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1 | INTRODUCTION

Migratory species offer many ecosystem services that are highly val-
ued by humans including nutrient cycling, pest control, seed disper-
sal, recreational opportunities, and food (Green & Elmberg, 2014;
Mattsson et al., 2018; Thogmartin et al., 2022). Across taxonomic
groups, migratory species have declined and face ongoing threats
from myriad factors including climate change and habitat loss (Deinet
et al., 2020; Zurell et al., 2018; Zylstra et al., 2022). Migratory spe-
cies are among the most vulnerable species groups because they tra-
verse large geographic areas throughout their annual cycle, making
them susceptible to stressors across wide geographic regions includ-
ing breeding grounds, nonbreeding grounds and throughout migra-
tory pathways (Saunders et al., 2021; Zylstra et al., 2021). This poses
unique challenges for disentangling the effects of various stressors
and determining appropriate conservation actions.

Structured data, or data collected during systematic surveys
based on consistent protocols, are paramount in identifying ecologi-
cal processes that lead to declines in migratory species (Lindenmayer
et al., 2012). However, structured data often require large invest-
ments of time and resources and thus tend to be limited in scope,
often capturing only a subset of a species' range. This is especially
true for migratory species, in that the bulk of data collection efforts
often occur over a limited portion of their annual cycle. For instance,
for North American birds, most monitoring occurs on breeding
grounds when species are comparatively stationary, with less data
collected on non-breeding grounds and during periods of migration
(Marra et al., 2015; Rushing et al., 2016). Scaling up systematic mon-
itoring efforts from well sampled areas to a species' full range during
its annual cycle is challenging (but see Sekercioglu, 2012; Suman
et al., 2023), leaving spatiotemporal gaps in data, and hampering cur-
rent analyses of migratory species ecology (Marra et al., 2015). As
a result, knowledge of how environmental factors affect the abun-
dance and distribution of migratory species is incomplete, especially
during cryptic and hard-to-study periods of the annual cycle.

Collections of unstructured, opportunistic data via volunteer-
based networks (e.g. iNaturalist, eBird) are providing a means to ad-
dress geographic and temporal gaps in currently available structured
data (Chandler et al., 2017). Unstructured data are those that are
collected without a planned survey design or monitoring protocol,
such as an opportunistic sighting of a given species. Though un-
structured data can be plentiful, producing unbiased and meaningful
inferences from these data can be challenging (Fithian et al., 2015).

integrated model can estimate population abundance at broad spatiotemporal

extents despite structured data gaps during the annual cycle by leveraging

data integration, hierarchical modelling, integrated modelling, migratory species, monarch

Spatial sampling biases can lead to a disproportionate number of ob-
servations near urban areas (e.g. roads, city parks), where people are
concentrated. Additionally, observers typically record when a spe-
cies is present but not when it is absent, inhibiting estimation of oc-
currence probabilities or abundance indices when exclusively using
presence-only data (Dorazio, 2014; Farr et al., 2021). Consequently,
the value of unstructured data for population-level inferences is
more limited.

Integrated modelling, in which multiple data types are analysed
in a single, unified framework, can be a useful tool to address lim-
itations encountered when using structured (i.e. limited extent and
quantity) or unstructured (i.e. limited information content) data
to model dynamics of animal populations (Fletcher et al., 2019;
Isaac et al., 2020; Miller et al., 2019; Schindler et al., 2022; Zipkin
et al., 2021; Zipkin & Saunders, 2018). For migratory species, inte-
grated modelling can resolve discrepancies in estimated population
trends from separate periods of the annual cycle by linking seasonal
dynamics (Saunders, Farr, et al., 2019). Integrated models have also
been used to evaluate potential environmental drivers of popula-
tion trends across a species' full annual cycle (Rushing et al., 2017;
Rushing et al., 2021; Zylstra et al., 2021). However, an approach has
yet to be developed that formally incorporates unstructured data
to explore population dynamics during time periods and spatial do-
mains when structured data are unavailable.

Here, we develop an integrated model to estimate spatiotempo-
ral population abundance for a migratory species when structured
data gaps exist within the annual cycle. Underlying our integrated
framework is a Poisson point process model that describes varia-
tion in abundance using relevant covariates and spatial random ef-
fects (Dorazio, 2014; Fithian et al., 2015). We integrate structured
count data and unstructured presence-only observations using a
joint-likelihood, which shares parameters between data types within
the point process model (Fletcher et al., 2019). The joint-likelihood
provides a pathway to lend information on abundance from struc-
tured data to periods of the annual cycle when only unstructured
data are available. We demonstrate the validity of this framework
using a simulation study and then apply our model to a case study of
monarch butterflies in eastern North America.

Our case study was motivated by our work on the effects of
factors influencing adult monarch butterfly abundances during
the spring breeding season when structured data are unavailable
(Oberhauser et al., 2015). The eastern population of monarch but-
terflies in North America has declined by as much as 80% over the
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last 25years (Brower et al.,, 2012; Thogmartin et al.,, 2017). The
population undertakes a spectacular four-generation annual migra-
tion from their wintering grounds in central Mexico, through the
spring breeding corridor in eastern Texas and Oklahoma, and then
up to the summer breeding grounds in the northern half of the U.S.
and southern Canada east of the Rocky Mountains before the last
generation returns to the wintering grounds in Mexico (Brower
et al., 2012). Analyses of recent data from the Midwestern summer
breeding areas reveal that climate conditions during the spring and
summer breeding seasons were more than seven times as important
than other factors (e.g. size of the population at the end of winter,
crop cover, and glyphosate application rates in the Midwest) in de-
termining the peak summer population size between 2004 and 2018
(Zylstra et al., 2021). Despite the importance of the spring migratory
and breeding area for eastern monarchs, few structured surveys
have been conducted in this area. Thus, we lack direct evidence of
the relationship between weather variables and the spatiotemporal
dynamics of monarchs throughout the spring breeding season. We
use our integrated model to estimate monarch abundance and asso-
ciated effects of environmental conditions during their spring breed-
ing period, allowing detailed inferences throughout this important,
yet understudied and under sampled, period of the monarch's mi-
gratory cycle.

2 | MATERIALS AND METHODS
2.1 | Model description

The purpose of our integrated model is to generate spatially ex-
plicit estimates of population abundance within one or more sea-
sons (hereafter, periods) of a species' annual migratory cycle when
structured data are unavailable (Figure 1a,b). We define abundance,
N;, during periods of the annual cycle,t =1, ..., T, as the number of
individuals in a corresponding spatial domain S; (e.g. breeding range,
non-breeding range, migratory pathway) occupied by the species
during period t. Abundance is assumed to be a random variable aris-
ing from a Poisson process, N; ~ Pois(At), with expected abundance,
A We specify the spatial distribution of individuals within domain S,
during period t using a point process model. Individuals of the popu-
lation are distributed within the domain according to an intensity
function, A,(s), which describes the number of individuals at location
s (s € S,) during period t. We link abundance to the point process by
specifying expected abundance as the integral of the intensity func-

tion across the domain S;: A; = jst/lt(s)ds.

2.1.1 | Spatial heterogeneity in the distribution of
individuals

Local abundance often changes as a function of one or more en-
vironmental factors. As these factors likely vary within the spatial
domain, S, abundance is heterogeneous, and thus can be referred
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to as an inhomogeneous point process. We begin by modelling local
abundance (i.e. the intensity function), 4,(s), during a period of the
annual cycle where both structured and unstructured data exist. In
this description, we assume for simplicity that this occurs att = 1.
We model 4;_4(s) with spatial covariates using an inhomogeneous
point process:

log(Ai=1(5)) =log(4g) + B'Xi1(5) + (s), (1)

where X;_4(s) is a vector of environmental covariates at location s
during period, t = 1. f’is the vector of corresponding coefficients, and
Ag is the expected number of individuals at location s when covariates
X are at their mean values (standardized to mean of zero and standard
deviation of 1). Both 4,_4(s) and 4, are estimated on the log scale as
their support ranges from O to co while the support of covariates is from
— oo to co. We account for spatial variation not explained by environ-
mental covariates with a spatial random effect, w(s), using a Gaussian
random field (i.e. the log-Gaussian Cox process; Mgller et al., 1998). We
implemented the Gaussian random field using a stochastic partial dif-
ferential equation approximation via a triangulated spatial mesh (which
may vary by time period) of k =1, ... ,K; nodes across S, (Krainski
et al., 2018; Simpson et al., 2016; Supporting Information S1).

