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AbstractÐGraph neural networks (GNN) are a powerful tool
for combining imaging and non-imaging medical information
for node classification tasks. Cross-network node classification
extends GNN techniques to account for domain drift, allowing for
node classification on an unlabeled target network. In this paper
we present OTGCN, a powerful, novel approach to cross-network
node classification. This approach leans on concepts from graph
convolutional networks to harness insights from graph data
structures while simultaneously applying strategies rooted in
optimal transport to correct for the domain drift that can occur
between samples from different data collection sites. This blended
approach provides a practical solution for scenarios with many
distinct forms of data collected across different locations and
equipment. We demonstrate the effectiveness of this approach at
classifying Autism Spectrum Disorder subjects using a blend of
imaging and non-imaging data.

Index TermsÐautism, graph, transfer learning, cross-network
node classification

I. INTRODUCTION

Autism Spectrum Disorder (ASD) refers to a condition char-

acterised by specific communication impairments, restricted

interests, and repetitive behaviours [1]. As the disorder typi-

cally presents itself early in life, early and accurate detection

can help reduce the severity of many lifelong symptoms.

Towards this end, automated techniques based on machine

learning and deep learning have been developed for the early

detection of ASD. Specifically, these techniques have been

applied to a wide range of subject data including detailed

subject screening data [2], videos of subject movements [3],

and Magnetic Resonance Imaging (MRI) data [4]. Given the

diverse modalities of data available, it is likely that the best

detection results can be achieved by combining the data from

different sources.

Previous works have established an effective method to

combine various modalities of data using graph structures

because of their flexible yet powerful representation [5] [6].

These approaches make use of population graphs, where the

nodes represent individuals and edges are generally defined

with some similarity measure. In several prior ASD research,

the node features are generated from image information while

the edges consider a combination of subject information (sex,

Fig. 1. An example illustrating the perils of failing to account for concept
drift in multi-source data. Assume a binary node classification task where the
two classes are represented as x’s and o’s, respectively. The blue points denote
the dataset for the source domain while the orange points denote the dataset
for the target domain. Observe that a decision boundary constructed from the
blue dataset will have reduced accuracy when applied to the orange dataset
due to concept drift between the source and target networks.

age, etc) in addition to image similarity [7] [8] [9] [10]. Once

these graphs are constructed, detecting ASD becomes a node

classification problem.

Similar to other diagnosis problems, one of the major

challenges in applying machine learning to ASD detection is

the limited amount of labeled data available. This has led to

growing interest in utilizing labeled data from multiple sites

to train the machine learning model. One limitation of these

approaches is that they fail to consider a more realistic scenario

in which there may be little or no labeled data associated

with the population of interest. For example, a model may be

trained on a research dataset but needs to be applied to another

location with a different imaging equipment or patient demo-

graphics that were not well represented in the training data.

This problem can be addressed using an approach generally

known as domain adaptation or transfer learning [11]. Within

the context of node classification tasks, it is also referred to as

cross-network node classification (CNNC) approach. CNNC



assumes the availability of a sufficiently large number of

labeled nodes in a source network and an unlabeled target

network, whose node labels are to be predicted accurately.

This paper focuses on addressing the CNNC task for ASD

detection. We use the popular ABIDE [12] dataset, which

contains both resting-state functional Magnetic Resonance

Imaging (fMRI) information and phenotypic data such as age,

sex, and screening results. Samples in the ABIDE dataset

were collected from several different collection sites, which

were then divided into 2 groups to form the source and target

networks for our experimental studies.

CNNC has two major challenges when applied to the

ABIDE dataset. The first is extracting relevant information

from the networks for ASD detection. In this work we will

learn a graph embedding of the source and target networks

via a graph convolutional network (GCN) [13]. A GCN layer

is capable of learning a node embedding which contains

information about a node and its immediate neighbors. This

method relies on the homophily principle [14], which states

that similar individuals tend to form neighborhoods within a

graph. Therefore, in a graph with high homophily we can

improve a node embedding by adding information from it’s

neighborhood.

