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Abstract

Disinfection robots have been developed and deployed to maintain the environmental hygiene of built
environments. Given the dynamic activities and varying infection risks within these environments, as
well as the limited number of disinfection robots in buildings, optimizing their scheduling and routing
is critical to achieve the full potential of automated disinfection and cleaning in buildings. Therefore,
this research proposed a new model and method to minimize the infection risk. Specifically, the study
used an improved fomite-based pathogen transmission model to assess the varying infection risks
associated with the operational schedules and human activities. Based on the team orienteering problem
and vehicle routing problem with time windows, a mixed-integer programming model was developed
to optimize robot disinfection schedules and routes to mitigate the overall infection risk within a
building. Numerical experiments were conducted to evaluate the proposed method, demonstrating that
the mixed-integer programming was effective in solving the optimization problem for buildings with
less than 50 rooms. A real case study based on a campus building was also conducted to demonstrate
the applicability of the proposed method. Different pathogens were introduced, and the impacts of the
disinfection robot speed parameter and the number of robots on risk reduction were also evaluated
through sensitivity analyses. This study has shown great potential to reduce the exposure risks of
building occupants to infectious diseases and eliminate hotspots of community transmissions. This

research could be scalable and adaptable to facilities with different functions, configurations, and sizes.
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1. Introduction

The COVID-19 pandemic swept the world for nearly three years, unleashing unprecedented shocks to
society and household life [1], leading to heavy burdens on healthcare systems, and disrupting education
and the economy [2,3]. The SARS-CoV-2 is not the first and will not be the last pathogen that causes
pandemics and such disastrous consequences. In developed nations, people spend about 90% of their
time in built environments, encompassing all facets of our lives [4]. Airborne pathogens such as SARS-
CoV-2 and influenza spread quickly in enclosed built environments [5,6], making buildings hotspots
for nightmarish infections. The entire world has sought new measures to curb the spread of infectious

diseases. Disinfection and cleaning are important practices to mitigate the spread of infectious
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pathogens in mass-gathering built environments, such as healthcare facilities, commercial buildings,
airports, and schools [7]. The COVID-19 virus may persist on inorganic surfaces for many days or
weeks [8], which may cause a healthy person to get infected in addition to human-to-human proximity
contact transmission. Currently, most of the indoor disinfection in contaminated areas were performed
by human workers using chemical disinfectants [7]. However, manual disinfection is time-consuming
and labor-intensive. It also increases the chance of a healthy human becoming exposed to the highly
contagious virus, particularly when personal protective equipment is not properly worn or is missing.
Moreover, consistent procedures cannot be guaranteed for the required level of disinfection and

cleaning.

There is a critical need for automated, intelligent, and precision disinfection to reduce pathogen
transmission and exposure and thus prevent outbreaks of infectious diseases. Autonomous or remote-
controlled disinfection robots could provide safe, fast, and effective disinfection. During the pandemic,
robot-controlled noncontact ultraviolet (UV) surface disinfection have been deployed in many facilities
to clean and disinfect contaminated surfaces[9]. The elevated concerns driven by the pandemic of
COVID-19 have increased the adoption of robotic technology for infection control and environmental
hygiene, providing a massive impetus to the market of disinfection robots. However, there are two
unaddressed technical challenges preventing the effective deployment of disinfection robots in mass-
gathering facilities to maintain environmental hygiene and public health. First, varying schedules and
dynamic human activities in the rooms of a building significantly affects the accumulation of pathogens
on room surfaces and thus impact the infection risks [10]. Existing disinfection robots and decision
support systems are unable to compute the infection risks and exploit the infection risks to plan and
optimize disinfection robot scheduling and routing. Optimized robot scheduling and routing is the key
to achieving automated and effective cleaning and disinfection. Second, given the limited number of
available disinfection robots and the spaces needing disinfection, there lacks an optimization model to
simultaneously plan robot schedules and routes to minimize the infection risks while not disrupting the

on-going human activities in buildings.

To address the technical challenges, this research exploited an improved fomite-based transmission
model to assess the infection risks at the room level based on the planned schedule, human activities,
and building characteristics. Then, based on the team orienteering problem and vehicle routing problem
with time windows, we developed a mixed-integer programming model to optimize robot disinfection
schedules and routes to mitigate the overall infection risk within the building. The rest of the paper is
organized as follows. Relevant studies are reviewed in Section 2 to identify the knowledge gaps and
technical barriers. Section 3 describes the proposed method and the decision support system and
provides numerical experiments with randomly generated instances. Section 4 presents a real case study

based on a building at the University of Tennessee to demonstrate the application of the developed



models. In Section 5, we discuss the applicability and scalability, list the limitations and future research

directions, and conclude the study with major findings.

2. Literature Review

2.1 Building disinfecting

Several studies have demonstrated that fomites can be an essential route to the spread of SARS-CoV-2
[11-13]. Fomites, referring to contaminated objects or surfaces, can be contaminated by an infected
host by excretion behaviors such as coughing and sneezing. The respiratory particles can be expelled
onto hands, which then touch a surface, or directly fall to the surface. An individual may touch
contaminated objects, transfer the infectious particles from fomites to the susceptible sites (e.g., facial
mucosa), and get inoculated [14]. Laboratory studies indicated that the SARS-CoV-2 virus can persist
a long time on surfaces [15]. Furthermore, recent studies found that SARS-CoV-2 RNA has been found
on surfaces in different facilities, such as restaurants, grocery stores, and healthcare settings [16,17],
indicating that fomite transmission is an important route in indoor environments. To assess the pathogen
transmission via the fomite route, the environmental infection transmission system (EITS) modeling
framework has been developed to model the pathogen transmission pathway. The framework divides
the individuals as susceptible (S), infectious (/), and removed (R), and considers the dynamics of
inoculation of S, pathogen transmission between hands and fomites for 1, S, and R, excretion activities

performed by I, pathogen decay in the environment, recovery of I [18], and cleaning events.

