
Influence Propagation for Linear Threshold Model

with Graph Neural Networks

Francisco Santos, Anna Stephens, Pang-Ning Tan, and Abdol-Hossein Esfahanian

Dept. of Computer Science and Engineering

Michigan State University

East Lansing, United States

{santosf3, steph496, ptan, esfahanian}@msu.edu

AbstractÐInfluence propagation is a network phenomenon
governing how information is diffused in a network. With
the advent of deep learning, there has been growing interest
in applying graph neural networks to extract salient feature
representation of the nodes for a variety of network mining
tasks, such as forecasting the virality of information cascade.
Given the importance of social influence, this paper presents a
novel deep learning framework called IP-GNN for simulating
the information propagation process in a complex network and
learning a node representation that embeds information about
the diffusion process under the linear threshold model. Our
framework employs a modified graph convolutional network
architecture with adaptive diffusion kernel to capture long-range
propagation of information along with an entropy-regularized
mixture of loss functions to ensure accurate prediction and faster
convergence of the learning algorithm. Experimental results on
4 real-world datasets show that the model accurately mimics
the output of the linear threshold model, achieving an average
accuracy that exceeds 90% on all datasets.

Index TermsÐInfluence propagation, Deep Learning, Graph
Neural Network

I. INTRODUCTION

The study of influence propagation, also known as diffusion

of innovation, in complex networks has attracted significant

interest over the last two decades, motivated by its applicability

to diverse disciplines, from viral marketing [1] [2] to under-

standing fake news propagation [3] [4] and epidemic spread [5]

[6]. Previous studies have focused on myriad issues, such as

proposing a diffusion model that characterizes the influence

propagation process [7]±[9], identifying the k-most prominent

seed nodes that would maximize the information spread [10],

[11], and forecasting the virality of information cascade such

as fake news, memes, and disease pandemic [12], [13].

In the meantime, graph neural networks [14] have also

emerged as a popular machine learning approach for mod-

eling social networks as well as the spatio-temporal graphs

associated with the traffic [15] and weather [16] forecasting

tasks. These approaches would employ a deep neural network

architecture to learn the representation of different entities

(nodes) of the domain and their relationships, providing an

informative set of features for subsequent learning tasks. Given

the prominent role influential nodes play in a network, this

begs the question: Is it possible to incorporate the influence

propagation process explicitly into the deep learning formu-

lation? In doing so, this would help enrich the features learned

for the downstream tasks given the domain-guided knowledge

about the information diffusion process.

While there have been several previous works on inte-

grating node influence into representation learning, e.g., via

the random walk approach [17], they generally focused on

homophily-driven diffusion, which is the tendency of similar

individuals to form ties with one another, instead of social

influence-based contagion [18]. In particular, two social actors

who are directly linked may not necessarily influence the

behavior of each other. As the latter requires understanding of

the information propagation process, integrating the diffusion

model explicitly into the deep learning formulation is thus an

important research problem. Our paper aims to fill this gap by

presenting a novel deep neural network framework capable of

robustly sumulating the information diffusion process.

Specifically, our influence propagation network is guided

by a user-specified diffusion model, which governs how the

influence will spread and which users will be affected. Though

there are numerous diffusion models available [8], [10], this

workshop paper presents our preliminary results using the

linear threshold model [19], which is a discrete-time model

that considers the use of thresholds to determine whether a

user will likely be influenced by the collective behavior of

its neighbors. Figure 1 illustrates an example of how the

linear threshold model works. Assume each node can be in

one of two statesÐactivated (green) or deactivated (white).

Initially, assume there is only node (A) that is activated. In

every round, each node will sum up the edge weights of its

activated neighbors. If the sum of the edge weights exceeds its

threshold, then the node will be activated. In this case, node

A will activate node B since the edge weight is equal to the

threshold for B. However, it will not be able to activate node

D, whose threshold (0.9) is more than the edge weight (0.5).

In turn, node B will then influence node C as the edge weight

is greater than the threshold. This example distinguishes social

influence from homophily, in which not all neighbors are

equally influenced.

Designing a deep neural network framework to simulate

the linear threshold model has its challenges. First, one has

to reconcile the discrete-valued input/output of the linear

threshold model with the continuous nature of deep neural

network formulation. Second, the neural architecture must be

able to simulate multiple steps of information propagation,

Fig. 1: Linear Threshold Model Example. The green nodes represent that they are activated, otherwise they are deactivated.

The black number in the center of the node represents the threshold. The red number represents the sum of edges of the

activated neighbors. The number next to edges represents the weight of the edge.

taking into account the threshold associated with each user.

A trivial solution would be to use conventional Graph Con-

volutional Network (GCN) architecture [14], which leverages

the adjacency matrix to perform message passing between

neighboring nodes. Unfortunately, this approach is suscep-

tible to over-smoothing problem, where the model outputs

start to saturate when extended beyond two or three graph

convolutional layers. This leads to significant drop in its

model performance. Another challenge is training the model to

achieve good performance and fast convergence. Note that the

influenced nodes depend on the choice of initial seed, i.e.,

the set of initially activated nodes. A different initial seed

will lead to different set of activated nodes, even though the

graph topology and node thresholds remain unchanged. Given

the exponential number of possible initial seed configurations,

designing an efficient yet effective training procedure on mini-

batches of seed samples is a challenge. The deep neural net-

work must generalize well even to initial seed configurations

not seen during training.

