Influence Propagation for Linear Threshold Model
with Graph Neural Networks

Francisco Santos, Anna Stephens, Pang-Ning Tan, and Abdol-Hossein Esfahanian
Dept. of Computer Science and Engineering
Michigan State University
East Lansing, United States
{santosf3, steph496, ptan, esfahanian} @msu.edu

Abstract—Influence propagation is a network phenomenon
governing how information is diffused in a network. With
the advent of deep learning, there has been growing interest
in applying graph neural networks to extract salient feature
representation of the nodes for a variety of network mining
tasks, such as forecasting the virality of information cascade.
Given the importance of social influence, this paper presents a
novel deep learning framework called IP-GNN for simulating
the information propagation process in a complex network and
learning a node representation that embeds information about
the diffusion process under the linear threshold model. Our
framework employs a modified graph convolutional network
architecture with adaptive diffusion kernel to capture long-range
propagation of information along with an entropy-regularized
mixture of loss functions to ensure accurate prediction and faster
convergence of the learning algorithm. Experimental results on
4 real-world datasets show that the model accurately mimics
the output of the linear threshold model, achieving an average
accuracy that exceeds 90% on all datasets.

Index Terms—Influence propagation, Deep Learning, Graph
Neural Network

I. INTRODUCTION

The study of influence propagation, also known as diffusion
of innovation, in complex networks has attracted significant
interest over the last two decades, motivated by its applicability
to diverse disciplines, from viral marketing [1] [2] to under-
standing fake news propagation [3] [4] and epidemic spread [5]
[6]. Previous studies have focused on myriad issues, such as
proposing a diffusion model that characterizes the influence
propagation process [7]-[9], identifying the k-most prominent
seed nodes that would maximize the information spread [10],
[11], and forecasting the virality of information cascade such
as fake news, memes, and disease pandemic [12], [13].

In the meantime, graph neural networks [14] have also
emerged as a popular machine learning approach for mod-
eling social networks as well as the spatio-temporal graphs
associated with the traffic [15] and weather [16] forecasting
tasks. These approaches would employ a deep neural network
architecture to learn the representation of different entities
(nodes) of the domain and their relationships, providing an
informative set of features for subsequent learning tasks. Given
the prominent role influential nodes play in a network, this
begs the question: Is it possible to incorporate the influence
propagation process explicitly into the deep learning formu-
lation? In doing so, this would help enrich the features learned

for the downstream tasks given the domain-guided knowledge
about the information diffusion process.

While there have been several previous works on inte-
grating node influence into representation learning, e.g., via
the random walk approach [17], they generally focused on
homophily-driven diffusion, which is the tendency of similar
individuals to form ties with one another, instead of social
influence-based contagion [18]. In particular, two social actors
who are directly linked may not necessarily influence the
behavior of each other. As the latter requires understanding of
the information propagation process, integrating the diffusion
model explicitly into the deep learning formulation is thus an
important research problem. Our paper aims to fill this gap by
presenting a novel deep neural network framework capable of
robustly sumulating the information diffusion process.

Specifically, our influence propagation network is guided
by a user-specified diffusion model, which governs how the
influence will spread and which users will be affected. Though
there are numerous diffusion models available [8], [10], this
workshop paper presents our preliminary results using the
linear threshold model [19], which is a discrete-time model
that considers the use of thresholds to determine whether a
user will likely be influenced by the collective behavior of
its neighbors. Figure 1 illustrates an example of how the
linear threshold model works. Assume each node can be in
one of two states—activated (green) or deactivated (white).
Initially, assume there is only node (A) that is activated. In
every round, each node will sum up the edge weights of its
activated neighbors. If the sum of the edge weights exceeds its
threshold, then the node will be activated. In this case, node
A will activate node B since the edge weight is equal to the
threshold for B. However, it will not be able to activate node
D, whose threshold (0.9) is more than the edge weight (0.5).
In turn, node B will then influence node C as the edge weight
is greater than the threshold. This example distinguishes social
influence from homophily, in which not all neighbors are
equally influenced.

