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Abstract

A net in P? is a configuration of lines A and points X satisfying certain incidence
properties. Nets appear in a variety of settings, ranging from quasigroups to combi-
natorial design to classification of Kac—Moody algebras to cohomology jump loci of
hyperplane arrangements. For a matroid M and rank r, we associate a monomial ideal
(a monomial variant of the Orlik—Solomon ideal) to the set of flats of M of rank < r.
In the context of line arrangements in P2, applying Alexander duality to the resulting
ideal yields insight into the combinatorial structure of nets.

Keywords Line arrangement - Net - Alexander duality - Free resolution

Mathematics Subject Classification 05B35 - 52C35

1 Introduction

The investigation of point-line incidence relations in P> reaches back into the mists
of time; for a comprehensive treatment see Griinbaum [23].

Definition 1.1 For a configuration of lines A C PZ, if p is an intersection point of
two or more lines, define ;(p) = |lines through p| — 1, and let L, (A) be the set of
all intersection points. A (k, d) net is a partition IT of the lines of A into k > 3 blocks,
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Fig.1 The line configuration A3 C P2 and L(A3) for A3 C c3

each containing d > 2 lines, and a subset X C {p € L2(A) | u(p) > 2} of multiple
points such that

(i) every pair of lines from distinct blocks meet in some p € X;
(ii) there is exactly one line from each block of IT passing through a point p € X.

A potential (k, d) net is a partition IT and subset X as above, but without the require-
ment that conditions (i) and (ii) hold.

If (T1, X) is a (k, d) net, then it is easy to show that every line meets X in d points,
and |X| = d2. In [43] Yuzvinsky proves that a (k, d) net must have k € {3, 4}.

Example 1.2 For 1 <i < j < 4 the equations x; — x; = 0 define a set of hyperplanes
in C* which all contain the subspace W = span(l, ..., 1). Projecting to W+ yields a
configuration of planes A3 € C3 with common intersection at the origin, so A3 also
defines a line configuration in P2. The matroid defined by the lattice of intersections
(in C3) is depicted on the right of Fig. 1. The partition |14]|25|36| and set of triple
points X = {123, 156, 246, 345} define a net.

It follows immediately from Definition 1.1 that if (IT, X) is a net, then every (), H; =
p € Ly(A) is either an element of X, or has all H; in the same block of IT. If
H NHy=pe L(A) and u(p) = 1, then H; and H, must be in the same block
of II.

The set of flats of a matroid, partially ordered by inclusion, form a lattice, so it is
natural to ask:

Question 1.3 Is there a monomial ideal associated to a matroid that captures existence
of a net?

Definition 1.4 For a matroid on ground set {1, .. ., n} and choice of rank r and field k,
let S = k[xy, ..., x,], and let J denote the ideal generated by monomials correspond-
ing to the flats of rank < r. So amonomial m = x;,---x;, € J < [i1,..., k] isaflat

of rank at most r.
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Example 1.5 For r = 2, the ideal J in Example 1.2 is generated by
(X1x4, X2X5, X3X6, X1X2X3, X1X5X6, X2X4X6, X3X4X5).

Definition 1.4 works for any matroid; our interest stems from the study of complex
projective hyperplane arrangements. In that setting, a flat of rank r corresponds to
a (maximal) collection of hyperplanes meeting in codimension r. Work of Falk—
Yuzvinsky in [20] shows that nets play a fundamental role in the study of the resonance
variety of a hyperplane arrangement.

The resonance variety is defined in terms of the Orlik—Solomon algebra, and
has attracted considerable attention: see for example work of Aomoto [1], Esnault—
Schechtman—Viehweg [16], Schechtman—Terao—Varchenko [35], Yuzvinsky [40],
Falk [18], Cohen—Suciu [9], Libgober—Yuzvinsky [26], and Falk—Yuzvinsky [20]. The
Orlik—Solomon algebra is not needed to describe nets, but is used to define resonance
varieties. For completeness we include in Sect.5 an appendix on the Orlik—Solomon
algebra and resonance varieties.

The generalization of Example 1.2 will serve as a running example. The braid
arrangement Ay is defined by equations x; —x; =0forl <i < j <n+1.Itplaysa
central role in many areas of mathematics: in mathematical physics, the complement
of A, is the configuration space for n + 1 non-colliding points. In combinatorics,
the lattice of intersections L(A,) is isomorphic to the partition lattice I1,41, and in
representation theory, A, consists of fixed points of reflections in the Weyl group of
SL(n +1).

Remark 1.6 By [2, Prop. 2.1], for a squarefree monomial ideal, results over the sym-
metric algebra may be translated to results over the exterior algebra, and vice versa.
In this paper, we work over the symmetric algebra.

