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Abstract
A net in P

2 is a configuration of lines A and points X satisfying certain incidence
properties. Nets appear in a variety of settings, ranging from quasigroups to combi-
natorial design to classification of Kac–Moody algebras to cohomology jump loci of
hyperplane arrangements. For a matroid M and rank r , we associate a monomial ideal
(a monomial variant of the Orlik–Solomon ideal) to the set of flats of M of rank ≤ r .
In the context of line arrangements in P2, applying Alexander duality to the resulting
ideal yields insight into the combinatorial structure of nets.

Keywords Line arrangement · Net · Alexander duality · Free resolution

Mathematics Subject Classification 05B35 · 52C35

1 Introduction

The investigation of point-line incidence relations in P
2 reaches back into the mists

of time; for a comprehensive treatment see Grünbaum [23].

Definition 1.1 For a configuration of lines A ⊂ P
2
C
, if p is an intersection point of

two or more lines, define μ(p) = |lines through p| − 1, and let L2(A) be the set of
all intersection points. A (k, d) net is a partition � of the lines ofA into k ≥ 3 blocks,
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Fig. 1 The line configuration A3 ⊆ P
2 and L(A3) for A3 ⊆ C

3

each containing d ≥ 2 lines, and a subset X ⊆ {p ∈ L2(A) | μ(p) ≥ 2} of multiple
points such that

(i) every pair of lines from distinct blocks meet in some p ∈ X ;
(ii) there is exactly one line from each block of � passing through a point p ∈ X .

A potential (k, d) net is a partition � and subset X as above, but without the require-
ment that conditions (i) and (ii) hold.

If (�, X) is a (k, d) net, then it is easy to show that every line meets X in d points,
and |X | = d2. In [43] Yuzvinsky proves that a (k, d) net must have k ∈ {3, 4}.
Example 1.2 For 1 ≤ i < j ≤ 4 the equations xi − x j = 0 define a set of hyperplanes
in C4 which all contain the subspace W = span(1, . . . , 1). Projecting to W⊥ yields a
configuration of planes A3 ⊆ C

3 with common intersection at the origin, so A3 also
defines a line configuration in P

2. The matroid defined by the lattice of intersections
(in C

3) is depicted on the right of Fig. 1. The partition |14|25|36| and set of triple
points X = {123, 156, 246, 345} define a net.
It follows immediately from Definition 1.1 that if (�, X) is a net, then every

⋂
i Hi =

p ∈ L2(A) is either an element of X , or has all Hi in the same block of �. If
H1 ∩ H2 = p ∈ L2(A) and μ(p) = 1, then H1 and H2 must be in the same block
of �.

The set of flats of a matroid, partially ordered by inclusion, form a lattice, so it is
natural to ask:

Question 1.3 Is there a monomial ideal associated to a matroid that captures existence
of a net?

Definition 1.4 For a matroid on ground set {1, . . . , n} and choice of rank r and field k,
let S = k[x1, . . . , xn], and let J denote the ideal generated by monomials correspond-
ing to the flats of rank ≤ r . So a monomial m = xi1 · · · xik ∈ J ↔ [i1, . . . , ik] is a flat
of rank at most r .
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Example 1.5 For r = 2, the ideal J in Example 1.2 is generated by

〈x1x4, x2x5, x3x6, x1x2x3, x1x5x6, x2x4x6, x3x4x5〉.

Definition 1.4 works for any matroid; our interest stems from the study of complex
projective hyperplane arrangements. In that setting, a flat of rank r corresponds to
a (maximal) collection of hyperplanes meeting in codimension r . Work of Falk–
Yuzvinsky in [20] shows that nets play a fundamental role in the study of the resonance
variety of a hyperplane arrangement.

The resonance variety is defined in terms of the Orlik–Solomon algebra, and
has attracted considerable attention: see for example work of Aomoto [1], Esnault–
Schechtman–Viehweg [16], Schechtman–Terao–Varchenko [35], Yuzvinsky [40],
Falk [18], Cohen–Suciu [9], Libgober–Yuzvinsky [26], and Falk–Yuzvinsky [20]. The
Orlik–Solomon algebra is not needed to describe nets, but is used to define resonance
varieties. For completeness we include in Sect. 5 an appendix on the Orlik–Solomon
algebra and resonance varieties.

The generalization of Example 1.2 will serve as a running example. The braid
arrangement An is defined by equations xi − x j = 0 for 1 ≤ i < j ≤ n+1. It plays a
central role in many areas of mathematics: in mathematical physics, the complement
of An is the configuration space for n + 1 non-colliding points. In combinatorics,
the lattice of intersections L(An) is isomorphic to the partition lattice �n+1, and in
representation theory, An consists of fixed points of reflections in the Weyl group of
SL(n + 1).

Remark 1.6 By [2, Prop. 2.1], for a squarefree monomial ideal, results over the sym-
metric algebra may be translated to results over the exterior algebra, and vice versa.
In this paper, we work over the symmetric algebra.

For hyperplane arrangements, a natural first guess at answering Question 1.3 is the
initial ideal of the Orlik–Solomon ideal, which has been used to good effect in a
number of settings, e.g. Björner–Ziegler [6]. It turns out that the initial ideal loses too
much combinatorial information to be useful in identifying nets and resonance. The
ideal J appearing in Definition 1.4 is our proposed answer to Question 1.3. As our
main interest is in nets, we focus on the rank two case, and in this setting call the ideal
J the monomial OS ideal.

