1 to 0.9 to observe the optimal latency
experimentally. We observe that the best performance under
SMM is achieved when the storage fraction is 50% and 90%,
while UMM cannot reach that, which is consistent with our
observations in Sec. 4.2.1. On the other hand, we observe
that both ATuMm and Q-ATuMm outperform UMM. More
importantly, Q-ATuMm further reduces the latency by 28%
compared to ATuMm.

4.3.2 Workload Intensity Analysis
Q-ATuMm is further evaluated on a decision support

benchmark named TPC-H [16] in the context of Apache
Spark. TPC-H consists of twenty-two business-oriented
queries and concurrent data modifications. TPC-H evaluates
the performance of decision support systems by executing
ad-hoc queries on a generated synthetic data set. In our
experiment, we select representative queries running on a
10GB data set. Work [17] investigates characteristics of TPC-
H queries and classifies them based on resource intensity.
We select two types of queries in TPC-H to evaluate Q-
ATuMm, as shown in Table 3. CPU Intensive quires contain
operations like order and select, while I/O intensive quires
either need to load large data set into memory or perform
operations on multiple data sets, e.g., join. It is worth notic-
ing that some quires can be both CPU and I/O intensive
(e.g., Q1, Q3, and Q21).

Table 3: Query Classification.

No. Resource Intensity Queries
1 I/O Intensive Q1, Q3, Q4, Q10, Q21
2 CPU Intensive Q1, Q3, Q6, Q12, Q13, Q21

We compare the performance of selected queries under
Q-ATuMm with that under ATuMm and UMM. The first six
queries in Fig. 12 illustrates the latency of CPU intensive
queries with different memory manages. We observe that
the latency of Q1, Q6, Q12, and Q13 does not have a
visible variance among three memory managers, while Q-
ATuMm outperforms the other two in Q3 and Q21. Our
experimental results indicate that CPU-intensive queries
hardly benefit from both ATuMm and Q-ATuMm, as their
performance heavily relies on CPU resources. The last five
queries in Fig. 12 are I/O intensive queries that need to load
data into memory and trigger more RDD caching, which
can significantly benefit from our new design. Thus, we
observe a decent latency reduction above 20% in Q-ATuMm,
compared with that in UMM. For Q1, we find that although
Q1 needs to join two tables, each table is small. Therefore,
even though Q1 is also classified as an I/O extensive query,
its execution time is not reduced significantly by Q-ATuMm.
4.3.3 Memory Usage and Garbage Collection Analysis

To closely analyze the performance improvement under
Q-ATuMm, we further collect the aggregated GC time of all
executors under ATuMm, Q-ATuMm, UMM, and SMM with
0.9 storage fraction and show both total execution time (i.e.,
latency) and GC time for PageRank in Table 4. We first notice
that GC time plays a dominant role in the total execution
time. By gradually reducing the storage fraction when the
execution memory pool expands, our memory managers
(i.e., ATuMm and Q-ATuMm) can significantly reduce the

11

0.4
1.7

3.1
0.9

3.9

12

1.7
3.3

0.5
1.8

3.3
1

4.6

17

2
4.2

0.5
1.8

3.1
1

5.8

21

2.7
4.2

0

5

10

15

20

25

6 12 13 1 3 21 4 10

Ex
ec

ut
io

n
Ti

m
e (

m
in

)

Query ID

Q-ATuMm ATuMm UMM

Figure 12: Latency of TPC-H queries. Queries within the blue dashed
box are CPU intensive. Queries within the red solid box are I/O
intensive.

GC time by 17% and 32%, compared to UMM. Q-ATuMm
further reduces the GC time (close to the optimal one as
shown in the row of SMM 0.9 in Table 4) by using the Q-
learning reinforcement technique to set the adjustment step
for changing the memory boundaries automatically.

Table 4: Execution time and GC time comparison

Manager Execution Time (min) GC Time (min)
Q-ATuMm 23 21.48

ATuMm 29 26
UMM 35 31.72

SMM 0.9 22 20.24

We further show storage memory usage among all four
memory managers in Fig. 13. First, SMM has a fixed storage
pool size (e.g., 0.9 storage fraction), and its storage memory
usage increases up to the maximum allowed storage pool
size as time goes by, which is caused by caching RDDs in
each iteration. On the other hand, UMM, ATuMm, and Q-
ATuMm dynamically change the storage memory pool size
as time progresses based on the run-time memory resource
demands. For example, as shown in Fig. 13, all of them start
to increase the storage pool size at around 1000 seconds
when RDDs start being cached.