The potential SARS-CoV-2 outbreak caused by fomite transmission in indoor environments calls for a
need for implementing mitigation measures to control the transmission risk and maintain a healthy
indoor environment. Surface disinfection has been proven to be effective to curb fomite-mediated
transmission. For instance, chemical disinfectants, such as bleach and ethanol, can be used as sanitizer
for surface cleaning, and mass spray chemical disinfection has already been adopted via artificial
intelligence such as robots and unmanned vehicles [11]. Disinfection robots, as a promising tool for
indoor surface cleaning during the pandemic [19], are adopted to disinfect the building surfaces in this

study.

Predicting outbreak risks in buildings considering the building-specific characteristics is challenging.
First, building structure could influence indoor microbial communities. The distribution of microbiomes
in rooms with different configurations and functionalities is considerably different [20,21]. Second,
occupancy could significantly influence microbial distribution patterns. For instance, the bacterial
communities in rooms with high occupant diversity exhibit differences from the rooms with low
occupant diversity [22]. The microbial exchange occurs between occupants and contaminated surfaces.
The outbreak risks could vary significantly for rooms with different functionalities and different

occupancy levels. For a single room with changes of occupancy and disinfection schedules, the outbreak
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risk varies according to the room operation schedule during a day. However, there lacks a computational
modeling framework integrating the building-specific information, room operational schedule (e.g.,
occupancy schedule and disinfection schedule), and pathogen transmission to assess the time-varying
room infection risk. Therefore, it is essential to develop a computational framework to analyze the
infection risks influenced by temporal factors, such as the change of occupancy and disinfection, and

spatial factors, such as spatial configurations of rooms.
2.2 Optimization for disinfecting scheduling and routing

Coexisting with various viruses and bacteria is a global reality that comes with unique challenges
impacting daily interactions [23]. Many organizations have paid attention to the development of
disinfection robots [23-25], and numerous optimizations focusing on avoiding obstacles and navigation
for disinfection robots [27,28]. Research seldom focused on the schedule optimization problem of
disinfection robots. However, it is impossible for the facility to have unlimited robots considering the
high cost of robots. This study aims to solve the schedule optimization problem of disinfection robot
based on time windows. Our optimization model integrates facets of the Team Orienteering Problem
(TOP) with the complexities inherent in time window constraints and network flow dynamics. The
objective is to mitigate as much risk as possible. Therefore, the following literature reviews mainly

focus on the TOP and their applications.

Vehicle routing problems (VRPs) are among the most studied problems in the area of combinatorial
optimization [29]. The orienteering problem (OP) is one of the variants of VRP, which can be seen as
a combination of node selection, determining the shortest Hamiltonian path of the selected nodes, and
maximizing the total score collected from selected nodes. There are two review papers that introduce
the general orienteering problems in detail [30,31]. Most recent research on the orienteering problem
with profits assumes that the profit collected at each vertex is a fixed value, such as the TOP, in which
multiple routes need to be determined to maximize the total profits within a given time budget [32,33],
the team orienteering problem with time window (TOPTW), in which each vertex can only be visited
within a given time window [33-38], and the time dependent orienteering problem (possibly with time
window), in which the traveling time between two vertices is time-dependent [39-41]. In another study,
TOP with Variable Profits (TOPVP) was examined [43]. The distinguishing feature of this problem is
that the total score of visiting a vertex depends on the time duration of the visit, with no relevance given
to the temporal specificity of the visitation. The Multi-objective TOP with Time Windows was proposed
by [44], in which each POI has several profits, and the objective function of the problem maximizes a
profit vector instead of a scalar quantity. The TOP with Time Windows and Time-Dependent Scores
(TOPTWTDS) was also investigated by [45] to consider time-dependent scores. The TOP with Time-
Varying Profit considered the situation when arrival time and service time affect the collection of

profits [46].



VRPTW adds a time window constraint of VRP, which means that a vehicle must begin its service
inside a time window at a demand point. For more models, the classification and solving algorithms of
VRP and its variants, we suggest two latest review papers [29] and [47]. The biggest difference of our
schedule optimization problem of disinfection robots from TOP and VRPTW is (1) the profit (risk) in
our problem serves as a variable not a parameter, contingent on the timing of the node visit; (2) the
same node may be visited multiple times, each occurring within a distinct time window, and (3) the
objective is to mitigate as much risk for all occupants as possible under the schedule and resource

restriction.

3. Decision support system for disinfecting rooms

3.1 Support system framework

To assess room infection risks, the parameters required in the fomite-based pathogen transmission
model includes the room environmental parameters, occupant characteristics, disinfection information,
and pathogen-specific parameters. Figure 1 indicates the required information for infection risk
assessment. To acquire the environmental parameters, BIM was used to automatically extract the room
characteristics (e.g., the accessible surface). The occupant characteristics were retrieved from the room
schedule. The information of the room schedule includes the number of times a room is occupied or
empty for a day, the duration of each occupation, and the number of occupants during each occupation.
Therefore, the occupant characteristics were expressed as temporal varying parameters according to the
room schedule. In this study, it is considered that a room can be disinfected when the room is
unoccupied. At each unoccupied time, the disinfection is a binary variable representing whether the
room is being disinfected or not. As a focus on the potential COVID-19 outbreak, the pathogen-specific

parameters regarding the SARS-CoV-2 were used in the pathogen transmission model.
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Figure 1. Overall support system framework.
3.2 Fomite-based pathogen transmission model

Fomites are defined as surfaces accessible to human hands. A surface can be contaminated in two ways:
1) droplets excreted from coughing, sneezing, or exhaling by an infector that deposits to the surface; 2)
touching by contaminated hands. The hands of a susceptible person are contaminated with pathogens
via fomite touching, and the pathogens on the hands may be inoculated by the susceptible person when

the person touches the mouth or other mucous membranes. The Environmental Infection Transmission
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System (EITS) modeling framework describes the dynamics of pathogen persistence on surfaces and
hands, and the dynamics of hand contact and pathogen transmission. The EITS framework considers
that each individual is either susceptible (S), infected (I), or immune (R). Pathogens excreted from an
I individual are either deposited on fomites (F) or the hands of I (H;) which may further transfer to F
via hand-touching activities. Pathogens surviving on F may transfer to hands of individuals S and R
(Hg, Hp) via fomite touching behavior. An S individual may get infected by inoculating pathogens on

H. The dynamic process is modeled using equation (1-3) [18,48].
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where P, is the proportion of pathogens that survive on hands and being inoculated by a susceptible
person; Py, is the proportion of pathogens transfer from hands to fomites; Pp;cy is the proportion of
pathogens picked up from fomites to hands, and the equation describes the infinite sequence of pickup
and redeposition process. M is the population size, or occupancy size, p is the inoculation rate, py is
the viral decay rate on hands, pg is the viral decay rate on fomites, pyr is the transfer efficiency from
hands to fomites, ppy is the transfer efficiency from fomites to hands, and y is the proportion of

pathogens absorbed during self-inoculation.

