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Abstract
Aim: Species distribution models (SDMs) are increasingly applied across macroscales 
using detection-nondetection data. These models typically assume that a single set of 
regression coefficients can adequately describe species–environment relationships 
and/or population trends. However, such relationships often show nonlinear and/or 
spatially varying patterns that arise from complex interactions with abiotic and biotic 
processes that operate at different scales. Spatially varying coefficient (SVC) models 
can readily account for variability in the effects of environmental covariates. Yet, their 
use in ecology is relatively scarce due to gaps in understanding the inferential benefits 
that SVC models can provide compared to simpler frameworks.
Innovation: Here we demonstrate the inferential benefits of SVC SDMs, with a particu-
lar focus on how this approach can be used to generate and test ecological hypotheses 
regarding the drivers of spatial variability in population trends and species–environ-
ment relationships. We illustrate the inferential benefits of SVC SDMs with simulations 
and two case studies: one that assesses spatially varying trends of 51 forest bird spe-
cies in the eastern United States over two decades and a second that evaluates spatial 
variability in the effects of five decades of land cover change on grasshopper sparrow 
(Ammodramus savannarum) occurrence across the continental United States.
Main conclusions: We found strong support for SVC SDMs compared to simpler al-
ternatives in both empirical case studies. Factors operating at fine spatial scales, ac-
counted for by the SVCs, were the primary divers of spatial variability in forest bird 
occurrence trends. Additionally, SVCs revealed complex species–habitat relationships 
with grassland and cropland area for grasshopper sparrow, providing nuanced insights 
into how future land use change may shape its distribution. These applications display 
the utility of SVC SDMs to help reveal the environmental factors that drive species 
distributions across both local and broad scales. We conclude by discussing the po-
tential applications of SVC SDMs in ecology and conservation.
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1  |  INTRODUC TION

Elucidating the factors that drive species distributions is a funda-
mental objective of ecology. Species distribution models (SDMs) 
are the primary tool to study where and why species occur across 
space and time (Guisan & Zimmermann, 2000). While SDMs can 
leverage a variety of data types (e.g. presence-only, abundance), 
they are commonly used with presence–absence (or detection-
nondetection) data in a parametric generalized-linear model 
(GLM)-based framework, allowing for assessments of species–
environment relationships and probabilities of local-level occur-
rence. Parametric SDMs often describe species–environment 
relationships via a single set of regression coefficients (e.g. linear 
and quadratic terms) across the spatial extent of the data set, re-
sulting in a set of linear or unimodal response curves along all en-
vironmental predictors included in the model (Guisan et al., 2002). 
When the spatial extent encompasses the entirety of the species 
range, the combination of such species–environment response 
curves characterizes the multivariate realized environmental niche 
of a species (Guisan et  al.,  2017). However, when fitting SDMs 
across large spatial extents, a single set of linear and quadratic 
regression coefficients may not adequately describe species–envi-
ronment relationships, which can result from the true relationship 
taking a complex, nonlinear form or variability in the relationship 
across space (i.e. the relationship is context dependent, or nonsta-
tionary; Rollinson et al., 2021).

Complex, nonlinear and/or spatially varying species–environ-
ment relationships can arise from a variety of abiotic and biotic 
processes that operate at different scales (Miller, 2012; Osborne 
& Suárez-Seoane,  2002). Interactions with abiotic factors, such 
as historical disturbance regimes, fine-scale habitat characteris-
tics (e.g. vegetation quality) and environmental conditions (e.g. 
soil content) can result in varying effects of environmental fac-
tors on species across their ranges (Rollinson et al., 2021). Given 
spatial heterogeneity in resource availability, effects of environ-
mental factors on species occurrences may be stronger in areas 
with limited resources compared to areas with abundant resources 
(Pease, Pacifici, & Kays, 2022). If climate shapes species distribu-
tions, effects of climate change on species should be strongest 
in areas near their climatic limits (Amburgey et al., 2018). For ex-
ample, Sultaire et al.  (2022) found spatial variation in the effects 
of increasing temperature and snow cover duration on snowshoe 
hare (Lepus americanus) occurrence, suggesting that climate lim-
its their distribution in different ways across the species range. 
Alternatively, spatially varying species–environment relationships 
may arise from biotic processes such as local genetic adaptations 
or spatial variation in species interactions. Pease, Pacifici, and 
Kays  (2022) found that spatial variability in the effect of forest 
cover on white-tailed deer (Odocoileus virginianus) occurrence 
across North Carolina was partially driven by variation in preda-
tion pressure across the state. Failing to account for such spatially 
varying relationships can lead to misleading inferences on the 
abiotic factors that influence where species occur, which could 

have important implications for conservation recommendations 
(Rollinson et al., 2021).

In addition to characterizing species–environment relation-
ships, monitoring data are often used in SDMs to quantify oc-
currence trends. Nonlinear and/or spatially varying occurrence 
trends primarily arise from spatio-temporal changes in abiotic and 
biotic factors that influence the species of interest (e.g. differ-
ences in land-use change across a species distribution). However, 
such patterns can also arise from complex relationships to such 
factors (e.g. the effect of land-use change is different in one part 
of a species range compared to another). Quantifying spatial 
variability in population change over time is a common objective 
of biodiversity monitoring programs (Babcock et  al., 2016; Bled 
et al., 2013; Meehan et al., 2019), as such insights can help gen-
erate hypotheses about the drivers of population changes (e.g. 
Crossley et al., 2021) and identify priority areas for conservation 
or restoration (e.g. Ethier et al., 2017).

