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1. Introduction

Let S = K[x1,...,%;] be a standard graded polynomial ring over a field K, I a nondegenerate
(containing no linear form) homogeneous ideal, and A = S/I. The ring A is Gorenstein if it is Cohen-
Macaulay and the canonical module w4 is isomorphic to a shift of A:

wa = ExtS (A, S)(—n) > A1)

where I has codimension ¢ and regularity r. The graded Betti numbers
bi j(A) = dim Tor; (A, K);

satisfy a certain symmetry when A is Gorenstein:

bi j = bi j(A) = bc—i rin—j(A). (1)

As A is Cohen-Macaulay, for a linear system of parameters L, b; j(A) = dimg Tor,.s/L(A/L,]K)]-, and

henceforth we assume that A is an Artin Gorenstein (AG) ring. For an AG ring ¢ =n, so Equation (1)
becomes b; j(A) = bn_j rin—j(A). Macaulay’s famed apolarity theorem (Macaulay, 1927) shows that
any AG ring arises as the inverse system of homogeneous polynomial F: there is an apolarity pairing
obtained by defining a ring R =K[y1,..., yn], and letting S act on R by differentiation:

d
CIO)
If we define Ir = anns(F) for a homogeneous polynomial F of degree r, then Macaulay shows that
S/IF is Gorenstein of regularity and socle degree both r; and furthermore that every AG ring arises
in this way, with the caveat that in positive characteristic it is necessary to use divided powers. In
this note, we investigate Lefschetz properties, which are known (e.g. Boijj et al., 2014; Migliore et al.,

2011) to depend on characteristic. A main tool we employ is the technique of generic initial ideals,
which require an infinite ground field (Green, 1998), so we assume throughout that char(K) = 0.

Xi(yj) = (¥j) = 8ij.

1.1. Minimal free resolutions

The Hilbert Syzygy Theorem (Eisenbud, 1995) guarantees that any finitely generated Z-graded
S-module M has a minimal graded finite free resolution: an exact sequence

0—F—F_1— -+—Fp—M—0, (2)

where i <n and F; >~ eajS(—j)bi-f with b; j € Z; in particular dimy Toris(M,K)j =b; j. This data is
compactly encoded in the betti table (Eisenbud, 1995): an array whose entry in position (i, j) (reading
over and down) is b; j . The reason for this odd indexing is that the index of the bottom row of the
betti table encodes the regularity of M.

Example 1.1. For F = y1y,y3 € K[y1. y2, y3], we have Ir = (x},x3,x3) and the minimal free resolu-
tion is given by the Koszul complex

0—> S(—6) — S(—4)> — S(-2)) — S —> S/IF —> 0,

which in betti table notation is written as
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1.2. Lefschetz properties

Lefschetz properties are ubiquitous in algebra, combinatorics, geometry, and topology. In the set-
ting of commutative algebra, we have

Definition 1.2. An Artinian Z-graded ring A =S/I has

(1) the Weak Lefschetz Property (WLP) if there is an ¢ € S; such that for all i, the multiplication map
We @ Aj —> Aj+1 has maximum rank; if not, we say that A fails WLP in degree i.

(2) the Strong Lefschetz Property (SLP) if there is an ¢ € S such that for all i and k, the multiplication
map g : Aj —> Atk has maximum rank; if not we say that A fails SLP in degree i.

The set of elements £ € S with the property that the multiplication map . has maximum rank is
a (possibly empty) Zariski open set in Sq, so existence of the Lefschetz element ¢ in Definition 1.2 is
equivalent to requiring that multiplication by a general linear form in S; has full rank in every degree.
It is also clear from Definition 1.2 that if A has SLP then A has WLP. SLP always holds for r=2, and
Proposition 3.15 of (Harima et al., 2013) proves that SLP always holds for ¢ <2 when char(K) =0,
so we focus on c,r > 3. The simplest AG rings are complete intersections (CI), and Theorem 2.3 of
(Harima et al., 2003) shows that for c =3 a CI always has WLP. For general c¢ this remains an open
question; Boij-Migliore-Mir6-Roig-Nagel-Zanello make the following

Conjecture 1.3. (Boij et al., 2014) For ¢ = 3 and char(K) = 0 an AG ring always has WLP.