For hyperplane arrangements, a natural first guess at answering Question 1.3 is the
initial ideal of the Orlik—Solomon ideal, which has been used to good effect in a
number of settings, e.g. Bjorner—Ziegler [6]. It turns out that the initial ideal loses too
much combinatorial information to be useful in identifying nets and resonance. The
ideal J appearing in Definition 1.4 is our proposed answer to Question 1.3. As our
main interest is in nets, we focus on the rank two case, and in this setting call the ideal
J the monomial OS ideal.

A main tool in our investigation is Alexander duality. Alexander duality is a staple
of both algebraic topology, commutative algebra, and combinatorics. A combinatorial
proof of Alexander duality appears in [5]. In commutative algebra Alexander duality
plays a key role in the study of squarefree monomial ideals. Applications of Alexander
duality related to matroids and arrangements appear in works of Bjorner—Ziegler [7],
Falk [17], and Eisenbud—Popescu—Yuzvinsky [15], but none address Question 1.3.

In Sect. 2 we review some necessary concepts from homological and commutative
algebra: free resolutions, Castelnuovo—Mumford regularity, Betti numbers, and alge-
braic Alexander duality. In Sect. 3 we use Alexander duality to make a connection
between nets and the ideal J, and in Sect. 4 we use Alexander duality to study the
braid arrangement. As noted above, the appendix of Sect. 5 is a quick primer on the
Orlik—Solomon algebra and resonance varieties.
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1.1 Approach and Main Results

We state all results in terms of the symmetric algebra, which by Remark 1.6 can can
be translated to the exterior setting if desired.

Theorem A If A = (I1, X) is a potential (k,d) net, with I1 = (7, ..., my), let J
denote the ideal generated by the k monomials of degree d given by products of the
variables within each block m;, and let Jx denote the ideal generated by monomials
corresponding to the points of X. Hence J = Jx + Jy, where Jy is generated by
monomials corresponding to elements of Ly (A) not in X. As noted earlier the degree
two component of J satisfies Jy C Jy.

1) A= I, X) is a (k, d) net iff
(J¥)d = (Jm)d,

where IV denotes the Alexander dual of I, defined in §2.

(1) If A= (I1, X) is a (k, d) net, then all intersections of lines within a block ; of T1
are normal crossing iff J» is a direct sum of k determinantal ideals Jy,, . .., Jx,
with each Jy; generated by all squarefree quadratic monomials in a block of d-
variables, and the blocks are disjoint.

In the setting of (ii), a corollary is that each Jy; is the ideal of the 2 x 2 minors of a
2 x d matrix, and the quadratic quotient S/J, factors as

k
S/Jy =~ ® Sz /Jw;,  with Sy, a polynomial ring in the variables of 7;.

i=1

This in turn means that the free resolution of S/J> as an S-module is the tensor product
of the free resolutions of the S/ J,, . Hence the free resolution of S/ J; is a tensor product
of k Eagon—Northcott complexes, so S/ J> is arithmetically Cohen—-Macaulay (which
means that codim(J;) = pdim(S/J2)), and the Alexander dual S/ .12v has a linear free
resolution (which means that all differentials appearing in the free resolution of S/JY
after the first step are matrices of linear forms).

Theorem B is an analysis of the monomial OS algebra for the type A reflection
arrangements generalizing Example 1.2. An arrangement of type A, is defined by
the vanishing of the linear forms x; — x; for 1 < i < j < n + 1, which is also
the graphic arrangement (see [29, §2.4]) corresponding to the complete graph K.
The monomial OS ideal for K4 is generated by cubic monomials corresponding
to triangles in the graph, and quadratic monomials corresponding to pairs of disjoint
edges.

Theorem B For the braid arrangement A,_1, let J(K,) denote the ideal J. Then the
Hilbert series is P(S/J(Ky),t)/(1 — "L, where the numerator is

P(S/J(Kp), 1) =n+ (1 —n)(1 =)' — (;)M — "2
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The ring S/J(K,) has Castelnuovo-Mumford regularity two. For S/J(K,)V, the
Hilbert series is P(S/J(K,)",t)/(1 — t)”’], where the numerator is

P(S/IKDY 1) =1 —nt(2) & (Z)t D1 (” ; 1),(;),

and S/J(K,)V has projective dimension three, with Z"—graded Betti numbers

bom(S/J(Kp)Y) =1 if |m|=0,
bim(S/T(K)¥) = 1 if m<o Ky C Ky,
bym(S/J(Kn)Y) = 1 i lm| = (;) 1 an

-1
e S A

Theorem 4.5 describes the entire minimal free resolution for S/J(K,)Y. We discuss
Alexander duality in Sect. 2, prove Theorem A in Sect. 3, and prove Theorem B in
Sect. 4.

2 Alexander Duality

We will make use of two fundamental results involving Alexander duality: Primary
decomposition, and Hochster’s theorem. An excellent reference for both is [27].

2.1 Alexander Duality and Free Resolutions

Definition 2.1 Fix a field k, and let A be a simplicial complex on vertex set V. If
[V| =n,let S =k[xy, ..., x,]. The Stanley—Reisner ring of A is §/Ia, where

In = (xil-nxij [ i1, ...,1;]is not a face of A).

