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Abstract

Krylov subspace methods are a ubiquitous tool for computing near-optimal rank k approximations of large
matrices. While “large block” Krylov methods with block size at least k give the best known theoretical
guarantees, block size one (a single vector) or a small constant is often preferred in practice. Despite their
popularity, we lack theoretical bounds on the performance of such “small block” Krylov methods for low-rank
approximation.

We address this gap between theory and practice by proving that small block Krylov methods essentially
match all known low-rank approximation guarantees for large block methods. Via a black-box reduction we
show, for example, that the standard single vector Krylov method run for t iterations obtains the same spectral
norm and Frobenius norm error bounds as a Krylov method with block size ℓ ≥ k run for O(t/ℓ) iterations,
up to a logarithmic dependence on the smallest gap between sequential singular values. That is, for a given
number of matrix-vector products, single vector methods are essentially as effective as any choice of large block
size.

By combining our result with tail-bounds on eigenvalue gaps in random matrices, we prove that the
dependence on the smallest singular value gap can be eliminated if the input matrix is perturbed by a small
random matrix. Further, we show that single vector methods match the more complex algorithm of [Bakshi
et al. ‘22], which combines the results of multiple block sizes to achieve an improved algorithm for Schatten
p-norm low-rank approximation.

1 Introduction
Krylov subspace methods have been studied since the 1950s and remain our most reliable algorithms for
approximating eigenvectors and singular vectors of large matrices. Krylov methods access a matrix A via repeated
matrix multiplications (each considered an iteration of the method) either with a single vector or a block of vectors.
There has been significant interest in analyzing how many iterations are required to obtain accurate eigenvector
or singular vector approximations. Classic work studies both single vector [Kaniel, 1966, Paige, 1971] and block
methods [Cullum and Donath, 1974, Kahan and Parlett, 1976, Saad, 1980, Saad, 2011].

More recently, there has been interest in analyzing Krylov subspace methods specifically for the downstream
task of low-rank approximation. Since the top k singular vectors can be used to obtain an optimal rank-k
approximation, the goal is to understand how many iterations are required to compute approximate singular
vectors that yield a near-optimal rank-k approximation [Rokhlin et al., 2009, Halko et al., 2011b, Woodruff,
2014]. This problem differs from classical work because convergence to the actual top singular vectors is sufficient
but not necessary for obtaining an accurate low-rank approximation [Drineas and Ipsen, 2019].

Prototypical single vector and block Krylov methods for low-rank approximation are shown in Algorithm 1
and Algorithm 2.1 For an n× d input A, both methods returns an n× k orthogonal Q so that the rank-k matrix
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1Algorithms 1 and 2 are examples of the simplest possible implementations of Krylov methods for low-rank approximation. In

practice, various optimizations like the Lanczos recurrence are often applied, and additional care is necessary to ensure that the
orthogonal basis for the Krylov subspace K in computed in a numerically stable way [Saad, 2011]. While an important topic, this
paper is not focused on the numerical stability of Lanczos methods. All derivations assume computation in the Real RAM model of
arithmetic.
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Algorithm 1 Single Vector Krylov Method for Low-Rank Approximation
input: Matrix A ∈ Rn×d. Target rank k. Starting vector x ∈ Rn. Number of iterations t.
output: Orthogonal matrix Q ∈ Rn×k.

1: Compute an orthonormal basis Z for K = [x, (AAᵀ)x, (AAᵀ)2x, . . . , (AAᵀ)tx ].
2: Compute Uk, the k top eigenvectors of M = ZᵀAAᵀZ
3: return Q = ZUk.

Algorithm 2 Block Krylov Method for Low-Rank Approximation
input: Matrix A ∈ Rn×d. Target rank k. Starting block B ∈ Rn×ℓ. Number of iterations t.
output: Orthogonal matrix Q ∈ Rn×k.

1: Compute an orthonormal basis Z for K = [B, (AAᵀ)B, (AAᵀ)2B . . . , (AAᵀ)tB ].
2: Compute Uk, the k top eigenvectors of M = ZᵀAAᵀZ
3: return Q = ZUk.

QQᵀA is a good approximation to A. Ideally, it is nearly as good as A’s optimal rank k approximation, Ak,
which is given via projection onto A’s top k singular vectors.2

1.1 Large block methods and gap-free bounds Most recent work on Krylov methods for low-rank
approximation focuses on “large block” methods, where ℓ in Algorithm 2 is chosen to be ≥ k [Rokhlin et al.,
2009, Halko et al., 2011a, Gu, 2015, Musco and Musco, 2015, Tropp, 2018, Yuan et al., 2018, Drineas et al.,
2018, Tropp, 2018]. In this regime, block methods are known to quickly converge to a near-optimal low-rank

approximation. For example, in just O
(

log(n/ε)√
(σk−σℓ+1)/σk

)
iterations, Algorithm 2 initialized with an i.i.d. random

Gaussian matrix B ∈ Rn×ℓ with block size ℓ ≥ k, achieves with high probability the bound

∥A−QQᵀA∥ξ ≤ (1 + ε)∥A−Ak∥ξ(1.1)

for any ε > 0 and ∥·∥ξ being either the Frobenius or spectral norm [Musco and Musco, 2015]. That is, convergence
is linear with a rate depending on the square root of the relative gap from the kth singular value, σk, to the (ℓ+1)st

singular value, σℓ+1. Even for ℓ mildly larger than k, this gap is often quite large. For example, [Halko et al.,
2011b] recommends setting ℓ = k + 5 or k + 10.

Beyond such spectrum dependent guarantees, another advantage of large block Krylov methods is that they
enjoy gap-independent bounds, which do not involve any terms depending on A’s spectrum. For example, a now
standard result is that Algorithm 2 achieves Equation (1.1) in just O( 1√

ε
log(nε )) iterations [Musco and Musco,

2015].3 Further, this bound is essentially optimal among all methods that access A only through matrix-vector
products [Simchowitz et al., 2018, Bakshi and Narayanan, 2023]. Bounds where the iteration complexity does
not depend on properties of A, are called “universal” guarantees [Urschel, 2021]. Universal bounds are useful in
applications where properties like large spectral gaps cannot be ensured, but where worst-case accuracy guarantees
are still desired [Hegde et al., 2016, Li et al., 2017, Soltani and Hegde, 2018].

In contrast to large block sizes, it is impossible to prove gap-independent guarantees for single vector or small
block Krylov iteration. To see why, consider A ∈ Rk×d that is all zeros, except that Aii = 1 for i = 1, . . . , k.
I.e., A =

[
Ik 0

]
. where Ik denotes the k × k identity matrix. If we run Algorithm 2 on this matrix with block

size ℓ < k, then it can be checked that the Krylov subspace K will have rank ℓ < k, and thus any low-rank
approximation obtained from the subspace cannot be near-optimal. In general, bounds for small block methods
must depend inversely on the gaps between sequential singular values. In the above example, these gaps are equal
to 0.

2For simplicity, we focus on computing an approximate left singular vector subspace spanned by Q ∈ Rn×k. If we instead care
about computing right singular vectors, Algorithms 1 and 2 can be applied to Aᵀ instead.

3Randomly initialized block power method with block size k gives a similar bound, but with a suboptimal 1/ε rather than 1/
√
ε

dependence on the error [Rokhlin et al., 2009, Halko et al., 2011b].
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Figure 1: Comparison of the number of matrix-vector products needed for Krylov iteration to converge to an
accurate rank 50 approximation under different block sizes. The left figure uses a matrix with singular values
decaying polynomially; the middle figure uses a matrix from the SuiteSparse library; the right figure uses a worst-
case matrix from the literature. See Section 6.5 for more details. In the first two plots, single vector Krylov
outperforms large block methods. Even in the adversarially chosen hard instant on the right, it does not perform
much worse.

1.2 Main contribution: the virtue of small block Krylov methods The inability of single vector and
small block Krylov methods to offer gap-independent bounds has been a point of concern for the use of these
methods in computing low-rank approximations [Li et al., 2017, Musco and Musco, 2015, Li and Zhang, 2015]. At
the same time, in practice, low-rank approximation is frequently solved using iterative eigensolvers based on single
vector or small block methods. Such methods are the standard in MATLAB, Julia, Python, and essentially all
languages used for matrix computations [Lehoucq et al., 1998, Mathworks, 2023, SciPy Community, 2023]. These
methods often perform very well, converging quickly to good low-rank approximations. In fact, in our experience,
they typically outperform large block methods in terms of the number of matrix-vector products required to
achieve a desired level of accuracy – see Figure 1.4

The main goal of this paper is to explain this phenomenon. We ask:

For low-rank approximation, when and why do small block Krylov methods require the same or fewer
matrix-vector multiplications than large block Krylov methods?

We answer this question in a strong way by proving that small block methods nearly match or even improve
on all known theoretical guarantees on the convergence of large-block methods for low-rank approximation. In
particular, up to a logarithmic dependence on the smallest gap between singular values, the trade-off between
accuracy and number of matrix-vector products achieved by small block methods matches the trade-off achieved
by large block methods. Since there are a variety of guarantees known for large block methods, this claim is
broken down as a number of results throughout our paper. We state one such result as a concrete example:

Theorem 1.1. For A ∈ Rn×d, let gmin = mini∈{1,...,k−1}
σi−σi+1

σi
be the smallest relative gap among the top k

singular values. For any ε, δ ∈ (0, 1), Algorithm 1 initialized with an i.i.d. mean zero Gaussian vector x and run
for t = O( k√

ε
log( 1

gmin
) + 1√

ε
log( n

εδ )) iterations returns an orthogonal Q ∈ Rn×k such that, with probability at
least 1− δ, letting ∥ · ∥ξ be the spectral or Frobenius norm,

∥A−QQᵀA∥ξ ≤ (1 + ε)∥A−Ak∥ξ.

4The number of matrix-vector products used by an algorithm does not necessarily translate directly into the computational cost
of the algorithm. For example, in many computing systems, it is faster to multiply a matrix A by a block of k vectors all at once,
than to multiply by k vectors chosen in sequence. Nevertheless, matrix-vector products are still a valuable measure of complexity for
many problems where they dominate other runtime costs.
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As discussed, [Musco and Musco, 2015] prove that Algorithm 2 with block size k achieves an identical error bound
in O

(
log(n/εδ)√

ε

)
iterations. This translates to O

(
k log(n/εδ)√

ε

)
matrix-vector products, which Theorem 1.1 matches,

except for the dependence on log(1/gmin). At the same time, Theorem 1.1 improves on the large block bound by
separating the log(n/εδ) and k terms.

Remark. Since it is a logarithmic instead of polynomial dependence, we consider the log(1/gmin) term to be
mild for typical problems. In experiments, it appears to have little impact on the observed convergence of the
single vector Krylov method (see Section 6). Indeed, except in adversarial cases, such as the identity matrix,
where gmin truly equals 0, in finite precision, we cannot expect to resolve singular value gaps to accuracy better
than machine precision. So, it is reasonable to think that in practice, this term should be at most a moderate
constant. We make this intuition formal in Section 5, showing that the dependence on gmin can be eliminated in
a smoothed analysis setting (i.e., when the input is perturbed by a small random matrix).

Our proof for Theorem 1.1 (with some additional results) is given in Section 3. Our approach is via a black-
box reduction to the existing analysis for large block methods. In particular, we view the single-vector method of
Algorithm 1 as a block Krylov method in disguise. We observe that the span of the single-vector Krylov subspace
K (Line 1 of Algorithm 1) is exactly equivalent to the span of a block Krylov subspace generated from a specific
starting matrix. Concretely, suppose Algorithm 1 is run for t ≥ k iterations and let Sk ∈ Rd×k equal the first k
columns of K. I.e.,

Sk :=
[
x AAᵀx (AAᵀ)2x . . . (AAᵀ)k−1x

]
.(1.2)

Then we can check that for q = t− k + 1:

span(K) = span
([
Sk AAᵀSk (AAᵀ)2Sk . . . (AAᵀ)qSk

])
.(1.3)

This equivalence is visualized in Figure 2. Since both Algorithm 1 and Algorithm 2 only depend on the span of
the Krylov subspace they generate (through Z), the single vector method thus matches the block Krylov method
run for k − 1 fewer iterations, with the specific starting block Sk.

With this perspective, a naive hope might be to directly appeal to prior results on block Krylov iteration
to analyze the single vector method. Unfortunately, these results rely on the fact that the starting matrix B is
chosen at random, typically with i.i.d. Gaussian or sub-Gaussian entries [Halko et al., 2011b, Musco and Musco,
2015, Bakshi et al., 2022]. In contrast, Sk is far from a random Gaussian matrix. Its columns are highly dependent
on each other. To understand just how far Sk is from an ideal starting matrix, note that, generally, a block Krylov
subspace with q blocks will have rank qk when B is a random Gaussian matrix. In contrast, the block Krylov
subspace

[
Sk AAᵀSk . . . (AAᵀ)qSk

]
only has rank t = q + k − 1.

Surprisingly, however, we are still able to show that Sk provides a (barely) good enough starting matrix
for the block Krylov method in Algorithm 2 to succeed. To do so, we consider a natural definition of what it

x AA⊺x (AA⊺)tx

Sk (AA⊺)Sk (AA⊺)2Sk (AA⊺)t−k+1Sk

· · ·

· · ·

Figure 2: Our main analysis is based on the simple observa-
tion that the span of the Krylov subspace generated by a single
vector Krylov method after t iterations is exactly equivalent to
that generated by a block Krylov method run for t−k+1 iter-
ations with starting block Sk = [x, (AAᵀ)x, . . . , (AAᵀ)kx ].
This observation allows us to take advantage of existing results
on block methods in a black-box way.
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means to be a “good” starting matrix. At a high-level, we need Sk to have non-negligible inner product with all
top k singular vectors of A. While Sk is exponentially worse in terms of starting inner product than a random
B, this is made up for by the fact that it is far cheaper (in terms of matrix-vector products) to build a block
Krylov subspace with Sk; we can compute a degree q subspace using just q + k matrix-vector products with A.
In contrast, computing a degree q block Krylov subspace with a random starting block B ∈ Rn×k requires qk
matrix-vector products. The detailed proof is presented in Section 3.

1.3 Results and Paper Organization Theorem 1.1 is our main result, and its proof is contained entirely in
Section 3. In addition to this result, whose proof shows the crux of our argument that single vector methods
converge quickly, we include several other bounds for single vector and small block methods. We summarize these
additional results below. Section 6 contains experiments which demonstrate that our bounds are predictive of the
performance of these methods in practice.

Spectrum adaptive bounds, Section 4.1. The black-box nature of Theorem 1.1’s proof allows us to similarly
adapt other results on large block Krylov methods to the single vector setting. For example, we show that
Algorithm 1 matches known “spectrum dependent” bounds for large block methods. As discussed in Section 1.1,
the convergence rate of these bounds depends on gk→ℓ =

σk−σℓ+1

σk
, the gap between the kth and (ℓ+ 1)st singular

values. Since this gap increases with ℓ, there is a natural tradeoff: a larger block means more matrix-vector
products per iteration, but fewer iterations. Our proof shows that single vector methods match any block size
ℓ ≥ k (up to a dependence on log(1/gmin)). I.e., they automatically match the complexity of the method with
best choice of large block size, without need for parameter tuning.