2.1.2 | Seasonal change in abundance

During subsequent periods of the annual cycle, t =2, ..., T, abun-
dance may change because of demographic processes (i.e. mortality,
recruitment, immigration, emigration). Various methods exist to de-
scribe population dynamics (Kéry & Royle, 2020), but here we sim-
ply describe changes in abundance between periods as a function of
spatiotemporal variation in environmental factors along with a fixed

effect for each subsequent period:

log(44(s)) = log(4g) + B'X.(S) + 8, + w(s). (2)

X:(s) is a vector of environmental covariates for each period after
the first,t = 2, ..., T. Changes in abundance not captured by covari-
ates are represented by §,, which is the difference in the log of mean

abundance between time periodst — 1and t.

2.1.3 | Unstructured presence-only data

Presence-only data are typically the outcome of opportunistic,
unstructured sampling where observations of the target species
are recorded, whereas the absence of the species at a given lo-
cation is not recorded. We modelled presence-only data result-
ing from opportunistic sampling using a thinned Poisson process,
Yt~Pois<jst/1t(s)pt(s)ds>, where Y; is the number of presence-
only observations during period t within spatial domain S,
(Dorazio, 2014). The thinning rate function, p,(s), represents the
observation process that relates expected abundance at location
s, A¢(s), to the presence-only data (i.e. the number of observations
at location s). Here, p,(s), is the probability that an individual was
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FIGURE 1 Anintegrated modelling framework allows estimation of population abundance across space and time for species with
spatiotemporal gaps in structured data. (a) Relationships between data and parameters for a general description of our integrated modelling
framework are shown with a directed acyclic graph (DAG). The DAG also displays data availability across a species annual cycle (three
spatiotemporal periods differentiated by colour [period 1, blue; period 2, green; period 3, orange]). The outer circle displays time while
oblong shapes within the outer circle depict each data type (light grey shading indicates unstructured data; dark grey shading indicates
structured data). The border colours of the oblong shapes match the period in which data were collected. The innermost circle represents
the biological process for latent abundance that is shared between all data types. Data (squares) and parameters (circles) are shown with
dashed lines displaying the flow of information. The border and shading of data and parameter objects indicate the period with which they
are associated. Parameters in the abundance model with black borders and rainbow shading were estimated across periods. (b) Descriptions
of parameters and data for each DAG (a, c) and the case study map (d) are shown within a legend. (c) Modifications of the integrated model
for the case study (see footnotes) are shown within a separate DAG. Unstructured (i.e. presence-only) data exist in early and late spring
(blue and green shading) along with early summer (orange shading). But, structured (i.e. single-visit counts) data are restricted to the early
summer. Our analysis does not include data from late summer through the winter portion of monarch's annual cycle. (d) Location and

timing of observation processes for each data type (unstructured data, smaller circles; structured data larger circles; colours match legend
descriptions) are displayed within a map.
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detected and is constrained to be between 0 and 1 where we as-
sume double counting is trivial compared to imperfect detection.
We account for spatiotemporal variation in imperfect detection
and sampling bias by specifying a linear model with a logit link for
p¢(s), with an intercept (py), covariates (W,(s)) and their effects (a)
(Dorazio, 2012).

2.1.4 | Structured count data

We assume the structured count data, Cy, occur at a set of sites (i.e.
subsets of the spatial domain) j=1, ... ,J,, each with an associated
areaD;whereD; , C S, CountdataarealsodescribedwithaPoisson
process: C; ~ Pois(leAt(s)ds) Count data, like many structured data
types, cannot be used as direct measures of true abundance due to
observation error. When counts are replicated or additional informa-
tion is recorded, an observation process model can be included to
account for imperfect detection. We use a single-visit count model
that does not account for imperfect detection. Thus, we were only
able to estimate relative abundance (assuming that detection does
not vary over time and space), similar to many large-scale structured
monitoring programs (e.g. Christmas Bird Count). Because counts of
individuals are aggregated within a site (i.e. observations are not as-
sociated with a point location, s;, for each individual i), a change-of-
support problem (i.e. mismatches in spatial scales of multiple data
sources) must be addressed (Pacifici et al., 2019). Given that the ex-
pected sum of Poisson random variables is equivalent to the sum of
their means, we specify an area offset and approximate the integral
over each site j as D,-Etj ~ ij/lt(s)ds, This assumes a homogeneous
process within each site (i.e. Ay is the mean intensity for D,-) and a lin-
ear relationship between area and the number of individuals (i.e. no
density dependence). Counts at each period t and site j can be mod-
elled as: Cy ~ Pois(D;A;), where log(7;) = log(4o) + /Xy + &, + ;.
Covariates, Xy, are summarized across each D;, and a projection ma-
trix, Ay; is needed to interpolate the random effects, w(s), estimated
at each nodek in the spatial mesh to each site j (w,» = @y » A;; Krainski
et al., 2018).

2.1.5 | Spatiotemporal data integration

Within our modelling framework, structured data provide an an-
chor point for estimating the intercept of the intensity function, 4,
which is unidentifiable in a standalone presence-only data analysis
(Dorazio, 2014; Farr et al., 2021). We assume that structured data
exist during one or more periods within a species' annual cycle but
are not available during every period, whereas unstructured data are
available during periods with and without structured data. Structured
data are used to estimate Aq, which also appears in the model for
unstructured data. This allows us to estimate spatially explicit abun-
dance during periods when structured data are unavailable. A critical
assumption of this framework is that changes in abundance between
time periods are explained by covariates or captured as deviations
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from abundance int = 1 (i.e. through a time period effect, §,). To cre-
ate the integrated model, a joint-likelihood is formed using the prod-
uct of the likelihoods of the structured (e.g. count) and unstructured

(e.g. presence-only) data (Supporting Information S1).

2.2 | Simulation study

The objective of our simulation study was to assess whether the
integrated model, which relies on a shared intensity function
(Equation 2) between structured and unstructured data collected
over multiple time periods, can produce unbiased estimates of un-
known parameters. We evaluated our simulation study's objective
by measuring the accuracy and precision of estimated parameters,
including the expected number of individuals, 4g, and the change in
the log of mean abundance between time periods, §;. We simulated
abundance in two periods within a spatial domain, S (Figure 2a,b).
Both unstructured and structured data were available during the
first period, while only unstructured data were available during the
second period. We simulated presence-only observations for the un-
structured data and single-visit counts for the structured data.

We specified 4y and 6 to generate abundances near 3600
and 9900 individuals within S for periods 1 and 2, respectively
(Figure 2a,b). To create a spatially varying landscape, we specified an
inhomogeneous point process via a single environmental covariate
that varied over space and between periods, X,(s), with unmeasured
spatial heterogeneity, w(s). We specified a single covariate effect g
to establish a relationship between the environmental covariate and
local abundance (i.e. intensity) that was constant between periods
(Figure 1a,b; Supporting Information S2). The spatial random effect,
w(s), was simulated using a Gaussian random field with precision ()
and scale (k) hyperparameters (Supporting Information S1 and S2).
We then simulated the true number of individuals at locations for
each season using a Poisson point process and the corresponding
intensity function.