This model particularly fits for places like school buildings and classrooms, where individuals
frequently interact with surfaces (e.g., hands and desks), a fomite-based approach is contextually
relevant. Leveraging the well-established Environmental Infection Transmission System (EITS)
modeling framework, known for its effectiveness in addressing fomite transmission issues, we chose to
enhance this model specifically for school building scenarios. This choice enables us to understand the

impact of interventions like surface cleaning scheduling on reducing transmission risks.
3.3 Optimization modeling and solution method

Consider the scheduling problem of disinfecting a set of rooms, N, with robots within T time windows.
Each room i € N has w; time windows in which a robot can disinfect it. To facilitate modeling, we
define an augmented graph G = (V, E), where V is the set of nodes and E is the set of edges. Each node
or class in V is featured by a duplex of room and time window, (i,t), wherei € N and t € {1, ...,T}.

We let V; € V be the subset of nodes that are associated with room i but have different time windows.
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V| =1+ Y;enw;. Node u is called a precedent node to v (i.e, u = prec(v)) if they both correspond
to the same room but node v has a time window immediately after u. E is the set of all valid edges that
connect nodes u to v such that the time window of v is not earlier than that of u. Variable 7, represents

the risk of the room associated with the node at the end of the corresponding time window. For a node
u=_(,t),c, = Zg';tﬁl M;, where t' is the next available time window of room i after t, M;; is the

occupancy at room i in time window q. By, is the change of risk between node u = (i, t) and prec(u).

Let S,, be starting time of node u, if served. f, is the cleaning time concerning node u. [L,, U,,] is the
time window of each node, during which disinfecting can be done at the corresponding room. The
following mixed integer program (MIP) determines the optimal disinfecting schedule to minimize the
total infection risk of all occupants. Binary variable x,,,,; is equal to 1 if robot k travel from node u to

disinfect node v; and binary variable y,, is equal to 1 if node v is served.

min Z CuTy (4)

uev
s.t
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Xyvir Yu € {0:1}; Su T Tprec(u) = 0. (13)

Objective function (4) minimizes the total risks of all occupants at all nodes. Constraint set (5) decides
the value of y,, and ensures a node can be disinfected at most once. Constraint set (6) ensures robots go
out from the depot and return to the depot after finishing all disinfection tasks. The inequality of the left
side of constraint set (6) means the robot can only go to at most one place. Constraint set (7) ensures
conservation at all nodes except the depot. Constraint sets (8-10) related to the starting time and time
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window of each node, which are time constraints for the robots' room cleaning schedules. Constraint
sets (11) and (12) represent the risk evolvement at each node, which depends on whether the room is

disinfected or not. Here, M is a big number. Variable types and sign restrictions are specified by (13).

3.4 Numerical experiment

To validate the proposed MIP model and test the maximum of the nodes that can be handled by using
Gurobi, a popular optimization solver, we conducted numerical experiments with K = {1,2,3}, T =
13, and f = 20. The occupancy and travel distance between nodes were randomly generated. We
assumed that travel distances follow the triangular relationship. By increasing the number of rooms,
IN|, from 4 to 11, a set of nodes ranging from 20 to 60 were also generated. The node sets and related
occupancy were shown in Appendix A (Table A.1 and Table A.2). We implemented the experiment in

Python on a PC (INTEL i7-8750H CPU 2.20 GHz with 16 GB RAM). Each scene was run 10 times,

followed by the calculation of the average.
When K = {1}, K = {1,2} and K = {1, 2, 3}, the average CPU time is shown in Figure 2(a), 1(b) and

1(c), respectively.
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As shown in Figure 2(a), when K = {1}, Gurobi can deal with 60 nodes within 10 seconds. Figure 2(b)
and 2(c) show that in the cases of K = {1,2} and K = {1,2, 3}, it took approximately 200 seconds for
Gurobi to solve the MIP model when the number of nodes was less than 50, after which the CPU time
increased exponentially. In our real cases of a teaching building on our campus, the number of nodes
was less than 50, which means Gurobi can solve the case study successfully. However, if we consider
a scheduling problem with multiple buildings, the number of nodes will well exceed 200 and Gurobi

cannot handle it.

In order to demonstrate the superiority of MIP results over other algorithms, High Risk First (HRF) and
Nearby Search (NS) were designed considering a single disinfection robot. The results and CPU time

of MIP, HRF and NS are shown in the Table. The pseudocodes of HRF and NS were shown below.

Algorithm High Risk First (HRF)

1: Initialize @ as a list for the final schedule, Y as a list for the travel time between nodes
2:  including depot. Let T be the number of time window, and P be the number of rooms.
3:  Start from the depot (node 0).

4: fortinrangeOto T — 1:

5: foriinrangeOto P — 1:

6: Initialize tmp as 0, a list R to store risks for each node, a list U to store the index of
7: the node corresponding to the risk in R

8: Calculate the risk of each node in time window t and add them to R

9: Sort R in descending order, and update U accordingly

10: Calculate the travel time between nodes in time window t, add them into Y

11: if t=0

12: if travel time W, < time window t duration for the first node u in U

13: tmp = tmp + Wy,

14: Add the node u to the list @

15: for each subsequent node v in U:

16: if travel time W,,,, < time window t duration (where u = ®[—-1])

17: tmp=tmp + W,

18: Add the node v to the list ®

19: else

20: for each node v in U:

21: if travel time W,,,, < time window t duration (where u = ®[—1])

22: tmp = tmp + W,

23: Add the node v to the list ®

24:  Output P as the disinfection schedule. Calculate and output the total risk.
25: End




Algorithm Nearby Search (NS)

1: Initialize @ as a list for the final schedule, Y as a list for the travel time between nodes

2:  including depot. Let T be the number of time window, and P be the number of rooms.