Designing a deep neural network framework to simulate
the linear threshold model has its challenges. First, one has
to reconcile the discrete-valued input/output of the linear
threshold model with the continuous nature of deep neural
network formulation. Second, the neural architecture must be
able to simulate multiple steps of information propagation,

Fig. 1: Linear Threshold Model Example. The green nodes represent that they are activated, otherwise they are deactivated.
The black number in the center of the node represents the threshold. The red number represents the sum of edges of the
activated neighbors. The number next to edges represents the weight of the edge.

taking into account the threshold associated with each user.
A trivial solution would be to use conventional Graph Con-
volutional Network (GCN) architecture [14], which leverages
the adjacency matrix to perform message passing between
neighboring nodes. Unfortunately, this approach is suscep-
tible to over-smoothing problem, where the model outputs
start to saturate when extended beyond two or three graph
convolutional layers. This leads to significant drop in its
model performance. Another challenge is training the model to
achieve good performance and fast convergence. Note that the
influenced nodes depend on the choice of initial seed, i.e.,
the set of initially activated nodes. A different initial seed
will lead to different set of activated nodes, even though the
graph topology and node thresholds remain unchanged. Given
the exponential number of possible initial seed configurations,
designing an efficient yet effective training procedure on mini-
batches of seed samples is a challenge. The deep neural net-
work must generalize well even to initial seed configurations
not seen during training.

To overcome such challenges, we propose a novel frame-
work called IP-GNN (Influence Propagation with Graph Neu-
ral Networks) which aims at learning the influence propagation
process using a deep neural network. Our framework uses a
combination of a modified GCN with an adaptive diffusion
kernel and a stack of fully connected layers to simulate the
influence propagation process. The adaptive diffusion kernel
enables us to capture the information propagation for multiple
time steps using learnable kernel weight parameters. Our
framework also employs degree-based sampling for initial seed
selection and an entropy-regularized loss function to train the
network for higher accuracy and faster convergence.

In summary, the main contributions of our paper are as
follows:

e« We develop an approach for simulating the influence
propagation process using deep neural networks. Our

framework employs a modified GCN with adaptive dif-
fusion kernel and entropy-regularized loss to improve its
performance and help the model converges faster.

e« We design a training procedure that performs degree-
based sampling to mitigate the exponential search space
of initial seed configuration.

e We performed experiments on numerous real-world
datasets to demonstrate the efficacy of our approach.

II. RELATED WORKS
A. Influence propagation

The linear threshold model is one of the most used influence
propagation models. It is based on the idea of each node having
a threshold, which represents the difficulty of influencing the
node. The idea of node threshold first came from Granovetter
[19] and Schelling [20]. Others such as Pautasso et al. [21]
have looked into generating more realistic simulations for
real-world applications such as disease outbreaks using the
linear threshold model. The authors in [21] use the probability
of infection transmission between connected nodes and the
probability of infection persistence in an infected node to
calculate the node influence threshold.

Independent cascade is another prevalent diffusion model, in
which each activated node has certain probability to influence
its immediate neighbor. If it fails, then it will not make
any further attempts to influence the neighbor. Kempe et al.
[10] showed that the generalized versions of the independent
cascade model and linear threshold model are equivalent.
Note that both independent cascade and linear threshold are
considered user-to-user influence models.

Barbieri et al. [9] presents a diffusion model that focuses
more on user authoritativeness and interest in a topic instead of
a user-to-user influence model. Their diffusion model is more
designed towards viral marketing. Aral et al. [22] argues that
having a single threshold is insufficient. Their model considers

an influence parameter and a susceptible parameter, which
measure how influential the user is and how easy the user is
to convince. The two calculated metrics are then combined to
create an edge weight, which is used for influence propagation.

B. Graph Neural Networks

Graph neural networks are typically used to learn the feature
representation for various network mining tasks including
node classification [14], [23], [24], link prediction [25]-[27],
and graph clustering [28] [29]. For node classification, some
popular methods include GCN [14], Graph Attention Network
[23], and GraphSage [24]. GCN employs a message-passing
mechanism to aggregate the embedding of its neighbors in
order to learn the representation of a node. The approach
requires stacking [graph convolutional layers to perform
feature aggregation from neighbors located [-hop away. Graph
Attention Network [23] uses multi-head attention layers to give
higher importance to certain neighbors of a node. GraphSage
[24] uses a sampling approach to improve efficiency of the
node representation learning task.