The second major challenge is to handle potential concept

drift between the source and target networks. As the sepa-

rate data collection sites may have different fMRI imaging

equipment and procedural differences, this may introduce

some discrepancies or ºdriftº between the two networks. The

presence of concept drift often leads to poor results if a

classifier is simply trained on the source dataset and applied

as it is to the target dataset. Fig. 1 demonstrates the challenge

of CNNC when the learned node embedding does not account

for such distributional shift. A decision boundary learned from

the source dataset is likely to incorrectly classify a significant

portion of the target dataset.

In this paper we introduce OTGCN, a novel approach

to address the CNNC task for ASD detection. Our pro-

posed approach combines graph neural network with optimal

transport (OT) to handle the drift between the source and

target networks. OT is a method for mapping a transportation

between two distributions. We will use OT to map the learned

source representation to the target representation. This strategy

allows us to train an accurate model for classifying the target

nodes. Experimental results on the ABIDE dataset demonstrate

the effectiveness of our approach at diagnosing ASD across

different collection sites compared to state of the art CNNC

methods.

II. RELATED WORKS

A. Machine Learning Approaches to ASD Detection

ASD detection is a task that lends itself to a wide variety

of approaches. Zunino et al [3] employed computer vision

approaches for automatic early detection of ASD by evaluating

videos of subject movements when grasping a bottle. They

then applied recurrent neural networks to distinguish subjects

who have ASD from those who do not. Erkan and Thanh

[2] analyzed detailed screening data collected from mobile

app surveys using traditional machine learning methods such

as k-nearest neighbor, support vector machines, and random

forests to diagnose subjects with ASD. Yuan et al. [15] applied

natural language processing (NLP) techniques to analyze hand

written medical forms of potential ASD patients while Carette

et al. [16] performed ASD detection on eye tracking data using

long-short term memory (LSTM) networks.

The majority of the recent works in this area, however,

focuses on using MRI data [4] [17] along with other subject

information such as sex, age, and screening results [7] [8]

[10] [9] for screening potential ASD patients. For example,

Li et al. [4] presented a graph neural network approach to

find biomarkers that can be used to detect ASD while Parisot

et al. [7] employed a graph convolutional network (GCN)

to perform the detection using both fMRI imaging and non-

imaging phenotypic data. Similar to these works, our paper

focuses on using a combination of fMRI and other subject

data, though our approach is also applicable to blend other

forms of data given the representation power of graph neural

networks.

B. Machine Learning on Multi-site fMRI Data

Previous works on diagnosing brain-related problems using

fMRI data from multiple sites generally fall into two major

categoriesÐtransfer learning and federated learning.

Transfer learning [11] is a machine learning approach that

enables prediction models trained from a given data domain

(known as the source domain) to be applied to another domain

(known as the target domain). Such a domain adaptation

approach can be used even if the target domain has no labeled

training data. Previous works on applying transfer learning to

fMRI data can be found in [18] [19] [20]. However, these

approaches are mostly designed for using only the image

information and do not consider more complex data structures

or the use of additional non-imaging information.

In contrast, federated learning [21] is designed for training

prediction models in a collaborative fashion on decentralized

datasets. The approach assumes restricted or indirect access

to the source dataset and direct access to a partially labeled

target dataset. There has been a few works applying federated

learning approaches to multi-site fMRI data [22] [23], but none

of them consider non-imaging information.

C. Cross-Network Node Classification (CNNC)

There are a handful of studies focusing on applying do-

main adaptation approaches to multi-network data using graph

neural networks. For node classification, these approaches are

also collectively known as cross-network node classification

(CNNC). For example, Shen et al. [24] presents an approach

called CDNE that uses maximum mean discrepancy (MMD)

loss to learn graph embeddings for the source and target net-

works before sending those embedding to a shared classifier.