3:  Start from the depot (node 0).

4: fortinrangeOto T — 1:

S: for i in range O to P — 1:

6: Initialize tmp as 0, a list D to store the distance between nodes, a list U to store the

7: index of the node corresponding to the distance in D

8: Calculate the distance of nodes in time window t and add them to D

9: Sort D in ascending order, and update U accordingly

10: Calculate the travel time between nodes in time window t, add them into Y

11: if t=0

12: if travel time W, < time window t duration for the first node u in U

13: tmp = tmp + Wy,

14: Add the node u to the list ®

15: for each subsequent node v in U:

16: if travel time W,,,, < time window t duration (where u = ®[—1])

17: tmp = tmp + W,

18: Add the node v to the list @

19: else

20: for each node v in U:

21: if travel time W,,,, < time window t duration (where = ®[—-1])

22: tmp = tmp + W,

23: Add the node v to the list @

24:  Output @ as the disinfection schedule. Calculate and output the total risk.

25: End

Table. Results and CPU time of MIP, HRF, and NS
Number of MIP HRF NS
nodes Result CPU time Result CPU time Result CPU time

20 4.268 0.11 4.268 0.07 8.143 0.09
40 8.534 0.39 9.534 0.11 16.62 0.13
60 19.459 7.59 22.119 2.11 36.43 3.24
80 25.831 8.66 29.372 5.16 57.33 6.44
100 30.164 9.54 36.842 10.2 67.16 8.15

As depicted in Table, the CPU time of NS is shortest under these five scenarios, followed by HRF and
MIP. If the room was cleaned using the NS, the infection risk will be reduced but still greater at most
45% and 55% than HRF and MIP, respectively. We can see from Table that when the number of nodes
is 20, the results of MIP and HRF are the same. However, the HRF greedy algorithm cannot guarantee
the global optimal solution to larger scale problems. When the number of nodes is moderate (below

100), MIP can get the best results which can reduce the infection risk by up to 18% compared with HRF.

4. Case (A single building model with Gurobi solution)

4.1 Base solution with digital presentation

In this study, a building in the University of Tennessee, Knoxville, named Mossman Hall, was used as



a case to demonstrate the room infection risk calculation and scheduling optimization. The case
considers a typical week of the 2022 Spring semester. There are seven classrooms in the building. As
stated in Section 3.1, the required information to assess the room infection risks includes room
characteristics, occupant characteristics, disinfection information, and pathogen-specific parameters.
The accessible surfaces are considered as the room characteristic and were computed as the average
value of the seven classrooms. The method of the retrieval of the accessible surface via BIM is described
in our previous paper. For each room, the occupant characteristics were retrieved from the classroom
schedule, including the number of classes and breaks for a day, the duration of each class, and the
number of students enrolled in each class. For disinfection activities, it is assumed that the disinfection
robot can disinfect the classroom during class breaks, and disinfection strategies could eliminate all the

pathogens in the room.

To assess the infection risks of each classroom i € N, a revised fomite-based pathogen transmission
model was developed in this study. For the original environmental infection transmission system (EITS)
model, it is assumed that the environment is an isolated system with a constant population size. However,
this assumption proves inadequate when applied to classroom settings, where individuals enter and exit
frequently, and the population is far from constant. Consequently, a revised model is developed to
accurately estimate infection risks in each classroom, accounting for varying schedules during the

academic year, incorporating disinfection activities between classes.

In particular, the model addresses the dynamic nature of classroom populations over time. Notably,
during class breaks, when no occupants are using the classroom, there is no pathogen transmission.
Moreover, disinfection activities may take place during breaks. This leads to three significant

differences between the improved fomite-based pathogen transmission model and its predecessor.

First, the assumption of an isolated environment for the entire planning horizon was relaxed. Instead,
the revised model considers each class as an isolated space with a constant population size. The initial
number of pathogens on surfaces in each classroom can be inherited from the remaining pathogens
surviving on surfaces from the previous class to the current class. The second difference is the
consideration of breaks in the school scenario. During these breaks, there is no pathogen transmission.
Following each break, a new group of occupants enters the classroom. The pool of pathogens capable
of infecting occupants comprises those inherited from previous classes after the latest disinfection and
the pathogens generated in the current class. The third consideration pertains to disinfection activities.
Unlike the previous model, which set the disinfection rate at a constant frequency (e.g., time per day),
our situation requires a more nuanced approach. Disinfection cannot occur when the classroom is
occupied by students, limiting opportunities within breaks. Moreover, we aim to optimize the
disinfection schedule, introducing variability in frequency. Additionally, we factor in the impact of

disinfection on consecutive classes following the disinfection event.
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In our study, due to the consideration of time-varying room occupancy in a day, we assume that 1) the
environment of each class is an isolated system, and the influence from previous classes is simplified
as the remaining pathogens; 2) there is one infector for each class. In our model, the infection risk is
defined as the number of susceptible individuals being infected in each class and can be computed using

equation (1-3) in Section 3.2, and equation (13-17).