III. PRELIMINARIES

A. Problem Statement

Consider a graph G = (V, E, X) where V is a the set of
nodes, E C V x V is the set of edges, and X € RIVIXd ig the
node features. Let A be the adjacency matrix representation of
E where A(v;,v;) = 11if (v;,v;) € E, otherwise A(v;,vj) =
0. Assume the weight for each edge is given by W = DA
Let s! be the binary state of node v at time step ¢, where
sf} = 1 if v is activated and O otherwise. Here, the definition of
a node in an activated state is domain-dependent. For example,
it may refer to the adoption of an idea, decision to share or
retweet a social media post, or an individual in an infected
disease state. The initial state of each node in the graph is
denoted as s° € RIVI. The number of activated nodes at time ¢
can be computed as K; =), st For instance, in influence
maximization problems [10], K is assumed to be given by
users and the objective is to find an initial set of activated
nodes, s, that will maximize K; as t — oo.

The activation of the nodes depends on a threshold vector
7 € RIVI, Given the current state of the nodes, s, and their
respective thresholds, 7, a diffusion model is a function of the
form g : {0, 1}V x RVl — {0,1}/V] with the output being
the next state of the node, i.e., s = g(s, 7). For brevity,
we denote the T-step information propagation process as

sT EgT(SO,T) =g [g (---g(so,r)) ,T]

Definition 1 (Influence Propagation): Given a graph G =
(V,E, X), a threshold vector 7, an initial state vector, s° €
{0, 1}‘V|, and a diffusion model g, compute the final state of
the nodes after 7' time steps, i.e., sT = g7 (s%, 7).

The goal of this paper is to train a deep neural network fy(-)
that accurately simulates the output of the diffusion model
after T time steps given the initial seed, s°.

B. Background

1) Linear Threshold Model: In this model, at every time
step, each node will sum up the edge weights of its activated
neighbors to determine whether it should be activated. If the
sum is greater than or equal to the threshold, then the node
becomes activated, as shown by the equation below:

. t
3?+1: 1 if ZjWiijZTj
¢ 0 otherwise

where W is the edge weight matrix. Furthermore, a node that
has been activated (e.g., an initial seed node) remains activated
even if none of its neighbors are activated. One way to enforce
this constraint is by setting its threshold 7, = 0 if s = 1.
The linear threshold model can be implemented as the
following function to predict the next state of the nodes:

1)1 if si™' =1 W
! step(}.; Wijsh —7;) otherwise

where Step(-) is an element-wise Heaviside step function

1 ifa; >0

0 otherwise

Step(z;) = {

2) Graph Convolutional Network (GCN): This is a graph
neural network that uses a message-passing mechanism to
learn the feature embedding for each node. The message-
passing takes the current embedding of each neighbor and
aggregates them to create the new node embedding. The
formulation of a GCN can be formally written as follows:

HMHYD = o(AH'9D))

where H(*1) is the node embedding for (I + 1) layer, o is
a nonlinear activation function (e.g., ReLU), 6 is the model
parameters and A is the normalized adjacency matrix, which
is defined as follows:

A=A+T and A=D2AD 2 3)

where I is the identity matrix and D is a diagonal matrix
containing the degree of each node.

3) Random Walk.: A random walk traversal on a graph
starts from a source node u; and randomly chooses an im-
mediate neighbor of node u; to visit next. This process of
randomly selecting a node to visit next is repeated until the
length of the traversal is equal to d, a user-specified parameter.
Formally, the probability of visiting a node w is given by the
following equation:

P |)= Lo if (i,j) € £
u; = ulu;—1 =v) =)
! 0, Otherwise

where 7; ; is a normalized probability between the node ¢ and
7. Note that a node can potentially be visited multiple times
during the random walk process.