Numerous methods have been used to test hypotheses about 
spatial variability and nonlinearity in species–environment rela-
tionships or occurrence trends. GLMs with interactions between 
variables are simple, yet intuitive, ways to assess nonlinear and/or 
spatially varying relationships (Spake et al., 2023). In addition, esti-
mating separate slopes (fixed or random) across pre-defined strata 
(e.g. ecoregions, management units) is another common alternative 
(e.g. Smith & Edwards,  2021). Furthermore, nonlinear functions 
(e.g. thresholds) can be readily incorporated into parametric SDMs 
(Hostetler & Chandler, 2015). However, these approaches require 
a priori knowledge of covariates that interact with the variables of 
interest, the functional forms of such relationships and/or the spa-
tial resolution of variability in the relationship, most of which are 
unknown prior to analysis. Specifying interactions between multi-
ple drivers operating at different spatial scales is particularly critical 
when working across macroscales, but difficult to accomplish using 
the aforementioned approaches. More flexible approaches that can 
readily accommodate complex species–environment relationships 
without a priori knowledge of all interacting variables and the nature 
of their interactions are thus needed.

Accordingly, there has been widespread use of MaxEnt (Phillips 
et  al., 2006) and random forests (Liaw & Wiener, 2002) to model 
species distributions while accounting for complex species–environ-
ment relationships. MaxEnt uses combinations of different ‘feature 
classes’, or mathematical functions, on covariates to characterize 
nonlinear relationships in presence-only data, and random forests 
fit ensembles of classification or regression trees within partitions 
of the data based on covariate space (Valavi et al., 2021). Both ap-
proaches are widely used in ecology, but they are limited in their 
ability to provide uncertainty estimates of species–environment 
relationships and/or occurrence trends; they require all interacting 
variables to be known and incorporated into the model; and they do 
not account for imperfect detection (i.e. the failure to observe a spe-
cies at a site when it is present; Kellner & Swihart, 2014; Kéry, 2011).

In this paper, we discuss the use of spatially varying coefficients 
(SVCs) in SDMs, a highly flexible approach for modelling nonlinear 
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and/or spatially varying species–environment relationships, regard-
less of how they arise. SVC models are intuitive extensions of GLMs 
that allow regression coefficients to vary smoothly across space. 
By fitting SVC models within a hierarchical Bayesian framework, 
we can generate predictions of species–environment effects and/
or trends across a spatial region of interest with full uncertainty 
propagation, while simultaneously accounting for widespread ob-
servation errors, such as those due to imperfect detection. Recent 
studies suggest an increasing interest in this framework for a vari-
ety of ecological applications due to the prevalence of heterogene-
ity in species–environment relationships across macroscales (e.g. 
Meehan et  al., 2019; Rollinson et  al., 2021; Sultaire et  al., 2022). 
However, a comprehensive understanding of the inferential ben-
efits SVCs can provide compared to alternative approaches is 
lacking. Thorson et al. (2023) recently highlighted seven ecological 
questions that can be addressed with spatially varying coefficients. 
Here, we build on their work by explicitly demonstrating the in-
ferential benefits of SVC SDMs compared to simpler approaches 
with simulations and two case studies on breeding birds in the 
United States. We conclude with a discussion of practical guide-
lines on when to use SVC SDMs instead of, or in addition to, simpler 
alternatives.

2  |  What are spat ia l ly  var ying 
coef f ic ient s?

Here, we discuss SVCs in the context of occupancy models 
(MacKenzie et al., 2002; Tyre et al., 2003), a specific form of hierar-
chical GLM that models imperfect detection, although our findings 
are directly extensible to all parametric SDMs (i.e. GLMs). See Doser 
et al. (2024) for full statistical details.

Let sj denote the spatial coordinates of site j, where j = 1, … , J , 
which are each sampled across t = 1, … , T primary time periods 
(henceforth ‘seasons’). Note that data may be obtained for only one 
season (i.e. T = 1), or for multi-season data sets in which sites do not 
need to be sampled every season (i.e. missing values are allowed). 
To account for imperfect detection, k = 1, … ,Kt

(
sj

)
 sampling rep-

licates are obtained at site j during season t to estimate whether a 
nondetection of the target species is truly an absence (MacKenzie 
et al., 2002; Tyre et al., 2003). Note that the number of replicates 
can vary across site/season combinations. Such replicates typically 
come in the form of multiple visits to a site over a short period of 
time within a season, but other forms of replication such as spa-
tial sub-sampling and multiple observers are possible (MacKenzie 
et al., 2017). Let yt,k

(
sj

)
 denote the observed detection (1) or nonde-

tection (0) of a study species at site j during survey k in season t, and 
let zt

(
sj

)
 denote the true presence (1) or absence (0) of the species 

at site j during season t. Note we assume zt
(
sj

)
 does not change 

across replicate surveys within a given season (i.e. the ‘closure’ as-
sumption). We model the observed data yt,k

(
sj

)
 conditional on the 

true occurrence status of the species at site j during season t (zt
(
sj

)
 ). 

Specifically, we have

where pt,k
(
sj

)
 is the probability of detecting the species at site j during 

replicate survey k in season t. We model detection probability as a 
function of site, season and/or survey-level (i.e. observation-level) co-
variates according to

where � is a vector of regression coefficients (including an intercept) 
that describe the effect of covariates vt,k

(
sj

)
 on detection.

The true occurrence status zt
(
sj

)
 is a partially observed vari-

able, such that if yt,k
(
sj

)
= 1, we know zt

(
sj

)
= 1 (since we assume 

no false positives), but if yt,k
(
sj

)
= 0 we do not know if the species 

is truly absent from the site, or if we failed to detect it. We model 
zt
(
sj

)
 as

where � t

(
sj

)
 is the occurrence probability of the species at site j during 

season t. When fitting occupancy models, we can estimate species–
environment relationships through the effect of covariates on oc-
currence probability, � t

(
sj

)
, within a GLM framework. For simplicity, 

consider a single environmental variable, xt
(
sj

)
, that varies across each 

spatial location sj and season t (e.g. temperature, precipitation). An SVC 
occupancy model has the form

where �0 is an intercept, �t is a temporal random effect (i.e. season-
specific intercept) to account for unmodelled temporal autocorrelation 
in occurrence probability (only applicable if T > 1), w0