Despite extensive work, Conjecture 1.3 remains open. It is an easy exercise to show that WLP
cannot hold for an AG ring with non-unimodal H-vector. Migliore-Zanello (2017) note in Remark
3.2 that in socle degree 4 the example of Stanley (1978) has the smallest possible codimension, in
particular, ¢ = 13. Hence one might hope that WLP holds for AG rings with small values of ¢ and r,
and Theorem 3.1 of (Gondim, 2017) shows that SLP (hence WLP) always holds for c =4 when r < 4.

We explore the connection between WLP and free resolutions. When ¢ =4 =r, the possible betti
tables of AG rings are determined in (Schenck et al., 2022). We prove that there are three betti tables
possible for an AG ring with c =4 and r = 3. For c =4 and r =5 we make a conjecture concerning
the connection of WLP and the minimal free resolution of A. For background on inverse systems and
free resolutions, we refer to (Eisenbud, 1995), and for Lefschetz properties and Jordan type we refer
to (Harima et al., 2013).

1.3. Results of this paper
Theorem 2.2 of (Schenck et al., 2022) proves that there are 16 possible betti tables for an AG
algebra with ¢ =4 =r. The stratification of the parameter space P34 of quaternary quartics by betti

table is described in §6 of (Kapustka et al., 2021), which notes that for an AG algebra A with c =4
and r = 3 there are only 3 possible betti tables. In §2 we prove this assertion, which is non-trivial.

Theorem 1.4. An AG ring A with ¢ =4 and r = 3 has betti table in the list below:

R e R il tomm - mmmmm i mm - — - +
| 01 23 4] 01 2 34| 01 23 4]
|[total: 1 6 10 6 1|total: 1 7 12 7 1|total: 1 9 16 9 1|
| 0: 1 . . . . 0: 1 . . N 0: 1 . . . .
| 1: 6 5 N 1: 6 61 .| 1: 6 83 .|
| 2: 56 .| 2 1 66 .| 2 3 86 .|
| 3: 1| 3 . . 1] 3 . 1|
tommm oo tomm oo t--mmmm oo +

The classification in (Schenck et al., 2022) uses the theorems of Macaulay and Gotzmann as the main
tools. In contrast, to prove Theorem 1.4, we need to analyze certain Groebner strata of the Hilbert

3
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scheme. To do this, we use Schreyer’s algorithm (Schreyer, 1980) for computing syzygies, described in
§15.5 of (Eisenbud, 1995).

The key point is showing that certain maps in the Schreyer resolution must have full rank. This
implies that an AG algebra whose betti table has top row 6 7 2 must have degree two component I
which is not saturated, and an argument with Ext modules then shows the betti table below cannot
occur for an AG algebra.

Fom e m e m - +
| 01234 |
|total: 1 8 14 8 1|
| 0: 1 . . ‘

(3) | 1: 6 72 .|
| 2: 2 76 .|
| 3: .1
o mmmmm - +

If we stay in the case of r =3 but increase c¢ from 4 to 5, then it is easy to find examples where
WLP fails-this occurs (and is easy to show) when I, consists of the 2 x 2 minors of a 2 x 5 matrix. As
noted, for c =4 =r WLP always holds, and for c =4 and r =5 Ikeda (1996) describes an AG algebra A
with H(A) = (1, 4,10, 10, 4, 1) which fails to have WLP. Our computations indicate that the following
is true:

Conjecture 1.5. For an AG ring with ¢ = 4 and r = 5 there are 36 possible betti tables (see §3.2). SLP (and
hence WLP) holds for any AG ring of this type with betti table not appearing in Theorem 1.6 below. For an AG
ring with c = 4 and r = 6, WLP always holds.

The next theorem provides some evidence for Conjecture 1.5:

Theorem 1.6. For an AG algebra A with ¢ = 4 and r = 5 having betti table in the list below, WLP is not
determined by the betti table.

R e e i o mmmmmmmm e m o mmmmmm—mm i — o +
| 01 23 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
|total: 1 9 16 9 1|total: 1 11 20 11 1|total: 1 13 24 13 1|total: 1 16 30 16 1|
| 0: 1 . - 0: 1 . . 0: 1 . . N 0: 1 . . . .
| 1: .3 2 N 1: . 2 1 . .| 1: . 1 . . 1: . . . N
| 2 3 63 .| 2 5 9 4 .| 2: 712 5 .| 2: 10 15 6 .|
| 3 3 63 .| 3 4 9 5 .| 3: 512 7 .| 3: 6 15 10 .|
| 4 .23 4 .12 ] 4: 1] 4: . N
| 5 . .1 5 . 1] 5: .1 5: . 1]
t---mmmm oo to-mm oo tomm oo to-mm oo +

For each betti table above, in §3 we give an example where WLP holds, and an example where WLP
fails. In §3.3 we show that SLP can fail for c =4 and r = 6; WLP is unknown in this case.