Linear Threshold Model

p— s
\, J l
)
L —
A Diffusion [\ 0ss
Kernel GCN DNN I
L §T
Sampling
Training —— 50 —
Samples \)
~—
IP-GNN L
)
Node2Vec X
) S —

Fig. 2: A schematic illustration of the IP-GNN framework. Here, sY denotes the initial condition, 7 denotes the threshold and
X is the initial feature embedding obtained from Node2Vec. The framework consists of two major components—a modified
graph neural network with adaptive diffusion kernel (shaded area) and a linear threshold model used to generate the ground
truth activated nodes for each given seed. The output of IP-GNN corresponds to s”, which is the predicted state of the nodes

after 7' time steps.

IV. PROPOSED IP-GNN FRAMEWORK

Figure 2 contains a visual representation of our proposed
framework. The framework is designed to simulate the 7-
step information propagation process of the linear threshold
model. As shown in the diagram, the framework employs a
modified GNN with adaptive diffusion kernel and a stack of
fully connected layers to learn the information propagation
process. During training, IP-GNN would query the linear
threshold model to generate a ground truth list of activated
nodes for validation. It will compare its output 87 against
the ground truth s” and uses the loss to update its model
parameters. Once the network has been trained, the learned
feature representation of the IP-GNN can be utilized for any
subsequent downstream tasks. A detailed explanation of the
framework is given in the subsections below.

A. Design of IP-GNN Architecture

Learning to simulate the output of the linear threshold model
using deep neural networks is not a trivial task. Our objective
here is to simulate the information propagation after multiple
time steps. A naive attempt would be to use a stack of fully
connected layers, but such a model would not be able to learn
well given the lack of information about the network topology.
For this reason, our framework uses a graph convolutional
network (GCN) but a fundamental problem still remains. A
vanilla GCN may only perform message passing effectively
up to neighbors that are two or three hops away due to its
well-documented over-smoothing effect [30]. As a result, the
vanilla GCN will not have access to a larger neighborhood
size information (i.e., T-hop neighbors) which is needed for

effective modeling of the diffusion process. Furthermore, the
relative strength of influence by the neighbors may depend on
how far they are located from each other.

To allow the model to have access to a larger neighborhood
size, we modified the GCN to employ an adaptive diffusion
kernel [31] instead of a weighted adjacency matrix. This gives
us the flexibility to consider the influence of neighbors located
I-hops away, with learnable parameters {);} associated with
each hop [. The adaptive kernel is defined as follows:

“4)

where A is the normalized adjacency matrix defined in Eqn.
(3) and), is a learnable parameter that represents the influence
of nodes located [hops away. The framework still uses a
two-layer GCN, with its adjacency matrix replaced by the
adaptive diffusion kernel. The forward pass of our modified
GCN framework performs the following computation:
Z=Q% (QVx0,) 6, 5)
where the Q(V)’s correspond to the adaptive kernels (with
potentially different set of weight parameters \;’s), ¢; and
0 are the GCN parameters while o refers to the ReLU
activation function. During training, the values of the learnable
parameters \’s are initially set to 1 before they are updated
during backpropagation.
Conventional GCN requires an input matrix X correspond-
ing to the node features. However, since the linear threshold
model does not require access to the node features, we provide

a structural embedding of the nodes as the input feture matrix
X of the GCN. Specifically, we use the embedding generated
by the Node2Vec [32] algorithm. Node2Vec performs trun-
cated biased random walks to learn the feature embedding of
the nodes. The node embedding obtained is then concatenated
with the initial condition vector s° as well as the threshold
vector 7 before providing them as input to the GCN. Finally,
the GCN’s output Z will be sent through a stack of fully
connected layers, which uses a sigmoid function in its final
output layer, to generate predictions of the activation states of
the node at time step 7'. Specifically, the predicted output of
IP-GNN is as follows:

§T =FCN(2) € [0,]V, (6)
where Z is given by Eqn. (5).

B. Training Procedure

The IP-GNN framework will be trained to simulate the
information propagation given an initial seed, s'. However,
given the combinatorial number of possible seeds, ensuring
the trained network generalizes well to any given input seed is
a challenge. To help with the training process, our framework
must be trained to use different initial seed configurations,
where each seed contains a subset of nodes assumed to be
activated. A naive approach would be to use a uniform distri-
bution to select the seed nodes for activation. Unfortunately,
due to the scale-free property of most networks, this approach
may not be effective as it tends to choose low degree nodes
that have little influence on the information propagation. To
circumvent this issue, we employ a degree-based sampling
approach, in which the probability a node is chosen to be a
seed is proportional to its node degree. The higher the degree,
the more likely it will be selected as part of the initial seed.
This allows the algorithm to learn the feature embedding of
highly influential nodes in the network.