The authors subsequently extended the approach to ACDNE

in [25] by adding an adversarial domain adaptation compo-

nent to the framework. AdaGCN [26] combines conventional



graph convolutional network (GCN) layers with adversarial

domain adaptation, while UdaGCN [27] uses multiple GCNs

with both graph adjacency and positive point-wise mutual

information (PPMI) matrices to learn an improved combined

feature embedding of the nodes. A more recent work, ASN

[28] combines the node embedding from UdaGCN with the

adversarial domain adaptation approach from AdaGCN to

address the CNNC problem. While all of these approaches

were designed for CNNC tasks, they have not been tested on

the medical dataset nor with a combination involving imaging

and non-imaging data.

III. PRELIMINARIES

A. Problem Statement

Let G(V,E,X, Y ) be an attributed graph, with a node set

V , edge set E ⊆ V × V , node feature matrix X , and node

label Y . Let A denote the adjacency matrix representation of

E, where Aij > 0 if (vi, vj) ∈ E and 0 otherwise. In a domain

adaptation setting, we assume there exists a source graph,

Gs(Vs, Es, Xs, Ys), where the node labels in Ys are known,

and a target graph, Gt(Vt, Et, Xt, Yt), where the node labels

in Yt are unknown. The adjacency matrices corresponding to

the source and target graphs are denoted as As ∈ R
ns×ns

and At ∈ R
nt×nt , respectively, where ns and nt are the

corresponding number of source and target nodes.

We further assume that both graphs have identical features,

i.e., Xs ∈ R
ns×m and Xt ∈ R

nt×m. Both graphs are

also assumed to have the same set of class labels, i.e.,

Ys ∈ {0, 1, · · · , k− 1}ns and Yt ∈ {0, 1, · · · , k− 1}nt , where

k is the number of classes. For ASD detection, we consider a

binary node classification problem with k = 2. At times, we

also consider the combined graph Gc(Vc, Ec, Xc, Yc), where

Vc = Vs ∪ Vt, Ec = Es ∪ Et, Xc = [Xs;Xt] ∈ R
n×m,

Ac = [As 0; 0
T At] ∈ R

n×n, Yc ∈ {0, 1, · · · , k − 1}n,

n = ns + nt, and 0 is an ns × nt null matrix.

Definition 1 (Cross Network Node Classification (CNNC)):

Given a source graph, Gs = (Vs, Es, Xs, Ys) and target graph,

Gt = (Vt, Et, Xt, Yt), our goal is to learn a target function,

f : V → {0, 1, · · · , k−1}, that accurately classifies the labeled

nodes in Ys as well as the unlabeled nodes in Yt.

B. Graph Convolutional Network (GCN)

Graph convolutional networks [13] employ a message pass-

ing strategy to succinctly capture both the node features and

graph structure information when learning the feature embed-

ding of a node in the graph. Specifically, each ªmessageº

corresponds to the feature embedding information of a node,

which will be passed to all of its immediate neighbors. By

aggregating the features gathered from the neighbors, a new

embedding for the node will be generated.

The message passing strategy can be formally stated as

follows. Given an adjacency matrix A and node feature matrix

X , the feature embedding of the nodes in layer l+1, H(l+1),

can be computed based on its feature embedding at its previous

layer, H(l), as follows:

H(l+1) = σ(D̃−
1

2 ÃD̃−
1

2H(l)W (l)) (1)

Fig. 2. Illustration of the cost and transport plan matrices of optimal transport

Ã = A+ I

D̃ii =
∑

j

Ãij

where H(0) = X (i.e., original node features), σ(·) is the

ReLU activation function, and D̃ is a diagonal matrix contain-

ing the sum of the edge weights associated with each node in

the graph.

C. Optimal Transport

Optimal Transport (OT) provides a principled approach for

comparing two probability distributions by finding the least

costly way to reshape one of the distributions into the other

while incorporating their geometric information. The original

OT problem was proposed by Monge [29], with its modern

formulation being attributed to Kantorovich [30]. Given two

marginal distributions µs ∈ R
ns and µt ∈ R

nt let C ∈ R
ns×nt

be a cost matrix, where Cij is the cost of transporting one

unit from µs
i to µt

j . Consider a transportation plan matrix P ∈
R

ns×nt , where pij is the proportion of probability mass µs
i

that should be moved to µt
j .

