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Abstract—Graph neural networks (GNN) are a powerful tool
for combining imaging and non-imaging medical information
for node classification tasks. Cross-network node classification
extends GNN techniques to account for domain drift, allowing for
node classification on an unlabeled target network. In this paper
we present OTGCN, a powerful, novel approach to cross-network
node classification. This approach leans on concepts from graph
convolutional networks to harness insights from graph data
structures while simultaneously applying strategies rooted in
optimal transport to correct for the domain drift that can occur
between samples from different data collection sites. This blended
approach provides a practical solution for scenarios with many
distinct forms of data collected across different locations and
equipment. We demonstrate the effectiveness of this approach at
classifying Autism Spectrum Disorder subjects using a blend of
imaging and non-imaging data.

Index Terms—autism, graph, transfer learning, cross-network
node classification

I. INTRODUCTION

Autism Spectrum Disorder (ASD) refers to a condition char-
acterised by specific communication impairments, restricted
interests, and repetitive behaviours [1]. As the disorder typi-
cally presents itself early in life, early and accurate detection
can help reduce the severity of many lifelong symptoms.
Towards this end, automated techniques based on machine
learning and deep learning have been developed for the early
detection of ASD. Specifically, these techniques have been
applied to a wide range of subject data including detailed
subject screening data [2], videos of subject movements [3],
and Magnetic Resonance Imaging (MRI) data [4]. Given the
diverse modalities of data available, it is likely that the best
detection results can be achieved by combining the data from
different sources.

Previous works have established an effective method to
combine various modalities of data using graph structures
because of their flexible yet powerful representation [5] [6].
These approaches make use of population graphs, where the
nodes represent individuals and edges are generally defined
with some similarity measure. In several prior ASD research,
the node features are generated from image information while
the edges consider a combination of subject information (sex,

Fig. 1. An example illustrating the perils of failing to account for concept
drift in multi-source data. Assume a binary node classification task where the
two classes are represented as x’s and 0’s, respectively. The blue points denote
the dataset for the source domain while the orange points denote the dataset
for the target domain. Observe that a decision boundary constructed from the
blue dataset will have reduced accuracy when applied to the orange dataset
due to concept drift between the source and target networks.

age, etc) in addition to image similarity [7] [8] [9] [10]. Once
these graphs are constructed, detecting ASD becomes a node
classification problem.

Similar to other diagnosis problems, one of the major
challenges in applying machine learning to ASD detection is
the limited amount of labeled data available. This has led to
growing interest in utilizing labeled data from multiple sites
to train the machine learning model. One limitation of these
approaches is that they fail to consider a more realistic scenario
in which there may be little or no labeled data associated
with the population of interest. For example, a model may be
trained on a research dataset but needs to be applied to another
location with a different imaging equipment or patient demo-
graphics that were not well represented in the training data.
This problem can be addressed using an approach generally
known as domain adaptation or transfer learning [11]. Within
the context of node classification tasks, it is also referred to as
cross-network node classification (CNNC) approach. CNNC



assumes the availability of a sufficiently large number of
labeled nodes in a source network and an unlabeled target
network, whose node labels are to be predicted accurately.

This paper focuses on addressing the CNNC task for ASD
detection. We use the popular ABIDE [12] dataset, which
contains both resting-state functional Magnetic Resonance
Imaging (fMRI) information and phenotypic data such as age,
sex, and screening results. Samples in the ABIDE dataset
were collected from several different collection sites, which
were then divided into 2 groups to form the source and target
networks for our experimental studies.

CNNC has two major challenges when applied to the
ABIDE dataset. The first is extracting relevant information
from the networks for ASD detection. In this work we will
learn a graph embedding of the source and target networks
via a graph convolutional network (GCN) [13]. A GCN layer
is capable of learning a node embedding which contains
information about a node and its immediate neighbors. This
method relies on the homophily principle [14], which states
that similar individuals tend to form neighborhoods within a
graph. Therefore, in a graph with high homophily we can
improve a node embedding by adding information from it’s
neighborhood.