We created mini-batches of initial seed samples to train
our graph neural network. First, we query the linear threshold
model to obtain the 7-step information propagation for each
initial seed sample s°. The output of the linear threshold model
will be used as the ground truth list of activated nodes, sT.
This process is repeated for every seed sample in the mini-
batch to obtain their respective ground truth values. To improve
its efficiency and reduce the number of queries, a new mini-
batch is created only after the network has been trained for a
certain number of epochs’.

The mini-batches are used to train IP-GNN by updating
the parameters of our deep neural network (which includes
the learnable parameters of our adaptive diffusion kernel) in
such a way that its predicted output 87 is consistent with the
ground truth s”. To ensure accurate prediction of activated
nodes, we employ the following cross-entropy loss function:

B V]|

1 . A
Lop = W D> siilog(s),) +(1—st) log(1-51,) (D)
b=1 i=1

'We use 200 epochs for each new mini-batch of samples in our experiments.

where |V| is the number of nodes in the graph, B is the mini-
batch size, §sz is the prediction for node ¢ being activated,
and sipt is its ground truth value for the seed sample b in the
mini-batch.

Additionally, to ensure that the model can accurately learn
initial seed configurations that can produce a large number of
activated nodes, the following weighted mean square error is
also calculated:

B V]

K .
Lmse = Z ﬁ Z(SZ:Z — ngi)2 (8)

b=1 i=1

where K =), sai is the actual number of activated nodes
after T' propagation steps for sample b in the mini-batch.
The weight factor ‘Kﬁ gives a higher penalty if the model
incorrectly predicts the number of activated nodes when K
is large for the given sample b.

Another challenge in training the network is to reconcile
the discrete-valued ground truth activation states against the
continuous-valued prediction of our deep neural network. In
particular, a small change in the predicted sigmoid-layer output
may not significantly alter the loss, causing the gradient of
the network to saturate easily. To overcome this challenge,
we employ the following entropy regularization to bias the
predicted output towards either 0 or 1 when compared against
the ground truth activation states of the nodes:

B V]
Lon=—= 33 7 log(sT.) ©)
V] b=1 i=1
Note that the entropy is maximized when all the 3, ; are equal
to 0.5 and minimized when §; ; goes to 0 or 1.
The overall loss function to be optimized by the IP-GNN
network is

Liotat = aLog + BLmse + YLER (10)

where o, 8 and v are hyper-parameters. Note that the loss
function above is defined for one seed sample in the mini-
batch. After the loss is calculated for all seed samples in the
mini-batch, the gradient of the total loss will be used to update
the model parameters during backpropagation.

V. EXPERIMENTS

This section gives a detailed description of the experiments
performed as well as the datasets used. The code implemen-
tation is available at https://github.com/frsantosp/IP-GNN.

A. Data Description

The experiments were performed using the following 4 real-
world networks datasets. A summary of the characteristics for
each dataset can be found in Table I.

¢ Facebook [33]: This network dataset was obtained from

the Stanford Network Analysis Project (SNAP). The
nodes represent Facebook users while the edges represent
friendship relations among the users.

e German Credit [34]: This dataset contains information

about customers of a German bank. Each node represents

TABLE I: Summary description of datasets.

Dataset V] [E]

Wikipedia 889 2,900
Facebook 1045 | 53498
FB Food 620 2100
German 1000 | 24970

a bank customer while each edge represents a pair of
customers with similar paying habits.

¢ Facebook Food [35]: This dataset contains verified Face-
book pages that focus mainly on the topic of food. The
nodes represent Facebook pages while the edges represent
mutual likes between the pages.

o Wikipedia [35]: This dataset corresponds to the
Wikipedia voting data. The data was collected since the
beginning of Wikipedia until 2008. The nodes represent
Wikipedia users while the edges are votes between users.