1.4. Computational methods

For the theorems appearing in (Kapustka et al., 2021) and (Schenck et al., 2022), and the results
and conjecture in §1.3 above, evidence was provided by computing in Macaulay?2 the inverse system
of all polynomials containing up to four monomial terms, but with all coefficients either zero or one.
These computations were made first over Z/p for small primes p, and subsequently over Q.

We found it surprising that in the cases we considered, all possible betti tables could be generated
by polynomials with a small number of monomial terms and simple coefficients, to some extent
this is probably due to the strong constraints imposed by the theorems of Macaulay and Gotzmann,
combined with the Gorenstein condition. Of course, for codimension 4 and regularity 5, the fact that
the list of betti tables is complete is the content of Conjecture 1.5. We expect that as codimension
and regularity become large, inverse systems of more complicated polynomials will come into play.

4
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As noted earlier, WLP depends on characteristic of the ground field, so in positive characteristic we
expect more exotic behavior.

The computations in §3.1 on Jordan type were performed using Macaulay?2 scripts of Mats Boij,
which were written to support work currently in progress.

2. Codimension four and regularity three

We quickly review the theorems of Macaulay and Gotzmann (§7.2 of Schenck, 2003): for a graded
algebra S/I with Hilbert function h;, write

' i - i+ 1 141
hl: a" —+ .a] 1 + .. andh§l>: al+ —+ ai l+ + -,
i i—1 ! i+1 i

where a; > aj_1 > ---. Then we have
Theorem 2.1 (Macaulay). In the setting above,
hiy1 < h'f”.

Theorem 2.2 (Gotzmann). If I is generated in a single degree t and equality holds in Macaulay’s formula in the
first degree t, then

ar+j a_1+j—1
hiri =
s <t+j)+< t+j—1 >+

Suppose that S = K[x1, X2, x3,X4] (c =4) and r = 3. Since the regularity of A is equal to the socle
degree and A is Gorenstein, the Hilbert function of A is (1,4, 4, 1). Let I be the degree j component

of the graded ideal I. hy(S/I) = (g) —dim(I2) =4 so dim(I) = 6. Hence the betti table of A is of the
form

Since 1=h3(S/I) = (g) —dim(I3) =20— (6-4—a+b), we have b=a — 5 and so in fact the betti
table of A is of the form

Lemma 2.3. If S/I is Artin Gorenstein, then the value of aisin {5, 6, 7, 8}.

Proof. We apply the Theorems 2.1 and 2.2 to determine the possible shapes for the betti table. Let
J2 be the subideal generated by the quadrics of I. Since h;(S/J2) = h;(A) for i <2,

3 1
ha(S/J2) =4= <2> + (1) and h52>(S/J2) =5>h3(S/J2) =20 — (6 -4 —a),
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so a <9. Since a and b are both nonnegative, a > 5. If a =9, then h2<2>(5/]2) = h3(S/J2), and
Gotzmann'’s theorem applies, yielding

342 1+2-1
45/12) <2+2> * <2+2—1)
On the other hand, since b3 4(S/J2) =a—5=4,

ha(S/J2) =35—(6-10—-9-4—Db24(S/J2) +4) =5,

where (610 —9-4 — by 4(S/J2) +4) is the dimension of the degree 4 component of J,. So
b2.4(S/J2) = —2, a contradiction, and S/I Gorenstein implies a € {5,6,7,8}. O

To complete the proof of Theorem 1.4, we need to prove the betti table of Table (3) cannot occur
for an AG ring (examples show the other betti tables exist). As above, if we let J, denote the quadratic
part of the ideal, then Macaulay’s theorem shows that by 4(S/J2) < 2. And indeed, such ideals can
occur, as shown in the following example:

Example 2.4. Resolutions with betti table top row 6 7 2 are possible:

i3 : minimalBetti ideal (x_1%x_2, x 1%x 3, x_1%x 4, x 2*x 3, X _2+%x_4, x 172+x 3xx 4);
01234
o3 = total: 1 6 951
0: 1 . ..
1: .6 7 2 .
2: . . 231

Theorems 2.1 and 2.2 do not suffice to rule out the existence of an AG ring with betti table top row
6 7 2.To do this, we make use of generic initial ideals.