The second major challenge is to handle potential concept
drift between the source and target networks. As the sepa-
rate data collection sites may have different fMRI imaging
equipment and procedural differences, this may introduce
some discrepancies or “drift” between the two networks. The
presence of concept drift often leads to poor results if a
classifier is simply trained on the source dataset and applied
as it is to the target dataset. Fig. 1 demonstrates the challenge
of CNNC when the learned node embedding does not account
for such distributional shift. A decision boundary learned from
the source dataset is likely to incorrectly classify a significant
portion of the target dataset.

In this paper we introduce OTGCN, a novel approach
to address the CNNC task for ASD detection. Our pro-
posed approach combines graph neural network with optimal
transport (OT) to handle the drift between the source and
target networks. OT is a method for mapping a transportation
between two distributions. We will use OT to map the learned
source representation to the target representation. This strategy
allows us to train an accurate model for classifying the target
nodes. Experimental results on the ABIDE dataset demonstrate
the effectiveness of our approach at diagnosing ASD across
different collection sites compared to state of the art CNNC
methods.

II. RELATED WORKS
A. Machine Learning Approaches to ASD Detection

ASD detection is a task that lends itself to a wide variety
of approaches. Zunino et al [3] employed computer vision
approaches for automatic early detection of ASD by evaluating
videos of subject movements when grasping a bottle. They
then applied recurrent neural networks to distinguish subjects
who have ASD from those who do not. Erkan and Thanh

[2] analyzed detailed screening data collected from mobile
app surveys using traditional machine learning methods such
as k-nearest neighbor, support vector machines, and random
forests to diagnose subjects with ASD. Yuan et al. [15] applied
natural language processing (NLP) techniques to analyze hand
written medical forms of potential ASD patients while Carette
et al. [16] performed ASD detection on eye tracking data using
long-short term memory (LSTM) networks.

The majority of the recent works in this area, however,
focuses on using MRI data [4] [17] along with other subject
information such as sex, age, and screening results [7] [8]
[10] [9] for screening potential ASD patients. For example,
Li et al. [4] presented a graph neural network approach to
find biomarkers that can be used to detect ASD while Parisot
et al. [7] employed a graph convolutional network (GCN)
to perform the detection using both fMRI imaging and non-
imaging phenotypic data. Similar to these works, our paper
focuses on using a combination of fMRI and other subject
data, though our approach is also applicable to blend other
forms of data given the representation power of graph neural
networks.

B. Machine Learning on Multi-site fMRI Data

Previous works on diagnosing brain-related problems using
fMRI data from multiple sites generally fall into two major
categories—transfer learning and federated learning.

Transfer learning [11] is a machine learning approach that
enables prediction models trained from a given data domain
(known as the source domain) to be applied to another domain
(known as the target domain). Such a domain adaptation
approach can be used even if the target domain has no labeled
training data. Previous works on applying transfer learning to
fMRI data can be found in [18] [19] [20]. However, these
approaches are mostly designed for using only the image
information and do not consider more complex data structures
or the use of additional non-imaging information.

In contrast, federated learning [21] is designed for training
prediction models in a collaborative fashion on decentralized
datasets. The approach assumes restricted or indirect access
to the source dataset and direct access to a partially labeled
target dataset. There has been a few works applying federated
learning approaches to multi-site fMRI data [22] [23], but none
of them consider non-imaging information.