The ideal /A encodes all the non-faces of A, so in particular the simplicial complex
A and the ideal I carry the same information.

Example 2.2 Let A be a simplicial complex on four vertices, and edges {[12], [23],
[34], [14], [13]}. The missing faces are the edge [24], and all triangles. The missing
triangles [124] and [234] and the missing full 3-simplex [1234] are consequences of
the missing edge, so

In = (x2X4, X1X2X3, X1X3X4).

The complement of a face of A is a coface; let CF(A) denote the set of minimal
cofaces of A.
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Theorem 2.3 [36, 5.3.3] For a simplicial complex A, the primary decomposition of
IA is

IA = ﬂ (Xips ooy Xig)

[vi, v, JECF(A)

Example 2.4 In Example 2.2 the minimal cofaces of A are {[34], [14], [12], [23], [24]},
so the primary decomposition is

In = (x1,x2) N (x1, x4) N {x2, x3) N (x2, x4) N (X3, X4). 2.D

The fact that the minimal generators of a primary component can be chosen as variables
is special to squarefree monomial (= Stanley—Reisner) ideals. Notice that by choosing
variables as minimal generators of a primary component, the product of the generators
of a primary component of a Stanley—Reisner ideal is a monomial. The ideal generated
by such monomials (one for each primary component) is called the monomialization
of the primary decomposition of /4.

Definition 2.5 The combinatorial Alexander dual of A is
A ={oc CV|T¢A)
The condition that o ¢ A means that o is the complement of a non-face of A.

Theorem 2.6 (see [12] or [24]) Monomializing the primary decomposition of Ia
yields Iav.

Example 2.7 The nonfaces of A of Example 2.2 are
{[123], [124], [134], [234], [241]},
so the complements of the nonfaces are
{[41, 3], [2], [11, [13]}.

Hence the maximal faces of A" are the vertices [2], [4] and the edge [13]. In particular,
all edges are missing from A" except [13]. Monomializing the primary decomposition
in (2.1) yields

Inv = (x1x2, X1X4, X2X3, X2X4, X3X4),
which is indeed the Stanley—Reisner ideal of AVY.
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2.2 Free Resolutions and Betti Tables

The Hilbert Syzygy Theorem [13] guarantees that any finitely generated Z-graded
S = Kk[x1, ..., x,]-module M has a minimal graded finite free resolution: an exact
sequence of free modules F; ~ GajS(—j)hiv-i with b; ; € Z:

0—F - F % s Fy—> M —>0, (2.2)

where i < n and the entries of the d; matrices are homogeneous of positive degree.

Definition 2.8 For M as above, the regularity and projective dimension are
reg(M) = sup{j | biirj #0} and pdim(M) = sup{i | b;.. #O}.
The graded Betti numbers are
b; ; = dimy Tor; (M, k) ;.

This data is compactly encoded in the Betti table [14]: an array whose entry in position
(i, j) (reading over and down) is b; ;4 ;. This indexing seems odd, but it is set up so
that reg(M) is given by the index of the bottom row of the Betti table.

Example 2.9 The minimal free resolution for /x from Example 2.2 is given below.

x1x3 0
—X4 X4
0 —x
%

Launmn sl o oy 6 g(23)2 S(—4)* «—0

0<—IA

The corresponding Betti table is

~Clo o
j
2 |1 =
3 |2 2

The first column of the table reflects that /o has one quadratic generator and two cubic
generators. The second column shows there are two syzygies on the three generators.
In the same fashion it is easy to write down the minimal free resolution for S//av,
which has Betti table

[27, Cor. 5.59] shows that reg(Ip) = pdim(S§/Iav); for the example above we have
that pdim (S/Iav) = 3 =reg(Ia).
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2.3 Hochster’s Theorem

(see [24] or [27]) As in Sect. 2.2, A is a simplicial complex on n vertices and S =
k[xi, ..., x,]. However, we now endow S with the Z" grading, with deg(x;) = e;.

Theorem 2.10 For a simplicial complex A on n vertices and S graded by 7", let
m € Z" be a multidegree, and l[m| =), m;. Then

bim(Ia) = dim (Hjm|—i—2(Am), k)

where Ay is the subcomplex of A consisting of the faces of A of weight n such that
foralli € {1,...,n}, nj <m; (hence n < m pointwise).

Example 2.11 For Example 2.2, we compute the homology groups. The generators of
IA occur in multidegrees {(0101), (1110), (1011)}. We now compute

dim (Hjm|—3(Am), k)

form = (1111). For this multidegree, Ay, is clearly the entire complex A, so consists
of two (hollow) triangles, sharing the common edge [13], hence

dim (A1 (A1), k) = 2,
yielding two first syzygies on Ia. The syzygies themselves are

[x1x3, —x4,0], [x1x3,0, —x2].