0 250 500 750 1000 1250 1500
time(s)

0

50

100

150

200

si
ze

(M
B

)

storage_used
storage_pool

(a) ATuMm

0 250 500 750 1000 1250
time(s)

0

50

100

150

200

250

300

si
ze

(M
B

)

storage_used
storage_pool

(b) Q-ATuMm

0 250 500 750 1000 1250
time(s)

0

50

100

150

200

si
ze

(M
B

)

storage_used
storage_pool

(c) UMM

0 200 400 600 800 1000
time(s)

0

20

40

60

80

100

120

si
ze

(M
B

)

storage_used
storage_pool

(d) SMM with 0.9 storage fraction
Figure 13: Storage memory usage among all four memory managers.

However, we can observe that UMM immediately de-
creases the storage memory pool size to around zero to
give more space to the execution memory pool, which
unfortunately can cause a long GC time, as we discussed
in Sec. 2.3. To address this issue, ATuMm decreases the
storage memory pool size gradually until it converges with

the storage memory used size. It is visible that ATuMm
gradually adjusts storage memory size based on the caching
of RDDs, but it is less aggressive than UMM. For Q-ATuMm,
we observe that the randomness that comes from explo-
ration causes the spikes as the storage memory pool size
is dynamically adjusted. We also notice that the memory
storage pool size decreases to below 50 almost from the
starting point and stays there for about 900 seconds before
the demand for storage memory increases because of RDD
caching. In conclusion, we see that Q-ATuMm converges
faster than ATuMm but less aggressive than UMM.

0 250 500 750 1000 1250 1500
time(s)

0

50

100

150

200

250

300

350

si
ze

(M
B

)

exec_used
exec_pool

(a) ATuMm

0 250 500 750 1000 1250
time(s)

0

50

100

150

200

250

300

si
ze

(M
B

)

exec_used
exec_pool

(b) Q-ATuMm

0 250 500 750 1000 1250
time(s)

0

100

200

300

si
ze

(M
B

)

exec_used
exec_pool

(c) UMM

0 200 400 600 800 1000
time(s)

0

100

200

300

400

500

si
ze

(M
B

)

exec_used
exec_pool

(d) SMM with 0.9 storage fraction
Figure 14: Execution memory usage among all four memory managers.

We also show execution memory usage among all four
memory managers in Fig. 14. SMM’s execution memory
pool size remains fixed even though the actual execution
memory usage is always lower than the allocated one,
which indicates that SMM cannot fully utilize the execution
memory, and meanwhile, it avoids triggering larger GC
time. Based on the workload demands, UMM, ATuMm,
and Q-ATuMm dynamically alter the execution memory
pool size, which again proves to be more beneficial for
execution memory utilization. ATuMm gradually increases
execution storage as time passes, which helps reduce the
long GC time. Q-ATuMm’s execution memory pool size, on
the other hand, is adjusted considerably to execution mem-
ory usage and converges at around 150 seconds, which is
faster than ATuMm. The observation shows that our design
of Q-ATuMm can converge fast to the run-time execution
memory demands, but not as aggressive as that in UMM,
which shortens GC time and saves execution time.

4.3.4 Hyper-parameter tuning
We finally discuss the impacts of three hyper-

parameters, i.e., learning rate (α), exploration ratio (ϵ),
and discount factor (γ), on Q-ATuMm’s performance. We
conduct a set of sensitivity analysis tests by setting dif-
ferent values of these hyper-parameters to run PageRank
applications. Instead of extensively exploring all possible
combinations, we selectively fix any two hyper-parameters
and change the third one. Table 5 summarizes the top 5
combinations that obtain the best latency.