Schatten p-norm low-rank approximation, Sections 4.2 and 4.3. Recently, a combination of spectrum
dependent and spectrum independent bounds have been used to give faster convergence rates for Schatten p-
norm low rank approximation. In particular, for constant p, [Bakshi et al., 2022] show how to find a low-rank
approximation achieving ∥A −QQᵀA∥p ≤ (1 + ε)∥A −Ak∥p using just Õ(k/ε1/3) matrix-vector products with
A. For the Frobenius norm (i.e., p = 2), this is an improvement on the Õ(k/

√
ε) required by [Musco and Musco,

2015]. Their method requires running Algorithm 2 with multiple choices of block size, and optimizing over the
best Krylov subspace. We show that, again up to a logarithmic dependence on 1/gmin, the exact same guarantees
can be obtained by simply running a single vector Krylov method. In concurrent work, [Bakshi and Narayanan,
2023] show a similar result without a dependence on log(1/gmin) or log(n).

Beyond block size 1, Section 4.4. While the above results focus on the single vector Krylov method, our
bounds naturally generalize to other small block sizes between 1 and k (e.g. 4, 10, or k − 1). For general small
block size b, we show that dependence on gmin can be replaced with a dependence on the smallest “bth order”
gap gmin,b := mini∈{1,...,k−b}

σi−σi+b

σi
.

Removing the gap dependence, Section 5. While a dependence on singular value gaps is unavoidable for
small block methods in the worst-case, the parameter seems to rarely have an impact in practice. We take a
step towards explaining this observation via a smoothed-analysis result [Spielman and Teng, 2004, Sankar et al.,
2006]. Specifically, we leverage work in random matrix theory on eigenvalue repulsion, which shows that small
spectral gaps in a matrix are brittle: adding a tiny amount of random noise to any matrix ensures that its singular
value gaps are at worst inverse polynomial in the problem parameters. Using this fact, we present bounds that
replace the dependence on log(1/gmin) in our prior results with a dependence on log(nκk

δε ) for randomly perturbed
matrices, where κk = σ1/σk measures the conditioning of the top k singular values. From an algorithm design
perspective, the log(1/gmin) can be removed even in the worst case by explicitly adding a random diagonal
perturbation to A.

Single Vector Simultaneous Iteration, Appendix G. Lastly, we describe a single vector analogue for
simultaneous iteration. While it converges somewhat more slowly, this method has the advantage of using less
space than the single vector Krylov method, which needs to store the span for the entire Krylov subspace. For
instance, it allows us to store just k vectors while converging in Õ(k/ε) iterations, in contrast to the Õ(k/

√
ε)

iterations required by the standard single vector Krylov method. Since single vector simultaneous iteration only
uses a single starting vector, its convergence still depends on log(1/gmin).
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1.4 Related Work We briefly discuss additional prior work on low-rank approximation and Krylov methods,
though since the literature is rich, so we cannot cover all relevant prior work. As discussed, early analyses of
Krylov methods for approximating eigenvectors consider both single vector and block methods [Saad, 1980, Golub
and Underwood, 1977, Kuczyński and Woźniakowski, 1992]. However, this work does not directly provide strong
bounds for low-rank approximation, since convergence to the top singular vectors is not required to accurately
solve the problem [Drineas and Ipsen, 2019].

For low-rank approximation, large block methods have been more popular. In addition to prior work already
discussed, this includes work on randomized sketching methods, which can be viewed as large block Krylov
methods run for one or two iterations [Martinsson et al., 2006, Cohen et al., 2015, Clarkson and Woodruff,
2013, Drineas and Mahoney, 2016, Martinsson and Tropp, 2020]. Sketching methods have become a mainstay
technique in randomized numerical linear algebra.

Work on single vector or small block methods for low-rank approximation has been more sparse. [Wang et al.,
2015] experimentally study small block methods, and suggest that large blocks are only worthwhile when singular
value gaps are very small, when low precision suffices, or when making many passes over a matrix is expensive.
[Yuan et al., 2018] theoretically studies the related problem of singular value approximation for all block sizes,
and as in our work, obtains linear convergence rates depending on gk→ℓ. They also show superlinear rates when
A has a sufficiently quickly decaying spectrum. While it is difficult to directly compare their results to ours on
low-rank approximation, it would be interesting to consider such spectra in our setting. Finally, we note that
[Allen-Zhu and Li, 2016] proves a result similar to Theorem 1.1 using an algorithm that in some ways is a single
vector Krylov method. However, because the method iteratively restarts k times with k randomly chosen starting
vectors, it ultimately returns a solution from a block Krylov subspace.

Related to our results in Section 5, we note that adding small random perturbations to avoid small singular
value gaps or other conditioning issues is a technique that has been employed in several recent works focused on
worst-case runtime bounds for linear algebraic problems [Boutsidis et al., 2016, Peng and Vempala, 2021, Banks
et al., 2022].

2 Notation
We use capital bold letters to denote matrices, lowercase bold letters to denote vectors, and lowercase non-bold
letters to denote scalars. For a matrix Q, we let qi denote the ith column, span(Q) denote its column span, and
Qᵀ denote its transpose. Typically, A ∈ Rn×d denotes our input matrix. We let A = UΣVᵀ denote the SVD
of A, with U ∈ Rn×n,Σ ∈ Rn×n,V ∈ Rd×n. We let σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 denote the singular values of A
(the diagonal entries of Σ). We let Uk ∈ Rn×k and Vk ∈ Rd×k denote the first k columns of U and V, and let
Σk ∈ Rk×k denote the top k×k principal submatrix of Σ. Then Ak = UkΣkV

ᵀ
k is the best rank-k approximation

to A in any unitarily invariant norm. When A is square, we let A = UΛUᵀ be the eigendecomposition of A,
where λ1 ≥ λ2 ≥ . . . ≥ λn are the eigenvalues of A (the diagonal entries of Λ). We often work with symmetric
positive semi-definite (PSD) matrices, which have all non-negative eigenvalues. In this case, the singular values
equal the eigenvalues. We also work with matrix polynomials. If p(x) =

∑q
i=1 cix

i is a polynomial and if A is
square, p(A) :=

∑q
i=1 ciA

i.
We let ∥x∥2 denote the vector ℓ2 norm, ∥A∥2 the spectral norm, ∥A∥F the Frobenius norm, and ∥A∥p =

(
∑p

i=1 σ
p
i )

1/p the Schatten p-norm. Wherever ∥A∥ξ is used, the equation holds for both the spectral and Frobenius
norms. We let [n] = {1, . . . , n} be the set of integers between 1 and n. Finally, we let N (0, I) denote the
distribution over vectors whose entries are i.i.d. mean zero unit variance Gaussians. The dimension will be clear
from context.

3 Proof of Theorem 1.1
In this section, we prove Theorem 1.1 by showing that Sk as described in Section 1.2 is a good enough starting
matrix for block Krylov iteration. This proof serves as a foundation for all additional results in the paper.
Throughout, we assume that A ∈ Rn×n is square and positive semidefinite. We shown in Appendix A that this
is without loss of generality: running Algorithm 1 or Algorithm 2 on a matrix C ∈ Rn×d with SVD C = UΣVᵀ

yields an identical output to running the method on the PSD matrix A = (CCᵀ)1/2 = UΣUᵀ. Further, all
low-rank approximation and singular value approximation results guaranteed for the returned matrix Q directly
carry over from A to C.
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3.1 A naive approach that actually works. As discussed in Section 1.2, our main approach is to view the
single-vector method of Algorithm 1 as a block Krylov method in disguise. Specifically, recall the matrix Sk and
the Krylov subspace from Equations (1.2) and (1.3). Since we now assume that A is PSD, we have AAᵀ = A2,
so we can write

Sk :=
[
x A2x A4x . . . A2(k−1)x

]
(3.4)

and

span(K) = span
([
Sk A2Sk . . . A2qSk

])
,(3.5)

where q := t− k+1. This matches the subspace spanned by K in Algorithm 2 with starting block B = Sk. Since
the output of Algorithm 1 and Algorithm 2 depend only on the span of the Krylov subspace they construct, we
will use this equivalence to appeal to prior results on block Krylov methods to analyze Algorithm 1. To do so,
we need to show that, even though Sk is very much unlike the i.i.d. random starting matrices used in prior work,
it still provides a good enough starting matrix for convergence to a near-optimal low-rank approximation.

Towards that end, we use a natural definition of what it means to be a “good” starting matrix that specifically
will allow us to leverage results on block Krylov methods from [Musco and Musco, 2015] in a black-box way. That
same definition suffices for other results as well [Woodruff, 2014, Drineas et al., 2018]. Intuitively, we require that
a starting matrix B has nontrivial inner product with all of the top k singular vectors of A:

Definition 3.1. ((k, L)-good Starting Matrix) Let A ∈ Rn×d be a matrix with top k left singular vectors
Uk ∈ Rn×k. A matrix B ∈ Rn×k is a (k, L)-good starting matrix for A if, letting Q ∈ Rn×k be an orthonormal
basis for span(B), Uᵀ

kQ is invertible and ∥(Uᵀ
kQ)−1∥22 ≤ L.

The condition above is equivalent to requiring that all singular values of Uᵀ
kQ are at least 1√

L
, or that all principle

angles between span(Uk) and span(B) have cos(θi) ≥ 1√
L

[Drineas et al., 2018].
Using Definition 3.1, we can immediately obtain bounds on the low-rank approximation error of a subspace Q

returned by Algorithm 2 when run with any (k, L)-good starting matrix. We will use such bounds to analyze the
single vector Krylov method of Algorithm 1, after proving that Sk is (k, L)-good. Consider the following bound,
which depends logarithmically on L:

Imported Theorem 3.1. (Theorem 1 of [Musco and Musco, 2015]) Let B ∈ Rn×k be any (k, L)-good
starting matrix (Definition 3.1) matrix for A. If we run Block Krylov iteration (Algorithm 2) for q =
O( 1√

ε
log(nLε )) iterations with starting block B, then the output Q ∈ Rn×k satisfies

∥A−QQᵀA∥ξ ≤ (1 + ε)∥A−Ak∥ξ(3.6)

and, letting qi be the ith column of Q,∣∣qᵀ
i AAᵀqi − σi(A)2

∣∣ ≤ εσk+1(A)2.(3.7)

Imported Theorem 3.1 is implicit in [Musco and Musco, 2015], although, as stated in that work, it is specialized
to when B is a matrix with i.i.d. Gaussian entries. In Appendix F we discuss how the more general result stated
above follows from [Musco and Musco, 2015]. Imported Theorem 3.1 gives two different guarantees. The first
bounds low-rank approximation error, in both the Frobenius and spectral norms. The second shows that the
columns of Q can be used to estimate the top singular values of A. This can be called a “Ritz value guarantee”
or a “singular value guarantee”.

A random Gaussian matrix B can be shown to be an (k,O(nk))-good starting matrix with high probability
(see Lemma 4 in [Musco and Musco, 2015] or [Rudelson and Vershynin, 2010]). This is intuitive, since B will span
a uniformly random subspace, which has non-negligible inner product with any other fixed subspace, including
the one spanned by Uk. For a Gaussian starting block, Imported Theorem 3.1 therefore gives a bound of
O( 1√

ε
log(n/ε)) iterations to achieve Equations (3.6) and (3.7).

The fact that Sk satisfies Definition 3.1 is less clear. Our main technical contribution is to prove that it does,
albeit with a much larger value of L than in the Gaussian case: in Section 3.2 we show that, with probability at
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least 1 − δ, Sk is a (k, L)-good starting matrix for L = O(poly(n/δgkmin)). Here gmin = mini∈{1,...,k−1}
σi−σi+1

σi

is the minimum gap between A’s top k singular values. Since Imported Theorem 3.1 depends logarithmically on
L, it follows that block Krylov with starting block Sk needs O

(
k√
ε
log( 1

gmin
) + 1√

ε
log( n

εδ )
)

iterations to achieve
Equations (3.6) and (3.7) – yielding Theorem 1.1.

In other words, we require k times as many iterations when starting with Sk instead of a fully random B.
However, notice that running Algorithm 2 for q iterations with starting block Sk only requires q + k iterations
of the single vector Krylov method from Algorithm 1, and thus q + k matrix-vector products. In contrast,
running the method with a random B requires qk matrix-vector products. Ultimately, this allows us to achieve in
Theorem 1.1 a total complexity (in terms of matrix-vector products) that matches, and in some cases improves,
the block Krylov method initialized with a Gaussian starting matrix, up to the dependence on log(1/gmin).

3.2 Main Technical Analysis Formally, we prove the following (k, L)-good guarantee for Sk. In combination
with Imported Theorem 3.1 and Equation (3.5), this bound yields Theorem 1.1. It will also serve as the basis for
all of the other results discussed in Section 1.3.

Theorem 3.1. Fix any PSD matrix A ∈ Rn×n with singular values σ1 ≥ . . . ≥ σn, let g be a vector with i.i.d.
mean zero Gaussian entries, and let Sk =

[
g A2g A4g . . . A2(k−1)g

]
. For any δ ∈ (0, 1), with probability

at least 1 − δ, Sk is a (k, L)-good starting matrix for A for L = cnk3 log(n/δ)

δ2g4k
min

. Here c = 2.5π is a fixed constant
and gmin = mini∈{1,...,k−1}

σi−σi+1

σi+1
.

To prove Theorem 3.1, we will need a simple bound on the minimum of k independent Gaussian random
variables:

Lemma 3.1. Let g1, . . . , gk ∼ N (0, 1) and independent. Then, with probability at least ≥ 1− δ, mini g
2
i ≥ 2δ2

πk2 .

Proof. We have that:

Pr[min
i

g2i ≥ t] =
(
1− Pr[g1

2 ≤ t]
)k

=
(
1− 2Pr[0 ≤ g1 ≤

√
t]
)k ≥ (1−

√
1− e−2t/π)k.

The last line uses the bound Pr[0 ≤ g1 ≤
√
t] ≤ 1

2

√
1− e−2x2/π from [Chu, 1955]. Setting the right hand side

equal to 1− δ and solving for t, we get:

t = π
2 ln 1

1−(1−(1−δ)1/k)2
≥ π

2 (1− (1− δ)1/k)2 ≥ π
2 (

δ
k )

2 = πδ2

2k2 .

In the first inequality we used that ln
(

1
1−x

)
≥ x. In the second we used that 1− (1− x)1/k ≥ x

k .