Lemma 2.5. The betti table of Table (3) cannot occur for an AG ring.

Proof. We consider the possible initial ideals for a resolution where the top row of the betti table is
6 7 2. We employ generic initial ideals and Groebner strata, see (Green, 1998) for an overview, and
Appendix B.2 of (Kapustka et al., 2021) for details on the QuaternaryQuartics package, used for
the computations below. As in the proof of Proposition 4.23 of (Kapustka et al., 2021), for six quadrics
in four variables there are only two possible generic initial ideals which are nondegenerate (do not
contain a linear form): the quadratic part of gin(I) is either (x1, x2, x3)%, or contains a monomial of
the form x;x4, which follows since the dimy I, = 6. The latter case is impossible, because it forces I,
to contain {x1, X2, x3,X4} - L for a linear form L, which is clearly inconsistent with the betti table of
Table (3): the linear strand would have betti numbers at least 4 6 4 1. As T. larrobino pointed out
to us, this also follows because I is an ancestor ideal (larrobino, 2004) of I3, which would force L € I.
So

gin()2 = (x1, X2, x3)2.

Since there are only 7 linear syzygies on I, it cannot be the case that the quadrics in I are a Groebner
basis; so in particular gin(I) must contain a cubic. Thanks to the generic change of coordinates this
cubic will have lead term xlxi. Now we compute the Groebner stratum for this family, which entails
taking the 7 lead monomials and adding on additional terms with parametric coefficients ¢;. In the
Macaulay2 computation below the ring U has variables x; and tj, CF is the cokernel of the ideal
with parametric coefficients, and H will denote the nonminimal maps. The resolution of A over S
arises by specializing values of t; in the resolution of CF over U.

6
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0l4 = ideal (x , xx , XX , X, XX , X, XX );

2 2 2
ol5 =ideal (x +txx +txx +txx +tx, xx +txx +txx +txx +tx, xx +txx +
3 114 224 334 4 4 23 514 6 2 4 7 3 4 8 4 02 903
2 2 2
t xx +t xx +t x,x +t xx 4+t xx +t xx +t x,xx +t xx +t xx +t xx +
10 2 4 11 3 4 12 4 2 13 1 4 14 2 4 15 3 4 16 4 12 17 1 4 18 2 4 19 3 4
2 2 2 2 2 2 3
t x, X +t XX +t XX +t XX +t x,xXxX +t xxXx +t xx +t x)
20 4 1 21 1 4 22 2 4 23 3 4 24 4 14 25 2 4 26 3 4 27 4

il6 : U=ring F;
117 : T=coefficientRing U;

i18 : netList F_x

018 = [x +txx +txX +txx +
| 3 114 224 334

| 23 514 624 73 4

B +
| 2 |
|xx +txx +t xx +t xx +t x |
| 13 914 10 2 4 11 3 4 12 4 |
B il +
| 2 2 |
|lx +t xx +t xx +t xx +t x |
| 2 13 1 4 14 2 4 15 3 4 16 4 |
B i +
| 2|
|xx +t xx +t xx +t xx +t x|
| 12 17 1 4 18 2 4 19 3 4 20 4
oo m oo —— oo —o---- +
| 2 2|
|lx +t xx +t xx +t xx +¢t x |
| 1 21 1 4 22 2 4 23 3 4 24 4 |
e oo +
| 2 2 2 3 |
|x x +t xx +t xx +t x

| 14 25 2 4 26 3 4 27 4 |
oo m oo mmo————————----- +

i21 : (CF,H)=nonminimalMaps F;
i22 : U=ring CF;
i23 : CF
1 7 14 11 3
023 = U <--U <--U <-- U <-- U

023 : ChainComplex

i24 : betti(CF, Weights=>{1})

01 2 34
024 = total: 1 7 14 11 3
0: 1 .
1 6 8 3
2 1 3 63
3 3 2

024 : BettiTally
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i25 : isHomogeneous CF