(
sj

)
 is a spatial 

random effect to account for unmodelled spatial variation in occur-
rence probability, �1 is the non-spatial effect of the covariate xt

(
sj

)
 and 

w1

(
sj

)
 is the spatially varying effect of the covariate at each spatial 

location sj.
The spatially varying effect in the SVC model can be estimated in 

a variety of ways, including via generalized additive models (GAMs; 
Wood, 2006) and Gaussian processes (Banerjee et  al., 2014). We 
focus on the latter due to their prevalence in spatial statistics, 
their comparatively higher predictive performance (Golding & 
Purse, 2016), and the potential for oversmoothing of relationships 
with GAMs (Stein, 2014). Specifically, we have

where C
(
s, s′,�

)
 is a J × J covariance matrix that is a function of the 

distances between any pair of site coordinates s and s′ and a set of pa-
rameters (�) that govern the spatial process according to a spatial cor-
relation function. Here we use Nearest Neighbour Gaussian Processes 
(Datta et al., 2016) as an efficient approximation to the full Gaussian 
process and an exponential correlation function, which models the 
correlation in the spatially varying effect of the covariate using two 
parameters, � =

{
�2,�

}
, where �2 is a spatial variance parameter and 

(1)yt,k
�
sj

�
∼

⎧
⎪⎨⎪⎩

0, zt
�
sj

�
=0

Bernoulli
�
pt,k

�
sj

��
, zt

�
sj

�
=1

,

(2)logit
(
pt,k

(
sj

))
= vt,k

(
sj

)
�,

(3)zt
(
sj

)
∼ Bernoulli

(
� t

(
sj

))
,

(4)logit
(
� t

(
sj

))
= �0 + �t + w0

(
sj

)
+ �1 ⋅ xt

(
sj

)
+ w1

(
sj

)
⋅ xt

(
sj

)
,

(5)w1(s) ∼ N
(
0,C

(
s, s�,�

))
,

 14668238, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/geb.13814, W

iley O
nline Library on [19/03/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



4 of 13  |     DOSER et al.

� is a spatial decay parameter. See Doser et al. (2024) for full details on 
SVC occupancy models.

3  |  How do spat ia l ly  var ying coef f ic ient 
models compare to s impler  a lternat ives?

For comparison to alternative models, consider a more generalized 
model of occurrence probability � t

(
sj

)
 with the form

where �0, �t and w0

(
sj

)
 are defined in (4), and f

(
xt
(
sj

)
,�

)
 is a generic 

function that relates the covariate xt
(
sj

)
 to occurrence probabil-

ity through a set of parameters �. Note that w0

(
sj

)
 and �t can be 

removed from (6) if not applicable for a target species/data set. 
We consider five functional relationships to describe the rela-
tionship between � t

(
sj

)
 and xt

(
sj

)
, which vary in their ability to 

estimate nonlinear and/or spatially varying species environment 
relationships:

1.	 Linear: f
(
xt
(
sj

)
,�

)
= �1 ⋅ xt

(
sj

)

2.	 Quadratic: f
(
xt
(
sj

)
,�

)
= �1 ⋅ xt

(
sj

)
+ �2 ⋅ x

2
t

(
sj

)

3.	 Stratum: f
(
xt
(
sj

)
,�

)
= �1 ⋅ xt

(
sj

)
+ �2,STRATUMj

⋅ xt
(
sj

)

4.	 Interaction: f
(
xt
(
sj

)
,�
)
=�1 ⋅xt

(
sj

)
+�2 ⋅x

∗
t

(
sj

)
⋅xt

(
sj

)
5.	 SVC: f

(
xt
(
sj

)
,�

)
= �1 ⋅ xt

(
sj

)
+ w1

(
sj

)
⋅ xt

(
sj

)

The linear model simply assumes a linear species–environment 
relationship. The quadratic model extends the linear model by al-
lowing the species–environment relationship to peak at some op-
timum level and subsequently decrease as one moves farther from 
the optimum or peak at the extremes of the environmental vari-
able. The stratum model estimates an overall linear effect of the 
environmental predictor as well as stratum-specific adjustments 
(fixed or random) in the effect across a set of strata (e.g. manage-
ment units). The interaction model similarly estimates a linear spe-
cies–environment relationship, but allows for spatial variation in 
this relationship in the form of an interaction with a second covari-
ate that varies across the J sites (x∗

t

(
sj

)
). The SVC model estimates 

an overall linear species–environment relationship, but allows this 
linear relationship to vary across each site in the data set. The 
spatially varying adjustment in the SVC model (w1

(
sj

)
) serves as 

a local adjustment of the species–environment relationship from 
the overall effect �1. The SVC model can be viewed as an exten-
sion of the stratum model, where the strata are now individual 
sampling sites, or as an extension of the interaction model, where 
the interacting ‘covariate’ is unknown and estimated as part of the 
model fitting process.

We performed a simulation study to compare the five afore-
mentioned models and assessed their ability to estimate species–
environment relationships of different forms. Briefly, we simulated 
detection-nondetection data across a 20 × 20 grid, where occur-
rence probability was generated as a function of a single covariate 

that took negative values at the southern portion of the simulated 
area and positive values at the northern portion of the area. We var-
ied the true species–environment relationship across six different 
functional forms (leftmost column, Figure 1): (1) linear; (2) quadratic; 
(3) a separate linear effect across nine strata; (4) an interaction with 
a second covariate that varied along the horizontal axis; (5) an inter-
action with an unknown (“missing”) covariate; and (6) the sum of the 
five aforementioned components (i.e. “Full” effect). We simulated 
50 data sets under each functional form of the species–environ-
ment relationship, and fit the five models to each data set using the 
spOccupancy R package (Doser et al., 2022), where the interaction 
model only incorporated the covariate that was assumed known, not 
the unknown covariate. Model performance was compared using the 
Widely Applicable Information Criterion (WAIC; Watanabe, 2010). 
See Supplemental Information S1 for complete details.