C. Cross-Network Node Classification (CNNC)

There are a handful of studies focusing on applying do-
main adaptation approaches to multi-network data using graph
neural networks. For node classification, these approaches are
also collectively known as cross-network node classification
(CNNC). For example, Shen et al. [24] presents an approach
called CDNE that uses maximum mean discrepancy (MMD)
loss to learn graph embeddings for the source and target net-
works before sending those embedding to a shared classifier.
The authors subsequently extended the approach to ACDNE
in [25] by adding an adversarial domain adaptation compo-
nent to the framework. AdaGCN [26] combines conventional



graph convolutional network (GCN) layers with adversarial
domain adaptation, while UdaGCN [27] uses multiple GCNs
with both graph adjacency and positive point-wise mutual
information (PPMI) matrices to learn an improved combined
feature embedding of the nodes. A more recent work, ASN
[28] combines the node embedding from UdaGCN with the
adversarial domain adaptation approach from AdaGCN to
address the CNNC problem. While all of these approaches
were designed for CNNC tasks, they have not been tested on
the medical dataset nor with a combination involving imaging
and non-imaging data.

III. PRELIMINARIES
A. Problem Statement

Let G(V, E, X,Y) be an attributed graph, with a node set
V, edge set E C V x V, node feature matrix X, and node
label Y. Let A denote the adjacency matrix representation of
E, where A;; > 0if (v;,v;) € E and 0 otherwise. In a domain
adaptation setting, we assume there exists a source graph,
Gs(Vs, Es, X4, Ys), where the node labels in Y, are known,
and a target graph, G;(V;, Ey, X3, Y:), where the node labels
in Y; are unknown. The adjacency matrices corresponding to
the source and target graphs are denoted as Ay € R™s*"s
and A; € R™*™_ respectively, where ns and n, are the
corresponding number of source and target nodes.

We further assume that both graphs have identical features,
ie, Xs € R™*™ and X; € R™*™. Both graphs are
also assumed to have the same set of class labels, i.e.,
Y;€{0,1,--- ,k—1}" and Y; € {0,1,--- ,k—1}™, where
k is the number of classes. For ASD detection, we consider a
binary node classification problem with £ = 2. At times, we
also consider the combined graph G.(V., E., X.,Y.), where
Ve = VsUV, E. = E;UE, X = [Xs;Xt] € R™™,
A. = [As 0; 0T 4] € R, Y, € {0,1,--- ,k — 1},
n =ns + ng, and 0 is an ng X n; null matrix.

Definition 1 (Cross Network Node Classification (CNNC)):
Given a source graph, G, = (V;, Es, X, Ys) and target graph,
G = (Vi, Ey, X4,Y:), our goal is to learn a target function,
f:V—=4{0,1,---  k—1}, that accurately classifies the labeled
nodes in Y, as well as the unlabeled nodes in Y;.

B. Graph Convolutional Network (GCN)

Graph convolutional networks [13] employ a message pass-
ing strategy to succinctly capture both the node features and
graph structure information when learning the feature embed-
ding of a node in the graph. Specifically, each “message”
corresponds to the feature embedding information of a node,
which will be passed to all of its immediate neighbors. By
aggregating the features gathered from the neighbors, a new
embedding for the node will be generated.

The message passing strategy can be formally stated as
follows. Given an adjacency matrix A and node feature matrix
X, the feature embedding of the nodes in layer [ +1, H (I+1)
can be computed based on its feature embedding at its previous
layer, H®), as follows:

HEY = oD~ AD~ 2 HOW®) (1)

; K Transport Uj
Cost Matrix Matrix
Cyj: cost of P;;: amount of
moving from yf yf to move to u?
topf

Fig. 2. Illustration of the cost and transport plan matrices of optimal transport

A=A+1
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where H(®) = X (i.e., original node features), o(-) is the
ReLU activation function, and Disa diagonal matrix contain-
ing the sum of the edge weights associated with each node in
the graph.

C. Optimal Transport

Optimal Transport (OT) provides a principled approach for
comparing two probability distributions by finding the least
costly way to reshape one of the distributions into the other
while incorporating their geometric information. The original
OT problem was proposed by Monge [29], with its modern
formulation being attributed to Kantorovich [30]. Given two
marginal distributions i, € R™ and py € R™ let C € R™=*"t
be a cost matrix, where C;; is the cost of transporting one
unit from pf to ,ué—. Consider a transportation plan matrix P €
Rm™s>™  where p;; is the proportion of probability mass
that should be moved to .