A main tool in our investigation is Alexander duality. Alexander duality is a staple
of both algebraic topology, commutative algebra, and combinatorics. A combinatorial
proof of Alexander duality appears in [5]. In commutative algebra Alexander duality
plays a key role in the study of squarefree monomial ideals. Applications of Alexander
duality related to matroids and arrangements appear in works of Björner–Ziegler [7],
Falk [17], and Eisenbud–Popescu–Yuzvinsky [15], but none address Question 1.3.

In Sect. 2 we review some necessary concepts from homological and commutative
algebra: free resolutions, Castelnuovo–Mumford regularity, Betti numbers, and alge-
braic Alexander duality. In Sect. 3 we use Alexander duality to make a connection
between nets and the ideal J , and in Sect. 4 we use Alexander duality to study the
braid arrangement. As noted above, the appendix of Sect. 5 is a quick primer on the
Orlik–Solomon algebra and resonance varieties.
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1.1 Approach andMain Results

We state all results in terms of the symmetric algebra, which by Remark 1.6 can can
be translated to the exterior setting if desired.

Theorem A If A = (�, X) is a potential (k, d) net, with � = (π1, . . . , πk), let J�
denote the ideal generated by the k monomials of degree d given by products of the
variables within each block πi , and let JX denote the ideal generated by monomials
corresponding to the points of X. Hence J = JX + JY , where JY is generated by
monomials corresponding to elements of L2(A) not in X. As noted earlier the degree
two component of J satisfies J2 ⊆ JY .

(i) A = (�, X) is a (k, d) net iff

(J∨
X )d = (J�)d ,

where I∨ denotes the Alexander dual of I , defined in §2.
(ii) IfA = (�, X) is a (k, d) net, then all intersections of lines within a block πi of �

are normal crossing iff J2 is a direct sum of k determinantal ideals Jπ1 , . . . , Jπk ,
with each Jπi generated by all squarefree quadratic monomials in a block of d-
variables, and the blocks are disjoint.

In the setting of (ii), a corollary is that each Jπi is the ideal of the 2 × 2 minors of a
2 × d matrix, and the quadratic quotient S/J2 factors as

S/J2 

k⊗

i=1

Sπi /Jπi , with Sπi a polynomial ring in the variables of πi .

This in turnmeans that the free resolution of S/J2 as an S-module is the tensor product
of the free resolutions of the S/Jπi . Hence the free resolution of S/J2 is a tensor product
of k Eagon–Northcott complexes, so S/J2 is arithmetically Cohen–Macaulay (which
means that codim(J2) = pdim(S/J2)), and the Alexander dual S/J∨

2 has a linear free
resolution (which means that all differentials appearing in the free resolution of S/J∨
after the first step are matrices of linear forms).

Theorem B is an analysis of the monomial OS algebra for the type A reflection
arrangements generalizing Example 1.2. An arrangement of type An is defined by
the vanishing of the linear forms xi − x j for 1 ≤ i < j ≤ n + 1, which is also
the graphic arrangement (see [29, §2.4]) corresponding to the complete graph Kn+1.
The monomial OS ideal for Kn+1 is generated by cubic monomials corresponding
to triangles in the graph, and quadratic monomials corresponding to pairs of disjoint
edges.

Theorem B For the braid arrangement An−1, let J (Kn) denote the ideal J . Then the
Hilbert series is P(S/J (Kn), t)/(1 − t)n−1, where the numerator is

P(S/J (Kn), t) = n + (1 − n)(1 − t)n−1 −
(
n

2

)

t(1 − t)n−2.
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The ring S/J (Kn) has Castelnuovo–Mumford regularity two. For S/J (Kn)
∨, the

Hilbert series is P(S/J (Kn)
∨, t)/(1 − t)n−1, where the numerator is

P(S/J (Kn)
∨, t) = 1 − nt(

n−1
2 ) +

(
n

2

)

t(
n
2)−1 −

(
n − 1

2

)

t(
n
2),

and S/J (Kn)
∨ has projective dimension three, with Z

n–graded Betti numbers

b0,m(S/J (Kn)
∨) = 1 if |m| = 0,

b1,m(S/J (Kn)
∨) = 1 if m ↔ Kn−1 ⊆ Kn,

b2,m(S/J (Kn)
∨) = 1 if |m| =

(
n

2

)

− 1,

b3,m(S/J (Kn)
∨) =

(
n − 1

2

)

if |m| =
(
n

2

)

.

(1.1)

Theorem 4.5 describes the entire minimal free resolution for S/J (Kn)
∨. We discuss

Alexander duality in Sect. 2, prove Theorem A in Sect. 3, and prove Theorem B in
Sect. 4.

2 Alexander Duality

We will make use of two fundamental results involving Alexander duality: Primary
decomposition, and Hochster’s theorem. An excellent reference for both is [27].

2.1 Alexander Duality and Free Resolutions

Definition 2.1 Fix a field k, and let � be a simplicial complex on vertex set V . If
|V | = n, let S = k[x1, . . . , xn]. The Stanley–Reisner ring of � is S/I�, where

I� = 〈xi1 · · · xi j | [i1, . . . , i j ] is not a face of �〉.