The SVC model was consistently able to capture the true rela-
tionship across all six forms of the species–environment relation-
ship, while the simpler models only performed well in a subset of 
scenarios (Figure 1). When the true species–environment was linear, 
all models yielded virtually identical estimates of the species–envi-
ronment relationship that closely resembled the truth. The simpler 
models with a pre-specified functional form (e.g. quadratic, stratum, 
known interaction) outperformed the SVC model according to WAIC 
when data were generated with the exact species–environment re-
lationship, suggesting that when the true form of the species–envi-
ronment relationship is known, simpler models should be used over 
the more complicated SVC model. However, when the true species–
environment relationship was different from the form used to fit the 
model, the simpler models were limited in their ability to capture the 
underlying patterns (Figure  1) and performed substantially worse 
according to WAIC (Supplemental Information S1: Table  S1). The 
SVC model was able to capture the true pattern in the relationship 
even when the data were not generated with an SVC, indicating the 
ability of SVC models to reveal simpler functional forms of species–
environment relationships when such relationships are unknown 
prior to model fitting. Furthermore, the SVC model drastically out-
performed all other models when the species–environment relation-
ship interacted with an unknown variable (row 5, Figure 1), or when 
the species–environment relationship was determined by multiple 
components (row 6, Figure 1).

4  |  C ase study 1:  Spat ia l ly  var ying 
occurrence trends in eastern US forest  b irds

Quantifying spatially explicit trends can help identify areas of con-
servation interest (e.g. climate change refugia) as well as provide in-
sights on species range dynamics. In this case study, we assessed 
occurrence trends of forest bird species across a ~4.04 million km2 
region of the eastern United States (i.e. the continental United States 
east of the 100th meridian) from 2000 to 2019 (T = 20 years) using 
detection-nondetection data from the North American Breeding 

(6)logit
(
� t

(
sj

))
= �0 + �t + w0

(
sj

)
+ f

(
xt
(
sj

)
,�

)
,
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Bird Survey (BBS; Pardieck et al., 2020). We restricted our analysis 
to a community of 66 eastern forest bird species following the habi-
tat classification of Bateman et al. (2020). We subsequently assessed 
trends for 51 of the 66 species whose breeding ranges (derived from 
BirdLife International, 2021) had at least 50% overlap with the study 
area (Supplemental Information S2: Table S3). Our objectives for this 
case study were to (1) develop spatially explicit maps of occurrence 
trends for each of the 51 species across the eastern United States, 
and (2) compare an SVC occupancy model to three alternative mod-
els that represent simple hypotheses regarding the drivers of dis-
tributional change. Specifically, our four hypotheses and associated 
models were:

1.	 The species has a constant, linear trend across the eastern 
United States (i.e. the linear model).

2.	 The species trend varies across broad ecologically distinct strata, 
Bird Conservation Regions (i.e. strata model), as a result of differ-
ences in bird communities and habitat types.

3.	 The species trend interacts with the 30-year (1981–2010) climate 
normal (i.e. temperature model). If climate shapes species distri-
butions, we would expect differences in species trends near the 
climatic extremes as annual temperatures become increasingly 
warm (e.g. positive trends at northern range boundary and nega-
tive trends at southern range boundary indicating a northward 
shifting distribution).

F I G U R E  1 Estimates of a simulated species–environment relationship from different models (columns) under different patterns of the 
species–environment relationship (rows). Red represents a negative effect, white no effect and blue a positive effect, with darker shades 
representing stronger effects. The simulated covariate varies from negative at the bottom of the grid to positive at the top of the grid. The 
true species–environment relationship is simulated as a linear effect (row 1), a quadratic effect (row 2), a separate linear effect across nine 
strata (row 3), an interaction with a second covariate that varies along the horizontal axis (row 4), an interaction with an unknown (“missing”) 
covariate (row 5) and the sum of all the aforementioned components (“Full” effect, row 6). Estimates are shown from five candidate models 
relative to the truth (column 1), including a model with a: linear effect (column 2), quadratic effect (column 3), stratum-specific effect (column 
4), interaction (column 5) and an SVC (column 6).
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4.	 The species trend varies with a variety of interacting abiotic and 
biotic variables that result in a complex spatially varying trend 
across the species range (i.e. SVC model).

We used data from J = 1846 BBS routes (i.e. sites) sampled 
at least once between 2000 and 2019 (mean number of sampled 
years per route = 15). BBS observers performed a three-minute 
point count survey at each of 50 stops along each route, counting 
all birds seen or heard within a 0.4 km radius. We summarized the 
data for each species at each site into K = 5 spatial replicates (each 
comprising data from 10 of the 50 stops), where each replicate took 
value 1 if the species was detected at any of the 10 stops in that 
replicate, and value 0 if the species was not detected. While such 
an approach has been used in previous studies with BBS data (e.g. 
Rushing et al., 2020), this use of spatial replicates in an occupancy 
modelling framework likely leads to violation of the closure assump-
tion (Kendall & White,  2009), and so we refer to our response as 
species-specific occurrence (or “use”) rather than occupancy.

For each of the 51 species, we fit a multi-season occupancy 
model where occurrence probability at each site j in each year t was 
modelled as

where �0 and w0

(
sj

)
 together represent the spatially varying inter-

cept, �1 is the effect of the 30-year (1981–2010) maximum tempera-
ture climate normal on occurrence probability, �t is an AR(1) random 
year effect to accommodate residual temporal autocorrelation and 
f
(
YEARt ,�TREND

)
 is the estimated trend parameter(s) that varies in 

form across the four models. For all models, we expressed detection 
probability as a function of linear and quadratic effects of year, linear 
and quadratic effects of survey day (to account for seasonal variation 
in detection probability), and linear and quadratic effects of survey 

replicate (to account for variability in detection probability over the 
time of day). For each species, we used pre-existing published ranges 
from BirdLife International (2021) and only included routes that fell in-
side a 50-km buffer of the species range when fitting the occupancy 
model. Thirty-year average maximum temperature was calculated 
from TerraClimate (Abatzoglou et al., 2018).