Proof of Theorem 3.1. We first argue that Uᵀ
kSk is invertible. Observe that for any x ∈ Rk, Skx = p̂(A2)g for

some degree k− 1 polynomial p̂ with coefficients determined by the entries in x. We let A = UΣUᵀ be the SVD
of A. Then

Uᵀ
kSkx = Uᵀ

k p̂(A
2)g = Uᵀ

kUp̂(Σ2)Uᵀg = p̂(Σ2
k)g̃,

where Σk contains the top left k elements of Σ and g̃ := Uᵀ
kg ∼ N (0, I) by rotational invariance of the Gaussian

distribution. Note by Lemma 3.1 that mini∈{1,...,k} g̃
2
i ≥ 2δ2

πk2 with probability at least 1 − δ. So altogether, we
can write

∥Uᵀ
kSkx∥22 = ∥Uᵀ

k p̂(A
2)g̃∥22 =

k∑
i=1

(p̂(σ2
i ))

2g̃2i ≥ 2δ2

πk2

k∑
i=1

(p̂(σ2
i ))

2.(3.8)

Since p̂ has degree k − 1, if none of the top k singular values are repeated (i.e., gmin > 0), we have that the right
hand side is nonzero for any nonzero x. Thus, Uᵀ

kSk is invertible.
Now, let Q ∈ Rn×k be any orthonormal basis for span(Sk), so that Sk = QC for some invertible matrix

C ∈ Rk×k (observe that Sk must be full rank since Uᵀ
kSk is invertible). Since Uᵀ

kSk is invertible, we then also know
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that Uᵀ
kQ is invertible, as required by Definition 3.1. We also have Sk(U

ᵀ
kSk)

−1 = QC(Uᵀ
kQC)−1 = Q(Uᵀ

kQ)−1

and therefore ∥Sk(U
ᵀ
kSk)

−1∥22 = ∥Q(Uᵀ
kQ)−1∥22 = ∥(Uᵀ

kQ)−1∥22. So, to prove the theorem, it suffices to bound

∥Sk(U
ᵀ
kSk)

−1∥22 = max
x

∥Sk(U
ᵀ
kSk)

−1x∥22
∥x∥22

= max
x

∥Skx∥22
∥Uᵀ

kSkx∥22
= max

deg(p̂)≤k−1

∥p̂(A2)g∥22
∥Uᵀ

k p̂(A
2)g∥22

.(3.9)

We already bounded the denominator in (3.8). Thus, we turn to the numerator. Since g has i.i.d. mean zero,
unit variance Gaussian entries we have for each i, g2i ≤ 1 + 4 log(1/δ) with probability at least 1− δ by standard
concentration bounds for chi-squared random variables [Laurent and Massart, 2000]. So, by a union bound,
maxi g

2
i ≤ 5 log(n/δ) for n > 2. We thus have:

∥p̂(A2)g∥22 ≤ 5 log(n/δ)
n∑

i=1

(p̂(σ2
i ))

2 ≤ 5n log(n/δ) · max
i∈{1,...,n}

(p̂(σ2
i ))

2.(3.10)

Combining (3.10) and (3.8), we conclude that

∥Sk(U
ᵀ
kSk)

−1∥22 ≤
5πnk2 log(nδ )

2δ2
· max
deg(p̂)≤k−1

maxi∈{1,...,n}(p̂(σ
2
i ))

2∑k
i=1(p̂(σ

2
i ))

2
.(3.11)

We now focus on bounding the maximum in (3.11). Observe that if there were no gap between two of the top
k singular values, then some nonzero polynomial p̂ could make the denominator zero by equaling zero on the at
most k − 1 unique values in σ1, . . . , σk. So, any bound on (3.11) must depend on the minimum gap between
singular values. Second, note that if the maximum in the numerator is achieved for i ≤ k, then the overall ratio
is trivially at most 1. So, without loss of generality, we only consider maxi∈{k+1,...,n}(p̂(σ

2
i ))

2 in the numerator.
To bound this ratio, we follow a similar broad approach to [Saad, 1980], who bounds a related term by

expanding p̂ as an interpolating polynomial. Formally, we write p̂ as a Lagrange interpolating polynomial over
σ2
1 , . . . , σ

2
k:

p̂(x) =

k∑
i=1

ϕiℓi(x) where ϕi := p̂(σ2
i ), ℓi(x) :=

∏
j∈{1,...,k}

j ̸=i

x− σ2
j

σ2
i − σ2

j

, i ∈ {1, . . . , k}.

For any 0 ≤ x ≤ σ2
k we have

|ℓi(x)| ≤
∏

j∈{1,...,k}
j ̸=i

σ2
j

|σ2
i − σ2

j |
≤

∏
j∈{1,...,k}

j ̸=i

σ2
j

|σi − σj |2
≤ 1

g2kmin

,

where the second inequality uses that |σ2
i − σ2

j | ≥ |σi − σj |2 for all σi, σj ≥ 0. Next, we write ϕ = [ϕ1 . . . ϕk] =

[p̂(σ1)
2 . . . p̂(σ2

k)] and obtain:

maxi∈{k+1,...,n} |p̂(σ2
i )|2∑k

i=1(p̂(σ
2
i ))

2
≤

maxx∈[0,σ2
k]
|p̂(x)|2∑k

i=1(p̂(σ
2
i ))

2
=

maxx∈[0,σ2
k]
|
∑k

i=1 ϕiℓi(x)|2∑k
i=1(p̂(σ

2
i ))

2

≤
maxx∈[0,σ2

k]
(∥ϕ∥1 maxi |ℓi(x)|)2

∥ϕ∥22

=
∥ϕ∥21
∥ϕ∥22

max
x∈[0,σ2

k],i∈{1,...,k}
|ℓi(x)|2

≤ k

g4kmin

.

Finally, we plug back into (3.11) to conclude that ∥(Uᵀ
kQ)−1∥22 = ∥Sk(U

ᵀ
kSk)

−1∥22 ≤ 5πnk3

2g4k
minδ

2 log(
n
δ ), which

completes the proof.
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3.3 Proof of Theorem 1.1 As mentioned, Theorem 1.1 follows directly by combining Imported Theorem 3.1
and Theorem 3.1. In particular, since Sk is an (k, L)-good starting matrix for L ≤

(
n

δgk
min

)c
for a constant c, if

we run the block Krylov method initialized with Sk, then with probability at least 1− δ, we obtain Q achieving
the guarantees of Theorem 1.1 after

q = O

(
1√
ε
log

(
nL

ε

))
= O

(
k√
ε
log

(
1

gmin

)
+

1√
ε
log
( n

εδ

))
iterations.

Moreover, by Equation (3.5), the Q returned by Algorithm 2 with Sk as the starting block, is exactly the same
as the Q returned by the single vector Krylov method (Algorithm 1) after q + k iterations. Overall, we get
the following full version of Theorem 1.1, which includes both the low-rank approximation and singular value
guarantees from Imported Theorem 3.1:

Theorem 1.1 Restated. For A ∈ Rn×d, let gmin = mini∈{1,...,k−1}
σi−σi+1

σi
. For any ε, δ ∈ (0, 1), Algorithm 1

initialized with x ∼ N (0, I) and run for t = O( k√
ε
log( 1

gmin
) + 1√

ε
log( n

εδ )) iterations returns an orthogonal
Q ∈ Rn×k such that, with probability at least 1− δ,

∥A−QQᵀA∥ξ ≤ (1 + ε)∥A−Ak∥ξ and
∣∣qᵀ

i AAᵀqi − σi(A)2
∣∣ ≤ εσk+1(A)2.

4 Additional Applications of Main Result
In this section, we leverage our analysis of the starting block Sk to give several results beyond Theorem 1.1. In
Section 4.1, we start by generalizing from using Sk to using Sℓ, which has ℓ ≥ k columns, and lets us obtain faster
rates of convergence when the spectrum of A decays between singular values k and ℓ + 1. Next, in Section 4.2,
we use the results of Theorem 1.1 and Section 4.1 to get a faster rate of convergence in the Frobenius norm,
simplifying the algorithm of [Bakshi et al., 2022]. In Section 4.3, we generalize from the Frobenius norm to
Schatten p-norms, also simplifying [Bakshi et al., 2022]. Lastly, in Section 4.4, we generalize from single vector
Krylov with block size b = 1 to small-block Krylov with any block size b < k.

4.1 Faster Convergence with Spectral Decay As discussed in Section 1, in addition to spectrum-
independent bounds, we know that large block Krylov methods achieve very fast convergence when using block
size ℓ ≥ k if there is a sufficiently large gap between σk and σℓ+1. Formally, [Musco and Musco, 2015] show the
following:

Imported Theorem 4.1. (Theorem 13 of [Musco and Musco, 2015]) Let B ∈ Rn×ℓ be any (ℓ, L)-good
starting matrix (Definition 3.1) matrix for A, for some ℓ ≥ k. If we run Block Krylov iteration (Algorithm 2) for
q = O( 1√

gk→ℓ
log(nLε )) iterations with starting block B, where gk→ℓ =

σk−σℓ+1

σk
, then the output Q ∈ Rn×k satisfies

∥A−QQᵀA∥ξ ≤ (1 + ε)∥A−Ak∥ξ and
∣∣qᵀ

i AAᵀqi − σi(A)2
∣∣ ≤ εσk+1(A)2.

Our second main result shows that the convergence rate of Imported Theorem 4.1 applies to single vector
Krylov as well. In particular, we can simply apply the same idea as was used to prove Theorem 1.1, but with
“simulated block size” ℓ ≥ k. Letting

Sℓ :=
[
x A2x A4x . . . A2(ℓ−1)x

]
and span(K) = span

([
Sℓ A2Sℓ . . . A2qSℓ

])
,

we observe that single vector Krylov run for t iterations exactly computes span(K) for q = t− ℓ+1. This lets us
show that single vector Krylov run for t iterations essentially matches the convergence rate of block Krylov run
for ≈ t/ℓ iterations:

Theorem 4.1. (Spectral Decay Convergence) For A ∈ Rn×d and ℓ ≥ k, let gmin = mini∈{1,...,ℓ−1}
σi−σi+1

σi+1

and gk→ℓ = σk−σℓ+1

σk
. For any ε, δ ∈ (0, 1), Algorithm 1 initialized with x ∼ N (0, I) and run for t =

O( ℓ√
gk→ℓ

log( 1
gmin

) + 1√
gk→ℓ

log( n
δε )) iterations returns an orthogonal Q ∈ Rn×k such that, with probability at

least 1− δ,

∥A−QQᵀA∥ξ ≤ (1 + ε)∥A−Ak∥ξ and
∣∣qᵀ

i AAᵀqi − σi(A)2
∣∣ ≤ εσk+1(A)2.
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Proof. By Theorem 3.1, we know that Sℓ is an (ℓ, L)-good starting matrix for block Krylov iteration on A, where
L ≤ ( n

δgℓ
min

)c for a constant c. So, by Imported Theorem 4.1, we find that block Krylov iteration with starting
block Sℓ converges in

q = O

(
1

√
gk→ℓ

log

(
nL

ε

))
= O

(
ℓ

√
gk→ℓ

log

(
1

gmin

)
+

1
√
gk→ℓ

log
( n

δε

))
iterations. Moreover, by Equation (3.5), the Q returned by Algorithm 2 with Sℓ as the starting block is exactly the
same as the Q returned by the single vector Krylov method (Algorithm 1) after q+ ℓ iterations, which completes
the proof.

Comparison to Prior Bounds. In terms of the number of matrix-vector products computed, Theorem 4.1 can
significantly improve upon the prior work for large k. [Musco and Musco, 2015] require using a block size ℓ ≥ k
for t = O( 1√

gk→ℓ
log( n

δε )) iterations, or equivalently for O( 1√
gk→ℓ

· ℓ log( n
δε )) matrix-vector products. Assuming

that gmin is a constant, our guarantee for single vector Krylov methods only requires O( 1√
gk→ℓ

(ℓ + log( n
εδ )))

matrix-vector products. That is, we reduce the product between ℓ and log( n
δε ) into a sum, suggesting a nearly

ℓ-fold speedup when we want high precision results. Further, we obtain the above guarantee for any ℓ ≥ k,
meaning that single vector Krylov automatically competes with the bound for the best possible choice of block
size, without knowing it in advance. We observe in Section 6.5 that the above theoretical advantages translate
into practice – for matrices with decaying singular value spectra, we find that single vector Krylov methods
substantially outperform large block methods.
Comparison to Lower Bounds. It is worth comparing Theorem 4.1 to the lower bound of [Simchowitz et al.,
2018], who show that finding an orthogonal matrix Q ∈ Rn×k such that

∑k
i=1 q

ᵀ
i Aqi ≥ (1−ε)

∑k
i=1 σi(A) requires

at least Ω( k logn√
gk→k

) matrix-vector products when ε = gk→k = σk−σk+1

σk
. In comparison, applying Theorem 4.1 with

ℓ = k yields an upper bound of roughly O(k log(1/gmin)√
gk→k

+ logn√
gk→k

), which only does not violate the lower bound
of [Simchowitz et al., 2018] since 1

gmin
= poly(n) for their input. I.e., their input suffers from very small singular

value gaps.
When k = 1, the intuition for the log n dependence is that since a random start vector has 1

poly(n) inner
product with the top singular vector, it requires log n iterations to converge. The matching upper and lower
bounds of Θ( k logn√

gk→k
) from [Musco and Musco, 2015] and [Simchowitz et al., 2018] suggest that the cost of rank-k

approximation is simply k times the cost of rank-1 approximation, i.e., roughly k log n. In fact, the situation is
more nuanced. Our work suggests that, unless gaps between singular values are very small, the cost of rank-k
approximation is much actually cheaper.

4.2 Improved Results for Frobenius Norm Low-Rank Approximation Theorem 4.1 shows that single
vector Krylov methods achieve strong spectrum-adaptive guarantees, converging at essentially the same rate as
the best choice of block size, if not faster. As a concrete application of this observation, we show that single
vector Krylov methods automatically match a recent result of [Bakshi et al., 2022] on Frobenius norm low-rank
approximation. [Bakshi et al., 2022] propose an algorithm that combines the results of running block Krylov
iteration twice, once with block size k for Õ( 1

ε1/3
) iterations and once with block size O( k

ε1/3
) for Õ(1) iterations.

Their algorithm obtains a (1 + ε) optimal low-rank approximation in the Frobenius norm using Õ( k
ε1/3

) matrix-
vector products instead of Õ( k√

ε
), as required by Theorem 1.1. Since Theorem 1.1 and Theorem 4.1 show that

single vector Krylov methods match the convergence rates of both block size k and block size O( k
ε1/3

), they
therefore match the result of [Bakshi et al., 2022]. Formally we have:
Theorem 4.2. For A ∈ Rn×d, let gmin = mini∈{1,...,ℓ−1}

σi−σi+1

σi+1
where ℓ = Θ( k

ε1/3
). For any ε, δ ∈ (0, 1),

Algorithm 1 initialized with x ∼ N (0, I) and run for t = O( k
ε1/3

log( 1
gmin

) + 1
ε1/3

log( n
δε )) iterations returns an

orthogonal Q ∈ Rd×k such that, with probability at least 1− δ, we have

∥A−QQᵀA∥F ≤ (1 + ε)∥A−QQᵀA∥F .

We formally prove Theorem 4.2 in Appendix B, by generalizing and formalizing an analysis stated in the
introduction of [Bakshi et al., 2022]. We note that, in concurrent work, [Bakshi and Narayanan, 2023] show
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a similar result which has no gmin dependence and further removes the log n dependence. However, their bound
only applies to the special case of rank-1 approximation.

4.3 Improved Rates for Schatten Norm Low-Rank Approximation The work of [Bakshi et al., 2022]
also gives bounds for low-rank approximation in general Schatten p-Norms for any p ≥ 1. They show that by
running Krylov iteration 4 times, on both A and Aᵀ and with both a relatively small block size ℓ = k and a
relatively large block size ℓ = Õ( k

ε1/3
), they can recover a low-rank approximation to A in the Schatten p-norm

using Õ(kp
1/6

ε1/3
) matrix-vector multiplications. As in the case of Frobenius norm low-rank approximation, we show

that we can match this entire process with a single instantiation of single vector Krylov, yielding:

Theorem 4.3. (Schatten-p Norm Low-Rank Approximation) For A ∈ Rn×d and p ≥ 1, let gmin =
mini∈{1,...,ℓ−1}

σi−σi+1

σi+1
where ℓ = Θ( k

ε1/3p1/3 ). For any ε, δ ∈ (0, 1), let Q ∈ Rd×k be the result of running
Algorithm 1 on Aᵀ initialized with x ∼ N (0, I) and run for

t = O
(

kp1/6

ε1/3
log( 1

gmin
) + (

√
p+ p1/6

ε1/3
) log(npδε )

)
= Õ

(
kp1/6

ε1/3
+
√
p
)

iterations. Let Z ∈ Rn×k be an orthonormal basis for AQ. Then, with probability at least 1− δ,

∥A− ZZᵀA∥p ≤ (1 + ε)∥A−Ak∥p,

where ∥A∥p := (
∑n

i=1 σi(A)p)1/p is the Schatten p-norm.