The ideal I� encodes all the non-faces of �, so in particular the simplicial complex
� and the ideal I� carry the same information.

Example 2.2 Let � be a simplicial complex on four vertices, and edges {[12], [23],
[34], [14], [13]}. The missing faces are the edge [24], and all triangles. The missing
triangles [124] and [234] and the missing full 3-simplex [1234] are consequences of
the missing edge, so

I� = 〈x2x4, x1x2x3, x1x3x4〉.

The complement of a face of � is a coface; let CF(�) denote the set of minimal
cofaces of �.
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Theorem 2.3 [36, 5.3.3] For a simplicial complex �, the primary decomposition of
I� is

I� =
⋂

[vi1 ···vik ]∈CF(�)

〈xi1 , . . . , xik 〉.

Example 2.4 InExample 2.2 theminimal cofaces of� are {[34], [14], [12], [23], [24]},
so the primary decomposition is

I� = 〈x1, x2〉 ∩ 〈x1, x4〉 ∩ 〈x2, x3〉 ∩ 〈x2, x4〉 ∩ 〈x3, x4〉. (2.1)

The fact that theminimal generators of a primary component can be chosen as variables
is special to squarefreemonomial (= Stanley–Reisner) ideals. Notice that by choosing
variables as minimal generators of a primary component, the product of the generators
of a primary component of a Stanley–Reisner ideal is a monomial. The ideal generated
by such monomials (one for each primary component) is called the monomialization
of the primary decomposition of I�.

Definition 2.5 The combinatorial Alexander dual of � is

�∨ = {σ ⊂ V | σ /∈ �}.

The condition that σ /∈ � means that σ is the complement of a non-face of �.

Theorem 2.6 (see [12] or [24]) Monomializing the primary decomposition of I�
yields I�∨ .

Example 2.7 The nonfaces of � of Example 2.2 are

{[123], [124], [134], [234], [24]},

so the complements of the nonfaces are

{[4], [3], [2], [1], [13]}.

Hence themaximal faces of�∨ are the vertices [2], [4] and the edge [13]. In particular,
all edges aremissing from�∨ except [13]. Monomializing the primary decomposition
in (2.1) yields

I�∨ = 〈x1x2, x1x4, x2x3, x2x4, x3x4〉,

which is indeed the Stanley–Reisner ideal of �∨.
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2.2 Free Resolutions and Betti Tables

The Hilbert Syzygy Theorem [13] guarantees that any finitely generated Z-graded
S = k[x1, . . . , xn]-module M has a minimal graded finite free resolution: an exact
sequence of free modules Fi 
 ⊕ j S(− j)bi, j with bi, j ∈ Z:

0 −→ Fi
di−→ Fi−1

di−→ · · · −→ F0 −→ M −→ 0, (2.2)

where i ≤ n and the entries of the di matrices are homogeneous of positive degree.

Definition 2.8 For M as above, the regularity and projective dimension are

reg(M) = sup { j | bi,i+ j �= 0} and pdim(M) = sup {i | bi,• �= 0}.

The graded Betti numbers are

bi, j = dimk Tori (M,k) j .

This data is compactly encoded in the Betti table [14]: an array whose entry in position
(i, j) (reading over and down) is bi,i+ j . This indexing seems odd, but it is set up so
that reg(M) is given by the index of the bottom row of the Betti table.

Example 2.9 The minimal free resolution for I� from Example 2.2 is given below.

0 ←− I�
[x2x4 x1x2x3 x1x3x4]←−−−−−−−−−−−− S(−2) ⊕ S(−3)2

[
x1x3 0
−x4 x4
0 −x2

]

←−−−−−− S(−4)2 ←− 0

The corresponding Betti table is

j
i

0 1

2 1 −
3 2 2

The first column of the table reflects that I� has one quadratic generator and two cubic
generators. The second column shows there are two syzygies on the three generators.
In the same fashion it is easy to write down the minimal free resolution for S/I�∨ ,
which has Betti table

j
i

0 1 2 3

0 1 − − −
1 − 5 6 2

[27, Cor. 5.59] shows that reg(I�) = pdim(S/I�∨); for the example above we have
that pdim(S/I�∨) = 3 = reg(I�).
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2.3 Hochster’s Theorem

(see [24] or [27]) As in Sect. 2.2, � is a simplicial complex on n vertices and S =
k[x1, . . . , xn]. However, we now endow S with the Zn grading, with deg(xi ) = ei .

Theorem 2.10 For a simplicial complex � on n vertices and S graded by Z
n, let

m ∈ Z
n be a multidegree, and |m| = ∑

i mi . Then

bi,m(I�) = dim (H̃|m|−i−2(�m),k)

where �m is the subcomplex of � consisting of the faces of � of weight n such that
for all i ∈ {1, . . . , n}, ni ≤ mi (hence n ≤ m pointwise).

Example 2.11 For Example 2.2, we compute the homology groups. The generators of
I� occur in multidegrees {(0101), (1110), (1011)}. We now compute

dim (H̃|m|−3(�m),k)

form = (1111). For this multidegree, �m is clearly the entire complex �, so consists
of two (hollow) triangles, sharing the common edge [13], hence

dim (H̃1(�(1111),k)) = 2,

yielding two first syzygies on I�. The syzygies themselves are

[x1x3,−x4, 0], [x1x3, 0,−x2].