The optimal transport (OT) problem seeks to find a trans-

portation plan P that minimizes the total transportation cost.

The minimum transportation cost W (µs, µt) is also called the

Wasserstein distance or the earth-mover distance.

W (µs, µt) := min
P∈U(µs,µt)

⟨P,C⟩F (2)

U(µs, µt) := {P ∈ R
ns×nt

+ |P1nt
= µs, P

T 1ns
= µt}

The discrete OT formulation [31] shown above can be

solved as a linear programming problem. However, it is com-

putationally expensive O((n +m)nm log(n +m)), unstable,

and is not guaranteed to have unique solution. Fortunately

these problems can be addressed by employing the Sinkhorn

distance Wλ [32] shown below, which utilizes an entropy reg-

ularization function H(P ) to accelerate the OT computation.



Fig. 3. High level architecture of our model. Combined source and target datasets are fed to two GCN layers and two NFT layers to learn two distinct
embeddings. In pretraining (left) these embeddings are concatenated and sent directly to a fully connected classifier. Model weights are then updated using
just cross entropy loss. In OT training (right) concatenated embeddings are routed to an OT layer before being sent to the classifier. The OT layer replaces
the source embedding with a transported version and then sends the target embedding and the transported source embedding to the classifier. At this point
the model weights are updated with a combination of cross entropy and OT losses.

Specifically, Wλ(µs, µt) and Pλ can be solved using the well-

known Sinkhorn algorithm as established by Cuturi [32].

Wλ(µs, µt) = ⟨Pλ, C⟩ (3)

Pλ = argmin
P∈U(µs,µt)

⟨P,C⟩ − λH(P )

U(µs, µt) :=
{

P ∈ R
ns×nt

+

∣

∣P1nt
= µs, P

T 1ns
= µt

}

where H(P ) = −
∑

ij Pij logPij is the entropy regularization

and λ is a user-specified regularization hyperparameter.

IV. METHODOLOGY

We employed a combination of graph convolutional net-

works (GCN) with node feature transformation layers to learn

the feature embedding of the nodes in the source and target

graphs. We then performed optimal transport on the learned

embedding of the source nodes to match the distribution of

the learned embedding of the target nodes. Figure 3 provides

a high-level illustration of our proposed deep neural network

architecture along with its training procedure. Details of the

proposed architecture are described in the subsections below.

A. Initial Node Embedding Construction & Pretraining

As previously noted, conventional GCN employs a message

passing strategy to transmit information about the feature

embedding of a node to its immediate neighbors. This allows

each node to aggregate the feature information of its neighbors

when constructing its own latent embedding. Unfortunately, in

graphs with low homophily, it is possible that the neighbor-

hood information obtained via message passing is of less value

than the original feature information of the node itself, which

was the case with the population graph constructed from the

ABIDE dataset. However, due to its current formulation (see

Eqn. 1), conventional GCN may not be able to attenuate the

influence of the graph structure in comparison to the influence

of the original features.

To overcome this challenge, we propose a modification to

the graph convolutional network architecture to independently

learn a nonlinear embedding of the original node features. We

call this the node feature transformation (NFT) layer in Fig

3. The NFT layer consists of a combination of linear layer

plus ReLU activation functions to transform the original node

features into their corresponding nonlinear embedding. The

transformed features are then concatenated with the structural

embedding of the nodes obtained from GCN for subsequent

node classification. This strategy increases the flexibility of the

model to capture the relative influence of the node features and

homophily (i.e., neighborhood features) on the classification



task. As shown in the architecture diagram, the GCN layers

are trained on combined adjacency and feature matrices of the

source and target graphs, while the NFT layers are trained on

the combined feature matrices. The weights of the GCN and

NFT layers are jointly updated during backpropagation.

The pretraining process of the deep neural network can be

seen on the left side of Fig 3. The purpose of pretraining is to

ensure that the full network with optimal transport (right side

of Fig 3) can be seeded with a good set of initial weights.