We generated presence-only data for both periods (Figure 1a,b)
where the thinning process incorporated effect a and a single covari-
ate that did not vary with period, W(s), representing sampling bias
(simulated from a Gaussian random field). We standardized the co-
variate by subtracting the minimum value and dividing by the mean,
which forced areas with low sampling intensity (i.e. lower covariate
values) towards the intercept, p,. We set p, = logit(0.01); thus, lo-
cations at the lower end of the covariate range represent low or no
sampling effort (i.e. p; ~ 0). We generated single-visit count data at
100 sites (i.e. circles with uniform areas) for the first period only
(Figure 2a), where detections of individuals in a site were summed
to generate a single count. For simplicity, we specified that all indi-
viduals present were detected during each survey (i.e. counts were
perfect).

We simulated both true abundance and observed datasets
1000 times, and for each simulation, estimated population abun-
dance to evaluate our ability to leverage structured data over
space and time using the integrated model. The majority of fixed
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FIGURE 2 Visualization of our simulation study showing latent abundance and the amount of both structured and unstructured data
within domain S for (a) period 1 and (b) period 2. The background gradient indicates the expected abundance at location s (reported as
individuals per unit area). (a) Period 1 contains both presence-only data (black dots) as well as 100 sites with single-visit count data (dashed
circles). (b) Period 2 exclusively contains presence-only data (black dots). (c, d) Percent relative bias associated with estimates from the
integrated and presence-only models (red horizontal lines at zero indicate no bias in estimated parameters; positive values are overestimates;
negative values are underestimates; boxes represent the interquartile range of estimates from 1000 simulations; centre lines are the median
value; whiskers are values within 1.5 times the interquartile range). (c) Percent relative bias in estimates of abundance for period 1 (N1) and
period 2 (N2) using the integrated model (left) and in an analysis of just the presence-only data (right). (d) Percent relative bias in estimates

of the intensity function intercept (4), covariate effect (8), and change in abundance between periods (5) as estimated using the integrated

model (blue) and in an analysis of the presence-only data (grey).

effect parameters (A, 6, x, 7, po, @), were constant across simula-
tions. We allowed the environmental effect parameter, g, to vary
between 0.5 and 1.5 on the log-scale to evaluate the accuracy and
precision of estimates under a range of conditions. The covariates
X;(s) and W(s), the spatial random effects, w(s), and individual an-
imal locations were redrawn for each simulation (see Supporting
Information S2). Parameters were estimated using maximum like-
lihood with R-INLA, Template Model Builder, and R (Kristensen
et al., 2016; Lindgren & Rue, 2015; R Core Team, 2020). To as-
sess convergence (i.e. negative log likelihood at a minimum), we
checked that the absolute values of the final gradient for each
parameter were near O and checked that the Hessian matrix was
positive definite (Skaug & Fournier, 2006). To assess performance,
we calculated percent relative bias for the mean estimate of each
parameter: (W) x 100. We also derived estimates of
abundance and associated uncertainty to compare with true abun-
dance. Finally, we estimated abundance for each of the 1000 sim-
ulated datasets using only the presence-only data to compare with
estimates from our integrated framework. We did not estimate

parameters using only the count data as there was no structured
sampling during the second period.

2.3 | Case study

The eastern North American migratory population of monarch
butterflies has a multi-generational migratory cycle. Adult monarchs
overwinter (December-February) in large clusters blanketing
patches of high-elevation Oyamel fir (Abies religiosa) forests in
central Mexico. In early spring (March-April), monarchs migrate
north and arrive on the breeding grounds in and around eastern
Texas, where they lay eggs, producing the first new generation of
the year (Brower et al., 2012). This first generation continues the
northerly migration to the summer breeding grounds, with most
adults concentrated across the Midwestern and northeastern
U.S. and southeastern Canada. About three more generations are
produced on the summer breeding grounds (May-August); the final
generation of the year enters reproductive diapause and commences
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the southerly migration in autumn (September-October) to the
overwintering grounds in Mexico (arriving by mid-December).
Monitoring of the migration varies dramatically across the annual
cycle (Oberhauser et al., 2015). Structured monitoring occurs
annually on the overwintering grounds in central Mexico (where
researchers delineate the number of hectares occupied by monarch
aggregations) and throughout the Midwestern summer breeding
grounds (where volunteer observers count butterflies on established
plots or transects). However, structured monitoring has only recently
begun during their spring breeding and autumn migration. Further
compounding monitoring challenges, the population is at its smallest
size during the spring phase of migration and generally occurs at low
densities (Ries & Oberhauser, 2015).

Multiple hypotheses have been proposed to explain the decline
of monarchs in eastern North America (Thogmartin et al., 2017).
Recent retrospective analyses demonstrate the importance of
weather conditions during the spring breeding season, highlighting
a critical period of population growth (Saunders et al., 2016, 2018).
The peak size of the monarch population on the summer breeding
grounds, which is highly correlated with the size of the population
that ultimately returns to Mexico each winter, is strongly influenced
by weather conditions on the spring breeding grounds (Zylstra
etal.,, 2021). Spring temperature and precipitation affect the recruit-
ment of monarchs by impacting development and survival as well
as host plant resources (Zalucki, 1982), but the importance of these
and other factors are only understood indirectly through analyses
of count data collected on the summer breeding grounds (Saunders
et al., 2018; Zipkin et al., 2012).

With spring conditions potentially becoming less favourable for
monarch recruitment (Neupane et al., 2022; Zylstra et al., 2022),
a deeper understanding of the direct links between local weather
conditions and monarch abundance can aid management and policy
decisions for eastern monarchs, a population of substantial conser-
vation concern. Fortunately, multiple volunteer data-collection net-
works compile opportunistic observations of adult monarchs in the
spring and early summer. Using our integrated framework, we lever-
aged these opportunistic data to estimate population abundance of
monarchs during spring breeding and arrival on the summer breed-
ing grounds. We also assessed the effects of weather and greenness
(i.e. a proxy for host and nectar resources) on monarch abundance
during this critical period of the migratory cycle.

2.3.1 | Data

Our analysis focuses on spring migrations from 2016 to 2018. Within
a given year, we partitioned spring migration into three distinct spa-
tiotemporal periods. We indexed years with r (R=3) and used S,
(T = 3) to denote each spatiotemporal period during spring migra-
tion in a given year (Figure 1d). The spatiotemporal periods of the
spring migration were constant across years and defined similarly
to previous studies (Saunders, Ries, et al., 2019; Zylstra et al., 2021).
Early spring, S;, encompassed eastern Texas and Oklahoma (93.5°W
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to 100°W, 25.8°N to 37°N) between 8 March and 4 April and was
specified to include adult monarchs arriving from Mexico as they
lay eggs that become the first generation of the year. Late spring,
S,, covered the same spatial extent but occurred between 19 April
and 2 May, which primarily included sightings of adults that are part
of the first generation produced that year. Early summer, S;, cap-
tured these adults shortly after they arrive on the summer breeding
grounds, between 3 May and 6 June. We used data from an area
that spans the Midwestern U.S. and Ontario, Canada (74.3°W to
97.2°W, 39.8°N to 49.4°N). Although monarchs disperse outside of
this area during summer, we focused on the Midwest because the
majority of individuals that arrive on the overwintering grounds in
Mexico originate from this region (Flockhart et al., 2017). This early
summer period is also important as it contains both structured and
unstructured data, whereas we did not have access to structured
data during S; and S,.

We used opportunistic, presence-only data from five data collec-
tion networks: North American Butterfly Association's “Butterflies
I've Seen” and “Recent Sightings” programs, iNaturalist, eButterfly,
Butterflies and Moths of North America, and Journey North (iNat-
uralist Community, 2019; Lotts & Naberhaus, 2019; Oberhauser
et al.,, 2015; Prudic et al., 2017; Sheehan & Weber-Grullon, 2021).
Each of these networks allow members of the general public to re-
port butterfly sightings (e.g. date, location, species, count) to online
databases that are available publicly or through data requests. From
each program, we extracted monarch sightings (location and date)
during our study period and converted them to presence-only data
(denoted as a presence at a specific location and date if 21 adult
monarch was observed). The average number of observations re-
ported each year by period was: ns, = 196, ng, = 157, and ns, = 166.
Prior to modelling, we pooled unstructured data into a single dataset
rather than modelling each source with a separate submodel as pro-
tocols and data types were similar.