3 Proof of Theorem A

Alexander duality led us to Theorem A: it was computations with the quadratic com-
ponent J> and the Alexander dual J,” which indicated that J," had a linear resolution.
Duality also is central in understanding nets.

Proof For the proof of (i), the key is Theorem 2.6: the Alexander dual 1™ of a squarefree
monomial ideal [ is obtained by monomializing the primary decomposition of 7,
as in Example 2.7, combined with the description of the primary decomposition in
Theorem 2.3.

o We first show
(M, X)isa (k,d)net = (Jm)a = (Jy)a-
A component of the primary decomposition of the monomial ideal Ji7 will contain
exactly one variable from each block m; of IT. Since (IT, X) is a net, this means
that Jy C J, so dualizing yields

Jno C J)\(/.
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Therefore (Jr1)a S (Jy )q; note thatitis not true that Jj = J/. From the definition
of Jp, dimy (J11)4 = k, soto prove equality it suffices to show that dimk(Jg)d =k.
Because Jy is a squarefree monomial ideal, it is the Stanley—Reisner ideal of
a simplicial complex A. By Theorems 2.3 and 2.6, to find the minimal degree
generators of J/, we need to find the biggest faces of A. As the monomials
of Jx correspond to the nonfaces of A, the biggest faces of A correspond to
monomials which are not divisible by any monomial in Jx. As soon as a monomial
is divisible by at least one variable from each of the k blocks of IT, the net condition
means it might be in Jy. However, the primary decomposition of Jr; will have d*
components, whereas Jy has dz.

We now argue that the maximal faces of A are exactly the complements of single
blocks 7;; to illustrate, in Example 1.2, the maximal faces of A are {[1245] =
361, [1346] = [25], [2356] = m}. To see this, notice that a set of lines o
corresponds to a non-face of A exactly when

oNm #@ for all blocks ;.

The maximal sets which fail to have this property are the complements of a single
block of IT, and the result follows.
e For the other direction,

(Uma = (Jy)a = (I, X)isa (k, d) net.

For (I1, X) a potential (k, d) net, since (Jrj)g = (J;)d and Jp is generated in
degree d, we have

Jn € Jy.

hence Jx C JY. As noted above, Jp is generated by monomials obtained by
taking exactly one element from every block, so this means every generator of Jx
satisfies this property, hence so also does X.

For the proof of (ii), the assumption on the net (IT, X) means that if (after a change
of variables) w = |1, ..., d| is a block of the partition I1, thenfor 1 <i < j <d, H;
and H; meet in a normal crossing point p. Thus, for each block 7 as above, we have
a subideal of J,

Jﬂ=<xl’xj'|1§i<j§d>.

For generic {ay, ..., ag}, J; can be written as the ideal generated by the 2 x 2 minors
of the 2 x d matrix

X X cee X
M=|: 1 2 dj|,
ayxy axp --- dqxqd

@ Springer



Discrete & Computational Geometry (2023) 70:1840-1861 1849

which by [13, Thm. A2.10] has an Eagon—Northcott resolution

2
C— Sym!($2)* @ A3(sY) — A2(sh) LY A2(82) — S/L(M) —> 0.

As the variables in the blocks of IT are distinct, we see that

Jy ~ @ Jris

m;ell

The hypothesis on the quadratic component J, means that there is a partition IT of the
d - k hyperplanes into k-blocks of size d, and that all hyperplanes within a block have
normal crossing intersection. Therefore, any point of intersection with multiplicity
greater than two cannot be contained in a block of I1, so must lie in X. The condition
on the primary decomposition from (i) ensures that every multiple point in X meets
exactly one line from each block of IT.

Remark 3.1 We thank an anonymous referee for suggesting a simplification in the
proof of (i).

Example 3.2 An infinite family of (3, d) nets is the Ceva family, given by the arrange-
ment defined by the vanishing of the polynomial (x? — y¢)(x? — z9)(y? — z%). Note
that the vanishing set of x¢ — y? defines d lines passing through the point (0:0: 1),
and similarly for the vanishing sets of x¢ — z¢ and y¢ — z%. This yields a (3, d) net

[1,...,d|d+1,...,2d|2d +1,...,3d|.
Therefore J is generated by the three polynomials of degree d (which define Jj)

(X1 X, Xg41 -+ - X2d, X2d41 -+ - X34},

and d? cubics corresponding to the triple intersections. As noted in [4], for com-
plex line arrangements in P2, this is the only infinite family known to have no
normal crossing points. For d = 3 the matroid is depicted in Fig. 2, where points
denote the lines of the configuration in P2. The set X consists of {{147}, {258}, {369},
{168}, {249}, {267}, {348}, {159}, {357}}.

In [3], Bartz gives a classification of complete 3-nets. As noted in [4], there are also
two isolated examples of configurations in IE% with no normal crossings: Klein’s con-
figuration has 21 lines, and Wiman’s configuration has 45 lines. It would be interesting
to check if these configurations support nets.