B. Experimental Setup

Our model consists of a two-layer GCN with 4096 hidden
neurons in each layer along with a 4-layer fully-connected
network with a hidden representation of size 512. We used
Adam as our optimizer for both GCN and the fully connected
layers. The learning rate was set to 0.01 for the GCN and
0.0001 for the fully connected layers. The model was trained
using a batch size of 64 for a maximum of 2000 epochs. The
switching to a new mini-batch of seed samples occured at
every 200 epochs. The hyperparameters associated with our
loss function were set to o = 1, § = 0.1, and v = 0.0001.
Each initial seed configuration was designed to have Ky = 50
activated nodes.

C. Metrics

After the deep neural network had been trained, for evalu-
ation purposes, we randomly generated another 500 samples
of initial seed configurations, sY, for each dataset. We then
applied the linear threshold model to obtain the ground truth
set of activated nodes, s”, associated with each seed sample.
We compared the ground truth activation against the predicted
output of IP-GNN, 87, using the following metrics:

o Precision:

True Positives

Precision = — —
True Positives + # False Positive
e Recall:
True Positives
Recall = s v

True Positives + # False Negatives

e Fl-score:

Fl-score = 2 x Recall x Precision

Recall + Precisions
+ Root Mean Square Error:
N-1 .
Zi:o (yz - yi)2

RMSE(y,) = 2

e Correlation:

_ S (i —)y —)

r(z,y) = —== = z =
\/Zi:1(mi - 37)2\/21‘:1(2/71 - 9)?
Precision, recall, and F1-score were used to evaluate the

correctness of the activated nodes. Specifically, these metrics

would compare s” against 87 for each initial seed configu-
ration. The reported results correspond to the average value
of these metrics computed over the 500 samples. RMSE and
correlation compare the actual number of activated nodes
against the predicted number. To do this, we first sum up

the predicted activated nodes, K’T = Zlv‘ §T and the actual

i=1"%1
activated nodes K1 = Z‘Zzll sI' for each sample. We then
create a vector containing the Kr and K values for all the

samples before calculating their RMSE and correlation values.

D. Results

Table II summarizes the performance of IP-GNN on all
4 datasets. For the Wikipedia dataset, IP-GNN achieved a
precision value of 0.9538, which means 95% of the nodes
predicted to be activated were supposed to be active according
to the linear threshold model. The recall for IP-GNN was
found to be 0.9317, meaning 93% of the true activated nodes
were correctly predicted to be active. The Fl-score was also
high, 0.9415, which suggests that our model was able to
correctly predict the activated nodes in the Wikipedia dataset
with a low number of false positives and false negatives.

The RMSE shows that, on average, around 31.65 nodes
were misclassified for this specific dataset. Considering that
the graph size is 889, the number of misclassified nodes is
relatively small, which is about 3.6%. The correlation value
is also high at 0.8816. As can be seen from Figure 4, there is
a clear linear trend when plotting the predicted versus actual
number of activated nodes for the 500 test samples.

The same trend was observed for the other 3 datasets.
The precision, recall, and F1-scores were consistently above
0.93 for all datasets. Though the RMSE values for Facebook
and German datasets were slightly higher, if we consider the
size of the graphs, the error rate remained to be around 3%,
which is similar to the magnitude observed in the Wikipedia
dataset. The correlation values were above 0.8 for three out
of the four datasets. The only dataset with a correlation value
below 0.8 was the Facebook dataset. As shown in 4, a linear
trend is still detectable for the Facebook dataset, though it is
not as clear as the trend observed in other datasets. Despite
its lower correlation, the RMSE shows that the model still
performs quite well as its prediction error is only 36.57 nodes
on average.

Figure 3 shows the true positive and false positive rates of
IP-GNN on the four datasets. For the Wikipedia, Facebook
and German datasets, their false positive rates were mostly
below 0.2 while the true positive rates were mostly above
0.8. The Facebook food dataset struggles slightly by having
a higher false positive rate (above 0.2) for some of the seed
samples but still maintains a high true positive rate.

TABLE II: Performance evaluation for IP-GNN on four real-world datasets.