The structured monarch data collected during early summer
(3 May-6 June) come from five different monitoring programs.
The first program we used was the North American Butterfly
Association's Fourth of July (NFJ) surveys. These structured
surveys are conducted annually in summer, with optimal timing
depending on local conditions at specified sites throughout the
summer breeding range. Volunteers survey areas within a fixed
25-km diameter circle and record the number of adult butterflies
observed, by species (Oberhauser et al., 2015). We summed mon-
arch observations among volunteers during each survey, resulting
in a single count for each site and year C,;. The other four monitor-
ing programs were ‘Pollard walk’ surveys from state-level butterfly
monitoring networks (BMNs) in lllinois, Ohio, lowa, and Michigan
(Oberhauser et al., 2015, Pollard, 1977). Volunteers walked fixed
transects and counted the number of adult butterflies observed.
Unlike NFJ surveys, volunteers surveyed Pollard transects multi-
ple times each year; however, we only used the first survey of the
year because our focus was estimating monarch abundance during
early summer. Data from the NFJ and Pollard transects thus con-
tain a single count for each site and year. The average number of
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counts each year in S3 was: ng, = 229. Similar to the unstructured
data, we pooled the structured data into a single dataset rather
than modelling each with a separate submodel as similar protocols
led to a common data type.

We included environmental covariates that are likely to influence
monarch recruitment and survival, and hence spatiotemporal abun-
dance. Monarch larvae are obligate feeders on milkweed (Asclepias
spp.; Pleasants & Oberhauser, 2013); thus, milkweed availability is
likely to drive monarch recruitment. Because data on milkweed dis-
tribution and abundance are lacking, we used the normalized differ-
ence vegetation index (NDVI), a measure of landscape greenness, as
a proxy for milkweed distribution during the spring and early sum-
mer (Flockhart et al., 2013; Lemoine, 2015). Weather variables are
also vital to the recruitment of monarchs as they influence the rates
of development and survival from eggs to adults (Zalucki, 1982).
Similar to other monarch models, we used the number of growing
degree days (GDD) to describe thermal conditions on the spring
and summer breeding grounds (Saunders et al., 2016, 2018; Zipkin
et al., 2012; Zylstra et al., 2021). GDD is the accumulation of heat
within a specific temperature range that allows for monarch devel-
opment (McMaster & Wilhelm, 1997). We calculated GDD values as
the heat accumulated at a given location over a 14-day period imme-
diately preceding each observation or survey. NDVI and GDD vari-
ables were calculated for each observation, survey, and mesh node
(Didan, 2015; Thornton et al., 2020, Supporting Information S3).

We also included environmental covariates in our model that
were likely to influence the number of monarchs observed during
sampling. For the presence-only data, we used two covariates in
the thinning function to account for spatiotemporal variation in
sampling intensity. First, we used observations of non-monarch
butterflies (i.e. number of detections for each species) within the su-
perfamily Papilionoidea in iNaturalist (iNaturalist Community, 2019),
assuming high numbers of butterfly observations correlate with high
sampling intensity. We used human population density as another
proxy for sampling intensity with the assumption that the number
of people in the surrounding area is positively correlated with the
number of local observers (Center for International Earth Science
Information Network-CIESIN-Columbia University, 2018; Geldmann
et al., 2016; Supporting Information S3). For the structured data, the
amount of effort expended searching for monarchs on each survey is
likely to affect the number of individuals observed. Because the area
searched during each structured survey (e.g. length of each BMN
transect or area covered during each NFJ survey) was not reported,
we converted the number of person hours spent surveying into area
sampled based on the average human walking speed (5-km/hour;
Browning et al., 2006) and assumed that butterflies within 1-m of
the observer were detected.

2.3.2 | Analysis

We used the integrated modelling framework described above to
estimate abundance of monarchs in spring and early summer in

each year from 2016 to 2018 with a few case-specific modifica-
tions (Figure 1b,c). We selected a 100-m? baseline resolution for
presence-only data and converted the area offset (Dj) accordingly. In
addition to the fixed effects describing population change between
spatiotemporal domains within a single annual cycle (5,), we included
a fixed effect to capture population change between years (y,). We
allowed the effects of covariates to vary by period and included
quadratic effects for both NDVI and GDD to account for peaks in
optimal conditions. Effects were fixed across years (i.e. no interac-
tion between covariates and years). Thus, the updated equation for
abundance (modified from Equation 2) is:

log(44(5)) =10g(Ag) + By, *NDVIy(5)+ B¢ NDVI,(s)’

3
+P3:*GDD(S)+ sy GDDy,(5)* +6;+7, +o(s). @

We report abundance as the expected number of monarchs per
100-m?. Parameters were estimated using maximum likelihood with
R-INLA, Template Model Builder, and R (Kristensen et al., 2016;
Lindgren & Rue, 2015; R Core Team, 2020). See Supporting

Information S3 for additional implementation details.

3 | RESULTS
3.1 | Simulation study

The integration of structured data from the first time period with
unstructured data from both periods allowed for nearly unbiased es-
timates of abundance (Figure 2c, left), even in the second period dur-
ing which no structured data were available (1.3% and 1.2% relative
biases in periods 1 and 2, respectively). In contrast, abundance could
not be estimated when relying exclusively on either presence-only
data (Figure 2c, right; Dorazio, 2014) or structured data that were
limited to a single time period. Precision of estimates was also higher
for the integrated model as compared to a presence-only analysis
(Supporting Information S2: Table S2.1). Our integrated modelling
framework successfully identified the intercept of the intensity
function, 4q (1.7% relative bias), effects of an environmental covari-
ate on local abundance, g (-3.0% relative bias; simulated values be-
tween 0.5 and 1.5 on the log-scale), and the change in abundance
between periods, § (0.0% relative bias; Figure 2d; see Supporting
Information S2: Table $2.1 for full results). The thinning parameters,
poand a, were also estimated with low bias (-0.4% and -1.2% relative
bias, respectively). Hyperparameters of the spatial random effect, ¢
and «, had larger biases across simulations (-37.0% for r and 14.8%
for k), which may be a result of the generic spatial mesh used for
analyses (Dambly et al., 2023; Jullum, 2020).

3.2 | Casestudy

Environmental conditions in the eastern Texas region during the
spring breeding season, particularly in March, strongly influenced
the overall size of the monarch population and the distribution

QSURDI'T SUOWIIOL) dANEAI) d[qedrjdde dy) Aq POUIdA0S QI SA[IIE V() 98N JO SN J0f AIRIqIT QUI[UQ AJ[IAN UO (SUOHIPUOI-PUE-SULID} WO KI[IM " ATRIQI[OUI[UO,/:SAY) SUOHIPUOD) PUE SWID L, Y} S “[$707/€0/61] U0 AIRIqrT SuruQ AS[IM T8TH X0 1Z-1+0T/1111°01/10p/wod Ka[im A1eiqrjaur[uo sjeunofsaq,/:sdny woiy papeojumod ‘7 ‘4707 X0121#07



FARR . : .
ETAL Methods in Ecology and Evolution EE?&'E!W
—_—_— D SOCIETY
(@) (b) (©
Early __ Late . Early _ Early Late Early Early Late Early
spring spring summer spring spring summer spring spring summer
= ¢ e 0.04 o 0.04
S = g
g g S
2, — 0.03 — 0.03
— i ~ ~
~ %) %)
3 S S
& : is £ 0.024 £ 0.021
P ) e =) =)
2 : - £
< [ 0.01 4 - = 0.01 1
g = e A RN =
< = . =
2 5 [} 3 o S
[Oh . . : : < 0.00q ----7 - < 0.00
T T T T T T
NDVI NDVI* GDD GDD? 02 03 04 05 06 07
NDVI
Q) _ © _ ®
Early spring Late spring
0.7 : ' 0.7 X
1 1
1 1
[ N LT T
_ 1 — . —
————— + = SRR = — — — — 1
Z 0.45 1 : E 0.45 1 : E
Z i z | Z
1 1
1 1
1 1
1 1
0.2 1 T 0.2 — .
50 125 200 50 125 200 50 125 200
GDD GDD GDD
[ TS | |
0.00 0.02 0.04 0.00 0.02 0.04 0.00 0.02 0.04