M,pry
PIY T Mypry + tr (13)
KF,U = TvaFPinochickup,vP,(O) (14)
KH‘U = TvaHPinoculationPdepositppickup,vp’(0) (15)
KR,v = Z (T] (aF + aHPdeposit) - MFTb,j - TijpFH)Pinoculationppickup,ivpl(0) (16)
jevy
K, = KF,v + KH,v + KR,v (17)

Equation (13) is a simplified model that ignores the infinite series of all touching (pickup and deposit)
processes described in equation (3). M,, is the occupancy of class v, v € V;. K, represents the number
of susceptible individuals (S) being infected by the droplet-contaminated-fomite route at class v, T, is
the duration of class v, P is the linear dose-response function. ag is the number of pathogens excreted
to fomites by an infector, ay is the number of pathogens excreted to the hands of the infector. Ky ,,
indicates the number of § being infected by hand-contaminated-fomite route at class v. Kg ,, is the
number of S being infected by the remaining pathogens that were generated at previous classes. Let V}”
be the subset of V; comprising all the classes that precede class v. ap + ayPgeposic represent the
number of pathogens remain on the surface at previous class j,where j € V”. ugT), ; is the number of
pathogens decay at break j, T;N;ppy is the number of pathogens picked up from fomites during class j.
Thus, ZjEVi”(Tj (aF + aHPdeposit) —UpTpj — TijpFH) is the total number of pathogens remaining on
the surface at class v from all previous classes after disinfection. K, is the number of S being infected
in each class, which is used as the index of infection risk in this study. The description of all the input

parameters to the model regarding the SARS-CoV-2 virus is shown in Appendix A (Table A.3).

The detailed flowchart for room infection risk calculation is illustrated in Figure 3. To compute the
number of remaining pathogens for each classroom, the process starts with checking if the current class
is the first class of the day. If it is the first class, the remaining pathogen equals O; if it is not the first
class, it should be checked if the disinfection action occurs in the break just before this class. If the

classroom is disinfected, the remaining pathogen is 0O; if not, the number of remaining pathogens
12



generated before this class is computed using equation (16), and the infection risk of this classroom can
be computed using equation (17). The calculation process loops over all possible disinfection actions
(e.g., disinfect or not) in each break, and computes all possible infection risks for each class in each

classroom.

Class
schedule

Ves_p REMAININg Room risk Risk Level
pathogen=0
; =

Yes

Calculate | Mild
No» remaining
pathogens

Disinfection
schedule
Figure 3. The flowchart of room infection risk calculation Figure 4. Pathogen transmission visualization
Using the revised model, the relative exposure risk can thereby be derived for each building compartment
(room), as demonstrated in Figure 4. This information is instrumental in guiding building management.

However, to achieve precise control and effectively guide the scheduling of cleaning robots, it is essential to

integrate it with our optimization model.
4.2 A single building model with Gurobi solution

In real case, the weekly class schedule of an academic building is shown in Figure 5, and the lists of
node u = (i, t) from Monday to Friday are shown in the Appendix A (Tables A.4 -A.6). The occupancy
of each room in the different time windows are presented in Appendix A (Tables A.7 -A.9). Figure 6
shows the layout of each floor. Assuming there is no obstacle avoidance for robots, their traveling
distance between rooms will take the shortest path. The risk sets are calculated by the equations from

Section 4.1 based on the time window and occupancy in the Appendix.
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Figure 5. Weekly class schedule

The speed of robot and the cleaning time of each room are assumed to be 2 m/min and 20 min,
respectively. To obtain the optimal results, the experiments are implemented in Python on a PC (INTEL
17-8750H CPU 2.20 GHz with 16 GB RAM). Taking Monday, Wednesday and Friday for example, the
average CPU time for K = {1}, K = {1,2} and K = {1,2,3} to solve the MIP model by GUROBI solver

is 0.01s. The optimal solutions are shown below:

IE~= &3

(a) Layout of 1* floor (b) Layout of 2™ floor
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(c) Layout of 3™ floor

Figure 6. Classroom layouts

Monday:
(1) The optimal value of K = {1} is 0.2766 and the optimal scheduling is as follows:
0 (depot) —1(1,2) > 12 (2,4) —24 (3,6) —14 (2,8) —8(1,10) —9(1,12) —50(depot)
(2) The optimal value of K = {1,2} is 0.0036, and the optimal scheduling is as follows
Robot #1: 0 (depot) =12 (2,4) =13 (2,6) —14 (2,8) — 35 (4,10) — 28 (3,12) —50(depot)
Robot #2: 0 (depot) —1(1,2) =24 (3,6) =25 (3,8) —8(1,10) —9(1,12) —50(depot)
(3) The optimal value of K = {1,2,3} is 0, and the optimal scheduling is as follows
Robot #1: 0 (depot) —12 (2,4) —24 (3,6) —25 (3,8) —8(1,10) — 9(1,12) —50(depot)
Robot #2: 0 (depot)—1(1,2) —28 (3,12) —50(depot)
Robot #3: 0 (depot) —13 (2,6) —14(2,8) —49(5,12) —50(depot)
Wednesday:
(1) The optimal value of K = {1} is 0.2126 and the optimal scheduling is as follows
0 (depot) —1(1,2) =13 (2,4) —14 (2,6) —26 (3,8) —8(1,10) —9(1,12) —30(depot)
(2) The optimal value of K = {1,2} is 0, and the optimal scheduling is as follows
Robot #1: 0 (depot) — 14 (2,6) — 29 (3,12) —30(depot)
Robot #2: 0 (depot) —1(1,2) =13 (2,4) =25 (3,6) —26 (3,8) — 8(1,10) —9(1,12) —30(depot)
Friday:
(1) The optimal value of K = {1} is 0.1206 and the optimal scheduling is as follows
0 (depot) —1(1,2) =13 (2,4) —14 (2,6) —26 (3,8) —8(1,10) —»9(1,12) —31(depot)
(2) The optimal value of K = {1,2} is 0, and the optimal scheduling is as follows
Robot #1: 0 (depot) —13 (2,4) —14 (2,6) —8(1,10) — 31(depot)
Robot #2: 0 (depot) —1(1,2) —25 (3,6) —26 (3,8) —9(1,12) —31(depot)

In addition, several experiments were conducted to compare the solution of our model with other
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cleaning policies such as cleaning based on HRF, NS, random cleaning (shown below) and not cleaning.