3 Proof of Theorem A

Alexander duality led us to Theorem A: it was computations with the quadratic com-
ponent J2 and the Alexander dual J∨

2 which indicated that J∨
2 had a linear resolution.

Duality also is central in understanding nets.

Proof For the proof of (i), the key isTheorem2.6: theAlexander dual I∨ of a squarefree
monomial ideal I is obtained by monomializing the primary decomposition of I ,
as in Example 2.7, combined with the description of the primary decomposition in
Theorem 2.3.

• We first show

(�, X) is a (k, d) net �⇒ (J�)d = (J∨
X )d .

A component of the primary decomposition of the monomial ideal J� will contain
exactly one variable from each block πi of �. Since (�, X) is a net, this means
that JX ⊆ J∨

� , so dualizing yields

J� ⊆ J∨
X .
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Therefore (J�)d ⊆ (J∨
X )d ; note that it is not true that J� = J∨

X . From the definition
of J�, dimk(J�)d = k, so to prove equality it suffices to show that dimk(J∨

X )d = k.
Because JX is a squarefree monomial ideal, it is the Stanley–Reisner ideal of
a simplicial complex �. By Theorems 2.3 and 2.6, to find the minimal degree
generators of J∨

X , we need to find the biggest faces of �. As the monomials
of JX correspond to the nonfaces of �, the biggest faces of � correspond to
monomials which are not divisible by anymonomial in JX . As soon as amonomial
is divisible by at least one variable from each of the k blocks of�, the net condition
means it might be in JX . However, the primary decomposition of J� will have dk

components, whereas JX has d2.
We now argue that the maximal faces of � are exactly the complements of single
blocks πi ; to illustrate, in Example 1.2, the maximal faces of � are {[1245] =
[36], [1346] = [25], [2356] = [14]}. To see this, notice that a set of lines σ

corresponds to a non-face of � exactly when

σ ∩ πi �= ∅ for all blocks πi .

The maximal sets which fail to have this property are the complements of a single
block of �, and the result follows.

• For the other direction,

(J�)d = (J∨
X )d �⇒ (�, X) is a (k, d) net.

For (�, X) a potential (k, d) net, since (J�)d = (J∨
X )d and J� is generated in

degree d, we have

J� ⊆ J∨
X ,

hence JX ⊆ J∨
� . As noted above, J∨

� is generated by monomials obtained by
taking exactly one element from every block, so this means every generator of JX
satisfies this property, hence so also does X .

For the proof of (ii), the assumption on the net (�, X) means that if (after a change
of variables) π = |1, . . . , d| is a block of the partition �, then for 1 ≤ i < j ≤ d, Hi

and Hj meet in a normal crossing point p. Thus, for each block π as above, we have
a subideal of J ,

Jπ = 〈xi x j | 1 ≤ i < j ≤ d〉.

For generic {a1, . . . , ad}, Jπ can be written as the ideal generated by the 2× 2 minors
of the 2 × d matrix

M =
[

x1 x2 · · · xd
a1x1 a2x2 · · · ad xd

]

,
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which by [13, Thm. A2.10] has an Eagon–Northcott resolution

· · · −→ Sym1(S2)∗ ⊗ �3(Sd) −→ �2(Sd)
�2(M)−→ �2(S2) −→ S/I2(M) −→ 0.

As the variables in the blocks of � are distinct, we see that

J2 

⊕

πi∈�

Jπi ,

The hypothesis on the quadratic component J2 means that there is a partition � of the
d · k hyperplanes into k-blocks of size d, and that all hyperplanes within a block have
normal crossing intersection. Therefore, any point of intersection with multiplicity
greater than two cannot be contained in a block of �, so must lie in X . The condition
on the primary decomposition from (i) ensures that every multiple point in X meets
exactly one line from each block of �.

Remark 3.1 We thank an anonymous referee for suggesting a simplification in the
proof of (i).

Example 3.2 An infinite family of (3, d) nets is the Ceva family, given by the arrange-
ment defined by the vanishing of the polynomial (xd − yd)(xd − zd)(yd − zd). Note
that the vanishing set of xd − yd defines d lines passing through the point (0 : 0 : 1),
and similarly for the vanishing sets of xd − zd and yd − zd . This yields a (3, d) net

|1, . . . , d | d + 1, . . . , 2d | 2d + 1, . . . , 3d|.

Therefore J is generated by the three polynomials of degree d (which define J�)

{x1 · · · xd , xd+1 · · · x2d , x2d+1 · · · x3d},

and d2 cubics corresponding to the triple intersections. As noted in [4], for com-
plex line arrangements in P

2, this is the only infinite family known to have no
normal crossing points. For d = 3 the matroid is depicted in Fig. 2, where points
denote the lines of the configuration in P2. The set X consists of {{147}, {258}, {369},
{168}, {249}, {267}, {348}, {159}, {357}}.

In [3], Bartz gives a classification of complete 3-nets. As noted in [4], there are also
two isolated examples of configurations in P2

C
with no normal crossings: Klein’s con-

figuration has 21 lines, andWiman’s configuration has 45 lines. It would be interesting
to check if these configurations support nets.