We prove Theorem 4.3 in Appendix C. Unlike our previous results, Theorem 4.3 first uses single vector Krylov to
compute an orthonormal basis Q, but then outputs Z, which is an orthonormal basis for AQ. We suspect that
this two-step process is an artifact of the analysis in [Bakshi et al., 2022], and that simply returning the output
of a single vector Krylov method suffices.

Note that since the same single vector Krylov method obtains the result of Theorem 4.3 for any choice of p,
and setting p = O( logn

ε ) closely approximates the Schatten-∞ norm (i.e., the spectral norm), we achieve the best
known result for outputting a low-rank approximation simultaneously in all Schatten p-norms:

Corollary 4.1. For A ∈ Rn×d, let gmin = mini∈{1,...,ℓ−1}
σi−σi+1

σi+1
where ℓ = Θ( k

log1/3(n)
). For any ε, δ ∈ (0, 1),

let Q ∈ Rd×k be the result of running Algorithm 1 on Aᵀ initialized with x ∼ N (0, I) and run for

t = O

(
k log

1
6(n)√
ε

log( 1
gmin

) +

√
log(n)√

ε
log( n

δε )

)
= Õ

(
k√
ε

)
iterations. Let Z ∈ Rn×k be an orthonormal basis for AQ. Then, for εp := ε ·min{1,

√
pε

log(n)} ≤ ε, with probability
at least 1− δ, simultaneously for all p ≥ 1,

∥A−QQᵀA∥p ≤ (1 + εp)∥A−Ak∥p.

A similar but weaker guarantee is available from [Bakshi et al., 2022]. They show that running four Block Krylov
methods with block size choices depending on p suffices to obtain a low-rank approximation in the Schatten
q-norm for all q ≤ p. If we let p = O( logn

ε ), so that ∥A∥p approximates the spectral norm, then, their result
shows that Õ( k√

ε
) matrix-vector products suffice to output a (1 + ε) relative error low-rank approximation in all

Schatten norms, including the Frobenius norm. In contrast, Theorem 4.2 shows that running single vector Krylov
for Õ( k√

ε
) iterations actually gives a better relative error of (1 + ε3/2) in the Frobenius norm.

4.4 General Bounds for Small-Block Methods Our approach to analyzing single vector Krylov also extends
to ‘small-block’ Krylov methods, which use block size 1 < b < k. Such methods are common in practice as they
help avoid slow convergence due to nearby singular values: intuitively, we expect a block size of b to be effective
even when the input A has clusters of at most b very close singular values. Additionally, parallelism often lets
us compute multiple matrix-vector products with A just as quickly as computing a single matrix-vector product,
with incentives the use of a block size > 1.
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We outline results for small block methods in this section, but defer proofs to Appendix E. To start, we
generalize the notion of a gap between singular values:

Definition 4.1. Fix block size b ∈ [k]. For each i ∈ [k], we let Ni ⊂ [k] \ {i} be the indices of the b− 1 singular
values other than i that minimize |σi−σj

σj
|. Then let gmin,b be the bth-order gap of A:

gmin,b = min
i∈[k]

min
j∈[k]\Ni,j ̸=i

∣∣∣∣σi − σj

σj

∣∣∣∣ .
If b = k, then the sets Ni have no terms, and we define gmin,b := 1.

If b = 1, then we see that the sets Ni are empty, and we recover gmin,b = gmin as defined in Theorem 1.1. If
b = k, then gmin,b is just 1, which matches the fact that block size k does not require a gap dependence [Musco
and Musco, 2015]. If e.g., b = 2 and A has two identical singular values, then we may still have gmin,b > 0, and so
an algorithm can depend on 1

gmin,b
without risking total failure. With this characterization of small-block gaps,

we prove the following generalization of Theorem 3.1 in Appendix E:

Theorem 4.4. Fix any PSD A ∈ Rn×n and block size b ∈ {1, . . . , k}. Let G ∈ Rn×b be a matrix with i.i.d.
N (0, 1) entries, and let Sr =

[
G A2G A4G . . . A2(r−1)G

]
, where r = k − b + 1. For any δ ∈ (0, 1), with

probability at least (1− δ), there exists a matrix Q ∈ Rn×k that lies in the span of Sr and is a (k, L)-good starting
matrix for A for L = cb2k2n log(1/δ)

δ2g
4(k−b)
min,b

. Here, c is a fixed constant.

Above, the starting block Sr has rb ≈ b(k − b) columns, which can be larger than k. Theorem 4.4 shows that
there exists a matrix Q ∈ Rn×k in the span of Sr which satisfies the (k, L)-good property of Definition 3.1. Since
the Krylov subspace generated by Q lies within the Krylov subspace generated by Sr, we can thus use Imported
Theorem 3.1 and Imported Theorem 4.1 to obtain guarantees for the subspace generated by Sr. For a formal
argument, see Appendix E. Overall, by plugging in the value of L = poly( n

δgk−b
min,b

) into these theorems, we achieve
similar guarantees as for single vector Krylov, but with a dependence on gmin,b. For instance, we generalize
Theorem 1.1, obtaining:

Theorem 4.5. For A ∈ Rn×d and b ≤ k, let gmin,b as in Definition 4.1. For any ε, δ ∈ (0, 1), Algorithm 2
initialized with i.i.d. N (0, 1) matrix G ∈ Rn×b and run for t = O(k−b√

ε
log( 1

gmin,b
) + 1√

ε
log( n

δε )) iterations returns
an orthogonal Q ∈ Rn×k such that, with probability at least 1− δ,

∥A−QQᵀA∥ξ ≤ (1 + ε)∥A−Ak∥ξ and
∣∣qᵀ

i AAᵀqi − σi(A)2
∣∣ ≤ εσk+1(A)2.

In particular, this requires O( b(k−b)√
ε

log( 1
gmin,b

) + b√
ε
log( n

δε )) matrix-vector products with A.

For constant b = O(1), the above theorem recovers the same asymptotic matrix-vector complexity as Theorem 1.1
but with an improved dependence on singular value gaps. For k − b = O(1), it nearly matches the matrix-vector
complexity of block Krylov with block size k, but with a very mild gap dependence. When b = k

2 , we get the worst
of both worlds, needing m = Õ( k2

√
ε
) matrix-vector products. This may be a limitation of our proof techniques: it

could be possible to show that the matrix-vector complexity scales linearly in k for any block size.
Further, observe that by using Theorem 4.4, the spectrum-adaptive results of Section 4.1, the fast Frobenius

results of Section 4.2, and the fast Schatten norm results of Section 4.3 also apply in the general block size b ≤ k
case. Wherever those theorems have gmin, we replace this with gmin,b, where gmin,b is defined now across the top
ℓ− b singular values instead of the top k − b.

5 Random Perturbation Analysis
Theorems 1.1, 4.1, 4.3 and 4.5 all show that single vector or small-block Krylov methods match or improve the
existing bounds for large block methods, up to a factor of log( 1

gmin
). Single vector methods cannot avoid this

dependence in general: if one of A’s top singular values is repeated, so that gmin = 0, then the Krylov subspace can
be rank deficient and fail to converge to the top subspace of A. To address this possible point of failure, we take
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a smoothed-analysis approach, showing that if our input instance is subjected to a small random perturbation,
the dependence on gmin can be removed. The key tool we leverage is a line of work from random matrix theory
called eigenvalue repulsion, which shows that small eigenvalue gaps are brittle: by adding a tiny amount of
random noise to any matrix, we can ensure that its eigenvalues are well separated [Minami, 1996, Nguyen et al.,
2017, Beenakker, 1997].

5.1 Gap-Independent Bounds for PSD Matrices Our first result shows that we can remove the dependence
on gmin when our input matrix A is PSD. In Section 5.2, we show that this result gives some bounds for non-PSD
matrices as well. Our result leverages the following eigenvalue repulsion bound, which we derive in Appendix D.1
using a result of [Minami, 1996].

Lemma 5.1. Fix symmetric matrix A ∈ Rn×n, δ ∈ (0, 1), and ∆ ≤ ∥A∥2. Let D ∈ Rn×n be a diagonal matrix
whose entries are uniformly distributed in [−∆,+∆]. Then, letting Ã = A + D and letting C denote some
universal constant, with probability at least 1− δ,

min
i∈[n−1]

|λi(Ã)− λi+1(Ã)|
|λi+1(Ã)|

≥ δ

Cn2
· ∆2

∥A∥22
.

That is, by adding a small amount of noise to the diagonal of A, we can ensure its eigenvalue gaps are polynomially
large in the problem parameters. While Lemma 5.1 holds for general symmetric matrices, we will apply it
specifically to PSD A in our analysis, since for indefinite matrices, having large eigenvalue gaps does not necessarily
imply having singular value gaps, which are required for our convergence results for single vector Krylov methods.
It would be interesting to prove an analogous result to Lemma 5.1 that applies directly to singular values and use
it to generalize our results beyond PSD matrices.

Naturally, the larger the perturbation parameter ∆ in Lemma 5.1, the larger the resulting gaps. Thus, ∆ gives
a tradeoff between runtime and accuracy: higher ∆ leads to larger gaps and thus faster convergence. However,
it will also make the result of our algorithms less accurate. In Appendix D.2 we show that picking ∆ such that
∥D∥2 ≤ εσk+1(A)

n suffices to guarantee that a near-optimal low-rank approximation of Ã is also near optimal for
A:

Lemma 5.2. Let Ã = A + D where ∥D∥2 ≤ ε
3nσk+1(A) and ε ∈ (0, 1). Fix any Q ∈ Rn×k with orthonormal

columns q1, . . . ,qk. Then, with probability at least 1− δ,

1. If |qᵀ
i ÃÃᵀqi − σi(Ã)2| ≤ εσk+1(Ã)2, then |qᵀ

i AAᵀqi − σi(A)2| ≤ 8εσi(A)2.

2. If ∥Ã−QQᵀÃ∥2 ≤ (1 + ε)∥Ã− Ãk∥2, then ∥A−QQᵀA∥2 ≤ (1 + 2ε)∥A−Ak∥2.

3. If ∥Ã−QQᵀÃ∥F ≤ (1 + ε)∥Ã− Ãk∥F , then ∥A−QQᵀA∥F ≤ (1 + 4ε)∥A−Ak∥F .

In particular, since we pick D to be diagonal, we have ∥D∥2 ≤ ∆ ≤ εσk+1(A)
3n . Lemmas 5.1 and 5.2 then together

imply the following gap-independent variant of Theorem 1.1 for PSD matrices.

Corollary 5.1. (Gap-Independent Convergence) For PSD A ∈ Rn×n, let κk = σ1

σk
and ∆ = εσk+1

3n . For
any ε, δ ∈ (0, 1

2 ), let Ã = A +D where D ∈ Rn×n is a diagonal matrix with entries drawn uniformly and i.i.d.
from [−∆,∆]. Then, Algorithm 1 run on Ã initialized with x ∼ N (0, I) and run for t = O( k√

ε
log(nκk

δε )) iterations
returns orthogonal Q ∈ Rn×k such that, with probability at least 1− δ,

∥A−QQᵀA∥ξ ≤ (1 + ε)∥A−Ak∥ξ and
∣∣qᵀ

i AAᵀqi − σi(A)2
∣∣ ≤ εσk+1(A)2.

Proof. Proving this result simply requires showing that Lemma 5.1 implies gaps between A’s singular values.
This is not immediate since, even if we assume A is PSD, Ã might not be, so could have negative eigenvalues.
An eigenvalue at η and another eigenvalue at −η, which would give a singular value gap of 0, which we need to
rule out. To do so, note that ∥D∥2 = maxi |Di,i| ≤ ∆ < εσk+1(A). So by assuming that A is PSD, we know that
for any negative eigenvalue λi(Ã) of Ã,

|λi(Ã)| ≤ |λi(Ã)− λi(A)| ≤ ∥D∥2 < εσk+1(A) ≤ σk+1(Ã).
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The last inequality assumes ε ≤ 1
2 to say that σk+1(Ã) ≥ σk+1(A)−∥D∥2 ≥ (1− ε)σk+1(A) ≥ εσk+1(A). So, we

know that if λi(Ã) < 0 then any singular value associated with λi(Ã) is not one of the top k singular values of Ã.
So, the top k singular values of Ã must all be associated with nonnegative eigenvalues. That is σi(Ã) = λi(Ã)
for i ∈ [k]. And so, we find that

gmin = min
i∈{1,...,k−1}

|σi(Ã)− σi+1(Ã)|
σi+1(Ã)

= min
i∈{1,...,k−1}

|λi(Ã)− λi+1(Ã)|
|λi+1(Ã)|

≥ δ

Cn2
· ∆2

∥A∥22
.

To complete the theorem, we then plug in ∆ = εσk+1

3n , getting

gmin ≥ δ

Cn2
·

ε2σ3
k+1

9n2

σ2
1

=
δε2

9Cn4κ2
k

.

We then appeal to Theorem 1.1 to get the final iteration complexity of t = O( k√
ε
log( 1

gmin
) + 1√

ε
log( n

εδ )) =

O( k√
ε
log(nκk

δε )).

Up to a logarithmic dependence on κk, Corollary 5.1 exactly matches the gap-independent low-rank approximation
for the block Krylov method [Musco and Musco, 2015]. The same approach can be generalized to give analogs to
Theorem 4.1, Theorem 4.2, Theorem 4.3, and Corollary 4.1 with a dependence on κk instead of gmin.

Corollary 5.1 can be interpreted in several ways. In practice, it is unlikely that adding random noise is in
fact needed to break small singular value gaps. Noise inherent in the input matrix or due to roundoff error will
generally suffice to rule out the existence of tiny singular value gaps. Thus, the corollary can be thought of as
a smoothed-analysis result [Spielman and Teng, 2004, Sankar et al., 2006], showing that single vector Krylov
methods display gap-independent convergence even on input instances which are tiny random perturbations
of potentially worst-case instances. Alternatively, when rigorous worst-case guarantees are required, we could
actually run Algorithm 1 on the true input matrix A with a random diagonal perturbation added. Since D is
diagonal, the runtime of matrix-vector products with Ã will generally be dominated by the runtime of matrix-
vector products with A, so this is very efficient. We experimentally explore the convergence of this perturbed
iteration on a PSD matrix in Section 6.4.

5.2 Gap-Independent Bounds for Rectangular and Indefinite Inputs We next observe that Corol-
lary 5.1 gives results for non-PSD matrices as well, at least for low-rank approximation with respect to the
spectral norm. In this case, we can run a single vector Krylov method on a perturbation of PSD matrix AAᵀ.
This suffices because the spectral norm guarantee has the property that a near-optimal basis for approximating
AAᵀ is also a near-optimal for A:
Lemma 5.3. Let A ∈ Rn×d. Let Q ∈ Rn×k be a matrix with orthonormal columns such that ∥AAᵀ −
QQᵀAAᵀ∥2 ≤ (1 + ε)∥AAᵀ − (AAᵀ)k∥2. Then, ∥A−QQᵀA∥2 ≤ (1 + ε)∥A−Ak∥2.
Proof. Let P := I − QQᵀ. Observe that ∥AAᵀ − (AAᵀ)k∥2 = σk+1(A)2, so we are given that ∥PAAᵀ∥2 ≤
(1 + ε) σk+1(A)2. Next note that P is a projection matrix, which can only decrease spectral norms, so we have

∥PA∥22 = ∥(PA)(PA)ᵀ∥2 = ∥PAAᵀP∥2 ≤ ∥PAAᵀ∥2 ≤ (1 + ε) σk+1(A)2.