Precision Recall F1 RMSE Corr
Wikipedia 0.9538 4+ 0.0378 | 0.9317 £ 0.0362 | 0.9415 4+ 0.0194 | 31.65 0.8816
Facebook 0.9507 4+ 0.0442 | 0.9305 £ 0.0349 | 0.9392 + 0.0213 36.57 | 0.7008
FB Food 0.9383 4+ 0.0577 | 0.9668+ 0.0210 | 0.9475 £+ 0.0303 27.58 | 0.8180
German Credit | 0.9439 + 0.0398 | 0.9634 £ 0.0298 | 0.9524 4+ 0.0148 33.68 | 0.8377
10 o 10
r Wikipedia F’ Facebook
0.8 08§
E 0.6 g 0.6
0.2 0.2
0.0 T 0.0 ™
0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate False Positive Rate

FB Food German

0.8
0.6

0.6

04

True Positive Rate
True Positive Rate

02

0.4 0.6
False Positive Rate

0.8 0.2 0.4 0.6

False Positive Rate

Fig. 3: Comparison of true positive and false positive rates of IP-GNN on 500 test samples.

Wikipedia
460 L[] [

Facebook °
500

440
480

420
460

Predicted
Predicted

400

440
380

420 .
360

400

300 450

° ° 520
FB Food .
.

380 510

500

360
490

340 480

Predicted
Predicted

470

320
460

450

300

550

Fig. 4: Comparison of actual and predicted number of activated nodes by IP-GNN on 500 test samples.

VI. CONCLUSIONS to learn the influence propagation process beyond the 2-
hop message passing of GCN. We also present an effective
way to effectively train the model so it can achieve higher
accuracy and fast convergence. Empirical results on 4 real-

world datasets verified the effectiveness of our approach.

This paper presents a novel method of using deep neural
networks to simulate influence propagation. We designed a
framework that uses an adaptive diffusion kernel to overcome
the oversmoothing problem of GCN, thus allowing IP-GNN

The results of this research open the door for many different
possibilities. One possible research direction is to extend the
framework to other diffusion models such as Independent
Cascade. Another possible research direction is to investigate
the value of the learned embedding for other downstream tasks
such as forecasting information cascade, influence maximiza-
tion, node classification, etc.

ACKNOWLEDGMENT

This material is based upon work supported by the NSF
Program on Fairness in Al in collaboration with Amazon under
grant #IIS-1939368. Any opinion, findings, and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
National Science Foundation or Amazon.

[1]

[2]

[3]

[4]

[5]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

W. Chen, C. Wang, and Y. Wang, “Scalable influence maximization for
prevalent viral marketing in large-scale social networks,” in Proceedings
of the 16th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2010, pp. 1029-1038.

T. N. Dinh, H. Zhang, D. T. Nguyen, and M. T. Thai, “Cost-effective vi-
ral marketing for time-critical campaigns in large-scale social networks,”
IEEE/ACM Transactions on Networking, vol. 22, no. 6, pp. 2001-2011,
2013.

J.-H. Cho, S. Rager, J. O’Donovan, S. Adali, and B. D. Horne,
“Uncertainty-based false information propagation in social networks,”
ACM Transactions on Social Computing, vol. 2, no. 2, pp. 1-34, 2019.
J.-H. Cho, T. Cook, S. Rager, J. O’Donovan, and S. Adali, “Modeling
and analysis of uncertainty-based false information propagation in social
networks,” in GLOBECOM 2017-2017 IEEE Global Communications
Conference. 1EEE, 2017, pp. 1-7.

Z. Wang, C. Xia, Z. Chen, and G. Chen, “Epidemic propagation with
positive and negative preventive information in multiplex networks,”
IEEE transactions on cybernetics, vol. 51, no. 3, pp. 1454-1462, 2020.
C. Xia, L. Wang, S. Sun, and J. Wang, “An sir model with infection delay
and propagation vector in complex networks,” Nonlinear Dynamics,
vol. 69, pp. 927-934, 2012.