3.1 An Aside on the Singular Fibers of a Net or Pencil

In classical algebraic geometry, the term net refers to a three dimensional subspace of
the space of sections of some line bundle on an algebraic variety Z, while a pencil is a
two-dimensional subspace. Therefore a net gives a rational map ¢ from Z to P2, and
a pencil gives a rational map ¢ from Z to P!
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1 7
2 5
3 6 9

Fig.2 The Cevanet ford =3

Definition 3.3 [20, 3.3] If F|, F, € CJx, y, z]4 have no common factor, then the
pencil a; F| + a F> with [a; :as] € P! is Ceva type if there are three or more fibers
that factor as products of linear forms, and after blowing up the base locus, the proper
transforms of every fiber of ¢ are connected.

Proposition 3.4 If A = (I1, X) is a net satisfying part (ii) of Theorem A (all inter-
sections of lines within a block are normal crossing), then the net has singular fibers
beyond the singular fibers coming from the blocks of T1, unless A is a (3, 2) net or a
4, 3) net.

Proof In [20, Thm. 4.2], Falk—Yuzvinsky prove a result on the numerics of the Euler
characteristic of a multinet (IT, X), which for a (k, d) net takes the form

341X 2 2= kGd —d®) +2kd = ) u(p), G
peX

where X is the set of points of intersection of A of the lines within the blocks ;. They
prove that equality holds in (3.1) iff the only singular fibers of the net are the blocks.
Since | X| = d? for a net, if all intersections within the blocks have p(p) = 1, then

d
D up) = k(2>.
peX

The equality in (3.1) is only possible if k = 6 — 6/d, which implies (k,d) €
{(3,2), (4, 3), (5,6)}, and by [43] only (3, 2) and (4, 3) can arise for a net.

The next example illustrates both Theorem A and Proposition 3.4.

Example 3.5 The Pappus and non-Pappus arrangements appear as Examples 9 and 10
in Suciu’s survey paper [39]. Both are arrangements of nine lines in P?; each has nine
double points and nine triple points. There is a ninth line (not pictured) at infinity (see
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N

EEAY Ko ~ o0

Fig.3 non-Pappus arrangement

Fig. 3). The non-Pappus arrangement does not support a net. The Betti table of S/J>
is

; "lo 1 2 3 4 5 6
0 |1 - - - - C
1 |- 9 9o — - - _
2 |- — 18 18 — — —
3 |- - - 3 9 9 2

The Pappus configuration in Fig. 4 supports a (3, 3) net, with blocks [169|258|347|.
For the Pappus arrangement, the cubic generators of the monomial OS ideal are

{x1x2X7, X1X3X5, X1X4X8, X2X3X9, X2X4X6, X3X6X§, X4X5X9, X5X6X7, X7X8X9}.
The primary decomposition of Jij = (x1xeXx9, X2X5Xg8, X3X4x7) has components

(x1,x2,x3), (x1,%2,x4), (x1,%2,%7), (x1,%x3,%5), (x1,x3,x8), (x1,X4,X5),
(x1, x4, x8), (x1,x5,x7), (x1,%7,%8), (x2,x3,%6), (x2,x3,%9), (x2,X4,X6),
(x2, x4, x9),  (x2, X6, X7), (X2, X7, X9), (x3,X5,%6), (x3,X5,%9), (X3, X6, X8),
(x3, x8, X9), (x4, x5, X6), (x4,X5,X9), (x4,X6,x8), (X4,%8,%9), (X5,X6,%x7),

(x5, x7,x9), (x¢,x7,x8), (x7,X8,X9).

So the cubic minimal generators of J are elements of Jiy. The Betti table of S/J5 is
given by

; "lo 1 2 3 4 5 6
0 1T — — — — — =
1 |- 9 6 — — — =
2 |- — 27 27 12 -
3 | - — — 27 54 36 8
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W

Fig.4 Pappus arrangement

and the Betti table of the Alexander dual S/J,’ is

~Jloo1 2 34

J
0o |1 - — — =
1 - - - - _
2 - - - - _
3 - - - - _
4 - - - - -
5 | = 27 54 36 8

In contrast, for the Alexander dual S/J," of the non-Pappus arrangement the Betti
table is

~Jlo o1 o2 34

J
0 |1 — — — =
1 - - - -
2 - - - - _
3 - - - - _
4 |- 9 9 — _—
5 |- 3 9 9 2

As the ideal J,’ for the Pappus arrangement has a linear resolution, by the Eagon—
Reiner theorem [12], S/J, is Cohen—Macaulay, while the dual ideal sz of the
non-Pappus arrangement does not have a linear resolution, so for the non-Pappus
arrangement, S/ J> is not Cohen—Macaulay.