The optimal transport (OT) problem seeks to find a trans-
portation plan P that minimizes the total transportation cost.
The minimum transportation cost W (1, i1¢) is also called the
Wasserstein distance or the earth-mover distance.

min

W (s, =
(ILL 'ut) PeU (ps,pt)

(P,C)r 2

U(/stut) = {P S Risxntlplnt = NS7PT1nS = Mt}

The discrete OT formulation [31] shown above can be
solved as a linear programming problem. However, it is com-
putationally expensive O((n + m)nmlog(n + m)), unstable,
and is not guaranteed to have unique solution. Fortunately
these problems can be addressed by employing the Sinkhorn
distance W) [32] shown below, which utilizes an entropy reg-
ularization function H(P) to accelerate the OT computation.
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Fig. 3. High level architecture of our model. Combined source and target datasets are fed to two GCN layers and two NFT layers to learn two distinct
embeddings. In pretraining (left) these embeddings are concatenated and sent directly to a fully connected classifier. Model weights are then updated using
just cross entropy loss. In OT training (right) concatenated embeddings are routed to an OT layer before being sent to the classifier. The OT layer replaces
the source embedding with a transported version and then sends the target embedding and the transported source embedding to the classifier. At this point
the model weights are updated with a combination of cross entropy and OT losses.

Specifically, W (s, 11¢) and P* can be solved using the well-
known Sinkhorn algorithm as established by Cuturi [32].

Wilus, ) = (PAC) 3)
P = argmin (P,C) — AH(P)
PeU (ps,pt)
Ul(pss ) (P eR™ ™|Pl,, =y, PT1,, = s}
where H(P) = —}_,; P;;log P;; is the entropy regularization

and A is a user—spemﬁed regularlzatlon hyperparameter.

IV. METHODOLOGY

We employed a combination of graph convolutional net-
works (GCN) with node feature transformation layers to learn
the feature embedding of the nodes in the source and target
graphs. We then performed optimal transport on the learned
embedding of the source nodes to match the distribution of
the learned embedding of the target nodes. Figure 3 provides
a high-level illustration of our proposed deep neural network
architecture along with its training procedure. Details of the
proposed architecture are described in the subsections below.

A. Initial Node Embedding Construction & Pretraining

As previously noted, conventional GCN employs a message
passing strategy to transmit information about the feature

embedding of a node to its immediate neighbors. This allows
each node to aggregate the feature information of its neighbors
when constructing its own latent embedding. Unfortunately, in
graphs with low homophily, it is possible that the neighbor-
hood information obtained via message passing is of less value
than the original feature information of the node itself, which
was the case with the population graph constructed from the
ABIDE dataset. However, due to its current formulation (see
Eqn. 1), conventional GCN may not be able to attenuate the
influence of the graph structure in comparison to the influence
of the original features.

To overcome this challenge, we propose a modification to
the graph convolutional network architecture to independently
learn a nonlinear embedding of the original node features. We
call this the node feature transformation (NFT) layer in Fig
3. The NFT layer consists of a combination of linear layer
plus ReL.U activation functions to transform the original node
features into their corresponding nonlinear embedding. The
transformed features are then concatenated with the structural
embedding of the nodes obtained from GCN for subsequent
node classification. This strategy increases the flexibility of the
model to capture the relative influence of the node features and
homophily (i.e., neighborhood features) on the classification



task. As shown in the architecture diagram, the GCN layers
are trained on combined adjacency and feature matrices of the
source and target graphs, while the NFT layers are trained on
the combined feature matrices. The weights of the GCN and
NFT layers are jointly updated during backpropagation.