F. Xiong, Y. Liu, Z.-j. Zhang, J. Zhu, and Y. Zhang, “An information
diffusion model based on retweeting mechanism for online social
media,” Physics letters A, vol. 376, no. 30-31, pp. 2103-2108, 2012.
A. Guille, H. Hacid, C. Favre, and D. A. Zighed, “Information diffusion
in online social networks: A survey,” ACM Sigmod Record, vol. 42,
no. 2, pp. 17-28, 2013.

N. Barbieri, F. Bonchi, and G. Manco, “Topic-aware social influence
propagation models,” Knowledge and information systems, vol. 37, pp.
555-584, 2013.

D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2003, pp. 137-146.

Y. Li, J. Fan, Y. Wang, and K.-L. Tan, “Influence maximization on
social graphs: A survey,” IEEE Transactions on Knowledge and Data
Engineering, vol. 30, no. 10, pp. 1852-1872, 2018.

S. Krishnan, P. Butler, R. Tandon, J. Leskovec, and N. Ramakrishnan,
“Seeing the forest for the trees: new approaches to forecasting cascades,”
in Proceedings of the 8th ACM Conference on Web Science, 2016, pp.
249-258.

L. Weng, F. Menczer, and Y.-Y. Ahn, “Virality prediction and community
structure in social networks,” Scientific reports, vol. 3, no. 1, pp. 1-6,
2013.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.
K.-H. N. Bui, J. Cho, and H. Yi, “Spatial-temporal graph neural network
for traffic forecasting: An overview and open research issues,” Applied
Intelligence, vol. 52, no. 3, pp. 2763-2774, 2022.

T. Wilson, P-N. Tan, and L. Luo, “A low rank weighted graph con-
volutional approach to weather prediction,” in 2018 IEEE International
Conference on Data Mining (ICDM). 1EEE, 2018, pp. 627-636.

(171

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

[28]

[29]

[30]

[31]

B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2014, pp. 701-710.

S. Aral, L. Muchnik, and A. Sundararajan, “Distinguishing influence-
based contagion from homophily-driven diffusion in dynamic networks,”
Proceedings of the National Academy of Sciences, vol. 106, no. 51, pp.
21544-21549, 2009.

M. Granovetter, “Threshold models of collective behavior,” American
Journal of sociology, vol. 83, no. 6, pp. 1420-1443, 1978.

T. C. Schelling, Micromotives and macrobehavior. ~WW Norton &
Company, 2006.

M. Pautasso and M. J. Jeger, “Epidemic threshold and network structure:
The interplay of probability of transmission and of persistence in small-
size directed networks,” Ecological Complexity, vol. 5, no. 1, pp. 1-8,
2008.

S. Aral and P. S. Dhillon, “Social influence maximization under em-
pirical influence models,” Nature human behaviour, vol. 2, no. 6, pp.
375-382, 2018.

P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” 2018.

W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” 2018.

F. Masrour, T. Wilson, H. Yan, P.-N. Tan, and A. Esfahanian, “Bursting
the filter bubble: Fairness-aware network link prediction,” in Proceedings
of the AAAI conference on artificial intelligence, vol. 34, no. 01, 2020,
pp. 841-848.

M. Zhang and Y. Chen, “Link prediction based on graph neural net-
works,” Advances in neural information processing systems, vol. 31,
2018.

Z. Zhu, Z. Zhang, L.-P. Xhonneux, and J. Tang, “Neural bellman-ford
networks: A general graph neural network framework for link predic-
tion,” Advances in Neural Information Processing Systems, vol. 34, pp.
29476-29490, 2021.

E. Miiller, “Graph clustering with graph neural networks,” Journal of
Machine Learning Research, vol. 24, pp. 1-21, 2023.

F. M. Bianchi, D. Grattarola, and C. Alippi, “Spectral clustering with
graph neural networks for graph pooling,” in International conference
on machine learning. PMLR, 2020, pp. 874—-883.

Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolutional
networks for semi-supervised learning,” 2018.

J. Zhao, Y. Dong, M. Ding, E. Kharlamov, and J. Tang, “Adaptive
diffusion in graph neural networks,” Advances in neural information
processing systems, vol. 34, pp. 23321-23 333, 2021.

A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” 2016.

J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in AAAZ, 2015. [Online].
Available: https://networkrepository.com