We compared the four models using the WAIC as an assess-
ment of model parsimony. Using realized observations from BBS in 
2021, we additionally compared each model's ability to predict (i.e. 
forecast) future occurrence of the species in 2021 using the area 
under the receiver operating characteristic curve (AUC; Hosmer 
et al., 2013) following approaches outlined by Zipkin et al.  (2012). 
See Supplemental Information S2 for full details.

We fit all models using Bayesian inference with Markov chain 
Monte Carlo (MCMC) algorithms implemented in the spOccupancy 
R package (Doser et al., 2022, 2024). Prior distributions were either 
vague or weakly informative (Supplemental Information S2). We ran 
three chains of each model for 100,000 MCMC iterations with a 
burn-in period of 50,000 iterations and a thinning rate of 50, yield-
ing 3000 posterior samples. We assessed convergence using the po-
tential scale reduction factor (i.e. R̂; Brooks & Gelman, 1998). After 
fitting each of the four alternative models, we predicted across the 
range of each species in the study area to generate maps of occur-
rence trends across the 20-year period.

4.1  |  RESULTS

There was strong support for spatial variability in 20-year occur-
rence trends across the eastern United States for the majority of 
species in our analysis (Figure 2). The SVC model substantially out-
performed (i.e. ΔWAIC > 2) the linear trend model, strata model and 

(7)logit
(
� t

(
sj

))
= �0 + w0

(
sj

)
+ �1 ⋅ TMAX

(
sj

)
+ f

(
YEARt ,�TREND

)
+ �t ,

F I G U R E  2 Summary of the spatially varying trend of the 51 forest bird species. The height of each bar corresponds to the proportion of 
locations for the given species whose trend has the sign (i.e. positive, negative, no effect) and strength (i.e. strong, moderate) indicated by 
the colour. Blue indicates support for positive trends and red indicates support for negative trends. More specifically: (1) Dark blue = Strong 
Positive: P(trend > 0) > 0.8; (2) Light blue = Moderate Positive: 0.6 < P(trend > 0) ≤ 0.8; (3) White = No effect: 0.4 < P(trend > 0) ≤ 0.6; (4) Light 
red = Moderate Negative: 0.2 < P(trend > 0) ≤ 0.4; (5) Dark red = Strong Negative: P(trend > 0) < 0.2.
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    |  7 of 13DOSER et al.

maximum temperature interaction model for almost all species (49, 
or 96%, out of 51) according to the WAIC. Among the three alterna-
tive models, the BCR model performed better than the temperature 
model and linear model for 78% and 90% of species, respectively, 
according to the WAIC, while the temperature model generally 
showed less support across the 51 species, outperforming the linear 
model for 57% of species. The two species with less support for the 
SVC model (American woodcock and Eastern screech owl) had low 
raw occurrence probabilities (i.e. <0.05). The SVC model requires 
more observations than the simpler strata model to yield estimates 
with reasonable uncertainty, which likely contributed to the higher 
performance of the strata model for these two species. We found 
more variable support for improvements in predictive performance 
for the SVC model relative to the three alternative models. The SVC 
model generally had the highest performance in predicting future 

species-specific occurrence, with AUC being highest for 69% (35 out 
of 51) of species (Supplemental Information S2: Table S3).

The SVC model revealed spatial heterogeneity in occurrence 
trends that was not evident in the three simpler alternative models. 
Figure 3 shows the trend estimates for three example species (grey 
catbird (GRCA), Eastern phoebe (EAPH), and wood thrush (WOTH)) 
from each of the four models. The SVC model revealed grey cat-
bird had predominately negative trends in the southern portion of 
its range (except Louisiana and Mississippi) and positive or no direc-
tional trends in the northern states, indicating a potential northward 
shift in its range. Both the temperature model and the strata model 
were able to capture the general pattern of more negative trends 
in the southern portion of the eastern United States, but they both 
failed to capture more fine scale variability that was revealed by 
the SVC model (i.e. positive trends in Louisiana and Mississippi and 

F I G U R E  3 Median predictions of an occurrence trend from 2000 to 2019 for three example species from the four models: a spatial 
occupancy model with a constant linear trend across the species range (Linear), a spatial occupancy model with a separate trend for each 
Bird Conservation Region (Strata), a spatial occupancy model with a trend that interacts with 30-year average maximum temperature 
(TMAX), and a spatially varying coefficient occupancy model estimating a spatially varying trend (SVC). Panels (a–d): grey catbird (3.79 
million km2); Panels (e–h): Eastern phoebe (3.55 million km2); Panels (i–l): wood thrush (3.12 million km2). Values represent the change in log 
odds of occurrence probability over one standard deviation of time (i.e. approximately 5.8 years).
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8 of 13  |     DOSER et al.

negative trends in northern Minnesota). We found the opposite pat-
tern for Eastern phoebe, where the strata and temperature models 
were able to adequately capture a generally positive trend in south-
ern portions of the range and negative trend in northern portions of 
the range, but did not capture more fine-scale variability in trends 
revealed by the SVC model. Wood thrush trends were strongly neg-
ative along the eastern portion of its range and more positive in the 
northwestern part of its range, which were largely captured by both 
the SVC and strata model. In contrast, the lack of relationship be-
tween maximum temperature and trend for Wood Thrush resulted 
in essentially no spatial variation in the trend from the temperature 
model. This result illustrates the lack of flexibility in the interaction 
models if the interacting variable does not adequately explain spatial 
variability in the trend.