Taking the square root of both sides, and noting that
√
1 + ε ≤ 1 + ε, we conclude that ∥A − QQᵀA∥2 ≤

(1 + ε)σk+1(A) = (1 + ε)∥A−Ak∥2.
Combining Lemma 5.3 with Lemma 5.3 we obtain the following result:

Corollary 5.2. For A ∈ Rn×d, let κk = σ1

σk
and ∆ =

εσ2
k+1

3n . For any ε, δ ∈ (0, 1
2 ), let Ã = AAᵀ + D where

D ∈ Rn×n is a diagonal matrix with entries drawn uniformly and i.i.d. from [−∆,∆]. Then, Algorithm 1 run on
Ã initialized with x ∼ N (0, I) and run for t = O( k√

ε
log(nκk

δε )) iterations returns an orthogonal Q ∈ Rn×k such
that, with probability at least 1− δ,

∥A−QQᵀA∥2 ≤ (1 + ε)∥A−QQᵀA∥2.

Note that it is not clear that Lemma 5.3 extends beyond the spectral norm, e.g., to the Frobenius norm.
Nevertheless, we suspect that a result comparable to Corollary 5.2 should hold for all other error metrics considered
in this paper.
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6 Numerical Experiments
In this section we validate the core findings of our theoretical results with numerical experiments. We focus on
four key findings. In Section 6.2, we verify that the dependence of single vector Krylov on the sequential gap size
gmin is in fact logarithmic, matching the theoretical bounds of Sections 3 and 4. In Section 6.3, we show that
using a small block size b > 1 can ameliorate this gap dependence, by replacing log(1/gmin) with log(1/gmin,b) as
shown in Theorem 4.5. Relatedly, in Section 6.4 we show that a small random perturbation of the input matrix
can break up overlapping singular values and lead to much faster convergence of the single vector Krylov method,
matching our theoretical findings from Section 5. In Section 6.5 we compare single vector and large block Krylov
methods. We find that for a wide range of matrices, single vector Krylov methods significantly outperform larger
block methods. However, for some very specific worst case instances, large block methods can perform better.

Finally, while our theoretical bounds ignore issues of numerical stability, in Section 6.6, we observe empirically
that small block methods tend to have significantly more issues with stability than large block methods. Exploring
this issue further in future work would be very interesting.

6.1 Experimental Set Up To control against stability issues in our primary experiments, we implement
algorithms Algorithm 1 and Algorithm 2 using a full reothogonalization strategy to keep the Krylov subspace
close to orthogonal. At every iteration of the (block) Krylov iteration, we orthogonalize the most recently
generated column (resp. block) of the Krylov subspace against all previous columns (resp. blocks) using the
modified Gram-Schmidt process. At the next iteration, this column (resp. block) is multiplied by A to produce a
new column (resp. block) of the Kyrlov subspace. See Section 6.6 for more details or our code, which is available
on GitHub5.

We also note that, like most standard implementations, including those based on the Lanczos recurrence, our
code implements Algorithm 1 run for t iterations using t+ 1 matrix-vector products with AAᵀ. To see why this
is possible, note that the matrix AAᵀZ computed on Line 2 of the algorithm can be formed “on-the-fly” as we
generate the Krylov subspace. Let zi be the ith column in Z. At each iteration we already compute AAᵀzi for
column zi to form column zi+1, so can just store this result to form AAᵀZ. Similarly, implementing Algorithm 2
requires (t+ 1)ℓ matrix-vector products with AAᵀ.

Throughout our experiments, we only report low-rank approximation error in terms of the Frobenius norm, as
we found convergence in the spectral and Frobenius norms typically matched quite closely. In particular, letting
Q be the output of Algorithm 1 or Algorithm 2, we report

εempirical :=
∥A−QQᵀA∥F − ∥A−Ak∥F

∥A−Ak∥F
.

Our theory describes how εempiricial should change as a function of the number of iterations, the block size, and
the singular value gaps of A.

Lastly, we note that, since Krylov methods initialized with random Gaussian vectors are invariant to rotation,
without loss of generality we test on diagonal input matrices for all synthetic data experiments. Each matrix’s
diagonal entries correspond to its singular values.

6.2 Verifying Gap Dependence We first empirically show that single vector Krylov has a logarithmic
dependence on the minimum sequential gap size gmin = mini∈[k−1]

σi−σi+1

σi+1
, as predicted by the bounds of

Sections 3 and 4. We consider an exponentially decaying spectrum with parameter α = 1.1 whose singular
values are all nearly repeated, with gap sizes varying between gmin ∈ [10−10, 1]. That is, letting our vector of
singular values be denoted σ = [σ1, . . . , σn] so that A = diag(σ), and fixing n = 1000, we let

σ =
[
1, 1

1+gmin
, α−1, α−1

1+gmin
, α−2, α−2

1+gmin
, . . . α−499, α−499

1+gmin

]
.(6.12)

Since this matrix has a fast decay of singular values, we expect the performance of single vector Krylov to
follow the spectral decay rate of Theorem 4.1. That is, fixing the dimension d and failure probability δ, we should
expect the number of iterations to scale as:

t ∝ ℓ√
gk→ℓ

log
(

1
gmin

)
+ 1√

gk→ℓ
log
(
1
ε

)
.

5https://github.com/RaphaelArkadyMeyerNYU/SingleVectorKrylov
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Figure 3: Low-rank approximation error vs. minimum gap size for diagonal A ∈ R1000×1000 with singular values σ
as described in Equation (6.12). For 8 different gap sizes logarithmically spaced in [10−10, 1], we run single vector
Krylov for t = 25, 26, . . . , 34 iterations with target rank k = 10. The median of εempirical over 500 independent
trials is plotted, with the 25th and 75th quartiles shaded in. When εempirical < 10−15, we plot it at 10−15 so that
the log/log plot does not degenerate. As expected given the theoretical bound of Theorem 4.1, we see a linear
relationship between the log relative error and log gap size.

Rearranging this expression, we can equivalently expect

log(ε) = −t
√
gk→ℓ − ℓ log(gmin)

= − Ct − ℓ log(gmin)

where Ct := t
√
gk→ℓ is independent of gmin. So, if we plot εempirical versus gmin on a log/log plot for a fixed

value of t, we should see a line with negative slope. Further, since the vertical offset of these lines are Ct ∝ t, we
should expect that increasing t should shift these lines downwards and proportionally to t. We see this behavior
exactly in Figure 3.

6.3 Verifying the Effect of Block Size on Gap Dependence We next show that when A has very small
singular value gaps (or even exactly overlapping singular values), the dependence on log(1/gmin) can be avoided by
using a small constant block size b. This lets us instead depend on log(1/gmin,b), as in the analysis of Theorem 4.5.

We focus on when A has pairs, but not triplets, of exactly overlapping singular values. In this case, block
Krylov with block size b = 2 should perform well, since it should not suffer due to the overlapping singular values.
Further, it should match or outperform larger block methods. To show this, we construct an exponentially
decaying spectrum with parameter α = 1.005 and whose top k = 50 singular values are each repeated, with
sequential gap size gmin = 0. Formally, we choose 1000 singular values as follows:

σA =
[
1 1 α−1 α−1 α−2 α−2 . . . α−25 α−25

]
σB =

[
α−26 α−27 α−28 . . . α−975

]
σ = [σA σB ] .(6.13)

In theory, single vector Krylov should completely fail in this case, only capturing a k/2-dimensional subspace
of the span of the top k singular vectors. Due to finite precision roundoff, the method nevertheless converges.
However, it is still significantly handicapped by the repeated singular values.

In Figure 4 we plot the low-rank approximation error vs. number of matrix-vector products of single vector
Krylov and block Krylov with block sizes 2, 3, and 50, for target rank k = 50. We show both y-linear and y-
logarithmic plots to highlight the performance at early and later iterations. We see that block size 2 performs the
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Figure 4: Low-rank approximation error vs. number of matrix-vector products for diagonal A ∈ R1000×1000 with
repeated top singular values as in Equation (6.13). We run Krylov iteration with target rank k = 50 for block
sizes b = 1, 2, 3, 50. The median of εempirical over 10 independent trials is plotted, with the 25th and 75th quartiles
shaded in. Note that these quartiles are very close together in this example. When εempirical < 10−15, we plot it at
10−15 so that the plot does not degenerate. The plot on the left has a linear y-axis and highlights the performance
for early iterations, while the plot on the right uses a logarithmic y-axis and highlights the performance for later
iterations. Overall, we see that block size b = 2, which is just large enough to avoid the repeated pairs of singular
values in A’s spectrum, performs best. Single vector Krylov is handicapped by the repeated singular values,
especially at early iterations. Large block Krylov converges at a significantly slower rate than the small block
variants.

best across the board, and that block size 3 is only mildly worse. Due to the repeated singular values, single vector
Krylov performs worse, especially for the early iterations. It becomes competitive with block size 3 eventually. In
contrast, the full block size k method converges much more slowly.

6.4 Verifying the Effect of Random Perturbations on Gap Dependence Next, we show that adding a
small amount of random noise to break up small singular value gaps can also make single vector Krylov converge
more quickly, verifying the results of Section 5. We use the same matrix as in Section 6.3, with spectrum given
in Equation (6.13). In Figure 5, we show that adding noise to A the order of 10−6 leads to single vector Krylov
converging nearly as quickly as the optimal b = 2 block Krylov method as seen in Section 6.3. This noise does
limit our eventual accuracy at convergence, which can be seen clearly in our logarithmic error plot. Changing the
magnitude of the noise lets us interpolate between fast convergence and high accuracy.

6.5 Effect of Block Size in Convergence We next present a wider comparison of how the choice of block
size for Krylov iteration effects convergence to a near-optimal low-rank approximation. We fix target rank k = 50
and compare block sizes 1, 2, 3, 50, and 54. Block size 1 corresponds to the single vector Krylov method. Block
sizes 2 and 3 should be more resilient to a pairs or triplets of very close singular values, respectively. Block sizes k
and k+4 are recommended by prior theoretical work on Krylov Iteration for low-rank approximation [Musco and
Musco, 2015, Tropp, 2018]. We consider eight input matrices. All synthetic inputs are 1000× 1000 and diagonal.

1. Exponential Decay: σi = α−i for α ∈ {1.001, 1.01, 1.1}

2. Polynomial Decay: σi = i−β for β ∈ {0.1, 0.5, 1.5}

3. Repeated Singular Values: A matrix with each of its top k singular values repeated, as defined in
Equation (6.13).
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Figure 5: Low-rank approximation error vs. number of matrix-vector products for diagonal A ∈ R1000×1000 with
repeated top singular values as described in Equation (6.13). We run the single vector Krylov method with target
rank k = 50, with varying levels of noise added to A to separate its repeated singular values. In particular,
following Corollary 5.1, we run the method on A +D where D ∈ R1000×1000 is a random diagonal matrix with
entries drawn uniformly on [−∆,∆], for ∆ ∈ {10−6, 10−10, 10−14, 0}. Low-rank approximation error is measured
with respect to the original input A. For comparison, we also show performance of block Krylov with block size
b = 2 with no noise added. This was the optimal block size for this spectrum as seen in Figure 4. The median
of εempirical over 10 independent trials is plotted, with the 25th and 75th quartiles shaded in. Note that these
quartiles are very close together in this example. When εempirical < 10−15, we plot it at 10−15 so that the plot
does not degenerate. The plot on the left has a linear y-axis and highlights the performance for early iterations,
while the plot on the right uses a logarithmic y-axis and highlights the performance for later iterations. We can
see that by adding a small random perturbation, we can improve the convergence of single vector Krylov to nearly
match that of block Krylov with b = 2. Larger noise leads to faster convergence but also larger final error.

4. Wishart Lower Bound: σi =
√
1− ( i

1000 )
2. This is an approximation of the spectrum of I − 1

5nG
ᵀG

where G1000×1000 has i.i.d N (0, 1) entries. This matrix is used as a lower bound instance for rank-1 low-rank
approximation in [Bakshi et al., 2022].

5. nd3k, appu, human_gene_2, exdata_1: Various real-world matrices arbitrarily chosen from SuiteS-
parse [Davis and Hu, 2011].

We can see the results of these experiments in Figure 6. We see that for all except the repeated singular value
and Wishart lower bound matrices, single vector Krylov dominates. For the repeated singular value matrix, as in
Section 6.3, we see that block size 2 dominates again. For the Wishart lower bound matrix from [Bakshi et al.,
2022], we see that large block methods marginally (though consistently) outperform small block methods. This
lower bound instance is designed to force Krylov methods to converge at a rate of 1

ε1/3
, instead of at the spectral

decay rate 1√
gk→ℓ

. This seems to makes the rate of convergence of single vector Krylov slower than block Krylov,
since we pay a log(1/gmin) dependence, while only benefiting a small amount from separating the k and log(n/ε)
dependence (see Theorem 1.1). In contrast, the other figures show matrices where the spectral decay rate controls
convergence, where single vector Krylov still pays log(1/gmin) but seems to see performance gains from being
able to simulate general block sizes and from separating the log(n/ε) dependence from the (simulated) block size
dependence (see Theorem 4.1).

6.6 Block Size and Numerical Stability It is well known that Krylov methods can suffer from numerical
stability issues [Golub and Van Loan, 2013, Meurant and Strakoš, 2006]. In particular, the iterates (AAᵀ)tg
approach the same vector (the top singular vector of A) as t grows large. So, K becomes ill-conditioned. So far,
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Figure 6: Low-rank approximation error vs. number of matrix-vector products for Krylov iteration with various
block sizes on synthetic and real-world input matrices as described in Section 6.5. In all cases, the target rank
is set to k = 50. The median of εempirical is plotted over 10 independent trials, with the 25th and 75th quartiles
shaded in. Note that these quartiles are very close together in most plots. When εempirical < 10−15, we plot it at
10−15 so that the plot does not degenerate.
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Figure 7: Low-rank approximation error vs. number of matrix-vector products for diagonal A ∈ R1000×1000

with singular values σi = 1.1−i and target rank k = 50. We run for block sizes b ∈ {1, 2, k, k + 4} both with
Lanczos and with full orthogonalization. The median of εempirical over 100 independent trials is plotted, with
the 25th and 75th quartiles shaded in. Notice that for this experiment, single vector Krylov converges the fastest
with full orthogonalization and slowest with Lanczos, and that large block methods have no real gap between full
orthogonalization and Lanczos. I.e., large block methods are much more stable even with partial orthogonalization.

we have focused on convergence guarantees and ignored numerical stability. As discussed, our implementations use
orthogonalization to keep K well-conditioned at all iterations. That is, for single vector Krylov, at every iteration,
we compute (AAᵀ)kt−1 where kt−1 is the last column in the Krylov matrix K. Then we project (AAᵀ)kt−1

away from all of the previous columns k1, . . . ,kt−1 via modified Gram-Schmidt, and store the resulting vector
as kt. We do the same for block Krylov, where we compute (AAᵀ)

[
kt−b−1 . . . kt−1

]
and add the resulting b

columns to K iteratively via modified Gram-Schmidt.
In practice, Krylov implementations typically spend less effort orthogonalizing at each step. For example,

they are commonly implemented via the Lanczos method, where kt is only projected away from kt−1 and kt−2.
In infinite precision, this is equivalent to projecting away from all previous columns [Golub and Van Loan, 2013].
Similar ideas can be applied to block Krylov methods [Rokhlin et al., 2009, Saad, 1980]. While such methods are
highly efficient, when using them, K can lose orthogonality. This can lead to slower convergence or necessitate
modifications such as restarts or reorthogonalization [Calvetti et al., 1994, Paige, 1972, Parlett, 1998].