FIGURE 3 Effects of NDVIand GDD on monarch abundance (reported as the number of adults/100 m2). (a) Parameter estimates (mean
and 95% confidence intervals) for the linear and quadratic effects of NDVI and GDD during each period: early spring, late spring, and
early summer. Dashed line at zero indicates no covariate effect on monarch abundance. (b, c) Estimated marginal effects (mean and 95%
confidence intervals) of NDVI and GDD, respectively, on monarch population abundance during each period. Panels in the bottom row
depict the marginal effect (mean) of both NDVI and GDD on monarch abundance in (d) early spring, (e) late spring, and (f) early summer.
Dashed lines indicate the mean values of NDVI and GDD summarized across 2016-2018 for each period's spatial domain (at 100-km?

resolution) and date range.

of individuals across the breeding area (Figure 3a). We identified
nonlinear effects of both NDVI and GDD during all three time
periods (i.e. early spring, late spring, and early summer; Figure 2b,c).
The relationships between environmental variables and monarch
abundance changed throughout the spring and early summer
breeding seasons (Figure 3d-f). Highest monarch abundances in the
early spring and summer were associated with above average NDVI
and temperature values (i.e. 100-km? resolution values averaged
across 2016-2018 for each period's domain; Figure 3d,f), while the
highest abundances in late spring were associated with average
NDVI and temperature values (Figure 3e). Estimates for the GDD
linear and quadratic effects (Figure 3a,c,d) reveal that peak monarch
abundance in the early spring breeding period was constrained to
a tight range of values (especially compared to summer; Figure 3d
versus Figure 3f), suggesting that a precise range of cumulative
temperature conditions at the start of the annual breeding season
may be necessary for large population growth.

Using the integrated model, we estimated spatially explicit
monarch abundances (reported as adults per 100m?) across the
spring and summer breeding areas (Figure 4), providing the first
such estimates for eastern monarchs in spring, a time period
when only unstructured, opportunistic data are available. In each
year, monarch abundance increased over the course of the spring
breeding season, with the lowest expected population sizes in
early spring and the highest in early summer (Figure 4). These re-
sults were expected based on monarch life history patterns that
reflect the ongoing breeding of subsequent generations from the
beginning of spring until the end of the summer breeding period.
The annual size of the eastern monarch population peaks in late
summer just before the final generation enters diapause and ini-
tiates the southerly migration (Ries et al., 2015). Yearly estimates
of spring and early summer population indices are consistent with
estimates of overwintering population size in Mexico later that
same year, with considerably higher abundance in 2018 than in the
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previous 2years (Supporting Information S3: Table S3.1). These
results further highlight the importance of the spring breeding
season and suggest that annual variations in the overall size of the
monarch population can be seen as early as the first generation of

the year (Figure 4).

4 | DISCUSSION

We developed an integrated model using a Poisson point process
to estimate seasonal abundances of migratory species with un-
structured, opportunistic data when structured data are sparse
or unavailable during portions of the annual cycle. Integration of
unstructured data with information-rich structured data can im-
prove inferences on migratory populations relative to independ-
ent analyses of either data source (Figure 2). Analyses relying
exclusively on structured data may result in inferences that are
limited to certain periods of a species annual cycle (e.g. breeding),
while analyses using just presence-only data cannot estimate ab-
solute abundance due to unidentifiable parameters. By addressing
data gaps and parameter identifiability through integrated model-
ling, our framework can be used to estimate relationships between
environmental factors and population abundance and elucidate
dynamics that occur across multiple periods of a species' migra-
tory or annual cycle.

We validated our model through a simulation study where we
demonstrated that abundance or relative abundance (i.e. when im-
perfect detection is unmeasured or ignored) can be estimated for
time periods in which structured data are unavailable. The sim-
ulations also confirmed that our modelling framework can yield

unbiased estimates of overall abundance and the effects of spatially
varying covariates. However, estimates of spatial hyperparameters
were somewhat biased, suggesting uncertainty in the model's ability
to parse spatial heterogeneity beyond that explained by covariates.
We used a non-customized mesh across simulations, which likely
contributed to biases. For specific applications, such as our monarch
case study (Supporting Information S3), tuning the spatial mesh to
the system at hand can minimize such biases (Dambly et al., 2023;
Jullum, 2020; Krainski et al., 2018). Krainski et al. (2018) provides
in-depth instruction on how to build triangulated meshes using the
R-INLA package while Dambly et al. (2023) documents tradeoffs en-
countered when specifying a spatial mesh.

We demonstrated the merit of our model by generating spa-
tiotemporal estimates of relative monarch abundance during
their spring breeding season when structured data are largely
unavailable and densities are low. The spring breeding season
has been identified as a critical period for the eastern monarch
population, as evidenced by consistent and strong links between
spring weather conditions and the abundance of monarchs in late
summer and early winter (Saunders et al., 2016, 2018; Zylstra
et al., 2021). Our model corroborates these results from long-term
analyses, despite the use of different data sources and a different
spatiotemporal resolution than has been used in previous work.
Further, our results revealed nonstationary effects of environ-
mental variables on monarch abundances during the spring and
early summer (Rollinson et al., 2021). We observed a shift in the
effects of NDVI (a metric of landscape greenness) on monarch
abundance, where peak abundances were associated with the
greenest conditions in early spring and summer and slightly lower
NDVI values in late spring (Figure 3b). Although there was some
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variation, the highest monarch abundances were associated with
cumulative 14-day GDD values between 100 and 150 throughout
the spring and early summer.

As demonstrated in the simulation and case studies, our in-
tegrated model offers a powerful approach for estimating abun-
dance during periods and spatial locations that lack design-based
monitoring data. However, we recommend that potential users
evaluate the appropriateness of our framework for their systems
prior to implementation. For example, some taxa may violate the
assumption of a shared intensity function across space and time
because they contain distinct subpopulations with unique demo-
graphic processes in different parts of their range. The amount
and type of data available could also render data integration futile
if low amounts of structured data preclude the estimation of pa-
rameters or if the amount of structured data is sufficient to esti-
mate parameters across a species full annual cycle without the use
of unstructured data. Additionally, a critical assumption of our in-
tegrated framework is that the relationship between unstructured
data and species abundance is constant over space and time (i.e.
parameters in Equation 3 are stationary), with the Poisson thin-
ning rate accurately capturing variation in the observation process
of unstructured data. Violations of this assumption may lead to
increased biases as estimation of abundance moves further away
in space and time from where structured data were used to esti-
mate Aq.

We advise that practitioners develop their own simulations to
assess the feasibility of this type of integrated modelling, as case
specific considerations may require further model complexity (see
either Supporting Information S2 and S3, Zenodo [DOI: https://doi.
org/10.5281/zen0do.8433370], or GitHub [https://github.com/
zipkinlab/Farr_etal_2024_MEE] for code used in our analyses).
Observation processes, such as imperfect detection of individuals
during structured data collection, may reduce parameter accuracy
and precision if not properly accounted for within the model struc-
ture. Uncertainty in covariate values along with potential correla-
tions between environmental and observation covariates should
be evaluated to minimize errors and collinearity (Dorazio, 2014).
Practitioners should also consider if large quantities of unstructured
data in an area are likely to reflect high quality habitat (i.e. environ-
mental covariate) or simply spatial biases from variable data collec-
tion effort (i.e. observation covariate). Finally, improper covariate
selection may lead to parameter biases (Kéry & Royle, 2020), and for
many species and systems, relevant observation covariates may be
hard to identify or measure (Kelling et al., 2019; Troudet et al., 2017).