The temperature model revealed large heterogeneity in the sign 
and significance of the interaction between maximum temperature 
and the yearly trend (Supplemental Information S2: Figure S1), pro-
viding minimal support for climatic niche position being a consistent 
driver of spatial variation in eastern forest bird occurrence trends. 
Of the 51 total species, 18 species had a significant negative inter-
action (i.e. trends were less positive/more negative in areas with 
higher temperatures), while 8 species had a significant positive in-
teraction (i.e. trends were more positive/less negative in areas with 
higher temperatures). While such significant interactions indicate 
some spatial variability in trends may be related to climatic position 
within a range, the large improvement in model fit (and to a lesser 
extent, prediction) of the SVC model compared to the temperature 
model suggests that this relationship is not the primary driver of spa-
tial variability in occurrence trends for eastern forest birds. Similarly, 
the improved performance of the strata model compared to the con-
stant linear trend model suggests spatial variability in trends may be 
partially attributed to broad-scale variation in habitat and climate 
conditions across Bird Conservation Regions. However, the im-
proved performance of the SVC model compared to the strata model 
suggests that additional factors operating at finer spatial scales are 
important contributors to spatial variability in occurrence trends.

5  |  C ase study 2:  Ef fec t s of  land cover 
change on the grasshopper sparrow

Quantifying the effects of land cover change and resulting shifts 
in habitat availability on species distributions is crucial for under-
standing the primary drivers of large-scale avian population declines 
(Rosenberg et  al.,  2019). Grassland birds have experienced some 
of the steepest population declines across all bird groups in North 
America, largely due to habitat loss and agricultural intensification 
(Stanton et al., 2018). However, the effects of shifts in land cover 
on grassland bird species is unlikely to be constant across space as 
a result of complex interactive effects with local climate, farmland 
management practices or predation pressure. In this case study, we 
demonstrate the ability of SVC models to provide insight on the 
spatially varying effects of habitat change on the distribution of 

grasshopper sparrow (Ammodramus savannarum) across the conti-
nental United States from 1970 to 2019. We again use data from the 
North American BBS (Pardieck et al., 2020), collected over the 50-
year period at J = 2542 routes within the range of the grasshopper 
sparrow (derived from BirdLife International [2021]) as described in 
Case Study 1. Our objectives for this case study were to (1) develop 
spatially explicit maps of the effect of change in grassland area and 
cropland area on grasshopper sparrow occurrence; and (2) compare 
a series of SVC and simpler alternative models to generate and test 
hypotheses regarding the drivers of spatial variability in the effects 
of habitat change.

We summarized the BBS data in the same manner as in Case 
Study 1, using K = 5 spatial replicates of detection-nondetection 
data at each BBS route to model route-level occurrence across the 
sparrow's range. We calculated annual amount of grassland area (nat-
ural grassland cover class) and cropland area (combined cropland and 
hay/pasture cover classes) within 1 km of each BBS route using data 
from the USGS EROS Center (Sohl et al., 2016). We calculated annual 
deviations in grassland and cropland area by subtracting the 50-year 
average value at each site from each yearly value to assess effects of 
temporal change in habitat separately from spatial variation in habi-
tat availability (Clement et al., 2019; Saunders et al., 2022).

We hypothesized that grasshopper sparrow occurrence would 
be positively associated with grassland area change and that the ef-
fect would vary spatially as a result of: (1) a positive interaction with 
the average amount of grassland area given grasshopper sparrow's 
preference for landscapes comprised of large amounts of contiguous 
grassland (Shaffer et al., 2021); (2) an interaction with temperature 
such that effects of grassland area change are strongest near the 
climatic extremes of the species range (i.e. range boundaries); and 
(3) additional interactions with fine-scale habitat quality (e.g. grass-
land height, amount of litter; Shaffer et al., 2021) and management 
actions that were not available as covariates for the model. We ex-
pected grasshopper sparrow occurrence to be negatively related to 
cropland cover change across the Great Plains region, as an increase 
in cropland cover in this region would likely correspond to a decrease 
in grassland area (the dominant land cover type; Supplemental 
Information S3: Figure  S1). However, in areas with minimal grass-
land, we predicted a positive association between occurrence and 
cropland area, as grasshopper sparrow occurrence has previously 
been associated with hay-fields and cultivated fields when native 
grassland is limited (Shaffer et al., 2021).

We fit five candidate models that varied in the functional forms 
of the effects of grassland area change and cropland area change 
to test our hypotheses (full details in Supplemental Information 
S3). Specifically, our five models consisted of: (1) a linear model 
with constant, linear effects of grassland and cropland change; (2) 
a habitat interaction model with linear effects of grassland and 
cropland change, an interaction of grassland change with 50-year 
average grassland area, and an interaction of cropland change with 
50-year average cropland area; (3) a temperature interaction model 
with linear effects of grassland and cropland change that both also 
had an interaction with average temperature conditions (i.e. 30-year 
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    |  9 of 13DOSER et al.

maximum temperature calculated from TerraClimate as in Case 
Study 1); (4) an SVC model; (5) the “full” model that contained SVCs, 
interactive effects of temperature, and interactive effects of 50-
year average land-cover.

For each of the five candidate models, we fit a Bayesian multi-
season occupancy model using the spOccupancy R package (Doser 
et al., 2022). Detection probability was modelled consistently across 
the five models as a function of linear and quadratic ordinal date, a 
random effect of year and a separate intercept of survey replicate to 
account for variability in detection probability across the five spatial 
replicates within a BBS route. Given our focus on inference of the 
species–environment relationships, we compared candidate models 
using the WAIC. Prior distributions were either vague or weakly in-
formative (Supplemental Information S3). For each model, we ran 
three chains for 100,000 MCMC iterations with a burn-in period of 
50,000 iterations and a thinning rate of 50, yielding 3000 posterior 
samples. Convergence was assessed using the potential scale reduc-
tion factor and visual assessment of traceplots.