The pretraining process of the deep neural network can be
seen on the left side of Fig 3. The purpose of pretraining is to
ensure that the full network with optimal transport (right side
of Fig 3) can be seeded with a good set of initial weights.
During pretraining, we train the NFT and GCN layers to each
produce their own feature embeddings, H* (output of NFT
layer) and HS (output of GCN layer). The two embeddings
are then concatenated and sent to a fully connected network
for node classification. The network is trained to minimize the
following cross-entropy loss function:

Pretraining: Lop = —— Z Z

SmEXSJ 0

jlog(V; “4)

B. Domain Adaptation via Optimal Transport GCN

We address the domain adaptation problem for cross net-
work node classification (CNNC) by combining the pretrained
network with an optimal transport layer as shown on the right
side of Fig. 3. The optimal transport layer utilizes the Sinkhorn
algorithm [32] to learn the relevant transportation plan matrix
P that will transform the learned embedding of the source
nodes to match the distribution of the target node embedding.

The OT layer takes the source and target node embeddings
along with the entropy regularization hyperparameter A as
inputs and returns a new embedding of the source nodes, FIS,
which matches the distribution of the target nodes, H;. This
can be accomplished by solving the OT problem given in Eqn.
(3) to learn the transportation plan P and using the barycentric
mapping approach in [33] [34] to transform the source node
features. Specifically, for each source node i, its latent features
will be transported to a new embedding as follows:

H,; = argmin E

H, H]t)
HeRd

If the cost function C' corresponds to the squared [y distance,
then the barycentric mapping reduces to the following form.

H, = diag(P*1,,,)"'P*H,

For domain adaptation, we typically choose the marginal
distributions of the source and target node embeddings, s
and (i, to be a uniform distribution. This allows us to further
simplify the equation as follows:

H, = n,P H, 5)

where ng is the number of source nodes.

Both I:IS and H,; are then fed to a fully connected layer to
perform the node classification. By replacing Hs with H, we
train the model to work on data that has been transported to the
target domain. This addresses the domain adaptation problem
and allows the classifier to accurately classify the target nodes.

Finally, the full OTGCN network is trained to minimize the
following joint objective function:

L=Lcg+0Lor 6)

where Lo is the cross entropy loss given in Eqn. (4) and
Lo is the optimal transport loss defined as follows:

Lor = (P, C) — AH(P*) (7)

with the hyperparameter 6 controlling how much emphasis is
placed on the optimal transport term.

V. EXPERIMENTAL EVALUATION

This section presents the experiments performed to evaluate
the effectiveness of our proposed OTGCN framework. The
source code for the framework and other aspects of our exper-
iments can be found at https://github.com/ajoystephens/otgcn

A. Data Preparation

The ABIDE [12] dataset is a combination of samples
obtained from 20 different collection sites as shown in Table
I for ASD classification. We split these collection sites into
source and target sites for a total of 804 source samples and
67 target samples. Following the terminology used in other
previous works in this area [7] [19] [4] we refer to the two
classes in the dataset as autism and control. Autism refers to a
subject who developed ASD while control refers to a subject
without ASD.

For the ABIDE dataset, the image data was prepared fol-
lowing the methodology of [7]. A population graph is con-
structed by considering each subject as a node and computing
the similarity of their fMRI images for edge construction.
Specifically, an edge was placed between a pair of nodes
only if their image similarity exceeds certain threshold value.
The edges are also weighted according to their computed

TABLE I
THE DATA COLLECTION SITES FOR ABIDE AND ITS SELECTION AS
SOURCE/TARGET GRAPH.

Site Samples | Autism | Dataset
YALE 41 22 target
CALTECH 15 5 target
CMU 11 6 target
NYU 172 74 source
UM_1 86 34 source
USM 67 43 source
UCLA_1 64 37 source
PITT 50 24 source
MAX_MUN 46 19 source
TRINITY 44 19 source
UM_2 34 13 source
KKI 33 12 source
LEUVEN_2 28 12 source
LEUVEN_1 28 14 source
OLIN 28 14 source
SDSU 27 8 source
SBL 26 12 source
STANFORD 25 12 source
OHSU 25 12 source
UCLA_2 21 11 source




TABLE 11
ABIDE TOTALS BY LABEL AND DATASET
Autism Control Total
Source | 370 (46.0%) | 434 (54.0%) 804
Target 33 (49.3%) 34 (50.7%) 67

similarity. The node features were derived from phenotype
information. After removing all columns with a known direct
relationship to the class label, the features were one-hot-
encoded as applicable. They were then normalized and any
features with an abnormally high correlation to the label were
also removed.