Nearly one sixth of examined species are classified as data de-
ficient by the IUCN, and far more have little to no structured data
available throughout much of their range (IUCN, 2022). Migratory
species, in particular, often lack data across large portions of their
geographic range despite being vulnerable to wide ranging threats
(Marra et al., 2015). A shift in biodiversity monitoring from struc-
tured to unstructured data collection protocols is providing new
sources of information to mitigate data gaps for migratory species.
However, new analytical approaches, such as integrated modelling,
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are needed to overcome observation biases in unstructured data
and realize the potential of this emerging data type to help address

and mitigate ongoing species declines.
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reasonable request from the authors (LR) and with permission

from the aforementioned programs.

ORCID
Matthew T. Farr
Erin R. Zylstra
Elise F. Zipkin

https://orcid.org/0000-0003-1011-6851
https://orcid.org/0000-0002-2536-0403
https://orcid.org/0000-0003-4155-6139

REFERENCES

Brower, L. P, Taylor, O. R., Williams, E. H., Slayback, D. A., Zubieta, R.
R., & Ramirez, M. I. (2012). Decline of monarch butterflies over-
wintering in Mexico: Is the migratory phenomenon at risk? Insect
Conservation and Diversity, 5, 95-100.

Browning, R. C., Baker, E. A, Herron, J. A., & Kram, R. (2006). Effects of
obesity and sex on the energetic cost and preferred speed of walk-
ing. Journal of Applied Physiology, 100, 390-398.

Center for International Earth Science Information Network-CIESIN-
Columbia University. (2018). Gridded population of the world, version
4 (GPWv4): Population density, revision 11. NASA Socioeconomic
Data and Applications Center (SEDAC). https://doi.org/10.7927/
H49C6VHW

Chandler, M., See, L., Copas, K., Bonde, A. M. Z., Lépez, B. C., Danielsen,
F., Legind, J. K., Masinde, S., Miller-Rushing, A. J., Newman, G.,
Roesmartin, A., & Turak, E. (2017). Contribution of citizen sci-
ence towards international biodiversity monitoring. Biological
Conservation, 213, 280-294.

Dambly, L. 1., Isaac, N. J. B., Jones, K. E., Boughey, K. L., & O'Hara, R.
B. (2023). Integrated species distribution models fitted in INLA are
sensitive to mesh parameterization. Ecography, 2023, e06391.

Deinet, S., Scott-Gatty, K., Rotton, H., Twardek, W. M., Marconi, V.,
McRae, L., Baumgartner, L. J., Brink, K., Claussen, J. E., Cooke,
S. J., Darwall, W., Eriksson, B. K., Garcia de Leaniz, C., Hogan, Z.,
Royte, J., Silva, L. G. M., Thieme, M. L., Tickner, D., Waldman, J.,
... Berkhuysen, A. (2020). The living planet index (LPI) for migratory
freshwater fish—Technical report. World Fish Migration Foundation.

Didan, K. (2015). MOD13A2 MODIS/Terra vegetation indices 16-day L3
global 1km SIN grid VOO6 [Data set]. NASA EOSDIS Land Processes
DAAC https://doi.org/10.5067/MODIS/MOD13A2.006

Dorazio, R. M. (2012). Predicting the geographic distribution of species
from presence-only data subject to detection errors. Biometrics, 68,
1302-1312.

Dorazio, R. M. (2014). Accounting for imperfect detection and survey
bias in statistical analysis of presence-only data. Global Ecology and
Biogeography, 23, 1472-1484.

Farr, M. T., Green, D.S., Holekamp, K. E., & Zipkin, E. F. (2021). Integrating
distance sampling and presence-only data to estimate species
abundance. Ecology, 102, e03204.

Fithian, W., Elith, J., Hastie, T., & Keith, D. A. (2015). Bias correction in
species distribution models: Pooling survey and collection data for
multiple species. Methods in Ecology and Evolution, 6, 424-438.

Fletcher, R. J., Hefley, T. J., Robertson, E. P., Zuckerberg, B., McCleery, R.
A., & Dorazio, R. M. (2019). A practical guide for combining data to
model species distributions. Ecology, 100, e02710.

Flockhart, D. T. T., Brower, L. P., Ramirez, M. |., Hobson, K. A., Wassenaar,
L. I., Altizer, S., & Norries, D. R. (2017). Regional climate on the
breeding grounds predicts variation in the natal origin of monarch
butterflies overwintering in Mexico over 38years. Global Change
Biology, 23, 2565-2576.

Flockhart, D. T. T., Wassenaar, L. |., Martin, T. G., Hobson, K. A., Wunder,
M. B., & Norris, D. R. (2013). Tracking multi-generational coloni-
zation of the breeding grounds by monarch butterflies in eastern

North America. Proceedings of the Royal Society B: Biological Sciences,
280, 20131087.

Geldmann, J., Heilmann-Clausen, J., Holm, T. E., Levinsky, ., Markuseen,
B., Olsen, K., Rahbek, C., & Tattrup, A. P. (2016). What determines
spatial bias in citizen science? Exploring four recording schemes
with different proficiency requirements. Diversity and Distributions,
22,1139-1149.

Green, A. J., & EImberg, J. (2014). Ecosystem services provided by water-
birds. Biological Reviews, 89, 105-122.

iNaturalist Community. (2019). Observations of Papilionoidea from North
America observed between 2016-2018. Exported from https://
www.inaturalist.org on 2019-06-12.

Isaac, N. J. B, Jarzyna, M. A,, Keil, P., Dambly, L. |., Boersch-Supan, P.
H., Browning, E., Freeman, S. N., Golding, N., Guillera-Arroita, G.,
Henrys, P. A., Jarvis, S., Lahoz-Monfort, J., Pagel, J., Prescott, O.
L., Schmucki, R., Simmonds, E. G., & O'Hara, R. B. (2020). Data in-
tegration for large-scale models of species distributions. Trends in
Ecology & Evolution, 35, 56-67.

IUCN. (2022). The IUCN red list of threatened species. Version 2022-2.
https://www.iucnredlist.org

Jullum, M. (2020). Investigating mesh-based approximation methods for
normalization constant in the log Gaussian Cox process likelihood.
Stat, 9, e285.

Kelling, S., Johnston, A., Bonn, A., Fink, D., Ruiz-Gutierrez, V., Bonney,
R., Fernandez, M., Hochachka, W. M., Julliard, R., Kraemer, R., &
Guralnick, R. (2019). Using semistructured surveys to improve
citizen science data for monitoring biodiversity. Bioscience, 69,
170-179.

Kéry, M., & Royle, J. A. (2020). Applied hiearchcial modeling in ecology:
Analysis of distribution, abundance and species richness in R and
BUGS: Volume 2: Dynamic and advanced models. Academic Press.

Krainski, E. T., Gdmez-Rubio, V., Bakka, H., Lenzi, A., Castro-Camilo, D.,
Simpson, D., Lindgren, F., & Rue, H. (2018). Advanced spatial mod-
eling with stochastic partial differential equations using R and INLA.
Chapman and Hall.

Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., & Bell, B. M. (2016).
TMB: Automatic differentiation and Laplace approximation. Journal
of Statistical Software, 70, 1-21.

Lemoine, N. P. (2015). Climate change may alter breeding ground dis-
tributions of eastern migratory monarchs via range expansion of
Asclepias host plants. PLoS One, 10, e0118614.

Lindenmayer, D. B., Likens, G. E., Andersen, A., Bowman, D., Bull, C. M.,
Burns, E., Dickman, C. R., Hoffmann, A. A., Keith, D. A., Liddell,
M. J., Lowe, A. J., Metcalfe, D. J.,, Phinn, S. R., Russell-Smith, J.,
Thurgate, N., & Wardle, G. M. (2012). Value of long-term ecological
studies. Animal Ecology, 37, 745-757.