5.1  |  RESULTS

We found strong support for spatial variability in the effects of 
grassland and cropland cover change, with all models that in-
cluded an SVC and/or an interaction substantially outperforming 
(i.e. ΔWAIC > 2) the model with constant effects (Supplemental 
Information S3: Table  S1). The temperature interaction model 
outperformed the habitat interaction model (ΔWAIC = 18.65), 

indicating maximum temperature was more important in explaining 
spatial variability in the effect of habitat change than the amount of 
habitat. Noticeably, including an SVC for the effect of grassland and 
cropland change reduced WAIC (i.e. ΔWAIC = 774.90) substantially 
more than either of the interaction models compared to the con-
stant model (ΔWAIC = 20.69 for the habitat interaction model and 
ΔWAIC = 39.34 for the temperature interaction model). The model 
including SVCs, a habitat interaction, and a temperature interaction 
slightly outperformed the model with only SVCs (ΔWAIC = 3.32). 
Altogether, these results suggest that interactions with temperature 
and habitat explain some spatial variability in the effect of habitat 
change on occurrence, but most of the variation in these effects is 
the result of unexplained spatial variation that is accounted for by 
the SVCs. Maps of the predicted effects of grassland and cropland 
change from the candidate models reveal that models with the SVC 
capture far more spatial variation in the effects of habitat change 
than do models without SVCs (Figure 4).

The effects estimated from the candidate models revealed mixed 
support for our hypotheses. The best performing model revealed a 
range of positive and negative effects of habitat change across the 
breeding range of the grasshopper sparrow. As predicted, the ef-
fect of grassland change was strongly positive in the Northern Great 
Plains (where grassland availability is higher), suggesting that in heav-
ily grassland-dominated landscapes, loss of grassland would result 
in declines in grasshopper sparrow occurrence probability. This is 
further supported by the habitat interaction model, which revealed 
a positive interaction between grassland change and average grass-
land area (Figure 4a). Surprisingly, we found near zero or negative 

F I G U R E  4 Median predictions of the effects of grassland change (top row) and cropland change (bottom row) on occurrence of 
grasshopper sparrow (Ammodramus savannarum) from three of the five candidate models. Panels (a) and (d) show estimates from a model 
with an interaction between land-cover change and average land-cover area over the 50-year period. Panels (b) and (e) show estimates from 
a model with an interaction between land-cover change and 30-year average maximum temperature. Panels (c) and (f) show estimates from 
a model with spatially varying coefficients for land-cover change and interactions with average land-cover area and maximum temperature. 
Blue indicates a positive effect, white indicates no effect and red indicates a negative effect.
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effects of grassland area change in the Southern Great Plains, in-
dicating increasing grassland in this area would result in no effect 
or even declines of occurrence probability. Given the relatively high 
amount of grassland and rangeland area in this region (Supplemental 
Information S3: Figure S1), this could indicate a regional peak in the 
optimal amount of grassland area for grasshopper sparrow occur-
rence probability, which is in line with previous work showing that 
the preferred grassland size of the species varies across ecoregions 
(Johnson & Igl, 2001). The temperature interaction model revealed 
this pattern was partially related to a negative interaction with maxi-
mum temperature (Figure 4b; Gorzo et al., 2016). Grasshopper spar-
row occurrence probability was negatively related to cropland area 
along most of its southern range boundary, in part due to a negative 
interaction with maximum temperature (Figure 4). Alternatively, the 
effect of cropland change was generally positive throughout the 
Northeast and Midwest (Figure 4), which was related to a positive 
interaction between cropland change and cropland area (Figure 4d). 
In the northeastern and midwestern United States, where few na-
tive grasslands remain, the positive effect of cropland area change 
indicates that increases in cropland area would result in increases 
in occurrence probability. Furthermore, the northeast is largely 
dominated by forest, and thus increases in cropland cover are likely 
associated with declines in forest cover, which may partly explain 
the positive effect of cropland cover change, as grasshopper spar-
rows avoid forest (Grant et al., 2004). While such assessments are 
speculative, these insights are only possible because of the power of 
SVC models to reveal fine-scale, multifaceted species–environment 
relationships, which in turn can be used to inform local and regional 
management priorities.

6  |  DISCUSSION

Accounting for complex species–environment relationships is in-
creasingly important as the spatial and temporal extent of ecologi-
cal research expands (Rollinson et al., 2021). Widely used statistical 
methods, such as interactions, stratification and nonlinear models, 
can partially account for such patterns, but they are limited in their 
ability to estimate spatially varying species–environment relation-
ships that arise from multiple interacting factors that themselves 
vary spatially. Here we used spatially varying coefficients (SVCs) 
in SDMs to model nonlinear and/or spatially varying species envi-
ronment relationships within a hierarchical GLM framework while 
simultaneously addressing observational biases common in both 
wildlife and plant datasets. Using simulations and two case studies, 
we highlighted the inferential benefits of SVC SDMs to generate and 
test ecological hypotheses regarding the factors driving spatial vari-
ability in estimated relationships and/or occurrence trends.

Our simulation study showed that SVC SDMs can accurately 
capture complex, spatially varying species–environment relation-
ships under different forms, while they can also reveal more simple 
species–environment relationships (e.g. linear, quadratic; Figure 1) if 
such additional complexity is not supported by the data. Thus, when 

little is known regarding the form of the species–environment rela-
tionship prior to model fitting, SVC SDMs can be used to generate 
hypotheses on the true form of the relationship and associated abi-
otic and/or ecological drivers. When the true species–environment 
relationship is known a priori, simpler parametric GLMs will likely 
outperform SVC SDMs according to information criteria based on 
the principle of parsimony. In such situations, our simulation sug-
gests that SVC SDMs will not generate erroneous conclusions, but 
rather will reveal the simpler, parametric form of the true relation-
ship. When working across macroscales, it is unlikely that all inter-
acting variables are known and/or available prior to model fitting, in 
which case SVC SDMs will outperform simpler alternatives (rows 5, 
6; Figure 1) and help elucidate the ecological drivers of such patterns.