Algorithm Random Cleaning

1: Initialize @ as a list for the schedule, P be the number of rooms, T be the number of time windows
2: Q is a P X T node matrix, A is a set of nodes related to the objective function
3: for each k € K:
4: Initialize @, as the subset of @, tmp;, =[]
5: for t inrange O to T — 1:
6: for iinrangeOto P — 1:
7: for each 1 € A:
8: if (A is not in ®):
9: Initialize p be the lens of list &,
10: if (&, # @ andt == tmpy[p — 1] and travel time < time window t duration):
11: @y append (Q;¢)
12: tmpy. append(t)
13: else:
14: ®.append (Q;+)
15: tmpy. append(t)
16:  Output @ as the disinfection schedule. Calculate and output the total risk.
17: End
1.2079
0.1239
Friday 0.1239
0.1206
0.1206
1.2579
0.2621
Wednesday [ 02621
0.2126
1.3041
0.3024
Monday T 0.3024
0.2766
0 0.2 0.4 0.6 0.8 1 1.2 1.4

m Not clean Random clean ™ G-Distance ™ G-Risk = MIP

Figure 7. Comparation of five different results: not clean, random clean, HRF, NS, and MIP when k = 1

Figure 7 shows the infection risks of 5 different cleaning policies. As we can see, if the rooms were not
cleaned, the infection risk is as high as 1.304. If the room was cleaned randomly or using NS algorithm,
the infection risk will be reduced but still greater than optimal solution. Compared with random clean
and NS, MIP solutions can reduce the infection risk by up to 18%. Compared with the not cleaning
solution, MIP can also reduce the infection risk by up to 90%. HRF can get the same optimal result as
MIP in this case. However, the greed algorithm cannot guarantee the global optimal solution to larger

scale problems. Based on the comparisons, the MIP model can reduce the infection risks effectively.
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4.3 Sensitivity analysis
4.3.1 Sensitivity analysis for infection risk assessment

In this subsection, we have considered various pathogens in our analysis that may pose future public
health risks, such as influenza and rhinovirus. The input parameters to the infection risk calculation

regarding influenza and rhinovirus are shown in Appendix A (Table A.10 and A.11, respectively).

2.9201

Rhinovirus 0.4972

| 0.0051

0.8405

Influenza 0.1434

| 0.0015

1.3041
SARS-CoV-2 0.2766
| 0.0036
0 0.5 1 1.5 2 2.5 3 3.5

Not clean WK=1 HMK=2

Figure 8. Comparation of three different results: SARS-CoV-2, Influenza, Rhinovirus on Monday

Figure 8 illustrates that among the three scenarios presented, the risk posed by rhinovirus is the most
pronounced, followed by SARS-CoV-2 and influenza. Rhinovirus has a higher risk due to its highly
efficient transmission, longer periods of shedding, and persistence on hands and surfaces. In comparison,
the risks associated with influenza are relatively low risk due to its higher surface die-off rates[18]. If
we implement a single disinfection robot (k = 1), the risks of all three pathogens can be reduced by a
range of 78% to 83%. The reduction in risk can be enhanced to as much as 99% by increasing the

number of robots.

The significant impact of this intervention is not limited to COVID-19 only, but it can also be applied
to potential future outbreaks of other infectious diseases. Our findings provide more comprehensive and

forward-looking strategies to better manage and contain potential outbreaks.
4.3.2 Sensitivity analysis for optimization

In this subsection, different speed and cleaning time of robot are considered, and how these factors
affect the optimal value is analyzed. Increasing the robot speed within a reasonable range can reduce
the wasted time between rooms. Additionally, when the necessary cleaning time can be shortened, it is
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more likely for robots to travel to all the rooms that need to be cleaned. However, it usually occurs when
the disinfection method can be decided by robots after receiving the virus information from the sensors.
Herein, the decision-making of the disinfection method is not the focus of our research, and the cleaning

time of each room is assumed to be flexible.

An algorithm is proposed to help to find the optimal speed within a reasonable range.

Algorithm Optimal Speed

1 Let C be the maximum value robots can reach

2 Set ¢ = 1, initialize Q,,, to a large value, set tolerance level =0.01
3 While ¢ <C

4 calculate the value of objective function €,

5: if [, — Qpre| < tolerance level

6: break

7 if(Q, =0)

8: Set optimal speed Wy, timar = @ and Qoprimar = 0

9: break

10: else calculate the value of objective function Q ;4

11: if (L4 <Qy)

12: Woptimar = @ +1and Qoptimar = Q41 then ¢ = @ +1
13: Set Qpre = Q4

14: Output ¥y, 1imar and Qoprimar
15: Get the optimal solution for Wy, ¢ima and Qoptimar
16: End

Keeping the cleaning time unchanged, the speed of the robot is changed from the range of 10 to 20
m/min. The relationship between robot speeds and optimal value on Monday, Wednesday and Friday

are shown in Figures 9,10, and 11, respectively.

o
w

0.2744

Optimal Value
SO0 _ 299000 90000
ool
DES®—ROEa0ON R ®

=]

SAAAAAAAAA N
S

Robot Speed(m/min)
Figure 9. Sensitivity analysis of Monday
The optimal solutions for Monday based on the different robot speeds are shown below. It changed

since the optimal value has been changed, which is obtained from the previous algorithm.
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(1) Robot speed: 10-12 m/min

0 (depot) —1(1,2) > 12 (2,4) —24 (3,6) —14 (2,8) — 35 (4,10) —8(1,10) —9(1,12) —50(depot)

(2) Robot speed: 13-14 m/min

0 (depot) ~1(1,2) ~12(2,4) —24 (3,6) —13(2,6) ~25(3,8) ~ 14 (2,8) —8(1,10) —35 (4,10) ~9(1,12)
—50(depot)

(3) Robot speed: 15-20 m/min

0 (depot) —1(1,2) —12 (2,4) —13(2,6) —24 (3,6) —25(3,8) —14 (2,8) —8(1,10) —35 (4,10) —
28(3,12) —9(1,12) —50(depot)

As can be seen from figure 9, when the speed reaches 20 m/min, the optimal value is not 0, which
means that there are some rooms needed to be cleaned. Since the speed of the robot is already very
large, we have changed the cleaning time of the robot from 20 min to 9 min. The optimal solution is

shown below and the optimal value is 0.