Lindgren, F., & Rue, H. (2015). Bayesian spatial modelling with R-INLA.
Journal of Statistical Software, 63, 1-25.

Lotts, K., & Naberhaus, T. (2019). Butterflies and moths of North
America. Data Set. http://www.butterfliesandmoths.org/

Marra, P. P.,, Cohen, E. B, Loss, S. R., Rutter, J. E., & Tonra, C. M. (2015). A
call for full annual cycle research in animal ecology. Biology Letters,
11,20150552.

Mattsson, B. J., Dubovsky, J. A., Thogmartin, W. E., Bagstad, K. J,,
Goldstein, J. H., Loomis, J. B., Diffendorfer, J. E., Semmens, D. J.,
Wiederholt, R., & Lépez-Hoffman, L. (2018). Recreation economics
to inform migratory species conservation: Case study of the north-
ern pintail. Journal of Environmental Management, 206, 971-979.

McMaster, G. S., & Wilhelm, W. W. (1997). Growing degree-days: One
equation, two interpretations. Agricultural and Forest Meteorology,
87,291-300.

Miller, D. A. W., Pacifici, K., Sanderlin, J. S., & Reich, B. J. (2019). The
recent past and promising future for data integration methods to
estimate species' distributions. Methods in Ecology and Evolution, 10,
22-37.

QSURDI'T SUOWIIOL) dANEAI) d[qedrjdde dy) Aq POUIdA0S QI SA[IIE V() 98N JO SN J0f AIRIqIT QUI[UQ AJ[IAN UO (SUOHIPUOI-PUE-SULID} WO KI[IM " ATRIQI[OUI[UO,/:SAY) SUOHIPUOD) PUE SWID L, Y} S “[$707/€0/61] U0 AIRIqrT SuruQ AS[IM T8TH X0 1Z-1+0T/1111°01/10p/wod Ka[im A1eiqrjaur[uo sjeunofsaq,/:sdny woiy papeojumod ‘7 ‘4707 X0121#07


http://www.ohiolepidopterists.org/
https://orcid.org/0000-0003-1011-6851
https://orcid.org/0000-0003-1011-6851
https://orcid.org/0000-0002-2536-0403
https://orcid.org/0000-0002-2536-0403
https://orcid.org/0000-0003-4155-6139
https://orcid.org/0000-0003-4155-6139
https://doi.org/10.7927/H49C6VHW
https://doi.org/10.7927/H49C6VHW
https://doi.org/10.5067/MODIS/MOD13A2.006
https://www.inaturalist.org
https://www.inaturalist.org
https://www.iucnredlist.org
http://www.butterfliesandmoths.org/

FARR ET AL.

Mgiller, J., Syversveen, A. R., & Waagepetersen, R. P. (1998). Log Gaussian
cox processes. Scandinavian Journal of Statistics, 25, 451-482.
Neupane, N., Zipkin, E. F., Saunders, S. P., & Ries, L. (2022). Grappling
with uncertainty in ecological projections: A case studyusing the

migratory monarch butterfly. Ecosphere, 13(1), e03874.

Oberhauser, K. S., Ries, L., Altizer, S., Batalden, R. V., Kudell-Ekstrum,
J., Garland, M., Howard, E., Jepsen, S., Lovett, J., Monroe, M.,
Morris, G., Rendén-Salinas, E., RuBino, R. G., Ryan, A,, Taylor, O.
R., Trevifio, R., Villablanca, F. X., & Walton, D. (2015). Contributions
to monarch biology and conservation through citizen science. In K.
S. Oberhauser, K. S. Nail, & S. Altizer (Eds.), Monarchs in a chang-
ing world: Biology and conservation of an iconic butterfly (pp. 13-30).
Cornell University Press.

Pacifici, K., Reich, B. J., Miller, D. A. W., & Pease, B. S. (2019). Resolving
misaligned spatiotemporal data with integrated distribution mod-
els. Ecology, 100, e02709.

Pleasants, J. M., & Oberhauser, K. S. (2013). Milkweed loss in agricultural
fields because of herbicide use: Effect on the monarch butterfly
population. Insect Conservation and Diversity, 6, 135-144.

Pollard, E. (1977). A method for assessing changes in the abundance of
butterflies. Biological Conservation, 12, 115-134.

Prudic, K. L., McFarland, K. P., Oliver, J. C., Hutchinson, R. A., Long, E.
C., Kerr, J. T., & Larrivée, M. (2017). eButterfly: Leveraging mas-
sive online citizen science for butterfly conservation. Insects, 8,
53.

R Core Team. (2020). R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing.

Ries, L., & Oberhauser, K.S.(2015). A citizen army for science: Quantifying
the contributions of citizen scientists to our understanding of mon-
arch butterfly biology. Bioscience, 65, 419-430.

Ries, L., Taron, D. J., & Rendén-Salinas, E. (2015). The disconnect be-
tween summer and winter monarch trends for the eastern migra-
tory population: Possible links to differing drivers. Annals of the
Entomological Society of America, 108, 691-699.

Rollinson, C. R., Finley, A. O., Alexander, M. R., Banerjee, S., Hamil, K.
D., Koenig, L. E., Locke, D. H., DeMarche, M. L., Tingley, M. W.,
Wheeler, K., Youngflesh, C., & Zipkin, E. F. (2021). Working across
space and time: Nonstationarity in ecological research and applica-
tion. Macrosystems Biology, 19, 66-72.

Rushing, C.S., Hostetler, J. A., Sillett, T. S., Marra, P. P,, Rotenberg, J. A., &
Ryder, T. B. (2017). Spatial and temporal drivers of avian population
dynamics across the annual cycle. Ecology, 98, 2837-2850.

Rushing, C. S., Ryder, T. B., & Marra, P. P. (2016). Quantifying drivers of
population dynamics for a migratory bird throughout the annual
cycle. Proceedings of the Royal Society B: Biological Sciences, 283,
20152846.

Rushing, C.S., Tatenhove, A. M. V,, Sharp, A., Ruiz-Gutierrez, V., Freeman,
M. C,, Sykes, P. W,, Given, A. M., & Sillett, T. S. (2021). Integrating
tracking and resight data enables unbiased inferences about mi-
gratory connectivity and winter range survival from archival tags.
Ornithological Applications, 123, 1-14.

Saunders, S. P., Farr, M. T., Wright, A. D., Bahlai, C. A., Ribeiro, J. W.,
Rossman, S., Sussman, A. L., Arnold, T. W., & Zipkin, E. F. (2019).
Disentangling data discrepancies and deficiencies with integrated
population models. Ecology, 100, e02714.

Saunders, S. P., Piper, W., Farr, M. T., Bateman, B. L., Michel, N. L.,
Westerkam, H., & Wilsey, C. B. (2021). Interrelated impacts of cli-
mate and land-use change on a widespread waterbird. Journal of
Animal Ecology, 90, 1165-1176.

Saunders, S. P., Ries, L., Neupane, N., Ramirez, M. |., Garcia-Serrano, E.,
Rendén-Salinas, E., & Zipkin, E. F. (2019). Multiscale seasonal fac-
tors drive the size of winter monarch colonies. Proceedings of the
National Academy of Sciences of the United States of America, 116,
8609-8614.

Saunders, S. P, Ries, L., Oberhauser, K. S., Thogmartin, W. E., & Zipkin,
E. F. (2018). Local and cross-seasonal associations of climate and

Methods in Ecology and Evul i

BRIISH
ECOLOGICAL
SOCIETY

land use with abundance of monarch butterflies. Ecography, 41,
278-290.

Saunders, S. P, Ries, L., Oberhauser, K.S., & Zipkin, E. F.(2016). Evaluating
confidence in climate-based predictions of population change in a
migratory species. Global Ecology and Biogeography, 25, 1000-1012.