3.1 An Aside on the Singular Fibers of a Net or Pencil

In classical algebraic geometry, the term net refers to a three dimensional subspace of
the space of sections of some line bundle on an algebraic variety Z , while a pencil is a
two-dimensional subspace. Therefore a net gives a rational map φ from Z to P

2, and
a pencil gives a rational map φ from Z to P1.
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3 6 9

2 5 8

1 4 7

Fig. 2 The Ceva net for d = 3

Definition 3.3 [20, 3.3] If F1, F2 ∈ C[x, y, z]d have no common factor, then the
pencil a1F1 + a2F2 with [a1 : a2] ∈ P

1 is Ceva type if there are three or more fibers
that factor as products of linear forms, and after blowing up the base locus, the proper
transforms of every fiber of φ are connected.

Proposition 3.4 If A = (�, X) is a net satisfying part (ii) of Theorem A (all inter-
sections of lines within a block are normal crossing), then the net has singular fibers
beyond the singular fibers coming from the blocks of �, unless A is a (3, 2) net or a
(4, 3) net.

Proof In [20, Thm. 4.2], Falk–Yuzvinsky prove a result on the numerics of the Euler
characteristic of a multinet (�, X), which for a (k, d) net takes the form

3 + |X | ≥ (2 − k)(3d − d2) + 2kd −
∑

p∈X
μ(p), (3.1)

where X is the set of points of intersection ofA of the lines within the blocks πi . They
prove that equality holds in (3.1) iff the only singular fibers of the net are the blocks.
Since |X | = d2 for a net, if all intersections within the blocks have μ(p) = 1, then

∑

p∈X
μ(p) = k

(
d

2

)

.

The equality in (3.1) is only possible if k = 6 − 6/d, which implies (k, d) ∈
{(3, 2), (4, 3), (5, 6)}, and by [43] only (3, 2) and (4, 3) can arise for a net.

The next example illustrates both Theorem A and Proposition 3.4.

Example 3.5 The Pappus and non-Pappus arrangements appear as Examples 9 and 10
in Suciu’s survey paper [39]. Both are arrangements of nine lines in P2; each has nine
double points and nine triple points. There is a ninth line (not pictured) at infinity (see
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8
7

6
5
4321

Fig. 3 non-Pappus arrangement

Fig. 3). The non-Pappus arrangement does not support a net. The Betti table of S/J2
is

j
i

0 1 2 3 4 5 6

0 1 − − − − − −
1 − 9 9 − − − −
2 − − 18 18 − − −
3 − − − 3 9 9 2

The Pappus configuration in Fig. 4 supports a (3, 3) net, with blocks |169|258|347|.
For the Pappus arrangement, the cubic generators of the monomial OS ideal are

{x1x2x7, x1x3x5, x1x4x8, x2x3x9, x2x4x6, x3x6x8, x4x5x9, x5x6x7, x7x8x9}.

The primary decomposition of J� = 〈x1x6x9, x2x5x8, x3x4x7〉 has components

(x1, x2, x3), (x1, x2, x4), (x1, x2, x7), (x1, x3, x5), (x1, x3, x8), (x1, x4, x5),

(x1, x4, x8), (x1, x5, x7), (x1, x7, x8), (x2, x3, x6), (x2, x3, x9), (x2, x4, x6),

(x2, x4, x9), (x2, x6, x7), (x2, x7, x9), (x3, x5, x6), (x3, x5, x9), (x3, x6, x8),

(x3, x8, x9), (x4, x5, x6), (x4, x5, x9), (x4, x6, x8), (x4, x8, x9), (x5, x6, x7),

(x5, x7, x9), (x6, x7, x8), (x7, x8, x9).

So the cubic minimal generators of J are elements of J∨
� . The Betti table of S/J2 is

given by

j
i

0 1 2 3 4 5 6

0 1 − − − − − −
1 − 9 6 − − − −
2 − − 27 27 12 − −
3 − − − 27 54 36 8
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8

7

6
5

4321

Fig. 4 Pappus arrangement

and the Betti table of the Alexander dual S/J∨
2 is

j
i

0 1 2 3 4

0 1 − − − −
1 − − − − −
2 − − − − −
3 − − − − −
4 − − − − −
5 − 27 54 36 8

In contrast, for the Alexander dual S/J∨
2 of the non-Pappus arrangement the Betti

table is

j
i

0 1 2 3 4

0 1 − − − −
1 − − − − −
2 − − − − −
3 − − − − −
4 − 9 9 − −
5 − 3 9 9 2

As the ideal J∨
2 for the Pappus arrangement has a linear resolution, by the Eagon–

Reiner theorem [12], S/J2 is Cohen–Macaulay, while the dual ideal J∨
2 of the

non-Pappus arrangement does not have a linear resolution, so for the non-Pappus
arrangement, S/J2 is not Cohen–Macaulay.

Example 3.6 ByProposition 3.4, thePappus arrangement has singular fibers in addition
to the three normal crossing sets of lines of the blocks of �. The unique (3, 2) net
is that of Example 1.2, and the only known (4, 3) net is the Hessian; both satisfy the
hypotheses of part (ii) of Theorem A.