Intuitively, comparing single vector or small block Krylov to large block Krylov with a fixed size Krylov
subspace K, we expect that single vector and small block Krylov will be more susceptible to conditioning
issues, since they require more iterations to reach the same sized subspace. Thus, we should expect partial
orthogonalization methods like Lanczos to lead to slower convergence for these methods as compared to large
block methods. With full orthogonalization, we should instead expect to see small block methods dominate. We
see this trend exactly in Figure 7. An interesting extension to our work would be to more closely study the
stability of Krylov methods for low-rank approximation, and to develop a more clear theoretical understanding
of the advantages of large block methods in this regard.
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A Reduction to the Positive Semidefinite Case
In our analysis, we can assume without loss of generality that the input A is a square PSD matrix. To see
why, for any C ∈ Rn×d, let A = (CCᵀ)1/2. Observe that A ∈ Rn×n is PSD. Further, observe that since
A2 = AAᵀ = CCᵀ, Algorithm 1 and Algorithm 2 yield identical outputs for A and C.

Expanding the SVD C = UΣVᵀ, we can have A = (CCᵀ)1/2 = UΣUᵀ. Thus, A and C have identical
singular values and ∥A −Ak∥ξ = ∥C −Ck∥ξ for any unitarily invariant norm ∥ · ∥ξ (including the spectral and
Frobenius norms) and any k. Additionally, for any Q ∈ Rn×k,

∥A−QQᵀA∥ξ = ∥UΣ−QQᵀUΣ∥ξ = ∥C−QQᵀC∥ξ.

Thus, any bound on ∥A − QQᵀA∥ξ in terms of ∥A − Ak∥ξ holds identically for C. Finally, for any q ∈ Rn,
qᵀCCᵀq = qᵀA2q. Thus, any bound on qᵀA2q in terms of σi(A) holds identically for C.

B Frobenius Low-Rank Approximation with ε−1/3 Dependence
In this section, we prove Theorem 4.2. This analysis closely follows the intuition given in the introduction of
[Bakshi et al., 2022]. We have the following:

Theorem 4.2 Restated. For A ∈ Rn×d, let gmin = mini∈{1,...,ℓ−1}
σi−σi+1

σi+1
where ℓ = Θ( k

ε1/3
). For any

ε, δ ∈ (0, 1), Algorithm 1 initialized with x ∼ N (0, I) and run for t = O( k
ε1/3

log( 1
gmin

) + 1
ε1/3

log( n
δε )) iterations

returns an orthogonal Q ∈ Rn×k such that, with probability at least 1− δ,

∥A−QQᵀA∥F ≤ (1 + ε)∥A−QQᵀA∥F .

Proof. We first recall that we have two different guarantees for Algorithm 1. Fix some γ > 0. By Theorem 1.1,
if we run Algorithm 1 for t = O( k√

γ log( 1
gmin

) + 1√
γ log( n

δγ )) iterations, then with probability at least 1− δ,

|qᵀ
i AAᵀqi − σ2

i | ≤ γσ2
k+1.

Fix some ℓ ≥ k, and let gk→ℓ =
σk−σℓ+1

σk
. Then, by Theorem 4.1, if we run Algorithm 1 for t = O( ℓ√

gk→ℓ
log( 1

gmin
)+

1√
gapk→ℓ

log( n
δη )) iterations, then with probability at least 1− δ we again have

|qᵀ
i AAᵀqi − σ2

i | ≤ ησ2
k+1.

We will show that we can get error ε in Frobenius norm by taking γ = ε2/3 and η = ε
k . In particular, we run a

case-analysis between either large-tailed or small-tailed spectra of A.

Small Tailed Case: Suppose ∥A −Ak∥2F ≤ k
ε1/3

σ2
k+1. Then A must have a fast spectral decay. In particular,

let ℓ = (1 + 4
ε1/3

)k = O( k
ε1/3

). Then σℓ is substantially smaller than σk:

k

ε1/3
σ2
k+1 ≥ ∥A−Ak∥2F =

n∑
i=k+1

σ2
i ≥ (ℓ− k)σ2

ℓ =
4k

ε1/3
σ2
ℓ .

That is, σℓ ≤ σk+1

2 , so that √
gk→ℓ =

√
σk−σℓ+1

σk
≥ 1√

2
, so the spectral-decay analysis of Theorem 4.1 says that

t = O( k
ε1/3

log( 1
gmin

) + log( n
δη )) iterations suffice to get the singular value guarantee ∥qᵀ

i A∥22 ∈ σ2
i ± ησ2

k+1. Since
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QQᵀ =
∑k

i=1 qiq
ᵀ
i is a sum of orthogonal projection matrices,

∥A−QQᵀA∥2F = ∥A∥2F −
k∑

i=1

∥qiq
ᵀ
i A∥2F(Matrix Pythagoras)

= ∥A∥2F −
k∑

i=1

∥qᵀ
i A∥22

≤ ∥A∥2F −
k∑

i=1

σ2
i + ηkσ2

k+1(Singular Value Guarantee)

= ∥A−Ak∥2F + ηkσ2
k+1

≤ ∥A−Ak∥2F + ηk∥A−Ak∥2F
= (1 + ηk)∥A−Ak∥2F .

So, taking η = ε
k for a total iteration count of t = O( k

ε1/3
log( 1

gmin
) + log( n

δε )) suffices in this case.

Large Tailed Case: Suppose ∥A−Ak∥2F > k
ε1/3

σ2
k+1. Since the tail is large, even a low-accuracy singular value

guarantee still ensures a good Frobenius norm guarantee. In particular, we take the gap-independent analysis of
Theorem 1.1 with γ = ε2/3, so that ∥qᵀ

i A∥22 ∈ σ2
i ± ε2/3σ2

k+1, and we get

∥A−QQᵀA∥2F = ∥A∥2F −
k∑

i=1

∥qiq
ᵀ
i A∥2F(Matrix Pythagoras)

= ∥A∥2F −
k∑

i=1

∥qᵀ
i A∥22

≤ ∥A∥2F −
k∑

i=1

σ2
i + ε2/3kσ2

k+1(Singular Value Guarantee)

= ∥A−Ak∥2F + ε2/3kσ2
k+1

≤ ∥A−Ak∥2F + ε∥A−Ak∥2F(σ2
k+1 < ε1/3

k ∥A−Ak∥2F )
= (1 + ε)∥A−Ak∥2F .

So, since γ = ε2/3 here, we achieve error ε under Frobenius norm with t = O( k
ε1/3

log( 1
gmin

) + 1
ε1/3

log( n
δε )).

Putting it Together. So, in either case, running t = Õ( k
ε1/3

) iterations suffices to obtain a (1 + ε) optimal
low-rank approximation in the Frobenius norm. Further, the algorithm used in the two cases is identical, so
(unlike [Bakshi et al., 2022]) we do not have to detect which case we are in and alter the algorithm accordingly.
We simply run single vector Krylov.

C Schatten Norm Low-Rank Approx. with ε−1/3 Dependence
In this section, we prove Theorem 4.3 by arguing that running Algorithm 1 once effectively simulates running
Algorithm 5.4 from [Bakshi et al., 2022]. We have the following:

Theorem 4.3 Restated. For A ∈ Rn×d and p ≥ 1, let gmin = mini∈{1,...,ℓ−1}
σi−σi+1

σi+1
where ℓ = Θ( k

ε1/3p1/3 ).
For any ε, δ ∈ (0, 1), let Q ∈ Rd×k be the result of running Algorithm 1 on Aᵀ initialized with x ∼ N (0, I) and
run for

t = O
(

kp1/6

ε1/3
log( 1

gmin
) + (

√
p+ p1/6

ε1/3
) log(npδε )

)
= Õ

(
kp1/6

ε1/3
+
√
p
)

iterations. Let Z ∈ Rn×k be an orthonormal basis for AQ. Then, with probability at least 1− δ,

∥A− ZZᵀA∥p ≤ (1 + ε)∥A−Ak∥p,

where ∥A∥p := (
∑n

i=1 σi(A)p)1/p is the Schatten p-norm.
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Proof. Note that [Bakshi et al., 2022] outputs orthonormal Q ∈ Rd×k with ∥A−AQQᵀ∥ bounded, rather than
Q ∈ Rn×k with ∥A − QQᵀA∥ bounded. However, we can translate their analysis to the later case simply by
running their algorithms on Aᵀ. Thus we consider this case going forward. The first two lines of Algorithm 5.4
in [Bakshi et al., 2022] run Block Krylov Iteration twice on Aᵀ. First, they let W1 ∈ Rd×k be the result of using
block size ℓ1 = k and running until the gap-independent rate gives a singular value guarantee (i.e. Equation (3.7))
with relative error at most γ1 = ε2/3

p1/3 . For single vector Krylov, by Theorem 1.1, this takes

O
(

k√
γ1

log( 1
gmin

) + 1√
γ1

log( n
γ1δ

)
)
= O

(
kp1/6

ε1/3
log( 1

gmin
) + p1/6

ε1/3
log(npεδ )

)
iterations. Second, they let W2 ∈ Rd×k be the result of running with block size ℓ2 = O( k

ε1/3p1/3 ) for enough
iterations so that if gk→ℓ2 ≥ 1

p , then block Krylov would achieve error γ2 = poly( ε
n )

6. For single vector Krylov,
by Theorem 4.1, this takes

O
(

ℓ2√
gk→ℓ2

log( 1
gmin

) + 1√
gk→ℓ2

log( n
γ2δ

)
)
= O

(
kp1/6

ε1/3
log( 1

gmin
) +

√
p log( n

εδ )
)

iterations. Note that Algorithm 1 outputs a single matrix Q that achieves the guarantees needed by both W1

and W2.
Next, we consider the third and fourth lines of Algorithm 5.4 in [Bakshi et al., 2022]. The third line runs

block Krylov on A directly to estimate several of its singular values. The fourth line uses those estimated singular
values to determine if we should return an orthogonal basis for Wᵀ

1A
ᵀ or Wᵀ

2A
ᵀ.7 Since we have W1 = W2 = Q,

we can ignore the tests in the third and fourth lines, and just always return a basis for QᵀAᵀ. So, overall, we
compute a matrix Z with the exact same guarantees as the [Bakshi et al., 2022] by only using a one instance of
single vector Krylov.

D Eigenvalue Repulsion Corollaries
This appendix covers the proofs needed for Corollary 5.1. First, we take a result of [Minami, 1996] and use it to
prove a gap on the eigenvalues of symmetric matrices. Second, we show that a optimal projection matrix that
achieves near-optimal low-rank approximation on the perturbation of A must also achieve near-optimal low-rank
approximation on A itself.

D.1 Proof of Lemma 5.1 We first import a result of [Minami, 1996], originally studied in relation to the
Wegner Estimate [Wegner, 1981]. This result is also given as Equation (1.11) in [Aizenman et al., 2017]:

Imported Theorem D.1. Let A ∈ Rn×n be symmetric, and let D ∈ Rn×n be diagonal, with entries drawn i.i.d.
from a distribution with pdf p(·). Then, for any interval I ⊂ R,

Pr[A+D has at least 2 eigenvalues in I] ≤ C(∥p∥∞|I|n)2,

for some universal constant C, where |I| is the length of I, and where ∥p∥∞ = maxt∈R p(t).

Lemma 5.1 Restated. Fix symmetric matrix A ∈ Rn×n, δ ∈ (0, 1), and ∆ ≤ ∥A∥2. Let D ∈ Rn×n be a
diagonal matrix whose entries are uniformly distributed in [−∆,+∆]. Then, letting Ã = A + D and letting C
denote some universal constant, with probability at least 1− δ,

min
i∈[n−1]

|λi(Ã)− λi+1(Ã)|
|λi+1(Ã)|

≥ δ

Cn2
· ∆2

∥A∥22
.

6They write γ2 = ε in the algorithm but in Equation (5.21) we can see they actually want this smaller error. Since gap-dependent
rate depends on log( n

γ2
), shrinking γ2 from ε to poly( ε

n
) does not change the asymptotic complexity.

7In a personal communication with the authors of [Bakshi et al., 2022], we confirmed there is a typo in the current arXiv version
of the paper, where the algorithm says to return a matrix Z1. It should return an orthonormal basis for Wᵀ

1A
ᵀ instead.
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Proof. Let R := 2∥A∥2. Since ∆ < ∥A∥2, we know that ∥Ã∥2 ≤ ∥A∥2 + ∥D∥2 ≤ 2∥A∥2 = R. Let γ > 0 be a
number to be fixed later. Then define

Ii := (−R+ iγ)± γ = [(−R+ γi)− γ, (−R+ γi) + γ]

for i = 1, . . . ,m, where m = 4∥A∥2

γ − 1. These are intervals of width 2γ that overlap and cover the range [−R,R].
For instance, we have I1 = [−R,−R+2γ], I2 = [−R+γ,−R+2γ], and I3 = [−R+2γ,R+4γ], so that I2 overlaps
with I1 and I3. In particular, if Ã has two eigenvalues that are additively γ close, so that |λi(Ã)− λi+1(Ã)| ≤ γ,
then we know that λi(Ã) and λi+1(Ã) both lie in some Ij . Therefore, we can write

Pr[∃i : |λi(Ã)− λi+1(Ã)| < γ] ≤ Pr[at least two eigenvalues of Ã lie in some Ij ]

≤
m∑
j=1

Pr[at least two eigenvalues of Ã lie in Ij ]

≤ Cm

(
1

2∆
· 2γ · n

)2

(Imported Theorem D.1)

≤ 4Cγn2∥A∥2
∆2

(using that m ≤ 4∥A∥2

γ )

= δ,

where the last line holds if we fix γ = ∆2δ
4Cn2∥A∥2

. That is, with probability at least 1 − δ, we know that
|λi(Ã)− λi+1(Ã)| ≥ ∆2δ

4Cn2∥A∥2
for all i = 1, . . . , n− 1. Lastly, we take

|λi(Ã)− λi+1(Ã)|
|λi+1(Ã)|

≥ |λi(Ã)− λi+1(Ã)|
∥Ã∥2

≥
∆2δ

4Cn2∥A∥2

2∥A∥2
=

∆2δ

8Cn2∥A∥22
,

which completes the proof.

D.2 Proof of Lemma 5.2 We next show that a small enough perturbation of A suffices to give approximate
SVD results for A itself.

Lemma 5.2 Restated. Let Ã = A + D where ∥D∥2 ≤ ε
3nσk+1(A) and ε ∈ (0, 1). Fix any Q ∈ Rn×k with

orthonormal columns q1, . . . ,qk. Then, with probability at least 1− δ,

1. If |qᵀ
i ÃÃᵀqi − σi(Ã)2| ≤ εσk+1(Ã)2, then |qᵀ

i AAᵀqi − σi(A)2| ≤ 8εσi(A)2.

2. If ∥Ã−QQᵀÃ∥2 ≤ (1 + ε)∥Ã− Ãk∥2, then ∥A−QQᵀA∥2 ≤ (1 + 2ε)∥A−Ak∥2.

3. If ∥Ã−QQᵀÃ∥F ≤ (1 + ε)∥Ã− Ãk∥F , then ∥A−QQᵀA∥F ≤ (1 + 4ε)∥A−Ak∥F .

Proof.
Singular Value Guarantee. First note that for any real a, b, c such that |a− b| ≤ c and c < b, we have
|a2 − b2| ≤ 3bc. This follows from expanding (b− c)2 < a2 < (b+ c)2 and applying the AMGM inequality. Then
note that |σi(Ã)− σi(A)| ≤ ∥Ã−A∥2 = ∥D∥2. We then find that for i ≤ k + 1,

|σ2
i (Ã)− σ2

i (A)| ≤ 3σi(A)∥D∥2 ≤ εσi(A)σk+1(A) ≤ εσi(A)2.