During pretraining, we train the NFT and GCN layers to each

produce their own feature embeddings, HL (output of NFT

layer) and HG (output of GCN layer). The two embeddings

are then concatenated and sent to a fully connected network

for node classification. The network is trained to minimize the

following cross-entropy loss function:

Pretraining: LCE = −
1

ns

∑

xi∈Xs

l
∑

j=0

Yij log(Ŷij) (4)

B. Domain Adaptation via Optimal Transport GCN

We address the domain adaptation problem for cross net-

work node classification (CNNC) by combining the pretrained

network with an optimal transport layer as shown on the right

side of Fig. 3. The optimal transport layer utilizes the Sinkhorn

algorithm [32] to learn the relevant transportation plan matrix

P that will transform the learned embedding of the source

nodes to match the distribution of the target node embedding.

The OT layer takes the source and target node embeddings

along with the entropy regularization hyperparameter λ as

inputs and returns a new embedding of the source nodes, Ĥs,

which matches the distribution of the target nodes, Ht. This

can be accomplished by solving the OT problem given in Eqn.

(3) to learn the transportation plan P and using the barycentric

mapping approach in [33] [34] to transform the source node

features. Specifically, for each source node i, its latent features

will be transported to a new embedding as follows:

Ĥs,i = argmin
H∈Rd

∑

j

Pλ
i,j C(H,Ht

j)

If the cost function C corresponds to the squared l2 distance,

then the barycentric mapping reduces to the following form.

Ĥs = diag(Pλ1nt
)−1PλHt

For domain adaptation, we typically choose the marginal

distributions of the source and target node embeddings, µs

and µt, to be a uniform distribution. This allows us to further

simplify the equation as follows:

Ĥs = nsP
λHt (5)

where ns is the number of source nodes.

Both Ĥs and Ht are then fed to a fully connected layer to

perform the node classification. By replacing Hs with Ĥs we

train the model to work on data that has been transported to the

target domain. This addresses the domain adaptation problem

and allows the classifier to accurately classify the target nodes.

Finally, the full OTGCN network is trained to minimize the

following joint objective function:

L = LCE + θLOT (6)

where LCE is the cross entropy loss given in Eqn. (4) and

LOT is the optimal transport loss defined as follows:

LOT = ⟨Pλ, C⟩ − λH(Pλ) (7)

with the hyperparameter θ controlling how much emphasis is

placed on the optimal transport term.

V. EXPERIMENTAL EVALUATION

This section presents the experiments performed to evaluate

the effectiveness of our proposed OTGCN framework. The

source code for the framework and other aspects of our exper-

iments can be found at https://github.com/ajoystephens/otgcn

A. Data Preparation

The ABIDE [12] dataset is a combination of samples

obtained from 20 different collection sites as shown in Table

I for ASD classification. We split these collection sites into

source and target sites for a total of 804 source samples and

67 target samples. Following the terminology used in other

previous works in this area [7] [19] [4] we refer to the two

classes in the dataset as autism and control. Autism refers to a

subject who developed ASD while control refers to a subject

without ASD.

For the ABIDE dataset, the image data was prepared fol-

lowing the methodology of [7]. A population graph is con-

structed by considering each subject as a node and computing

the similarity of their fMRI images for edge construction.

Specifically, an edge was placed between a pair of nodes

only if their image similarity exceeds certain threshold value.

The edges are also weighted according to their computed

TABLE I
THE DATA COLLECTION SITES FOR ABIDE AND ITS SELECTION AS

SOURCE/TARGET GRAPH.

Site Samples Autism Dataset

YALE 41 22 target

CALTECH 15 5 target

CMU 11 6 target

NYU 172 74 source

UM 1 86 34 source

USM 67 43 source

UCLA 1 64 37 source

PITT 50 24 source

MAX MUN 46 19 source

TRINITY 44 19 source

UM 2 34 13 source

KKI 33 12 source

LEUVEN 2 28 12 source

LEUVEN 1 28 14 source

OLIN 28 14 source

SDSU 27 8 source

SBL 26 12 source

STANFORD 25 12 source

OHSU 25 12 source

UCLA 2 21 11 source



TABLE II
ABIDE TOTALS BY LABEL AND DATASET

Autism Control Total

Source 370 (46.0%) 434 (54.0%) 804

Target 33 (49.3%) 34 (50.7%) 67

similarity. The node features were derived from phenotype

information. After removing all columns with a known direct

relationship to the class label, the features were one-hot-

encoded as applicable. They were then normalized and any

features with an abnormally high correlation to the label were

also removed.