Schindler, A. R., Cunningham, S. A., Schafer, T. L. J., Sinnott, E. A.,
Clements, S. J., DiDonato, F. M., Mosloff, A. R., Walters, C. M.,
Shipley, A. A., Weegman, M. D., & Zhao, Q. (2022). Joint analysis of
structured and semi-structured community science data improves
precision of relative abundance but not trends in birds. Scientific
Reports, 12, 20289.

Sekercioglu, C. H. (2012). Promoting community-based bird monitoring
in the tropics: Conservation, research, environmental education,
capacity-building, and local incomes. Biological Conservation, 151,
69-73.

Sheehan, N., & Weber-Grullon, L. (2021). Journey north-monarch butter-
fly and milkweed observations by volunteer community scientists
across central and North America (1996-2020) ver 1. Environmental
Data Initiative https://doi.org/10.6073/pasta/f7d7bef57f94b33
b8a18a26954252412

Simpson, D,, lllian, J. B., Lindgren, F., Serbye, S. H., & Rue, H. (2016). Going
off grid: Computationally efficient inference for log-Gaussian cox
processes. Biometrika, 103, 49-70.

Skaug, H. J., & Fournier, D. A. (2006). Automatic approximation of
the marginal likelihood in non-Gaussian hierarchical models.
Computational Statistics and Data Analysis, 51, 699-709.

Suman, A., Ravikanthachari, N., & Kunte, K. (2023). A comparison be-
tween time-constrained counts and line transects as methods to
estimate butterfly diversity and monitor populations in tropical
habitats. Insect Conservation and Diversity. https://doi.org/10.1111/
icad.12693

Thogmartin, W. E., Haefele, M. A., Diffendorfer, J. E., Semmens, D. J.,
Derbride, J. J., Lien, A., Huang, T., & Lépez-Hoffman, L. (2022).
Multi-species, multi-county analysis reveals North Americans are
willing to pay for transborder migratory species conservation.
People and Nature, 4, 549-562.

Thogmartin, W. E., Wiederholt, R., Oberhauser, K. S., Drum, R. G.,
Diffendorfer, J. E., Altizer, S., Taylor, O. R., Pleasants, J., Semmens,
D., Semmens, B., Erickson, R., Libby, K., & Lépez-Hoffman, L.
(2017). Monarch butterfly population decline in North America:
Identifying the threatening processes. Royal Society Open Science,
4,170760.

Thornton, M. M., Shrestha, R., Wei, Y., Thornton, P. E., Kao, S., & Wilson,
B. E. (2020). Daymet: Daily surface weather data on a 1-km grid for
North America, version 4. ORNL DAAC. https://doi.org/10.3334/
ORNLDAAC/1840

Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R., & Legendre, F.
(2017). Taxonomic bias in biodiversity data and societal prefer-
ences. Scientific Reports, 7, 9132.

Zalucki, M. P. (1982). Temperature and rate of development in Danaus
plexippus L. and D. chrysippus L. (Lepidoptera: Nymphalidae). Journal
of the Australian Entomological Society, 21, 241-246.

Zipkin, E. F., Ries, L., Reeves, R., Regetz, J., & Oberhauser, K. S. (2012).
Tracking climate impacts on the migratory monarch butterfly.
Global Change Biology, 18, 3039-3049.

Zipkin, E. F., & Saunders, S. P. (2018). Synthesizing multiple data types
for biological conservation using integrated population models.
Biological Conservation, 217, 240-250.

Zipkin, E. F., Zylstra, E. R., Wright, A. D., Saunders, S. P, Finely, A. O.,
Dietze, M. C,, Itter, M. S., & Tingley, M. S. (2021). Addressing data
integration challenges to link ecological processes across scales.
Frontiers in Ecology and the Environment, 19, 30-38.

Zurell, D., Graham, C. H., Galien, L., Thuiller, W., & Zimmermann, N. E.
(2018). Long-distance migratory birds threatened by multiple in-
dependent risks from global change. Nature Climate Change, 8,
992-996.

QSURDI'T SUOWIIOL) dANEAI) d[qedrjdde dy) Aq POUIdA0S QI SA[IIE V() 98N JO SN J0f AIRIqIT QUI[UQ AJ[IAN UO (SUOHIPUOI-PUE-SULID} WO KI[IM " ATRIQI[OUI[UO,/:SAY) SUOHIPUOD) PUE SWID L, Y} S “[$707/€0/61] U0 AIRIqrT SuruQ AS[IM T8TH X0 1Z-1+0T/1111°01/10p/wod Ka[im A1eiqrjaur[uo sjeunofsaq,/:sdny woiy papeojumod ‘7 ‘4707 X0121#07


https://doi.org/10.6073/pasta/f7d7bef57f94b33b8a18a26954252412
https://doi.org/10.6073/pasta/f7d7bef57f94b33b8a18a26954252412
https://doi.org/10.1111/icad.12693
https://doi.org/10.1111/icad.12693
https://doi.org/10.3334/ORNLDAAC/1840
https://doi.org/10.3334/ORNLDAAC/1840

FARR ET AL.

Methods in Ecology and Evoluti Egg.';‘lﬂjr!v.m

Zylstra, E. R., Neupane, N., & Zipkin, E. F. (2022). Multi-season climate
projections forecast declines in migratory monarch butterflies.
Global Change Biology, 28, 6135-6151.

Zylstra, E. R., Ries, L., Neupane, N., Saunders, S. P., Ramirez, M. |I.,
Rendén-Salinas, E., Oberhauser, K. S., Farr, M. T., & Zipkin, E. F.
(2021). Changes in climate drive recent monarch butterfly dynam-
ics. Nature Ecology & Evolution, 5, 1441-1452. https://doi.org/10.
1038/541559-021-01504-1

SUPPORTING INFORMATION

Additional supporting information can be found online in the
Supporting Information section at the end of this article.
Supplementary S1. Additional modeling details.

Supplementary S2. Simulation study code and output.
Supplementary S3. Case study details, code, and output.

How to cite this article: Farr, M. T,, Zylstra, E. R., Ries, L., &
Zipkin, E. F. (2024). Overcoming data gaps using integrated
models to estimate migratory species' dynamics during cryptic
periods of the annual cycle. Methods in Ecology and Evolution,
15, 413-426. https://doi.org/10.1111/2041-210X.14282

QSURDI'T SUOWIIOL) dANEAI) d[qedrjdde dy) Aq POUIdA0S QI SA[IIE V() 98N JO SN J0f AIRIqIT QUI[UQ AJ[IAN UO (SUOHIPUOI-PUE-SULID} WO KI[IM " ATRIQI[OUI[UO,/:SAY) SUOHIPUOD) PUE SWID L, Y} S “[$707/€0/61] U0 AIRIqrT SuruQ AS[IM T8TH X0 1Z-1+0T/1111°01/10p/wod Ka[im A1eiqrjaur[uo sjeunofsaq,/:sdny woiy papeojumod ‘7 ‘4707 X0121#07


https://doi.org/10.1038/s41559-021-01504-1
https://doi.org/10.1038/s41559-021-01504-1
https://doi.org/10.1111/2041-210X.14282

	Overcoming data gaps using integrated models to estimate migratory species' dynamics during cryptic periods of the annual cycle
	Abstract
	1|INTRODUCTION
	2|MATERIALS AND METHODS
	2.1|Model description
	2.1.1|Spatial heterogeneity in the distribution of individuals
	2.1.2|Seasonal change in abundance
	2.1.3|Unstructured presence-­only data
	2.1.4|Structured count data
	2.1.5|Spatiotemporal data integration

	2.2|Simulation study
	2.3|Case study
	2.3.1|Data
	2.3.2|Analysis


	3|RESULTS
	3.1|Simulation study
	3.2|Case study

	4|DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNO​WLE​DGE​MENTS
	CONFLICT OF INTEREST STATEMENT
	PEER REVIEW
	DATA AVAILABILITY STATEMENT

	REFERENCES