025 = true

i26 : keys H

026 = {(3, 4), (3, 5), (4, 6), (2, 3)}

i27 : M23=H#(2,3)

o
)
<
n

t_20-t_19t_9-t_18t_17+t_23t_5+t_22t_13 t_12-t_ 11t _9-t_10t_17+t_23t_l+t_22t_5 |

1 8
027 : Matrix T <--- T

i28 : M34=H#(3,4)

028 = {4} | t_6t_7-t_7t_9-t_2t_15-t_6t_17+t_9t_17+t_19t_1+2t_18t_5-t_21t_5-t_10t_13
{4} | t_7%2-t_7t_14-t_3t_15+t_6t_15+t_9t_15+t_14t_17-t_1772-t_11t_13-t_18t_13+t_21t_13
{4} | -t_15t_1+t_7t_5-t_14t_5+t_17t_5+t_6t_13-t_9t_ 13
t_3t_6-t_6"2-t_2t_7-t_3t_9+t_972+t_2t_14-t_2t_17+t_1lt_l+t_18t_1-t_21t_1
-t_6t_7+t_7t_9+t_2t_15+t_6t_17-t_9t_17+t_19t_1-2t_11t_5+t_21t_5-t_10t_13
-t_7t_1+t_17t_1+t_3t_5-t_6t_5-t_9t_S5+t_2t_ 13
-t_19t_2+t_11t_6-t_18t_6-t_11t_9+t_18t_9+t_10t_14-2t_10t_17+t_23t_l+t_22t_5 |
-t_19t_3+t_11t_7-t_18t_7+2t_19t_9+t_10t_15-t_11t_17+t_18t_17-t_23t_5-t_22t_13 |
-t_19t_1+t_11t_5-t_18t_5+t_10t_13 |

3 3
028 : Matrix T <--- T

i29 : M35=H#(3,5)

029 = {5} | 1000 -t_250 |
{5} ] 0110 -t 26 -t_25 |
{s} Jooo1o0 -t_26 |

3 6

029 : Matrix T <--- T

i30 : M46=H#(4,6)

030 = {6} | 1 0 -t_25 |
{6} | 01 -t_26 |

2 3
030 : Matrix T <--- T

The key point of the computations above is that the last two maps, denoted M35 and M46, are the
maps in the Schreyer resolution of CF, which has betti table appearing in line 024. The map

Tord (CF, K)s5 —> Tory(CF, K)s

always has rank 3, as we see from line 029, and the map

Tord (CF, K)s —3 TorY(CF, K)g

always has rank 2, as we see from line 030. In particular, this means those maps always have maximal
cancellation, resulting in the betti table below:
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01 2 34
024 = total: 1 7 11 6 1
0: 1 . .
1: 6 8 3
2 1 3 31
3 .

In order to specialize to top row 6 7 2 there will also be cancellation in the remaining two
maps M23 and M34-on the locus with top row 6 7 2 the maps M23 and M34 both have rank one.
The key point is that no cancellation is possible for Torj(CF, K)s, which is nonzero, and so also
Ext‘s‘(S/Iz, S)6 # 0. Applying Homgs (e, S) to the short exact sequence

0— 1/l — S/l — S/ —0

yields a long exact sequence in Ext, which in degree 6 terminates as below:

- = Exti(I/I2, S)6 — Ext¥(S/1, S)6 — Exti(S/I2, ) — Exti(I/I2, S)g — O.

Because I/I, is generated in degree 3, this forces Extg(l/lz, S) to be generated in degree at least
seven. Our computation above shows that Ext‘s‘(S/Iz, S)6 # 0, and therefore Ext‘s‘(S/I, S)g # 0, which
is inconsistent with Table (3). Hence, Table (3) cannot occur for an AG ring. O

The remaining three betti tables occurring in Theorem 1.4 may be obtained from the inverse systems
of (respectively) the polynomials y3y> + y2y3y4, ¥ + y2y3Va, and y3yas + y3ya.