B. Experimental Setup

We compared the performance of OTGCN against the

following baselines. Aside from GCN, the rest of the baseline

methods are designed for cross network node classification

problems.

• GCN [13]: A graph neural network that uses a message-

passing technique to learn the feature embedding of

the nodes. The architecture has been incorporated into

OTGCN as well as other graph neural networks [8] [9]

[10]. The GCN implementation was written using code

from the torch geometric library [35] and involved two

GCN layers followed by a fully connected classification

layer.

• AdaGCN [26]: A CNNC technique which uses a series

of GCN layers to learn separate embeddings for the

source and target networks. It then performs domain

adaptation by using an adversarial discriminator to force

the two embedding into a shared domain. The AdaGCN

implementation used in this paper was taken directly from

the author’s provide source code1. No significant changes

were made to the author’s implementation, which consists

of three GCN layers and a single layer discriminator.

• ASN [28]: Another CNNC approach which consists of

two separate GCN variational autoencoders (VAE) for

the source and target, a shared GCN encoder which

looks at both the source and target, and a adversarial

discriminator. Here we used source code provide by the

author2 with a small modification to correct for NaNs

produced by the VAE reconstruction loss. The VAE re-

construction loss equation implemented in ASN includes

a large exponential term followed by an aggregation step

which can lead to NaNs if there is a large dataset or

large values in VAE output. We addressed this issue

by restricting values in VAE-generated embedding to

between -10 and 10. Each of the three encoders in ASN

were implemented with two GCN layers and the two

decoders had a single layer.

• ACDNE [25]: A CNNC approach which uses special

feature extraction layers to learn separate embeddings

1https://github.com/daiquanyu/AdaGCN TKDE
2https://github.com/yuntaodu/ASN

for the features and structure of each network. It then

concatenates the two embeddings into a single source

embedding and a single target embedding before sending

both to an adversarial discriminator. We followed the

authors source code3 with this method as well and made

no significant changes. Each of the four feature extractors

consisted of two layers.

For fair comparison we implemented OTGCN with two

NFT layers and two GCN layers, similar to most of the

baseline methods. We use the macro- and micro-F1 scores [36]

as our evaluation metrics when comparing the performance

of different classification methods. We perform 10-fold cross

validation to select the hyperparameters of OTGCN as well as

the reported baselines. For OTGCN, we tune the hyperparam-

eters for λ and θ as well as standard hyperparameters such

as learning rate. Possible hyperparameter values were [0.01,

0.03, 0.05] for λ and [5, 10, 15] for θ. Since the target graph is

completely unlabeled and has potentially different distribution

than the source graph, this poses a significant problem for

hyperparameter tuning. To our knowledge there is no ideal

solution to this problem. For this paper, the source dataset

was split into 10 folds and the target dataset was excluded

from the hyperparameter tuning process. In each pass the fold

selected for validation was removed from the remainder of

the source dataset and treated as a distinct target dataset. We

followed this process to choose the best hyperparameters for

both our method and the reported baselines.

For OTGCN the first and second NFT layers produced

hidden embeddings of 32 and 64 units respectively. Similarly,

the two GCN embeddings were also 32 and 64. The selected

hyperparameters were λ = 0.01 and θ = 10.

Each of ACDNE’s feature extrators is build with two layer

models which contain 64 and 32 hidden dimensions. We chose

hyperparameter candidate values by referencing the paper

associated with the work. Our tuning script selected 1× 10−5

for the weight of the pairwise constraint loss and 1×10−5 for

the weight of the l2 regularization term.