B. Experimental Setup

We compared the performance of OTGCN against the
following baselines. Aside from GCN, the rest of the baseline
methods are designed for cross network node classification
problems.

¢ GOCN [13]: A graph neural network that uses a message-
passing technique to learn the feature embedding of
the nodes. The architecture has been incorporated into
OTGCN as well as other graph neural networks [8] [9]
[10]. The GCN implementation was written using code
from the torch geometric library [35] and involved two
GCN layers followed by a fully connected classification
layer.

o AdaGCN [26]: A CNNC technique which uses a series
of GCN layers to learn separate embeddings for the
source and target networks. It then performs domain
adaptation by using an adversarial discriminator to force
the two embedding into a shared domain. The AdaGCN
implementation used in this paper was taken directly from
the author’s provide source code'. No significant changes
were made to the author’s implementation, which consists
of three GCN layers and a single layer discriminator.

o ASN [28]: Another CNNC approach which consists of
two separate GCN variational autoencoders (VAE) for
the source and target, a shared GCN encoder which
looks at both the source and target, and a adversarial
discriminator. Here we used source code provide by the
author’> with a small modification to correct for NaNs
produced by the VAE reconstruction loss. The VAE re-
construction loss equation implemented in ASN includes
a large exponential term followed by an aggregation step
which can lead to NaNs if there is a large dataset or
large values in VAE output. We addressed this issue
by restricting values in VAE-generated embedding to
between -10 and 10. Each of the three encoders in ASN
were implemented with two GCN layers and the two
decoders had a single layer.

« ACDNE [25]: A CNNC approach which uses special
feature extraction layers to learn separate embeddings

Thttps://github.com/daiquanyu/AdaGCN_TKDE
Zhttps://github.com/yuntaodu/ASN

for the features and structure of each network. It then
concatenates the two embeddings into a single source
embedding and a single target embedding before sending
both to an adversarial discriminator. We followed the
authors source code® with this method as well and made
no significant changes. Each of the four feature extractors
consisted of two layers.

For fair comparison we implemented OTGCN with two
NFT layers and two GCN layers, similar to most of the
baseline methods. We use the macro- and micro-F1 scores [36]
as our evaluation metrics when comparing the performance
of different classification methods. We perform 10-fold cross
validation to select the hyperparameters of OTGCN as well as
the reported baselines. For OTGCN, we tune the hyperparam-
eters for A and € as well as standard hyperparameters such
as learning rate. Possible hyperparameter values were [0.01,
0.03, 0.05] for A and [5, 10, 15] for 6. Since the target graph is
completely unlabeled and has potentially different distribution
than the source graph, this poses a significant problem for
hyperparameter tuning. To our knowledge there is no ideal
solution to this problem. For this paper, the source dataset
was split into 10 folds and the target dataset was excluded
from the hyperparameter tuning process. In each pass the fold
selected for validation was removed from the remainder of
the source dataset and treated as a distinct target dataset. We
followed this process to choose the best hyperparameters for
both our method and the reported baselines.

For OTGCN the first and second NFT layers produced
hidden embeddings of 32 and 64 units respectively. Similarly,
the two GCN embeddings were also 32 and 64. The selected
hyperparameters were A = 0.01 and 6 = 10.

Each of ACDNE’s feature extrators is build with two layer
models which contain 64 and 32 hidden dimensions. We chose
hyperparameter candidate values by referencing the paper
associated with the work. Our tuning script selected 1 x 1075
for the weight of the pairwise constraint loss and 1 x 10~ for
the weight of the 12 regularization term.