3. Codimension four and regularity five

We begin by proving Theorem 1.6:

Proof. For each betti table, we give examples of ideals satisfying the theorem.

tommmm oo +
| 012 3 4
|total: 1 9 16 9 1|
| 0: 1 . . N
| 1: 3 2 N
| 2: 3 63 .|
| 3: 3 63 .|
| 4: 23 .
| 5: 1]
tommmmm o mmmmm i —m— - +

. 2,3 ,2 2,3 ,3 3 4

o WLP holds: (x3X4, X2X4, X5, X3, X5X3 — X1XJ, X5, X1X3, X]X2, X]).
P 2,2 2 2 2 4 2.2 .4

o WLP fails: (x3, X3X4, X5, X5X4, X5X3 — X{X4, X]X3, X5, X7X5, X]).

| \
| : \
| 0: 1 . . |
| 1: 2 1 |
| 2: .5 9 4 |
| 3: 4 9 5 .|
| 4: 1 2 .|
| 5: 1
Fm e +

o WLP holds: (3, X3X4, X3, X2X3 — X3X4, X1X3 — X1X2X4 -+ X3X4, X3X3,
3,3 2 2 3 3 2.2 4
X5, );lX4 —2X1X22X4 ~2|-X1X2X4;, X1X3§, Xlxzz — Xl,xz’ Xl:") W 9 4
o WLP fails: (x1x4, X1, X3X, X2X], X5X4, X1X3, X1X5 — X3X4, X3, XoX3 — Xy, X5X3, x2>.

9
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tomm o m oo oo oo +
| 01 2 3 4 |
|total: 1 13 24 13 1 |
| 0: 1 . . |
| 1: .1 . o
| 2: 7 125 . |
| 3: 5 12 7 . |
| 4: .1 ‘
| 5: . .1 ‘
R i +

o WLP holds: (3, X3X4, X3X4, X3, X2X3, X1X3 — X2X3X4, X3X3, X3 — X1X3X4,
3 3 2 2,27 .3 4
X1X4,X]X3 —xlxz)<4,x1x2,x1xz,x1 )
o WLP fails: (x3, X?u X3X4, X2X3X4, X1X3X4 — x2x4, X2X4, x2 3 — x1x4,

2 4 3 3 252 3 4
X1X3 — X1X2X4, X5, X1X5 — X]X4,X1X2,X1X2,X1).

e WLP holds: for the doubling (see Kapustka et al., 2021, §2.5) of the ideal of 3 x 3 minors of a 3 x5
matrix of generic linear forms. The equations are large and unenlightening, so we do not include them
here.
o WLP fails: (x2X3, X1X3, X2X3X4, X1X3X4, X3X4, X2X3, X1X3, X3X3, X3X3 — X3X4,

xpc; — x§X4, xfxz, x?xz — xgxﬁ, x§X3 — x?x;;, x‘l‘, x‘z‘, x‘;, xi)
This is the inverse system for Ikeda’s example: F = y]yzyg + y1y2y4 + y%yﬁ. O

3.1. Connection to Jordan type

One property of Artinian K-algebras that has generated much investigation is the Jordan type.

Definition 3.1. Let A = @kzo Ay be a graded Artinian algebra and ¢ € A; a linear form. The Jordan
type of A with respect to ¢ is the partition of dimx A denoted by Py = Py 4 = (p1,..., ps) where
p1>p2>--->ps and p;’s are the block sizes in the Jordan canonical form matrix of the multiplica-
tion by £.

Proposition 3.2 (see 3.5 of Harima et al., 2013 or 2.11 of Iarrobino et al., 2022). If the Hilbert function of a
graded Artinian algebra is unimodal and symmetric, then A has WLP iff the maximal value of h;(A) is equal to
the length of the partition for a generic .

For the algebras appearing in Theorem 1.6, we have the following:

Computation 3.3. The Jordan decompositions for S/I as in Theorem 1.6 are

1. When I has 3 quadrics
o I[f WLP holds, the Jordan type is {6, 4, 4, 4,2,2,2}.
o If WLP fails, the Jordan type is {6, 4,4,4,2,2,1,1}.

2. When I has 2 quadrics
o [f WLP holds, the Jordan type is {6, 4,4, 4,2,2,2,2}.
o If WLP fails, the Jordan type is {6,4,4,4,2,2,2,1,1}.

10
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3. When I has 1 quadric
o If WLP holds, the Jordan type is {6,4,4,4,2,2,2,2,2}.
o If WLP fails, the Jordan type is {6, 4,4,4,2,2,2,2,1,1}.
4. When I has no quadrics
o [f WLP holds, the Jordan type is {6,4,4,4,2,2,2,2,2,2}.
o If WLP fails, the Jordan type is {6,4,4,4,2,2,2,2,2,1,1}.