0 (depot) —1(1,2) —~12 (2,4) —13(2,6) —24 (3,6) —25(3,8) — 14 (2,8) —8(1,10) —35 (4,10) —
28(3,12) — 49(5,12) —~9(1,12) —50(depot)

0.28
0.26
0.24
0.22
0.2

5 0.18
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02

o
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—_
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Q
(=]
o
NS}
=

e

o

= OO
S\ N\

10 14 15 20
Robot Speed (m/min)

Figure 10. Sensitivity analysis of Wednesday

The optimal solutions for Wednesday based on the different robot speeds are shown below.

(1) Robot speed: 5-13 m/min
0 (depot) —1(1,2) — 13 (2,4) — 14 (2,6) —26 (3,8) —8(1,10) —9(1,12) —30(depot)
(2) Robot speed: 14 m/min
0 (depot) —1(1,2) — 13 (2,4) —25(3,6) — 14 (2,6) —26 (3,8) —8(1,10) —9(1,12) —30(depot)
(3) Robot speed: 15-20 m/min
19



0 (depot) —1(1,2) — 13 (2,4) —25(3,6) — 14 (2,6) —26 (3,8) —8(1,10) —9(1,12) —29 (3,12)
—30(depot)

éﬁo.(;g % % %

.go.oe) / % %

CS2-0.04 % % %
s

o.oz % % % 0 0

Robot Speed (m/min)

Figure 11. Sensitivity analysis of Friday

The optimal solutions for Friday are shown as follows.

(1) Robot speed: 2-13 m/min

0 (depot) —1(1,2) — 13 (2,4) — 14 (2,6) —26 (3,8) —8(1,10) —9(1,12) —31(depot)

(2) Robot speed: 14-20 m/min

0 (depot) —1(1,2) — 13 (2,4) — 14 (2,6) —25(3,6) —26 (3,8) —8(1,10) —9(1,12) —31(depot)

The schedule for Wednesday is almost the same as that for Friday, so their optimal solutions are very
similar. Meanwhile, as can be seen from Figures 10 and 11, keeping the cleaning time of the robot
unchanged and increasing its speed can meet all cleaning needs, which is suitable for limited robots and

few nodes.

The results intuitively show that when operating on a higher speed, the robots clean the room more
efficiently, and we have a lower risk of infection. This is particularly used when we only have limited

number of robots.

Using the MIP model, the optimal risk value can be obtained according to different parameters of the
disinfection robot. When the infection risk needs to be 0, the minimum number of robots is easy to
obtain. Also, we can get the optimal speed by Optimal Speed Algorithm when the number of robots is

limited. In this way, we can minimize the infection risk based on cost control of the total robots.

5. Discussion and Conclusion

This study examined the disinfectant robot scheduling problem in classroom buildings. To assess the
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infection risks of each classroom, a revised fomite-based pathogen transmission model was developed.
To minimize the infection risk, a mathematical model for optimal robot scheduling was proposed.
Numerical experiments were randomly generated to test the performance of the mathematical model.
The numerical results indicated that problems with rooms below 50 can be solved to their optimality
with commercial solvers (e.g., Gurobi). To demonstrate the superiority of MIP results over other
algorithms, High Risk First (HRF) and Nearby Search (NS) were designed. The experiments showed
that (1) the CPU time of NS was shortest under these five scenarios, followed by HRF and MIP. (2) the
results of total risk of MIP were smallest, followed by HRF and NS. An academic building was used as
a case study to demonstrate the room infection risk calculation and disinfection robot scheduling
optimization. Compared with random clean and NS, MIP solutions can reduce the infection risk by up
to 18%. Compared with the not cleaning solution, MIP reduced the infection risk by up to 90%. HRF
obtained the same optimal result as MIP in this case. However, the greed algorithm cannot guarantee
the global optimal solution to larger scale problems. The sensitivity analyses included various pathogens
that may pose future public health risks, such as influenza and rhinovirus. The significant impact of our
strategies indicates potential future applications for other infectious disease outbreaks. The Optimal
Speed algorithm was designed to help decision makers find the optimal speed within a reasonable range.
Through a case study, we obtained the following two insights. (1) the optimized scheduling obtained
by MIP model can reduce the infection risks effectively. (2) When facing fewer number of disinfection

robots, we can increase robot speed within a reasonable range to reduce the infection risk.

In our study, we considered the average speed of robots and the shortest path between two locations,
which ignored the obstacle avoidance time of robots. In addition, we assumed the cleaning time is fixed.
However, cleaning time varied from room to room based on the different pathogen densities and
cleaning methods. Therefore, in future studies, we will consider the stochastic travel time of robots and
cleaning time for rooms in the classroom building. In addition, the scheduling problem in this study
was based on a certain scenario, because the time windows of classrooms were fixed. In some other
scenarios, such as the consultation room and operation room in the hospital, their time windows were
uncertain. So, we will also consider the stochastic time windows under uncertain scenarios in further

study.

This study linked fomite-based pathogen prediction with disinfection robot scheduling to reduce the
infection risks at the building and room level, filling a notable gap in the current literature where such
a comprehensive approach is seldom explored. It had a great potential to reduce the exposure risks of
building occupants to infectious diseases, eliminating key hotspots of community transmission. The
proposed framework could be scalable and adaptable to facilities with different functions,
configurations, and sizes. Translating the research outcomes into practice will generate significant and

timely broader impacts.
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Appendix A