Example 3.6 By Proposition 3.4, the Pappus arrangement has singular fibers in addition
to the three normal crossing sets of lines of the blocks of I1. The unique (3, 2) net
is that of Example 1.2, and the only known (4, 3) net is the Hessian; both satisfy the
hypotheses of part (ii) of Theorem A.

4 The Monomial Orlik-Solomon Algebra for A,,_1

Let J(K,) denote the ideal J for the braid arrangement A,,_1 (equivalently, the graphic
arrangement K, ). Our focus in this section is on the algebraic behavior of the ideals
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12

\/

34

13 23

Fig.5 The simplicial complex A j(g,)

J(K,) and J(K,)". To prove Theorem B, we first prove the projective dimension of
S/J(K,)" is three, which follows from an analysis of the corresponding ideal. With the
bound on projective dimension of S/J (K,)" in hand, an analysis using Theorem 2.10
yields the Betti numbers for S/J (K,,)".

Applying [27, Cor. 5.59] shows that J(K,) has regularity two. As there are only
two rows in the Betti table of J(K}), to determine the Betti numbers, it suffices to
determine the Hilbert series of J(K}) and one row of the Betti table.

The top row of the Betti table of J(K,,) corresponds to a squarefree ideal generated
by quadrics, so is an edge ideal of a graph I'. The linear strand of the resolution is
interesting in its own right, as it is depends on the cut polynomial of T".

4.1 Hilbert Series of J(K,,)

We begin by describing the generators of the monomial ideals J(K,) and J(K,)".
For the complete graph K, the rank one elements of L(A,_1) are the (;) hyperplanes
V(x; — xj), so the rank two elements correspond to

(a) triangles in K,
(b) pairs of disjoint edges in K,.

We study the Stanley—Reisner ring in (;) variables S = k[x;; | 1 <i < j < n], mo-
dulo the ideal

J(Kp) = {xijx, xijxiexj | distinet i, j, k, [ € {1,...,n}).

Example 4.1 For K4, the minimal non faces of A ;(k,) are
{[12](34], [131[24], [14][23], [12][14][24], [23][241[34], [13][14](34], [12][13][23]}.

The complex in Fig. 5 corresponds to the braid arrangement in Fig. 1, where the vertices
12,23, 13, 34, 14, and 24 in Fig. 5 correspond, respectively, to the lines Ly, ..., L.
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Lemma 4.2 The simplicial complex A j(k,) corresponding to the ideal J (K,) consists
of n simplices of dimension n — 2, each meeting the others in n — 1 points, and the
face vector of A jk,) is given by (with notation as in [44, § 8.3])

2

n—1 n—4 1 1 n n—2
+ 3 X +...+4m—Dx+ — 2x .

Proof Vertices in A j(g,) correspond to edges in K,. The maximal faces of A,
correspond to simple graphs with vertex set [n] that have no pairs of the types (a) or (b)
above. The maximal such graphs are clearly the n star graphs with n — 1 edges,

—1
F(Ask,y,x) =x"""4n ((n — "2 4 (n )x”3

A ={[i, j1l, ..., [i, jaa1]}

for a fixed i. Every pair of such graphs share a common edge, and every edge lies in

exactly two such graphs. This explains the term (5)x"~2.

Remark 4.3 As pointed out by the referee, this complex is the nerve of the cover of
K, by closed edges, homotopy equivalent to K,.

Example 4.4 For K7, the f-vector is

f(Ayk,y) = (1,0,0,0,0,0,0) +7(0, 6, 15,20, 15, 6, 1) — (0, 21,0, 0,0, 0,0),
F(A K> x) = x® +21x% +105x* 4 140x> + 105x% + 42x + 7.

By [44, §8.3],
h(A,x) = f(A,x —1),
so for K, we have

h(Ajk,), x)

=@x-—1""1! +n((n —Dx— D"+ (” ; 1)(x —D" 3+ 1)

—(’;) (x— "2,

which simplifies to
= 1" ™ — (=1 — <;) (x — 1y"2,

In [25, §8.3], h;(A) is the coefficient of x4MA+1=1 in B(A | x), so since

P(S/Ia, 1) = (ho 4 hit + hot* 4 ---) /(1 — )dim A+
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we need to reverse the order of the h-vector, and the result for the Hilbert series in
Theorem B follows.

4.2 Resolution of the Alexander Dual

We now turn to the Alexander dual ideal J(K,)V. As noted in §2, J(K,)" is the
monomialization of the primary decomposition of J(K},). Letting CF(A) denote the
set of minimal cofaces of A, Theorem 2.3 yields

J(Ky) = N G xa).