Proposition 2.10 of (larrobino et al., 2022) shows that A has SLP iff the partition P4, is conjugate
to the H-vector. Hence the examples in Computation 3.3 have SLP if they have WLP. This has been
proven recently in (Abdallah, 2023). By (Abdallah et al., 2023), SLP holds for an AG algebra A with
c =3 if all hj(A) <6, which also seems to hold for A with c=4 and r =5.

3.2. Conjecture 1.5

Macaulay2 computations suggest that the betti tables possible for an AG algebra with ¢ =4 and
r=>5 are those below, which is (part of) the content of Conjecture 1.5:

Hmmm e dom e oo oo e oo +
| 01 234 | 01 23 4] 01 234 | 01 234 | 01 234 | 01 |
|total: 1 9 16 9 1 |total: 1 6 10 6 1|total: 1 9 16 9 1 |total: 1 7 12 7 1 |total: 1 9 16 9 1 |total: 1 6 10 |
| 0: 1 . . | 0: 1 . . N 0: 1. . .. | 0: 1 . | 0: 1. . .. | 0: 1 . . . |
| 1: 6 83 | 1: .5 5 . .| 1: .5 62 . | 1: .4 3 . | 1: .4 41 . | 1: 4 2 . |
| 2: | 2: 1. 2: .1 21 . | 2: .1 32 | 2: .2 42 . | 2: 32 |
| 3: - | 3: .1 .. 3: .1 21 . | 3: .2 31 | 3: .2 42 . | 3: .2 3. |
| 4: 3 86 . | 4: 55 .| 4: .2 65 . | 4: 34 . | 4: .1 44 . | 4: 24 . |
| 5: 1] 5: 1| 5: 1] 5: 1 5: 1 5: 1|
gm e gm e gm e mmmm e 4mmm e gmmmmm e +
| 01 234 | 01 23 4] 01 4 | 0 1 2 34 0 1 2 34 01234 |
|total: 1 9 16 9 1 |total: 1 8 14 8 1|total: 1 6 10 6 1 |total: 1 11 20 11 1|total: 1 10 18 10 1|total: 1 4 6 4 1 |
| 0: 1 . . . | 0: 1 . . . .| 0: 1 . . . | 0: 1 . . N 0: 1 N 0: 1 |
| 1: .3 2. | 1: .3 1. .| 1: 3 2. | 1: . 2 1 . .| 1: . . N 1: 3 |
| 2: 3 63 | 2: .2 63 .| 2: 303 . | 2: 5 9 4 .| 2: 4 9 4 .| 2: 1 . |
| 3: 3 63 | 3: 3 62 . 3: 33 | 3: 4 9 5 .| 3: 4 9 4 .| 3: 31 |
| 4: 23 . | 4: 13 . 4: 23 . | 4: 102 . 4: 2 . 4: .3 |
| 5: 1 5: .1 5: 1 5: 1] 5: 1] 5: . . . .1 |
Hmm e dmmm e Hmmm e e e o +
| 0 1 2 34| 01 23 4] 0 2 3 4] 01 234 | 01 4 | 01 234 |
|total: 1 11 20 11 1|total: 1 7 12 7 1|total: 1 13 24 13 1|total: 1 8 14 8 |total: 1 7 12 7 1 |total: 1 7 12 7 1 |
| 0: 1 . . .. 0: 1 . N 0: 1 . N 0: 1 . | 0: 1 . . . | 0: 1 . . . |
| 1: 3 3 1. 1: .2 . N 1: 1 N 1: .2 1 | 1: .3 2 . | 1: .4 41 |
| 2: 4 7 3 .| 2: 4 61 .| 2: 712 5 .| 2: 5 61 | 2: 3 41 . | 2: 2 2. |
| 3: 37 4 . 3: 64 .| 3: 512 7 .| 3: 1 65 | 3: 1 43 . | 3: 22 . |
| 4: 13 3 .| 4: 2 . 4: 1. 4: 12 . | 4: 23 . | 4: 1 44 . |
| 5: 1] 5: .1 5: 1] 5: 1 5: 1 5: 1
dmmmmm e dm e dmmmmm e dmmmm e Hmmmmm e dmmmmm e +
| 01 234 | 01 23 4] 01 234 | 0 1 2 34 01 234 | 0 1 4]
|total: 1 6 10 6 1 |total: 1 9 16 9 1|total: 1 9 16 9 1 |total: 1 10 18 10 1|total: 1 7 12 7 1 |total: 1 11 20 11 1|