Table A.1. Node sets through randomly generated

Yoliy 2 3 4 5 6 7 8 9 10 1 12 13
Roo
1 1 0 2 3 0 0 4 0 5 0 6 0 0
2 0 0 7 0 0 8 9 0 10 O 0 0 0
3 11 12 13 14 15 0 0 0 16 17 0 18 19
4 0 20 21 22 23 24 0 0 0 0 25 0 26
5 0 27 28 29 30 0 31 0 0 32 0 33 34
6 35 0 36 37 0 38. 0 0 0 39 40 O 0
7 0 41 0 0 42 0 0 0 0 43 4 0 0
8 0 45 0 0 46 0 0 47 48 0 49 0 0
9 0 0 0 50 51 0 0 0 0 0 520 0
10 53 54 55 0 0 56 0 0 57 0 0 0 0
11 58 0 59 60 61 0 0 62 63 64 O 65 0
Table A.2. Occupancy of classroom through randomly generated
Yly 2 3 4 5 6 7 8 9 10 11 12 I3
Roo
1 0 28 0 0 280 22 0 220 21 0 25 22
2 29 27 0 25 25 0 0 29 0 26 29 29 25
3 0 0 0 0 0 22 29 26 0 0 21 0 0
4 28 0 0 0 0 0 21 20 28 25 0 20 0
5 26 0 0 0 0 25 0 24 22 0 29 0 0
6 0 29 0 0 240 25 23 29 0 0 27 21
7 22 0 23 26 0 25 24 24 21 0 0 28 27
8 21 0 29 22 0 23 24 0 0 240 24 29
9 20 25 24 0 0 23 22 27 20 26 O 22 27
10 0 0 0 25 27 0 27 25 0 26 21 26 24
11 0 26 0 0 0 20 27 O 0 0 22 0 26
Table A.3. Input parameters to the fomite-based transmission model
Parameter Units Description Values References
Pathogens/
a (hr x people) Shedding rate 1.99E4 [14]
p /min Inoculation 0.8 [49]
Wg /day Viral decay rate on F 0.18 [50]
Ug /min Viral decay rate on H 1.195 [51]
Viral transfer efficiency from F to
Try proportion H 0.217 [52]
Viral transfer efficiency from H to
Tyr proportion F 0.025 [53]
On proportion Pathogen excreted to H 0.15 [18]
T Unitless Dose-response on mucosa 6.58E-06 [54]
1/(days x
PrH people) rate pathogens from F to H PTTrHK [18]
1/(days x
PHF people) rate pathogens from H to F PrTry [18]
Pathogens/
ay (hr x people) rate pathogens added to H apy [48]
Pathogens/
agp (hr x people) rate pathogens added to F a(l—@y) [48]
6E — 06
K 1/people fingertip to surface ratio 2 [18]
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Table A.4. Node of Monday class schedule

Woly 2 3 4 s 6 7 8 9 10 11 12 13
Roo
1(102) |0 1 2 3 4 5 6 7 0 8 0 9 0
2(212) |10 11 O 12 0 13 0 14 15 16 17 18 19
3(202) |20 21 22 23 0 24 0 25 26 27 O 28 0
4(305) (29 30 31 32 33 34 0 0 0 35 36 37 38
5(210) |39 40 41 42 43 44 45 46 47 48 O 49 0

Table A.5. Node of Wednesday schedule

Wly 2 3 4 5 6 7 8 9 10 11 12 I3
Roo
1(102) |0 1 2 3 4 5 6 7 0 8 0 9 10
2(212) | 11 12 0 13 0 4 0 15 16 17 18 19 20
3(102) |21 22 23 24 0 25 0 26 27 28 0 29 0

Table A.6. Node of Friday schedule

Wolr 2 3 4 s 6 7 8 9 10 11 12 13
Roo
1(102) |0 1 2 3 4 5 6 7 0 8 0 9 10
2(212) | 11 12 0 13 0 4 0 15 16 17 18 19 20
3(102) |21 22 23 24 0 25 0 26 27 28 0 29 30

Table A.7. Occupancy of Monday class schedule

Wolr 2 3 4 s 6 7 8 9 10 11 12 13
Roo
1(102) | 108 O 0 0 0 0 0 0 140 0 189 0 61
2(212) | 0 0 63 0 63 0 70 0 0 0 0 0 0
3(202) |0 0 0 0 103 0 72 0 0 0 82 0 48
4(305) |0 0 0 0 0 0 5 5 9 0 0 0 0
5(210) | 0 0 0 0 0 0 0 0 0 0 20 0 7

Table A.8. Occupancy of Wednesday class schedule

\ 1 2 3 4 5 6 7 8 9 10 11 12 13
Roo
1(102) | 108 O 0 0 0 0 0 0 140 0 189 0 0
2(212) |0 0 63 0 63 0 70 0 0 0 0 0 0
3(102) | 0 0 0 0 103 O 72 0 0 0 82 0 57

Table A.9. Occupancy of Friday class schedule

\ 1 2 3 4 5 6 7 8 9 10 11 12 13
Roo
1(102) | 108 O 0 0 0 0 0 0 140 O 189 0 0
2(212) | 0 0 63 0 63 0 70 0 0 0 0 0 0
3(102) | 0 0 0 0 103 0 72 0 0 0 82 0 0
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Table A.10. Input parameters for influenza to the fomite-based transmission model[ 18]

Parameter Units Description Values
Pathogens/

a (hr x people) Shedding rate 10000

p /hr Inoculation 15.8

Wg /hr Viral decay rate on F 0.121

Uy /hr Viral decay rate on H 88.2

Viral transfer efficiency from F to
Try proportion H 0.1
Viral transfer efficiency from H to

Tyr proportion F 0.025

Pn proportion Pathogen excreted to H 0.15

T Unitless Dose-response on mucosa 6.93E-05

1/(days x
PrH people) rate pathogens from F to H PTTrHK
1/(days x

PuF people) rate pathogens from H to F PrTry
Pathogens/

ay (hr x people) rate pathogens added to H apy
Pathogens/ a(l

ap (hr x people) rate pathogens added to F — ol

6E — 06
K 1/people fingertip to surface ratio T

Table A.11. Input parameters for rhinovirus to the fomite-based transmission model[18]

Parameter Units Description Values
Pathogens/

a (hr x people) Shedding rate 1000

p /hr Inoculation 15.8

Wg /hr Viral decay rate on F 1.44

Uy /hr Viral decay rate on H 0.767

Viral transfer efficiency from F to
Try proportion H 0.2
Viral transfer efficiency from H to

Tyr proportion F 0.2

Pn proportion Pathogen excreted to H 0.15

T Unitless Dose-response on mucosa 2.46E-03

1/(days x
PrH people) rate pathogens from F to H PTTrHK
1/(days x

PHF people) rate pathogens from H to F PTTFrH
Pathogens/

ay (hr x people) rate pathogens added to H apy
Pathogens/ a(l

arp (hr x people) rate pathogens added to F — o

6E — 06
K 1/people fingertip to surface ratio 1
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