Similarly note that |∥Ãqi∥2 − ∥Aqi∥2| ≤ ∥D∥2 and ∥Ãqi∥2 ≤ 2σi(Ã) ≤ 4σi(A), so we have

|∥Ãqi∥22 − ∥Aqi∥22| ≤ 3∥Ãqi∥2∥D∥2 ≤ 4εσi(A)2.

Which completes this part by triangle inequality:

|qᵀ
i AAᵀqi − σi(A)2| ≤ |qᵀ

i ÃÃᵀqi − σi(A)2|+ 4εσi(A)2

≤ |qᵀ
i ÃÃᵀqi − σi(Ã)2|+ 7εσi(A)2

≤ 8εσi(A)2.
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Spectral Norm Guarantee. Here, first note that ∥Ã − Ãk∥2 = σk+1(Ã) ≤ (1 + ε)σk+1(A) by the prior
analysis on the singular value guarantee. Next, we use the fact that I−QQᵀ is a projection to simplify

∥Ã−QQᵀÃ∥2 = ∥(I−QQᵀ)(A+D)∥2 ≥ ∥(I−QQᵀ)A∥2 − ∥D∥2,

and since ∥D∥2 ≤ εσk+1(A), we have ∥A−QQᵀA∥2 ≤ ∥Ã−QQᵀÃ∥2+∥D∥2 ≤ (1+2ε)σk+1(A), which completes
this part of the lemma.
Frobenius Norm Guarantee. Here, first note that ∥Ã− Ãk∥2F ≤ (1 + ε)∥A−Ak∥2F , since

∥Ã− Ãk∥2F =
n∑

i=k+1

σ2
i (Ã) ≤

n∑
i=k+1

(σi(A) + ∥D∥2)2 ≤ ∥A−Ak∥2F +
n∑

i=k+1

(∥D∥22 + 2σi(A)∥D∥2),

where we can further upper bound
n∑

k+1

(∥D∥22 + 2σi(A)∥D∥2) ≤ n( εσk+1(A)
3n )2 + 2nσk+1(A) εσk+1(A)

3n ≤ εσ2
k+1(A) ≤ ε∥A−Ak∥2F .

Next, using the fact that P = I−QQᵀ is a projection matrix, we simplify

∥Ã−QQᵀÃ∥F = ∥P(A+D)∥F ≥ ∥PA∥F − ∥PD∥F ,

and since ∥PD∥F ≤ ∥P∥F ∥D∥2 ≤
√
d ε
3nσk+1(A) ≤ ε∥A−Ak∥F , we have

∥A−QQᵀA∥F ≤ ∥Ã−QQᵀÃ∥F + ∥PD∥F ≤ ((1 + ε)2 + ε)∥A−Ak∥F ,

which completes the proof since ((1 + ε)2 + ε) ≤ 1 + 4ε for ε ∈ (0, 1).

E Krylov Analysis with Small Blocks
This section proves Theorem 4.5. We first define the starting matrix that we will simulate block Krylov iteration
on, analogously to what we use in Section 3:

Sr :=
[
G A2G A4G . . . A2(r−1)G

]
K

span
=
[
Sr A2Sr A4Sr . . . A2qSr

]
where ℓ = rb is the simulated block size (so we assume the integer r has rb > k) and where q = t− r + 1 denotes
the number of simulated block-Krylov iterations run. Our proof will set r = k − b+ 1. Notably, this means that
Sr can have more than k columns, which is not allowed by the definition of (k, L)-good in Definition 3.1. So, we
first present a generalization of Definition 3.1 that also suffices for convergence under Imported Theorem 3.1 and
Imported Theorem 4.1. In particular, it suffices for Sr to contain a n× k size (k, L)-good matrix within its span.
The Krylov subspace generated by this matrix will be contained in the subspace generated by Sr, and thus any
guarantees that hold for it apply to Sr as well. See Appendix F for a formal argument.

Definition E.1. ((k, L)-good Starting Matrix (Generalized)) Let A ∈ Rn×d be a matrix with top k left
singular vectors Uk ∈ Rn×k. A matrix B ∈ Rn×ℓ is a (k, L)-good starting matrix for A if ∥(Uᵀ

kQ)−1∥22 ≤ L for
some orthonormal Q ∈ Rn×k whose columns lie in span(B).
Observe that when the starting block has exactly ℓ = k columns, Definition E.1 matches Definition 3.1 exactly. To
prove the (k, L)-good guarantee for small block methods, we first note an equivalent formulation of the generalized
(k, L)-good guarantee:

Lemma E.1. B ∈ Rn×ℓ is (k, L)-good for A ∈ Rn×n if and only if there exists a matrix M ∈ Rℓ×k with Uᵀ
kBM = I

and ∥BM∥22 ≤ L.

Proof. Suppose we are given such an M. Since span(BM) is a k-dimensional subspace of span(B), we can
let Q be an orthonormal basis for BM. Then we have BM = QX for some invertible X ∈ Rk×k. Since
Uᵀ

kQX = Uᵀ
kBM = I, we have X−1 = Uᵀ

kQ. And so, we have ∥(Uᵀ
kQ)−1∥22 = ∥X∥22 = ∥QX∥22 = ∥BM∥22 ≤ L.

In the other direction, we are given Q which spans a subspace of span(B). So, for any invertible matrix
X ∈ Rk×k, we can write BM = QX for some M ∈ Rℓ×k. If we take X = (Uᵀ

kQ)−1, then we have
Uᵀ

kBM = Uᵀ
kQX = I and ∥BM∥22 = ∥QX∥22 = ∥X∥22 = ∥(Uᵀ

kQ)−1∥22 ≤ L.
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With this foundation in place, we prove the following guarantee on Sr:

Theorem 4.4 Restated. Fix any PSD matrix A ∈ Rn×n with singular values σ1 ≥ . . . ≥ σn, k ∈ [n],
and b ∈ [k]. Let r = k − b + 1. Let G ∈ Rn×b be a matrix i.i.d. N (0, 1) entries, and let Sr =[
G A2G A4G . . . A2(r−1)G

]
. For any δ ∈ (0, 1), with probability at least (1 − δ), Sr is a (k, L)-good

starting matrix for A for L = cb2k2n log(1/δ)

δ2g
4(k−b)
min,b

. Here c is a fixed constant.

Proof. We prove the generalized (k, L)-good bound by constructing a matrix M ∈ Rℓ×k with Uᵀ
kSrM = I and

then applying Lemma E.1. Consider first the matrix UᵀSrM. Writing the SVD A = UΣUᵀ, we can define
Ĝ := UᵀG ∈ Rn×b, which is distributed as a iid N (0, 1) matrix because of the rotational invariance of the
Gaussian. We can then write UᵀA2iG = UᵀUΣ2iUᵀG = Σ2iĜ. Thus,

UᵀSr =
[
Ĝ Σ2Ĝ Σ4Ĝ . . . Σ2(r−1)Ĝ

]
.

If we let ĝi be the ith column of Ĝ and permute the columns of UᵀG, we can write UᵀSr as

UᵀSrP = [ ĝ1 Σ2ĝ1 ... Σ2(r−1)ĝ1 | ĝ2 Σ2ĝ2 ... Σ2(r−1)ĝ2 | ... | ĝb Σ2ĝb ... Σ2(r−1)ĝb ] .

where P is the permutation matrix that reorders the columns as such. So, for some vector mi, we can decompose
Pᵀmi =

[
c1
...
cb

]
for cj ∈ Rr, and let p

i,j
(t) be the degree r − 1 polynomial with coefficients cj . Then, we get

UᵀSrmi = UᵀSrPPᵀmi = pi,1(Σ
2)ĝ1 + pi,2(Σ

2)ĝ2 + . . .+ p
i,b
(Σ2)ĝb.(E.1)

And so, the matrix UᵀSrM is the concatenation of k such vectors UᵀSrm1, . . . ,U
ᵀSrmk.

Observe that Uᵀ
kSrM is just the top k rows of UᵀSrM. So to apply Lemma E.1, we need to find polynomials

p1,1, . . . , pk,b which make the top k rows of UᵀSrM into an identity matrix. I.e., we need to show Uᵀ
kSrmi = ei

for i = 1, . . . , k. We do this by first designing the degree k − b filter polynomials f1, . . . , fk by

fi(σ
2
j ) =

{
1 j = i

0 j /∈ Ni ∪ {i}

That is, fi is 1 at σ2
i and is 0 on the squares of the k − b + 1 singular values furthest from σi. The squares are

there because the Krylov subspace uses polynomial of Σ2. We then take

pi,j(t) := fi(t)zi,j

for some values of zi,j which will be specified later. Note these polynomials are all degree r − 1 = k − b, which is
why we constrain r = k − b+ 1. If we plug this into Equation (E.1), we get

UᵀSrmi = p
i,1
(Σ2) ĝ1 + p

i,2
(Σ2) ĝ2 + . . .+ p

i,b
(Σ2) ĝb

= fi(Σ
2) (ĝ1zi,1 + ĝ2zi,2 + . . .+ ĝbzi,b)

= fi(Σ
2) Ĝzi,

where zi =
[
zi,1 . . . zi,b

]ᵀ. So, we need to find a choice of zi ∈ Rb such that Uᵀ
kSrmi = ei. Letting Ĝk ∈ Rk×b

be the top k rows of Ĝ, we write
Uᵀ

kSrmi = fi(Σ
2
k) Ĝkzi.

Recalling that fi is a filter polynomial, we know that [Uᵀ
kSrmi]j = 0 for j /∈ Ni ∪ {i}. So, we just need to pick

zi ∈ Rb such that [Uᵀ
kSrmi]j = 0 for j ∈ Ni and [Uᵀ

kSrmi]i = 1. That is, we need to pick zi such that the
product Ĝkzi is zero for the b−1 rows in Ni and is 1 for row i. This is just a linear system, so we pick the unique
zi = [Ĝk]

−1
Ni∪{i}ei, where [Ĝk]Ni∪{i} just selects the b rows indexed by Ni ∪ {i}.

Once we have these zi vectors, we get Uᵀ
kSrmi = fi(Σ

2
k) Ĝkzi = ei, and so Uᵀ

kSrM = I, as required
by Lemma E.1. Now we just have to bound ∥SrM∥22. We do this by bounding ∥SrM∥22 = ∥UᵀSrM∥22 ≤
∥UᵀSrM∥2F ≤

∑k
i=1 ∥UᵀSrmi∥22.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited



Let Σ−k ∈ R(n−k)×(n−k) be the bottom n − k singular values of A, and let Ĝ−k ∈ R(n−k)×b bottom n − k
rows of Ĝ. Then, we can decompose

UᵀSrmi = fi(Σ
2) Ĝzi =

[
fi(Σ

2
k)Ĝkzi

fi(Σ
2
−k)Ĝ−kzi

]
=

[
ei

fi(Σ
2
−k) Ĝ−k[Ĝk]

−1
Ni∪{i}ei

]
.

We now bound the lower elements. First, we look at Ĝ−k[Ĝk]
−1
Ni∪{i}ei, which is the product of a (n − k) × b

Gaussian matrix and inverse of an independent b× b Gaussian matrix. Since these matrices are independent, we
can directly bound

∥Ĝ−k[Ĝk]
−1
Ni∪{i}ei∥2 ≤ ∥Ĝ−k∥2 ·

1

σmin([Ĝk]Ni∪{i})
· ∥e∥2 ≤ O

(
b
√
kn

δ

√
log

(
1

δ

))
,(E.2)

where we use the bound ∥G−k∥2 ≤ O(
√
(n− k)b ln( 1δ )) from Equation (2.3) of [Rudelson and Vershynin, 2010]

and the bound σmin([Ĝk]Ni∪{i}) ≥ Ω( δ
k
√
b
). This latter bound comes from a union-bound argument using the

fact that any square Gaussian G̃ ∈ Rb×b has Pr[σmin(G̃) ≥ Ω( δ√
b
)] ≥ 1 − δ [Huang and Tikhomirov, 2020], and

that [Ĝk]N1∪{1}, . . . , [Ĝk]Nk∪{k} are all square Gaussian matrices. Next, we bound fi(Σ
2
−k) by writing fi as a

Lagrange interpolating polynomial:

fi(t) =
∏

j∈[k]\Ni,j ̸=i

t− σ2
j

σ2
i − σ2

j

.

We can then use our gap assumption to bound fi on all singular values below σk. That is, for 0 ≤ t ≤ σk we have

|fi(t)| ≤
∏

j∈[k]\Ni,j ̸=i

∣∣∣∣∣ σ2
j

σ2
i − σ2

j

∣∣∣∣∣ ≤ ∏
j∈[k]\Ni,j ̸=i

∣∣∣∣ σj

σi − σj

∣∣∣∣2 ≤ 1

g
2(k−b)
min,b

.

Putting this altogether, we then find that

∥fi(Σ2
−k) Ĝ−k[Ĝk]

−1
Ni∪{i}ei∥

2
2 ≤ ∥fi(Σ2

−k)∥22 ∥Ĝ−k[Ĝk]
−1
Ni∪{i}ei∥

2
2

≤ O

(
b2kn

g
4(k−b)
min,b δ2

log

(
1

δ

))
.

And therefore

∥SrM∥22 ≤ ∥UᵀSrM∥2F ≤ O

(
1 +

b2k2n

g
4(k−b)
min,b δ2

log

(
1

δ

))
,

which completes the proof by Lemma E.1.

F Convergence Results from [Musco and Musco, 2015]
In this section, we show how Imported Theorem 3.1 and Imported Theorem 4.1 follow from [Musco and Musco,
2015]. We prove the result using a generalization of a (k, L)-good starting block (Definition 3.1), which is useful
in the small block analysis of Appendix E:

Definition E.1 Restated. ((k, L)-good Starting Matrix (Generalized)) Let A ∈ Rn×d be a matrix
with top k left singular vectors Uk ∈ Rn×k. A matrix B ∈ Rn×ℓ is a (k, L)-good starting matrix for A if
∥(Uᵀ

kQ)−1∥22 ≤ L for some orthonormal Q ∈ Rn×k that lies in span(B).

Note that if B has exactly k columns then this generalized definition exactly matches Definition 3.1. This
is the case for the analysis of single vector Krylov in Section 3, where we take B = Sk with exactly k columns
and show that Sk is (k, L)-good. In Appendix E, we show an equivalent formulation which is easier to use in our
analysis:
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Lemma E.1 Restated. B ∈ Rn×ℓ is (k, L)-good for A if and only if there exists a matrix M ∈ Rℓ×k with
Uᵀ

kBM = I and ∥BM∥22 ≤ L.

Given this definition, we will show that Imported Theorem 3.1 and Imported Theorem 4.1 follow from [Musco
and Musco, 2015]. Before diving in, we first state a guarantee on the polynomials used in [Musco and Musco,
2015]. They use polynomials of the form p(x) := (1+γ)α

Tq(1+γ)Tq(
x
α ) for some α > 0, γ ∈ (0, 1), and q ∈ N, and where

Tq(x) is the degree q Chebyshev polynomial of the first kind. We first show that such polynomials are monotonic
for large enough x:

Lemma F.1. Let p(x) = (1+γ)α
Tq(1+γ)Tq(

x
α ) where α > 0 and γ ∈ (0, 1). Then, maxx∈[0,α] p(x) = p(α) and p(x) is

monotonically increasing on (α,∞).