4 TheMonomial Orlik–Solomon Algebra for An−1

Let J (Kn) denote the ideal J for the braid arrangement An−1 (equivalently, the graphic
arrangement Kn). Our focus in this section is on the algebraic behavior of the ideals
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12

13 23

34

14 24

Fig. 5 The simplicial complex �J (K4)

J (Kn) and J (Kn)
∨. To prove Theorem B, we first prove the projective dimension of

S/J (Kn)
∨ is three,which follows froman analysis of the corresponding ideal.With the

bound on projective dimension of S/J (Kn)
∨ in hand, an analysis using Theorem 2.10

yields the Betti numbers for S/J (Kn)
∨.

Applying [27, Cor. 5.59] shows that J (Kn) has regularity two. As there are only
two rows in the Betti table of J (Kn), to determine the Betti numbers, it suffices to
determine the Hilbert series of J (Kn) and one row of the Betti table.

The top row of the Betti table of J (Kn) corresponds to a squarefree ideal generated
by quadrics, so is an edge ideal of a graph �. The linear strand of the resolution is
interesting in its own right, as it is depends on the cut polynomial of �.

4.1 Hilbert Series of J(Kn)

We begin by describing the generators of the monomial ideals J (Kn) and J (Kn)
∨.

For the complete graph Kn , the rank one elements of L(An−1) are the
(n
2

)
hyperplanes

V (xi − x j ), so the rank two elements correspond to

(a) triangles in Kn ,
(b) pairs of disjoint edges in Kn .

We study the Stanley–Reisner ring in
(n
2

)
variables S = k[xi j | 1 ≤ i < j ≤ n], mo-

dulo the ideal

J (Kn) = 〈xi j xkl , xi j xik x jk | distinct i, j, k, l ∈ {1, . . . , n}〉.

Example 4.1 For K4, the minimal non faces of �J (K4) are

{[12][34], [13][24], [14][23], [12][14][24], [23][24][34], [13][14][34], [12][13][23]}.

The complex in Fig. 5 corresponds to the braid arrangement in Fig. 1,where the vertices
12, 23, 13, 34, 14, and 24 in Fig. 5 correspond, respectively, to the lines L1, . . . , L6.
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Lemma 4.2 The simplicial complex�J (Kn) corresponding to the ideal J (Kn) consists
of n simplices of dimension n − 2, each meeting the others in n − 1 points, and the
face vector of �J (Kn) is given by (with notation as in [44, §8.3])

f (�J (Kn), x) = xn−1 + n

(

(n − 1)xn−2 +
(
n − 1

2

)

xn−3

+
(
n − 1

3

)

xn−4 + . . . + (n − 1)x + 1

)

−
(
n

2

)

xn−2.

Proof Vertices in �J (Kn) correspond to edges in Kn . The maximal faces of �J (Kn)

correspond to simple graphs with vertex set [n] that have no pairs of the types (a) or (b)
above. The maximal such graphs are clearly the n star graphs with n − 1 edges,

�i = {[i, j1], . . . , [i, jn−1]}

for a fixed i . Every pair of such graphs share a common edge, and every edge lies in
exactly two such graphs. This explains the term

(n
2

)
xn−2.

Remark 4.3 As pointed out by the referee, this complex is the nerve of the cover of
Kn by closed edges, homotopy equivalent to Kn .

Example 4.4 For K7, the f -vector is

f (�J (Kn)) = (1, 0, 0, 0, 0, 0, 0) + 7(0, 6, 15, 20, 15, 6, 1) − (0, 21, 0, 0, 0, 0, 0),

f (�J (Kn), x) = x6 + 21x5 + 105x4 + 140x3 + 105x2 + 42x + 7.

By [44, §8.3],

h(�, x) = f (�, x − 1),

so for Kn we have

h(�J (Kn), x)

= (x − 1)n−1 + n

(

(n − 1)(x − 1)n−2 +
(
n − 1

2

)

(x − 1)n−3 + . . . + 1

)

−
(
n

2

)

(x − 1)n−2,

which simplifies to

(x − 1)n−1 + n(xn−1 − (x − 1)n−1) −
(
n

2

)

(x − 1)n−2.

In [25, §8.3], hi (�) is the coefficient of xdim�+1−i in h(�, x), so since

P(S/I�, t) = (h0 + h1t + h2t
2 + · · · )/(1 − t)dim�+1,
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we need to reverse the order of the h-vector, and the result for the Hilbert series in
Theorem B follows.

4.2 Resolution of the Alexander Dual

We now turn to the Alexander dual ideal J (Kn)
∨. As noted in §2, J (Kn)

∨ is the
monomialization of the primary decomposition of J (Kn). Letting CF(�) denote the
set of minimal cofaces of �, Theorem 2.3 yields

J (Kn) =
⋂

[xi1 ,...,xik ]∈CF(�)

〈xi1, . . . , xik〉.

By Lemma 4.2, � consists of n copies of the n − 2 simplex �n−2, glued at a total of(n
2

)
vertices, so a maximal face of � is one of the �n−2’s, whose complement coface

consists of the remaining

(
n

2

)

− (n − 1) =
(
n − 1

2

)

vertices. Therefore J (Kn)
∨ is generated by the corresponding n monomials of degree(n−1

2

)
.