12

Table 5: Latency of Top 5 Hyper-parameter Combinations

Learning Rate 0.3 0.3 0.2 0.3 0.7
Exploration Ratio 0.1 0.5 0.2 0.9 0.1
Discount Factor 0.9 0.9 0.9 0.9 0.9
Latency (min) 23 24 24 24 24

We find that three out of five appropriate values for the
learning rate α are 0.3. Although a higher learning rate may
guarantee Q-ATuMm converges quickly, it is possible to be
trapped in a locally optimal solution. A small learning rate
ensures that Q-ATuMm can achieve the optimal global solu-
tion, even with a slower speed. We also set the exploration
ratio ϵ to 0.1 because a lower exploration ratio can allow
more exploitation than exploring different states and iden-
tify the best values for achieving the optimal performance.
As Q-ATuMm has a relatively simple state space, we expect
Q-ATuMm to learn on the known states instead of exploring
around randomly. Finally, considering that the discount
factor determines the importance of future rewards, and
PageRank is an iterative application with periodic patterns
across time, we find that a significant discount factor (i.e.,
0.9) can speed up the convergency.

We also tune the three hyper-parameters of Q-ATuMm
to investigate their impacts on the performance of TPC-H
applications. Similarly, we extensively change the values
from 0.1 to 0.9 for each hyper-parameter and receive the
following observations. First, we find that the discount
factor is not sensitive for both CPU intensive and I/O
intensive queries because most of the queries are com-
pleted within a short period before the discount factor takes
effect. Second, the exploration ratio is less sensitive for
CPU-intensive queries than for I/O intensive queries be-
cause CPU-intensive queries hardly benefit from Q-ATuMm.
Finally, more than one combination of the three hyper-
parameters can lead to the same best performance, which
indicates that TPC-H quires are not sensitive to hyper-
parameters of Q-ATuMm as they are not iterative applica-
tions.

5 CONCLUSION
Apache Spark speeds up large-scale data processing by

leveraging in-memory computation. However, the existing
Spark memory manager (UMM) incurs long garbage collec-
tions, which degrades Spark performance significantly. In
this work, we first present a new Spark memory manager
(ATuMm) that leverages the feedback of GC time and mem-
ory demands to partition the memory pool dynamically. We
further adopt a reinforcement learning algorithm to develop
an intelligent agent (Q-ATuMm) to manage memory par-
tition for complicated workloads. We implement ATuMm
and Q-ATuMm in Spark 2.4.0 and construct experiments in
a real Spark cluster. We find that ATuMm obtains around
25% improvement of Spark performance, compared with
existing memory managers in the best case. By applying
learning-based memory management, Q-ATuMm can fur-
ther improve Spark’s performance to 34%. We contribute
the latency improvement to successfully reducing the GC
time for both ATuMm and Q-ATuMm. In the future, we plan
to evaluate our design on a larger volume of applications
with different types of resource intensity. By construct-
ing experiments extensively, we are able to find a hyper-

parameter combination that provides optimal performance
for general data-processing applications. We also plan to
integrate other ML algorithms, e,g., LSTM, to compare cost
and performance with Q-learning.

REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Kon-

winski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“A view of cloud computing,” Commun. ACM, vol. 53, no. 4, pp.
50–58, Apr. 2010.

[2] T. White, Hadoop: The Definitive Guide. Yahoo Press, May 2012.
[3] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and

I. Stoica, “Spark: Cluster computing with working sets,” ser.
HotCloud’10. USENIX Association, 2010, pp. 10–10.

[4] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster com-
puting,” ser. NSDI’12, 2012, pp. 2–2.

[5] B. Jang, M. Kim, G. Harerimana, and J. W. Kim, “Q-learning al-
gorithms: A comprehensive classification and applications,” IEEE
access, vol. 7, pp. 133 653–133 667, 2019.

[6] M. J. F. I. S. Reynold S. Xin, Joseph E. Gonzalez, “Graphx: A
resilient distributed graph system on spark,” AMPLab, EECS, UC
Berkeley, Jun 23 2013.

[7] L. Xu, M. Li, L. Zhang, A. R. Butt, Y. Wang, and Z. Z. Hu,
“Memtune: Dynamic memory management for in-memory data
analytic platforms,” May 2016, pp. 383–392.

[8] S.-J. Chae and T.-S. Chung, “Dsmm: A dynamic setting for mem-
ory management in apache spark,” 2019 IEEE International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS), pp.
143–144, 2019.

[9] M. A. Rahman, J. Hossen, and C. Venkataseshaiah, “Smbsp: A self-
tuning approach using machine learning to improve performance
of spark in big data processing,” in 2018 7th International Conference
on Computer and Communication Engineering (ICCCE), 2018, pp.
274–279.