Proof. The result follows from two well-known properties of Tq: that Tq is monotonically increasing on (1,∞)

and that maxt∈[0,1] Tq(t) = Tq(1) = 1. Since γ > 0, we know that Tq(1 + γ) > Tq(1) = 1, so we have (1+γ)α
Tq(1+γ) > 0.

Therefore, we get that p(x) is monotonically increasing on (α,∞), and that maxx∈[0,α] p(x) = p(α).

In order to relate the generalized (k, L)-good definition to the convergence analysis of [Musco and Musco,
2015], we rely on a slight generalization of a theorem used in the appendix of [Musco and Musco, 2015]:

Imported Lemma F.1. (Lemma 48 of [Woodruff, 2014]) Let P = PUUᵀ + E ∈ Rn×n be a low-rank
factorization of A ∈ Rn×n, with U ∈ Rn×k and UᵀU = Ik. Let B ∈ Rn×ℓ (ℓ ≥ k) be any matrix with
rank(UᵀS) = rank(U) = k. Let M ∈ Rℓ×k with UᵀBM = Ik. Let C = AS ∈ Rn×ℓ. Then,

∥P−ΠC,k(P)∥2F ≤ ∥E∥2F + ∥EBM∥2F .

Here, ΠC,k(P) = YoptY
ᵀ
optA ∈ Rn×n is the best rank k approximation to A in the column space of C So,

Yopt ∈ Rn×k is an orthogonal matrix that lies in the column span of C.

Lemma 48 from [Woodruff, 2014] is stated with M = (UᵀB)+, but the proof only requires that UᵀBM = I. We
now prove the imported theorems:

Imported Theorem 3.1 Restated. (Theorem 1 of [Musco and Musco, 2015]) Let B ∈ Rn×ℓ be any
(k, L)-good starting matrix (Definition E.1) matrix for A. If we run Block Krylov iteration (Algorithm 2) for
q = O( 1√

ε
log(nLε )) iterations with starting block B, then the output Q ∈ Rn×k satisfies

∥A−QQᵀA∥ξ ≤ (1 + ε)∥A−Ak∥ξ and
∣∣qᵀ

i AAᵀqi − σi(A)2
∣∣ ≤ εσk+1(A)2.

Proof. To recover this guarantee from [Musco and Musco, 2015], we recover Properties 1-3 of their Lemma 9. We
start by recovering Property 1. We let p1(x) = (1+γ)α

Tq(1+γ)Tq(
x
α ) where α = σk+1(A), γ = ε

2 , and q = O( 1√
ε
log(nLε )).

Let M ∈ Rℓ×k be the matrix guaranteed to exist by Lemma E.1. We then instantiate Imported Lemma F.1
with P = p1(A), B = B, M = M, and U = Uk being the top k singular vectors of A. By Lemma F.1, since
α = σk+1(A), we know that the top k singular vectors of A are also the top k singular vectors of p1(A), and
therefore that PUUᵀ = p1(A)k. We then get that some orthonormal Y1 ∈ Rn×k in the span of p(A)B has

∥p1(A)−Y1Y
ᵀ
1p1(A)∥2F ≤ ∥p1(A)− p1(A)k∥2F + ∥(p1(A)− p1(A)k)BM∥2F

≤ ∥p1(A)− p1(A)k∥2F + ∥p1(A)− p1(A)k∥2F ∥BM∥22
≤ (L+ 1)∥p1(A)− p1(A)k∥2F

= (L+ 1)
n∑

i=k+1

p(σi(A))2

≤ (L+ 1)n · 4σk+1(A)2

22q
√
γ

(Lemma 5 of [Musco and Musco, 2015])

≤ ε

2
σk+1(A)2,(F.3)
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where the last line uses q ≥ 1
2
√
γ log2(

8(L+1)n
ε ) = O( 1√

ε
log(Ln

ε )). The inequality ∥p1(A) − Y1Y
ᵀ
1p1(A)∥ ≤

ε
2σk+1(A)2 is exactly Equation (5) on page 11 of [Musco and Musco, 2015]. Once Equation (5) is achieved, the
rest of the proof of Property 1 then follows without any alteration.

We next move onto proving properties 2 and 3. The proofs of properties 2 and 3 in [Musco and Musco, 2015]
both involve defining the matrix Aouter. If A = UΣUᵀ is the SVD of A, then Aouter := UΣouterU

ᵀ where
Σouter contains all the singular values of A with either σi(A) ≥ σk(A) or σi(A) < 1

1+ε/2σk(A). All the other
singular values are set to equal zero. Crucially, the top k singular vectors of A are still the top k singular vectors
of Aouter.

We let p2(x) =
(1+γ)α
Tq(1+γ)Tq(

x
α ) where α = 1

1+ε/2σk+1(A), γ = ε
2 , and q = O( 1√

ε
log(nLε )). We next instantiate

Imported Lemma F.1 with P = p2(Aouter), B = B, M = M, and U = Uk. By Lemma F.1, since α ≤ σk(Aouter),
we know that the top k singular vectors of Aouter are also the top k singular vectors of p2(Aouter), and therefore
that PUUᵀ = p2(Aouter)k. We then let Youter ∈ Rn×k be the orthogonal basis that constructs ΠC,k(A), so that

∥p2(Aouter)−YouterY
ᵀ
outerp2(Aouter)∥2F ≤ ∥p2(Aouter)− p2(Aouter)k∥2F

+ ∥(p2(Aouter)− p2(Aouter)k)BM∥2F
≤ (L+ 1)∥p2(Aouter)− p2(Aouter)∥2F
≤ ε

2
σk+1(Aouter)

2.

Where the inequalities follow from the same logic as earlier, for Equation (F.3). We again find ourselves at
Equation (5) of [Musco and Musco, 2015], and follow the rest of the proof on page 11 to get the following
guarantee:

∥(Aouter)k∥2F − ∥YouterY
ᵀ
outer(Aouter)k∥2F ≤ ε

2
σk+1(Aouter)

2.

Since (Aouter)k = Ak, the above inequality then recovers Equation (10) of [Musco and Musco, 2015]. Given this
proof of Equation (10), the rest of the proof of Property 2 holds as written. Equation (10) is also used on page 14
of [Musco and Musco, 2015] to prove Property 3. The rest of the proof of Property 3 also holds without alteration
given Equation (10).

Overall, we have recovered the proofs of Properties 1-3 of Lemma 9 of [Musco and Musco, 2015]. That is,
we have shown that Lemma 9 holds for block Krylov iteration starting from (k, L)-good starting block B with
q = O( 1√

ε
log(nLε )) iterations. The proofs in Section 6.2 of [Musco and Musco, 2015] then show that Properties

1-3 suffice to achieve the spectral, Frobenius, and singular value guarantees.

We now move onto Imported Theorem 4.1 from [Musco and Musco, 2015], which depends on spectral decay.
Note there are two different variables ℓ and ℓ0 in this context. In order to perform rank-k approximation, we want
to recover a convergence bound in terms of gk→ℓ for some ℓ ≥ k. Our starting block B ∈ Rn×ℓ0 has ℓ0 ≥ ℓ columns
and is an (ℓ, L)-good starting block. We need to consider this case because, when running block size b ≤ k Krylov
iteration, the analysis in Appendix E considers a simulated starting block Sr which uses ℓ0 ≈ b(ℓ−b) ≥ ℓ columns
to simulate block size ℓ Krylov iteration.

Imported Theorem 4.1 Restated. (Theorem 13 of [Musco and Musco, 2015]) Let B ∈ Rn×ℓ0 be any
(ℓ, L)-good starting matrix (Definition E.1) matrix for A, for some ℓ ≥ k. If we run Block Krylov iteration
(Algorithm 2) for q = O( 1√

gk→ℓ
log(nLε )) iterations with starting block B, where gk→ℓ =

σk−σℓ+1

σk
, then the output

Q ∈ Rn×k satisfies

∥A−QQᵀA∥ξ ≤ (1 + ε)∥A−Ak∥ξ and
∣∣qᵀ

i AAᵀqi − σi(A)2
∣∣ ≤ εσk+1(A)2.

Proof. We again show that Properties 1-3 of Lemma 9 of [Musco and Musco, 2015] hold, but now with
q = 1√

gk→ℓ
log(nLε ). Following Section 7 of [Musco and Musco, 2015], we will prove Property 1 for all l ∈ [k],

which in turn implies that Properties 2 and 3 hold. To begin, let p3(x) = (1+γ)α
Tq(1+γ)Tq(

x
α ) where α = σℓ+1(A),

γ = gk→ℓ, and q = O( 1√
gk→ℓ

log(nLε )). We let M ∈ Rℓ0×ℓ be the matrix guaranteed to exist by Lemma E.1.
Then, noticing that the top ℓ singular vectors of A are also the top ℓ eigenvectors of p3(A), we again appeal to
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Imported Lemma F.1 with P = p3(A), B = B, M = M, and U = Uk. We get that some orthogonal Y3 ∈ Rn×ℓ

in the span of p3(A)B has:

∥p3(A)−Y3Y
ᵀ
3p3(A)∥2F ≤ ∥p3(A)− p3(A)ℓ∥2F + ∥(p3(A)− p3(A)ℓ)BM∥2F

≤ ∥p3(A)− p3(A)ℓ∥2F + ∥p3(A)− p3(A)ℓ∥2F ∥BM∥22
≤ (L+ 1)∥p3(A)− p3(A)ℓ∥2F

= (L+ 1)
n∑

i=ℓ+1

p(σi(A))2

≤ (L+ 1)n · 4σℓ+1(A)2

22q
√
γ

(Lemma 5 of [Musco and Musco, 2015])

≤ ε

2
σℓ+1(A)2,

This recovers Equation (5) on page 10 of [Musco and Musco, 2015], and from there the rest of the proof of
Property 1 holds. As discussed on page 16 of [Musco and Musco, 2015], Property 1 holds here for all l ∈ [k],
and therefore Properties 2 and 3 also hold. Then, the analysis in Section 6.2 shows how Properties 1-3 imply the
spectral, Frobenius, and singular value guarantees.

G Single Vector Simultaneous Iteration
We briefly present a single vector algorithm for low-rank approximation based on the standard simultaneous
iteration algorithm. Simultaneous iteration, or block power method, extracts a low-rank approximation from the
span of K = A2qB where B is a starting block. We present a prototypical pseudocode for simultaneous iteration
in Algorithm 3. [Musco and Musco, 2015] show that Algorithm 3 converges from any (k, L)-good starting block
B, giving the two following theorems, which follow from the same arguments as in Appendix F and [Musco and
Musco, 2015]:

Algorithm 3 Simultaneous Iteration for Low-Rank Approximation
input: Matrix A ∈ Rn×d. Target rank k. Starting block B ∈ Rn×ℓ. Number of iterations t.
output: Orthogonal matrix Q ∈ Rn×k.

1: Compute an orthonormal basis Z for K = (AAᵀ)tB.
2: Compute Uk, the k top eigenvectors of M = ZᵀAAᵀZ
3: return Q = ZUk.

Algorithm 4 Single Vector Simultaneous Iteration for Low-Rank Approximation
input: Matrix A ∈ Rn×d. Target rank k. Starting vector x ∈ Rn. Number of iterations t. Memory budget ℓ ≥ k.
output: Orthogonal matrix Q ∈ Rn×k.

1: Compute an orthonormal basis Z for K = [ (AAᵀ)t−ℓ+1x, (AAᵀ)t−ℓ+2x, . . . , (AAᵀ)tx ].
2: Compute Uk, the k top eigenvectors of M = ZᵀAAᵀZ
3: return Q = ZUk.

Imported Theorem G.1. (Theorem 1 of [Musco and Musco, 2015]) Let B ∈ Rn×ℓ be any (k, L)-good
starting matrix (Definition E.1) matrix for A. If we run Simultaneous Iteration (Algorithm 3) for q =
O( 1ε log(

nL
ε )) iterations with starting block B, then the output Q ∈ Rn×k satisfies

∥A−QQᵀA∥ξ ≤ (1 + ε)∥A−Ak∥ξ and
∣∣qᵀ

i AAᵀqi − σi(A)2
∣∣ ≤ εσk+1(A)2.

Imported Theorem G.2. (Theorem 13 of [Musco and Musco, 2015]) Let B ∈ Rn×ℓ0 be any (ℓ, L)-good
starting matrix (Definition E.1) matrix for A, for some ℓ ≥ k. If we run Simultaneous Iteration (Algorithm 3) for
q = O( 1

gk→ℓ
log(nLε )) iterations with starting block B, where gk→ℓ =

σk−σℓ+1

σk
, then the output Q ∈ Rn×k satisfies

∥A−QQᵀA∥ξ ≤ (1 + ε)∥A−Ak∥ξ and
∣∣qᵀ

i AAᵀqi − σi(A)2
∣∣ ≤ εσk+1(A)2.
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When compared to block Krylov Iteration, subspace iteration uses less memory, but converges slower.
Specifically, in the theorems above we obtain a dependence on 1/ε and 1/gk→ℓ in comparison to 1/

√
ε and

1/
√
gk→ℓ in the comparable Imported Theorem 3.1 and Imported Theorem 4.1 for block Krylov iteration.
In Algorithm 4, we present a “single vector” variant of simultaneous iteration that similarly saves memory

over the single vector Krylov method from Algorithm 1. When run for t iterations, instead of storing the entire
length t Krylov subspace as in Algorithm 1, the method only stores the last ℓ ≥ k columns for a specified memory
budget ℓ.

Taking ℓ = k, we can analyze Algorithm 4 by letting Sk =
[
x A2x A4x . . . A2(k−1)x

]
and

noticing that Algorithm 3 run with starting matrix Sk for q iterations produces the matrix K = A2qSk =[
A2qx A2(q+1)x . . . A2(q+k)x

]
. Since Theorem 3.1 already tells us that Sk is (k, L)-good for A, applying

Imported Theorem G.1 immediately gives the following convergence guarantees for Algorithm 4:

Theorem G.1. For A ∈ Rn×d, let gmin = mini∈{1,...,k−1}
σi−σi+1

σi+1
. For any ε, δ ∈ (0, 1), Algorithm 4 initialized

with x ∼ N (0, I) and run for t = O(kε log(
1

gmin
)+ 1

ε log(
n
εδ )) iterations with memory budget k returns an orthogonal

Q ∈ Rn×k such that, with probability at least 1− δ,

∥A−QQᵀA∥ξ ≤ (1 + ε)∥A−Ak∥ξ and
∣∣qᵀ

i AAᵀqi − σi(A)2
∣∣ ≤ εσk+1(A)2.

Additionally, if Algorithm 4 is run with memory budget ℓ ≥ k, we can obtain a spectrum dependent convergence
bound comparable to the result proven in Section 4.1 for single vector Krylov iteration. Specifically, since
Theorem 3.1 already tells us that Sℓ is (ℓ, L)-good for A, applying Imported Theorem G.2 immediately gives
the following convergence guarantees for Algorithm 4:

Theorem G.2. For A ∈ Rn×d and ℓ ≥ k, let gmin = mini∈{1,...,ℓ−1}
σi−σi+1

σi+1
and gk→ℓ = σk−σℓ+1

σk
. For any

ε, δ ∈ (0, 1), Algorithm 4 initialized with x ∼ N (0, I) and run for t = O( ℓ
gk→ℓ

log( 1
gmin

) + 1
gk→ℓ

log( n
δε )) iterations

with memory budget ℓ returns an orthogonal Q ∈ Rn×k such that, with probability at least 1− δ,

∥A−QQᵀA∥ξ ≤ (1 + ε)∥A−Ak∥ξ and
∣∣qᵀ

i AAᵀqi − σi(A)2
∣∣ ≤ εσk+1(A)2.
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