Theorem 4.5 The projective dimension of S/J (Kn)
∨ is three, and the Z(n2)-graded

Betti numbers are

b0,m(S/J (Kn)
∨) = 1 if |m| = 0,

b1,m(S/J (Kn)
∨) = 1 if m ↔ Kn−1 ⊆ Kn,

b2,m(S/J (Kn)
∨) = 1 if |m| =

(
n

2

)

− 1,

b3,m(S/J (Kn)
∨) =

(
n − 1

2

)

if |m| =
(
n

2

)

.

Proof The proof follows from Hochster’s formula. For each Kn−1 in Kn , there is a
generator with weight vector having entry 1 in the positions corresponding to edges
of the Kn−1, hence n generators of weight

(n−1
2

)
.

We now make use of the LCM lattice resolution, as described in [21]. The first
syzygies of a monomial ideal correspond to the LCM of two generators. The two
corresponding Kn−1 subgraphs �i and � j intersect everywhere except along the
missing edge [i j] so the LCM corresponds to a weight vector which is one in all but
the single entry [i j]. This yields (n

2

)
first syzygies, with weight as above.

For the second syzygies, byHochster’s formula theymust haveweight (1, 1, . . . , 1),
and correspond to the LCM of triples of monomials, of which there are

(n
3

)
. However,

these choices are not independent, since every
(n
i

)
set with i ≥ 4 has LCM of weight

(1, 1, . . . , 1). So accounting for dependencies, dependencies on dependencies, and so
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on, we find that the number of minimal second syzygies is

(
n

3

)

−
(
n

4

)

+
(
n

5

)

−
(
n

6

)

+ · · · = 1 − n +
(
n

2

)

=
(
n − 1

2

)

,

which concludes the proof. ��
Combining Lemma 4.2, Theorem 4.5, and [27, Cor. 5.59] proves Theorem B.

Example 4.6 The Z-graded Betti table for S/J∨
7 is

j
i

0 1 2 3

0 1 − − −
1 − − − −
...

...
...

...
...

13 − − − −
14 − 7 − −
15 − − − −
16 − − − −
17 − − − −
18 − − 21 15

The Hilbert series of P(R/J∨
7 , t) is therefore

1 − 7t15 + 21t20 − 15t21

(1 − t)6

= 1

(1 − t)4

(
14∑

i=0

(i + 1)t i + 9t15 + 3t16 − 3t17 − 9t18 − 15t19
)

.

4.3 The Linear Strand of J(Kn) and the Cut Polynomial

Asquarefree quadraticmonomial ideal encodes the edges of a graph�, with a generator
xi x j corresponding to the edge [i j]; such ideals are often called edge ideals, and there
is a wide literature on the topic; see [34]. It follows from Hochster’s theorem that the
Betti numbers bi,i+1(S/I�) are determined by the cut polynomial of the graph �; this
is used by Papadima–Suciu in [30] to establish a formula for the Chen ranks of right
angled Artin groups; their result is over E , but it translates to S.

Definition 4.7 For a simple (no loops or multiple edges) graph �, the cut polynomial
is defined via

Q�(t) =
∑

j≥2

c j (�)t j , where c j (�) =
∑

W⊆V
|W |= j

(|connected components of �W | − 1).
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In [24], Hochster proves the Betti numbers b j, j+1 of S/I� satisfy

b j, j+1(S/I�) = c j+1(�).

Since the regularity of S/J (Kn) is two and we know the Hilbert series, to determine
the Betti table, it suffices to determine the top row, hence to finding the coefficients
of the cut polynomial of the graph �n corresponding to the quadratic generators of
J (Kn). Let I�n denote the corresponding edge ideal. For small n the ck are

n c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

4 3 0 0 0 0 0 0 0 0 0 0
5 15 30 10 0 0 0 0 0 0 0 0
6 45 210 390 285 100 15 0 0 0 0 0
7 105 840 3150 6510 7497 5565 2835 980 210 21 0

As any vertex v ∈ �J (Kn) lies on a pair of n − 2 simplices, to disconnect v requires
removing the 2(n−2) vertices adjacent to v, leaving a total of

(n
2

)− (2n−3) vertices,

hence c j (J (Kn)) vanishes when j ≥ (n−2
2

) + 2.

Problem 4.8 Determine the cut polynomial for �n . It is not hard to show that the first
two ci are

c2 = b12(S/I�n ) = 3

(
n

4

)

,

c3 = b23(S/I�n ) = 3

(
n

2, 3, n − 5

)

+ 1

3

(
n

2, 2, 2, n − 6

)

.

5 Appendix: The Orlik–Solomon Algebra and Resonance Varieties

For a hyperplane arrangement

A =
m⋃

i=1

Hi ⊆ V 
 K
	+1,

we write M for the complement V \ A; unless otherwise noted V is a K = C vector
space.We focus on the casewhereA ⊂ V is central and essential, where centralmeans
the linear forms defining the Hi are homogeneous, and essential means the common
intersection of the Hi is 0 ∈ V . Note that A defines both an affine arrangement in V ,
as well as a projective arrangement in P(V ).

Orlik and Solomon prove in [28] that the cohomology ring H∗(M,Z) has a purely
combinatorial description: it is determined by the intersection lattice L(A). This lattice
(in the graded poset sense) consists of the intersections of elements of A, ordered by
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reverse inclusion. The ambient vector space V = 0̂, rank one elements of LA are
hyperplanes, and the origin is 1̂.