| 0: 1 . . . | 0: 1 . . . .| 0: 1 . . .. | 0: 1 . . 0: 1 . | 0: 1 N
| 1: .3 1. | 1: 2 1. . 1: .3 31 . | 1: 1 N 1: .2 1 | 1: 1. N
| 2: 2 41 | 2: 5 72 .| 2: .4 51 . | 2: 7 9 2 .| 2: 5 5 . | 2: 710 3 .|
| 3: 1 42 | 3: 2 75 .| 3: .1 54 . | 3: 2 9 7 .| 3: 55 | 3: 310 7 .
| 4: 13 . | 4: 12 . 4: .1 33 . | 4: 1. 4: 12 | 4: 1.
| 5: 1 5: .1 S5: 1 5: 1] S5: 1 5: 1|
B e e o mmmemo e o mmme e L LR L P EE DR L e dmmmmm oo +
| 01 4 | 01 23 4 0 1 3 4 01 234 | 0 4] 0 1 4|
|total: 1 6 10 6 1 |total: 1 9 16 9 1|total: 1 14 26 14 1|total: 1 8 14 8 |total: 1 13 24 13 1|total: 1 12 22 12 1|
| 0: 1 . | 0: 1 . . 0: 1 N 0: 1 . | 0: 1 N 1. . |
| 1: .2 | 1: .1 . . 1: N 1: .1 | 1: N 1: . .. |
| 2: 4 5 | 2: 7 81 .| 2: 10 13 N 2: 7 7 | 2: 10 12 N 2 10 11 |
| 3: 54 | 3: 187 .| 3: 13 10 .| 3: 77 | 3: 12 10 .| 3 2 11 10 .|
| 4: 2. 4: 1. 4: - 4: 1. 4: N 4 . N
| 5: 1] 5: .1 5: 1] 5: 1 5: .1 5 . 1|
dmmmmm e dmmmmm e dmmmmm e 4mmmm oo Hmmmmm e dmmmmm e +
| 01 3 4| 01 23 4] 01 234 | 01 234 | 0 4] 0 1 2 4
|total: 1 11 20 11 1|total: 1 7 12 7 1l|total: 1 7 12 7 1 |total: 1 8 14 8 |total: 1 10 18 10 1|total: 1 16 30 16 1|
| 0: 1 N 0: 1 . . . .| 0: 1 . | 0: 1 . | 0: 1 N 0: 1 N
| 1: N 1: 5 51 .| 1: 3 | 1: 2 . | 1: . . . N 1: . N
| 2: 10 10 N 2: 11 . 2: 1 63 | 2: 4 72 | 2: .10 9 . .| 2: 10 15 N
| 3: 110 10 .| 3: 1 1. . 3: 3 61 | 3: 2 74 | 3 9 10 .| 3: 6 15 10 .|
| 4: N 4: 1 55 .| 4: 3. 4: 2 . 4 N 4: N
| 5: 1] 5: 1] S5: 1 5: 1| 5 1] 5: 1|
B e e o mmmemo e o mmme e L LR L P EE DR L e dmmmmm oo +
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3.3. WLPand SLPforc =4 andr =6

The Strong Lefschetz Property does not always hold when ¢ =4 and r = 6: the inverse system of
F = y3y4(y?y3 + y2y3) has Hilbert function (1,4,7,8,7,4,1) and Jordan type {7,5,5,5,3,3,2,2},
so by Proposition 2.10 of (larrobino et al., 2022) cannot satisfy SLP. Gondim shows in Theorem 3.8 of
(Gondim, 2017) that there exist examples where WLP fails for c=4 and all r > 7. For c=4 and r =6,
we found no examples of failure of WLP. Since WLP fails for r =5 and r > 7, it would be interesting
to investigate if indeed WLP always holds for r = 6.

Remark 3.4. In (Macias Marques et al., 2022), Macias Marques, Veliche and Weyman prove that all
codimension 4 and regularity 3 AG rings come from the doubling construction. As a consequence
they also obtain the betti table classification of Theorem 1.4.
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