ADAGCN’s three GCN layers have 64, 32 and 16 hidden

dimensions and the discriminator has a single 16 unit hidden

layer. We chose hyperparameter candidate values by looking

at existing values within their source code for other datasets.

There were three model-specific hyperparmeters for control-

ling various portion of their loss functions. Our tuning script

selected 5 × 10−5 for the weight of the l2 loss, 1.0 for the

weight of the Wasserstein loss, and 5.0 for the weight of the

penalty loss.

ASN’s encoders were all two layers with 64 and 32 hidden

units. Once again we chose hyperparameter candidate values

by looking at existing information within the source code. Our

tuning script chose 0.0001 for the weight of the difference loss,

1.0 for the weight of the domain loss, and 0.5 for the weight

of the reconstruction loss.

After hyperparameter tuning each method was trained with

the chosen hyperparameters ten times with distinct random

3https://github.com/shenxiaocam/ACDNE



Fig. 4. TSNE plot of combined embeddings before and after transport in the first pass of our OT layer. Points represent subjects and the lines are potential
decision boundaries based off from each source dataset. The light colors represent the source dataset, before transport on the left and after transport on the
right. The dark colors represent the target datset, which is the same in both cases. The green circle points out a portion of the target group which will likely
be incorrectly classified before transportation occurs. The green arrow points to that same group on the right.

seeds. Each time the model was trained on the entire labeled

source dataset and evaluated on the target dataset. The mean

and standard deviation of the resulting micro and macro F1

results are recorded in Table III.

C. Results

Table III shows the micro- and macro-F1 results for OTGCN

and all baselines on the prepared ABIDE target dataset. These

results demonstrate the improved performance of OTGCN over

existing CNNC baselines. The next best performing result

was from ACDNE, which did not rely on GCN for it’s

graph embedding, but rather extracted structural and feature

information separately into separate embeddings. OTGCN and

ACDNE perfomed significantly better than all other baselines,

likely because these two methods do not rely strictly upon

GCN and the homophily principle.

Next we endeavor to establish the effectiveness of our opti-

mal transport layer. To do this we save off a GCN embedding

just before we send it to the very first OT transportation. We

then transport the source embedding, use TSNE to reduce the

embeddings to two dimensions and plot the results.

Fig. 4 is an example of a plot after this process. Here the

points are colored according to label and dataset. On the left

we see source before transportation in lighter colors, autism

is light blue and control is light orange. The target dataset is

TABLE III
PERFORMANCE RESULTS ON TARGET DATASET

Method Macro F1 Micro F1

GCN 0.50265 +/- 0.03876 0.55821 +/- 0.02234

AdaGCN 0.27853 +/- 0.18966 0.37112 +/- 0.22752

ASN 0.38712 +/- 0.09156 0.52537 +/- 0.04418

ACDNE 0.94310 +/- 0.04065 0.94328 +/- 0.04049

OTGCN 0.97907 +/- 0.00733 0.97910 +/- 0.00731

plotted with it in darker colors, autism is dark blue and control

is dark orange. A dark green line illustrates a potential decision

boundary according to the source dataset, and it is clear that it

will likely misclassify a significant group of the target samples.

On the right we see a similar plot, but in this case the source

samples have been transported to the target domain via our

OT layer. Once again a dark green line illustrates a potential

decision boundary based off from the source samples. It is

clear from this demonstration that a decision boundary derived

from the transported source embedding will more accurately

classify subjects in the target network.

VI. CONCLUSION

This paper presents a deep learning framework called OT-

GCN to address the ASD detection problem using imaging

and non-imaging information from multiple sites. OTGCN

leverages ideas from graph neural networks to learn a feature

representation of the nodes and optimal transport to effectively

tackle the domain adaptation problem between source and

target graphs. Our framework also incorporates a nonlinear

feature transformation layer to alleviate the issue of graphs

with low homophily. We experimentally compared the perfor-

mance of OTGCN against several state of the art CNNC base-

lines using the multi-site ABIDE dataset. These experiments

demonstrated the superior performance of OTGCN over the

baseline methods.
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