For the complement M of a hyperplane arrangement A with fundamental group
π1(M) = G, the first resonance variety R1(G) is the jump locus for the cohomol-
ogy of G. We work over a field k of characteristic zero; by Orlik–Solomon’s result
H∗(M,k) 
 E/IA (see Definition 5.4). By convention we write A for H∗(M,k) and
R1(A) for R1(G). A is Z-graded; as it is a cohomology ring we denote the i th graded
component by Ai . By Falk [18], the points (a1, . . . , am) of R1(A) ⊆ k

m correspond to
one-forms a = ∑m

1 ai ei where the map λ �→ λ ∧ a from A1 to A2 has rank ≤ m − 2.

5.1 Combinatorics of Arrangements

Two important combinatorial players are the Möbius function and Poincaré polyno-
mial:

Definition 5.1 The Möbius function μ : L(A) → Z is given by

μ(0̂) = 1, μ(b) = −
∑

a<b

μ(a) if 0̂ < b.

The Poincaré polynomial π(A, t), defined as
∑

x∈L(A)(−t)rank(x)μ(x), is equal to
∑	+1

i=1 (dimk Ai )t i .

In [18] Falk introduced the concept of a neighborly partition:

Definition 5.2 A partition� of a subsetU ofA is neighborly if for every codimension
two intersection Hi1 ∩ · · · ∩ Hik with {i1, . . . , ik} ⊆ U if all but one of the i j are
contained in a block of �, then {i1, . . . , ik} is contained in the block.

Example 5.3 For the arrangement A3 in Example 1.2, the partition {14|25|36} is a
neighborly partition of the set {1, 2, 3, 4, 5, 6} of all lines of the arrangement.

5.2 Algebra of Arrangements

The central algebraic object in the studyof hyperplane arrangements is the cohomology
ring of the arrangement complement, which was described by Orlik–Solomon in their
landmark paper [28].

Definition 5.4 TheOrlik–Solomon algebra Awith coefficients in k of an arrangement

A =
m⋃

i=1

Hi ⊆ P
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is the quotient of the exterior algebra E = ∧
(km) on generators e1, . . . , em in degree

1 by the ideal IA generated by all elements of the form

∂(ei1 · · · eir ) =
∑

q

(−1)q−1ei1 · · · êiq · · · eir such that codim (Hi1 ∩ · · · ∩ Hir ) < r .

The ideal IA is generated in degree ≥ 2, so A0 = k and A1 = k
m .

Example 5.5 For Example 1.2, IA = 〈∂(e1e2e3), ∂(e1e5e6), ∂(e2e4e6), ∂(e3e4e5)〉.
It is clear from the definition that the Orlik–Solomon algebra A depends purely on the
combinatorics of LA, as do the neighborly partitions appearing in Definition 5.2. Nets
are connected to the resonance variety R1(A) via the results of [20]. As noted earlier,
for each a ∈ A1, we have a ∧ a = 0, so exterior right-multiplication by a defines a
cochain complex of k-vector spaces

(A, a) : 0 A0 ∧a
A1 ∧a

A2 ∧a · · · ∧a
Ak ∧a · · · (5.1)

The complex (A, a)was introduced byAomoto [1], and used byEsnault–Schechtman–
Viehweg [16] and Schechtman–Terao–Varchenko [35] to study local system cohomol-
ogy. For a = ∑n

i=1 ai ei ∈ A1, we can define the loci where there complex is not exact:

R j (A) = {a ∈ A1 | dim H j (A, a) �= 0},

which are homogeneous algebraic subvarieties of Pm−1, introduced by Falk in [18].
Yuzvinsky shows in [40] that the complex is exact as long as

∑n
i=1 ai �= 0. Falk shows

that each component of R1(A) is associated to a neighborly partition of a subsetU of
the hyperplanes of A. In [20], Falk–Yuzvinsky give an interpretation of this in terms
of the geometry of multinets in P2, which are collections of lines with multiplicity.

Example 5.6 For Example 1.2, since ei e j − ei ek + e j ek = (ei − e j )(e j − ek), the
generators of IA can be written as

(e1 − e2) ∧ (e2 − e3), (e1 − e5) ∧ (e5 − e6),

(e2 − e4) ∧ (e4 − e6), (e1 − e3) ∧ (e3 − e5).

Hence for exterior multiplication with the one form a

A1 ∧a−→ A2,

the P1 spanned by {e1 − e2, e2 − e3} ⊆ P
5 
 P(A1) is a component of R1(A), as are

the three P1’s associated to the other three quadrics in IA. A computation shows that

(e1 − e2 + e4 − e5) ∧ (e2 − e3 + e5 − e6)

= ∂(e1e2e3) + ∂(e1e5e6) − ∂(e2e4e6) + ∂(e3e4e5).
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This means there is a fifth P
1 in R1(A). As shown by Falk in [18], R1(A) is the

union of these five lines. The fifth component comes from a neighborly partition
� = |14|25|36|. As noted in Example 1.2 the partition � is a (3, 2) net.

For a maximal subset U = {Hi1 , . . . , Hik } having codimension two intersection, the
partition into singleton blocks |i1|i2|. . .|ik | is neighborly, and yields components of
R1(A) which are called local. These components correspond to generators of IA, as
in the first four P1’s in Example 5.6. In [9, 26] it is shown that R1(A) is a union of
projectively disjoint projective subspaces.
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