[, +..nrif JECF(A)

By Lemma 4.2, A consists of n copies of the n — 2 simplex A, _;, glued at a total of
(g) vertices, so a maximal face of A is one of the A,,_»’s, whose complement coface

consists of the remaining
n ( 1 n—1
—n=1) =
2 2
vertices. Therefore J (K,)" is generated by the corresponding n monomials of degree
n—1
(2):

Theorem 4.5 The projective dimension of S/J(K,)V is three, and the VAS) -graded
Betti numbers are

bom(S/J(Kp)) = 1 if Im| =0,
brm(S/J(K)Y) =1 if m< Ky_1 C K,
bym(S/J(K)Y) = 1 if |m| = (;) ~1,
bam(s/7 (K" = (" if im|=("
3,m(/(n))—<2) lf|m|_<2).

Proof The proof follows from Hochster’s formula. For each K,_; in K,, there is a
generator with weight vector having entry 1 in the positions corresponding to edges
of the K,,_1, hence n generators of weight (”51).

We now make use of the LCM lattice resolution, as described in [21]. The first
syzygies of a monomial ideal correspond to the LCM of two generators. The two
corresponding K, subgraphs A; and A; intersect everywhere except along the
missing edge [ij] so the LCM corresponds to a weight vector which is one in all but
the single entry [ij]. This yields (’;) first syzygies, with weight as above.

For the second syzygies, by Hochster’s formula they must have weight (1, 1, ..., 1),
and correspond to the LCM of triples of monomials, of which there are (g) However,
these choices are not independent, since every ('Z) set with i > 4 has LCM of weight
(1,1, ..., 1). So accounting for dependencies, dependencies on dependencies, and so
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on, we find that the number of minimal second syzygies is

(6)-() ()= ()= ()= (2)

which concludes the proof. O

Combining Lemma 4.2, Theorem 4.5, and [27, Cor. 5.59] proves Theorem B.
Example 4.6 The Z-graded Betti table for §/J;" is

i

0o 1 2 3
T - - =

B3 |- - - -
4 |- 7 - -
15 |- — — -
6 |- - - -
17 |- - - -
18 |- — 21 15

The Hilbert series of P(R/J,’, 1) is therefore

1—7¢5 421720 — 15421
(1—1)°

14
1 )
== (Z G+ Dt +9:1 4316 — 3417 _9f18 _ 15;‘9) )
i=0

4.3 The Linear Strand of J(K,) and the Cut Polynomial

A squarefree quadratic monomial ideal encodes the edges of a graph I', with a generator
x;xj corresponding to the edge [ij]; such ideals are often called edge ideals, and there
is a wide literature on the topic; see [34]. It follows from Hochster’s theorem that the
Betti numbers b; ;11(S/Ir) are determined by the cut polynomial of the graph I'; this
is used by Papadima—Suciu in [30] to establish a formula for the Chen ranks of right
angled Artin groups; their result is over E, but it translates to S.

Definition 4.7 For a simple (no loops or multiple edges) graph I', the cut polynomial
is defined via

Or() = ch(F)tj, where ¢;(I') = Z (Jconnected components of 'y | — 1).

j=2 WCV
IWi=j
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In [24], Hochster proves the Betti numbers b; ;11 of S/Ir satisfy
bj j+1(S/Ir) = cjp1(I).

Since the regularity of S/J(K}) is two and we know the Hilbert series, to determine
the Betti table, it suffices to determine the top row, hence to finding the coefficients
of the cut polynomial of the graph I';, corresponding to the quadratic generators of
J(Kp). Let I, denote the corresponding edge ideal. For small n the ¢, are

n &) 3 4 cs 6 c7 s 9 €10 11 c12
4 3 0 0 0 0 0 0 0 0 0 0
5 15 30 10 0 0 0 0 0 0 0 0
6 45 210 390 285 100 15 0 0 0 0 0
7 105 840 3150 6510 7497 5565 2835 980 210 21 0

As any vertex v € A, lies on a pair of n — 2 simplices, to disconnect v requires
removing the 2(n — 2) vertices adjacent to v, leaving a total of (’;) — (2n — 3) vertices,

hence c;(J (K,)) vanishes when j > ("3%) + 2.

Problem 4.8 Determine the cut polynomial for T',,. It is not hard to show that the first
two ¢; are

¢ =bpp(S/Ir,) = 3(2)

n 1 n
c3 =bu(S/Ir,) =3 2.3.0-5) T3 0220 26)

5 Appendix: The Orlik-Solomon Algebra and Resonance Varieties

For a hyperplane arrangement
m
A:UHl g V:KZ+1,
i=1

we write M for the complement V \ 4; unless otherwise noted V is a K = C vector
space. We focus on the case where A C V is central and essential, where central means
the linear forms defining the H; are homogeneous, and essential means the common
intersection of the H; is 0 € V. Note that A defines both an affine arrangement in V,
as well as a projective arrangement in P(V).

Orlik and Solomon prove in [28] that the cohomology ring H*(M, Z) has a purely
combinatorial description: it is determined by the intersection lattice L(.A). This lattice
(in the graded poset sense) consists of the intersections of elements of .4, ordered by
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reverse inclusion. The ambient vector space V = 0, rank one elements of L A are
hyperplanes, and the origin is 1.