When assessing spatial variability in species–environment re-
lationships and/or trends, we recommend comparing SVC SDMs 
with simpler parametric SDMs that represent explicit hypotheses, 
as such comparisons can reveal the amount of support for differ-
ent drivers of spatially varying effects/trends (Pease, Pacifici, Kays, 
& Reich, 2022). For example, in the eastern forest bird case study, 
the temperature model revealed a significant negative interaction 
of trend and breeding season maximum temperature for 18 species 
and a significant positive interaction for 8 species (Supplemental 
Information S3 Figure S1). However, the SVC model was the best-
performing model for all 26 species with significant temperature in-
teractions, suggesting that while breeding season temperature often 
explains some variation in occurrence trends, there are additional 
factors that are important in explaining fine-scale variability in oc-
currence trends.

Whether SVC models improve predictive performance over 
models that only include a spatially varying intercept is an ongo-
ing question. In our eastern forest bird case study, the SVC model 
provided relatively minor improvements in predictive performance 
compared to the simpler models when forecasting occurrence prob-
ability in 2021. All four models included a spatial random effect to 
account for spatial variability in occurrence probability, and given the 
likely small changes in the forest bird distributions from 2019 (the 
last year in the modelled data set) to 2021, they all had similar abili-
ties to predict occurrence probabilities across the study region. SVC 
models in other ecological and natural resource applications have 
shown mixed results regarding their predictive benefits compared 
to models with only a spatially varying intercept; some studies found 
improved predictive performance of SVC models (May et al., 2023; 
Sultaire et al., 2022), while others showed improvements that vary 
depending on the species (Doser et  al.,  2024; Pease, Pacifici, & 
Kays, 2022) or region (Babcock et al., 2015). Regardless, we echo the 
statements of Thorson et al. (2023) that the primary benefits of SVC 
SDMs relate to their improved ability to test and generate hypothe-
ses as well as answer relevant ecological questions regarding spatial 
variability in species–environment relationships and trends.

In addition to theoretical contributions, the results from SVC 
SDMs could be applied to multi-scale conservation and management 
decisions. For example, in the grasshopper sparrow case study, we 
found that loss of grassland area is most likely to have the largest 
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negative impact on the species in the Northern Great Plains, em-
phasizing the importance of providing large, contiguous patches 
of natural grassland to prevent further regional declines (Shaffer 
et al., 2021). By performing similar analyses for multiple grassland 
bird species, SVC SDM outputs could be used together as inputs 
for spatial prioritizations. This could offer major improvements in 
reserve design and help resource managers identify the exact lo-
cations where habitat restoration may be most beneficial to bird 
communities (Grand et al., 2019). Alternatively, estimates of species 
trends serve as the foundation for assigning conservation status 
to species of greatest conservation need. Spatially varying trends 
from SVC SDMs, like those generated in the eastern forest bird case 
study, could be used to tailor action plans at local (i.e. state-level), 
regional (i.e. ecoregion), and continental scales (Smith et al., 2024). 
Ultimately, this could improve our understanding of how and why 
conservation strategies in different regions lead to variable out-
comes. Estimation of local trends with SVC SDMs can also improve 
predictions of species distribution changes (Barnett et al., 2021) in 
response to invasive species (Thorson et  al., 2023) and future cli-
mate and/or land-use changes (Gonthier et al., 2014).

While other approaches (e.g. GAMs, random forests, MaxEnt) are 
commonly used in ecology to account for complex species–environ-
ment relationships, Bayesian spatially varying coefficient models are 
an attractive alternative as they (1) do not require a priori knowledge 
of interacting variables; (2) can readily provide uncertainty measures 
associated with all estimates; and (3) are easily embedded in hierar-
chical modelling frameworks (i.e. occupancy models) used to address 
observational biases prevalent in ecological data. Nevertheless, the 
flexibility provided by Bayesian SVC SDMs can lead to computa-
tional and practical difficulties in their implementations. While the 
Bayesian framework provides full uncertainty propagation into all 
estimates and predictions, models can take substantial time to run. 
For example, the full SVC model for the grasshopper sparrow case 
study with a data set comprised of nearly 400,000 observations 
took approximately 10 h to run a single MCMC chain of 100,000 
samples using spOccupancy (Doser et al., 2022). Additionally, the 
ability of SVC SDMs to estimate complex spatially varying species–
environment relationships can require large sample sizes to achieve 
reasonable levels of uncertainty compared to simpler alternatives. 
This is particularly true when working with detection-nondetection 
data, which provide relatively little information to estimate SVCs 
compared to count (e.g. abundance) or continuous (e.g. biomass) 
data sources used in many SDMs. In Supplemental Information S4, 
we provide additional simulation studies that give insights on how 
the reliability of SVC estimates scales with the number of spatial lo-
cations and number of seasons in the data set. When sample sizes 
are limited, simpler approaches like stratification or interactions may 
be more useful options to yield estimates of species–environment 
relationships without considerable uncertainty. Lastly, confounding 
can occur between the estimated spatially varying intercept and 
spatially varying coefficients, especially when working with mod-
estly sized data sets (e.g. 500 data points), which could potentially 
lead to misleading conclusions. However, when estimating SVCs for 

covariates that vary across time (e.g. a temporal trend or habitat 
change as in our two case studies), confounding is minimized due 
to the added temporal component of multi-season data. We have 
found that recent guidelines for minimizing spatial confounding and 
understanding its effects in spatially explicit SDMs are applicable 
to SVC SDMs (Mäkinen et  al., 2022), although further research is 
needed to understand when such confounding may occur and how 
to best mitigate it.

Spatial variability in species–environment relationships is prev-
alent throughout ecology (Rollinson et al., 2021) as a result of com-
plex interactions with abiotic and biotic variables, which are rarely all 
known or available to be measured prior to statistical analysis. As we 
demonstrate in this study, the use of spatially varying coefficients 
in species distribution models can help elucidate the environmen-
tal factors that drive species distributional dynamics across both 
local and broad spatial scales. This provides an improved ability to 
test ecological hypotheses and inform multi-scale conservation and 
management initiatives. When fitting SDMs across macroscales, we 
encourage the comparison of SVC SDMs with simpler alternatives as 
a means of advancing our understanding of the drivers of species–
environment relationships across space.
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