ADAGCN’s three GCN layers have 64, 32 and 16 hidden
dimensions and the discriminator has a single 16 unit hidden
layer. We chose hyperparameter candidate values by looking
at existing values within their source code for other datasets.
There were three model-specific hyperparmeters for control-
ling various portion of their loss functions. Our tuning script
selected 5 x 10~° for the weight of the 12 loss, 1.0 for the
weight of the Wasserstein loss, and 5.0 for the weight of the
penalty loss.

ASN’s encoders were all two layers with 64 and 32 hidden
units. Once again we chose hyperparameter candidate values
by looking at existing information within the source code. Our
tuning script chose 0.0001 for the weight of the difference loss,
1.0 for the weight of the domain loss, and 0.5 for the weight
of the reconstruction loss.

After hyperparameter tuning each method was trained with
the chosen hyperparameters ten times with distinct random

3https://github.com/shenxiaocam/ACDNE
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Fig. 4. TSNE plot of combined embeddings before and after transport in the first pass of our OT layer. Points represent subjects and the lines are potential
decision boundaries based off from each source dataset. The light colors represent the source dataset, before transport on the left and after transport on the
right. The dark colors represent the target datset, which is the same in both cases. The green circle points out a portion of the target group which will likely
be incorrectly classified before transportation occurs. The green arrow points to that same group on the right.

seeds. Each time the model was trained on the entire labeled
source dataset and evaluated on the target dataset. The mean
and standard deviation of the resulting micro and macro F1
results are recorded in Table III.

C. Results

Table III shows the micro- and macro-F1 results for OTGCN
and all baselines on the prepared ABIDE target dataset. These
results demonstrate the improved performance of OTGCN over
existing CNNC baselines. The next best performing result
was from ACDNE, which did not rely on GCN for it’s
graph embedding, but rather extracted structural and feature
information separately into separate embeddings. OTGCN and
ACDNE perfomed significantly better than all other baselines,
likely because these two methods do not rely strictly upon
GCN and the homophily principle.

Next we endeavor to establish the effectiveness of our opti-
mal transport layer. To do this we save off a GCN embedding
just before we send it to the very first OT transportation. We
then transport the source embedding, use TSNE to reduce the
embeddings to two dimensions and plot the results.

Fig. 4 is an example of a plot after this process. Here the
points are colored according to label and dataset. On the left
we see source before transportation in lighter colors, autism
is light blue and control is light orange. The target dataset is

TABLE III

PERFORMANCE RESULTS ON TARGET DATASET

Method Macro F1 Micro F1
GCN 0.50265 +/- 0.03876 | 0.55821 +/- 0.02234
AdaGCN | 0.27853 +/- 0.18966 | 0.37112 +/- 0.22752
ASN 0.38712 +/- 0.09156 | 0.52537 +/- 0.04418
ACDNE | 0.94310 +/- 0.04065 | 0.94328 +/- 0.04049
OTGCN | 0.97907 +/- 0.00733 | 0.97910 +/- 0.00731

plotted with it in darker colors, autism is dark blue and control
is dark orange. A dark green line illustrates a potential decision
boundary according to the source dataset, and it is clear that it
will likely misclassify a significant group of the target samples.
On the right we see a similar plot, but in this case the source
samples have been transported to the target domain via our
OT layer. Once again a dark green line illustrates a potential
decision boundary based off from the source samples. It is
clear from this demonstration that a decision boundary derived
from the transported source embedding will more accurately
classify subjects in the target network.

VI. CONCLUSION

This paper presents a deep learning framework called OT-
GCN to address the ASD detection problem using imaging
and non-imaging information from multiple sites. OTGCN
leverages ideas from graph neural networks to learn a feature
representation of the nodes and optimal transport to effectively
tackle the domain adaptation problem between source and
target graphs. Our framework also incorporates a nonlinear
feature transformation layer to alleviate the issue of graphs
with low homophily. We experimentally compared the perfor-
mance of OTGCN against several state of the art CNNC base-
lines using the multi-site ABIDE dataset. These experiments
demonstrated the superior performance of OTGCN over the
baseline methods.
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