For the complement M of a hyperplane arrangement .4 with fundamental group
w1 (M) = G, the first resonance variety RY(G) is the jump locus for the cohomol-
ogy of G. We work over a field k of characteristic zero; by Orlik—Solomon’s result
H*(M,k) >~ E/I 4 (see Definition 5.4). By convention we write A for H*(M, k) and
R'(A) for R'(G). A is Z-graded; as it is a cohomology ring we denote the i graded
component by Al By Falk [18], the points (ay, . .., @) of RY(A) C k™ correspond to
one-forms a = ZT a;e; where the map A — A A a from A' to A% has rank < m — 2.

5.1 Combinatorics of Arrangements

Two important combinatorial players are the Mobius function and Poincaré polyno-
mial:

Definition 5.1 The Mdobius function w: L(A) — Z is given by

w® =1, pub = —Z,u(a) if 0 < b.

a<b

The Poincaré polynomial 7 (A, 1), defined as ) . L( A)(—t)rank(x) u(x), is equal to
St (dimy ATye

In [18] Falk introduced the concept of a neighborly partition:

Definition 5.2 A partition IT of a subset U of A is neighborly if for every codimension
two intersection H; N --- N H; with {iy, ..., ik} € U if all but one of the i; are
contained in a block of IT, then {i1, ..., ix} is contained in the block.

Example 5.3 For the arrangement Az in Example 1.2, the partition {14|25|36} is a
neighborly partition of the set {1, 2, 3,4, 5, 6} of all lines of the arrangement.

5.2 Algebra of Arrangements
The central algebraic objectin the study of hyperplane arrangements is the cohomology
ring of the arrangement complement, which was described by Orlik—Solomon in their

landmark paper [28].

Definition 5.4 The Orlik—Solomon algebra A with coefficients in k of an arrangement

m
A= JH cPt
i=1
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is the quotient of the exterior algebra E = A (k™) on generators ey, . .., e, in degree
1 by the ideal I 4 generated by all elements of the form

r

a(e,---e;,) = Z(—l)q_le,-1~~~é;~oe,- such that codim (H;, N---NH;) <r.
q

The ideal I 4 is generated in degree > 2, so A% =kand A! = k™,
Example 5.5 For Example 1.2, I 4 = (d(ejez2e3), d(ereseq), d(ereses), d(ezeaes)).

It is clear from the definition that the Orlik—Solomon algebra A depends purely on the
combinatorics of L 4, as do the neighborly partitions appearing in Definition 5.2. Nets
are connected to the resonance variety RY(A) via the results of [20]. As noted earlier,
for each a € A!, we have a A a = 0, so exterior right-multiplication by a defines a
cochain complex of k-vector spaces

Na Na Na Na

(A,a): 0 A° Al Ak

5.1)

The complex (A, a) was introduced by Aomoto [1], and used by Esnault—Schechtman—
Viehweg [16] and Schechtman—Terao—Varchenko [35] to study local system cohomol-
ogy.Fora =Y"7_, aje; € A, we can define the loci where there complex is not exact:

RI(A) ={a € A' | dim H/(A, a) # 0},

which are homogeneous algebraic subvarieties of P!, introduced by Falk in [18].
Yuzvinsky shows in [40] that the complex is exactas long as Y+, a; # 0. Falk shows

i=1
that each component of R!(A) is associated to a neighborly partition of a subset U of
the hyperplanes of A. In [20], Falk—Yuzvinsky give an interpretation of this in terms
of the geometry of multinets in P, which are collections of lines with multiplicity.

Example 5.6 For Example 1.2, since e;e; — ejex + ejex = (e — ej)(ej — ei), the

generators of I 4 can be written as

(e1 —ex) N(e2 —e3), (e1 —es) A (es—ee),
(e2 —e4) N (es —eg), (e1 —e3) A (e3 —es).
Hence for exterior multiplication with the one form a

1 Na

Al 25 A2

the P! spanned by {e] — ez, €2 —e3} C PS5 ~ ]P’(Al) is a component of R! (A), as are
the three P!’s associated to the other three quadrics in I 4. A computation shows that

(e1 —exteq—e5) N(ex —e3+es—eg)
= d(e1eze3) + d(e1eseq) — 0(ezeqeq) + d(ezeses).
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This means there is a fifth P! in R!(A). As shown by Falk in [18], R'(A) is the
union of these five lines. The fifth component comes from a neighborly partition
IT = |14]25|36|. As noted in Example 1.2 the partition IT is a (3, 2) net.

For a maximal subset U = {H;,, ..., H;, } having codimension two intersection, the
partition into singleton blocks |i1|iz|. . .|ix| is neighborly, and yields components of
R'(A) which are called local. These components correspond to generators of 4, as
in the first four P!’s in Example 5.6. In [9, 26] it is shown that RY(A) is a union of
projectively disjoint projective subspaces.
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