[10] D. Nikitopoulou, D. Masouros, S. Xydis, and D. Soudris, “Perfor-
mance analysis and auto-tuning for spark in-memory analytics,”
in 2021 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2021, pp. 76–81.

[11] M. Kweun, G. Kim, B. Oh, S. Jung, T. Um, and W.-Y. Lee,
“Pokémem: Taming wild memory consumers in apache spark,”
in 2022 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), 2022, pp. 59–69.

[12] Z. Zhu, Q. Shen, Y. Yang, and Z. Wu, “Mcs: Memory constraint
strategy for unified memory manager in spark,” in 2017 IEEE
23rd International Conference on Parallel and Distributed Systems
(ICPADS), 2017, pp. 437–444.

[13] C. Sammut and G. I. Webb, Eds., Bellman Equation. Boston,
MA: Springer US, 2010, pp. 97–97. [Online]. Available:
https://doi.org/10.1007/978-0-387-30164-8 71

[14] U. R. Raval and C. Jani, “Implementing improvisation of k-means
clustering algorithm,” 2016.

[15] R. Xin and J. Rosen, “Tuning java garbage collection for apache
spark applications,” https://databricks.com/blog/2015/05/28/
tuning-java-garbage-collection-for-spark-applications.html.

[16] L. Yue-peng, “Tpc-h analysis and test tool design,” Computer
Engineering and Applications, 2007.

[17] M. Bayati, J. Bhimani, R. Lee, and N. Mi, “Exploring benefits of
nvme ssds for bigdata processing in enterprise data centers,” 08
2019, pp. 98–106.

Danlin Jia serves as a Senior Storage Ar-
chitecture Engineer at the Memory Solu-
tions Lab in Samsung Semiconductor Inc. He
earned his Ph.D. and M.S. degrees in Com-
puter Engineering from Northeastern Univer-
sity, Boston, and obtained his Bachelor’s de-
gree in Electrical Engineering from Harbin
Institute of Technology. His expertise lies in
memory and I/O optimization for distributed
data processing and storage systems, with
a research focus encompassing distributed

storage systems, distributed data analytics frameworks, and dis-
tributed deep learning frameworks.

13

Li Wang is a Ph.D. candidate at Northeast-
ern University in Boston, Massachusetts.
She holds a master’s degree in computer
engineering from the University of Mas-
sachusetts, Amherst, and an MBA from the
Beijing University of Posts and Telecom-
munications. Her current research interests
encompass a wide array of fields, includ-
ing cloud computing, resource management,
distributed systems, performance evaluation
and optimization, and workload characteris-

tics.

Natalia Valencia graduated from Florida In-
ternational University with a master’s degree
in Cybersecurity and a bachelor’s degree in
computer science. Her current research in-
corporates the use of reinforcement learning
in the creation of a prompt-based corpora
that achieves greater accuracy when fed into
LLMs. Her other areas of research include Ar-
tificial Intelligence, Machine Learning, Deep
Learning, and NLP.

Janki Bhimani (Member, IEEE) is an Assis-
tant Professor at Florida International Univer-
sity, Miami. She received her Ph.D. and M.S.
degrees in Computer Engineering from the
Northeastern University, Boston. Her B.Tech.
is from Gitam University, India in Electrical
and Electronics Engineering. Her current re-
search interests are storage systems, per-
formance modeling and optimizations, cloud
computing, machine learning, resource man-
agement, and capacity planning for various

emerging technologies.

Bo Sheng is an Associate Professor in
Computer Science Department at University
of Massachusetts Boston. He received his
Ph.D. from College of William and Mary and
his B.S. from Nanjing University (China), both
in Computer Science. His research interests
include mobile computing, big data, cloud
computing, cyber security, and wireless net-
works.

Ningfang Mi received a BS degree in com-
puter science from Nanjing University, China,
in 2000, an MS degree in computer science
from the University of Texas at Dallas, Texas,
in 2004, and a PhD degree in computer sci-
ence from the College of William and Mary,
Virginia, in 2009. She is an assistant profes-
sor at the Department of Electrical and Com-
puter Engineering, at Northeastern Univer-
sity, Boston, Massachusetts. Her current re-
search interests include resource allocation

and scheduling, capacity planning, storage systems, parallel data
processing, cloud computing, performance evaluation, simulation,
and workload analysis.