To overcome such challenges, we propose a novel frame-

work called IP-GNN (Influence Propagation with Graph Neu-

ral Networks) which aims at learning the influence propagation

process using a deep neural network. Our framework uses a

combination of a modified GCN with an adaptive diffusion

kernel and a stack of fully connected layers to simulate the

influence propagation process. The adaptive diffusion kernel

enables us to capture the information propagation for multiple

time steps using learnable kernel weight parameters. Our

framework also employs degree-based sampling for initial seed

selection and an entropy-regularized loss function to train the

network for higher accuracy and faster convergence.

In summary, the main contributions of our paper are as

follows:

• We develop an approach for simulating the influence

propagation process using deep neural networks. Our

framework employs a modified GCN with adaptive dif-

fusion kernel and entropy-regularized loss to improve its

performance and help the model converges faster.

• We design a training procedure that performs degree-

based sampling to mitigate the exponential search space

of initial seed configuration.

• We performed experiments on numerous real-world

datasets to demonstrate the efficacy of our approach.

II. RELATED WORKS

A. Influence propagation

The linear threshold model is one of the most used influence

propagation models. It is based on the idea of each node having

a threshold, which represents the difficulty of influencing the

node. The idea of node threshold first came from Granovetter

[19] and Schelling [20]. Others such as Pautasso et al. [21]

have looked into generating more realistic simulations for

real-world applications such as disease outbreaks using the

linear threshold model. The authors in [21] use the probability

of infection transmission between connected nodes and the

probability of infection persistence in an infected node to

calculate the node influence threshold.

Independent cascade is another prevalent diffusion model, in

which each activated node has certain probability to influence

its immediate neighbor. If it fails, then it will not make

any further attempts to influence the neighbor. Kempe et al.

[10] showed that the generalized versions of the independent

cascade model and linear threshold model are equivalent.

Note that both independent cascade and linear threshold are

considered user-to-user influence models.

Barbieri et al. [9] presents a diffusion model that focuses

more on user authoritativeness and interest in a topic instead of

a user-to-user influence model. Their diffusion model is more

designed towards viral marketing. Aral et al. [22] argues that

having a single threshold is insufficient. Their model considers

an influence parameter and a susceptible parameter, which

measure how influential the user is and how easy the user is

to convince. The two calculated metrics are then combined to

create an edge weight, which is used for influence propagation.

B. Graph Neural Networks

Graph neural networks are typically used to learn the feature

representation for various network mining tasks including

node classification [14], [23], [24], link prediction [25]±[27],

and graph clustering [28] [29]. For node classification, some

popular methods include GCN [14], Graph Attention Network

[23], and GraphSage [24]. GCN employs a message-passing

mechanism to aggregate the embedding of its neighbors in

order to learn the representation of a node. The approach

requires stacking l graph convolutional layers to perform

feature aggregation from neighbors located l-hop away. Graph

Attention Network [23] uses multi-head attention layers to give

higher importance to certain neighbors of a node. GraphSage

[24] uses a sampling approach to improve efficiency of the

node representation learning task.

III. PRELIMINARIES

A. Problem Statement

Consider a graph G = (V,E,X) where V is a the set of

nodes, E ⊆ V ×V is the set of edges, and X ∈ R
|V |×d is the

node features. Let A be the adjacency matrix representation of

E where A(vi, vj) = 1 if (vi, vj) ∈ E, otherwise A(vi, vj) =
0. Assume the weight for each edge is given by W = D̂−1A.

Let stv be the binary state of node v at time step t, where

stv = 1 if v is activated and 0 otherwise. Here, the definition of

a node in an activated state is domain-dependent. For example,

it may refer to the adoption of an idea, decision to share or

retweet a social media post, or an individual in an infected

disease state. The initial state of each node in the graph is

denoted as s0 ∈ R
|V |. The number of activated nodes at time t

can be computed as Kt =
∑

v∈V stv . For instance, in influence

maximization problems [10], K0 is assumed to be given by

users and the objective is to find an initial set of activated

nodes, s0, that will maximize Kt as t → ∞.

The activation of the nodes depends on a threshold vector

τ ∈ R
|V |. Given the current state of the nodes, st, and their

respective thresholds, τ , a diffusion model is a function of the

form g : {0, 1}|V | × R
|V | → {0, 1}|V | with the output being

the next state of the node, i.e., st+1 ≡ g(st, τ). For brevity,

we denote the T -step information propagation process as

sT ≡ gT (s0, τ) = g
[

g
(

· · · g
(

s
0, τ

)

· · ·
)

, τ
]

Definition 1 (Influence Propagation): Given a graph G =
(V,E,X), a threshold vector τ , an initial state vector, s0 ∈
{0, 1}|V |, and a diffusion model g, compute the final state of

the nodes after T time steps, i.e., sT ≡ gT (s0, τ).

The goal of this paper is to train a deep neural network fθ(·)
that accurately simulates the output of the diffusion model

after T time steps given the initial seed, s0.

B. Background

1) Linear Threshold Model: In this model, at every time

step, each node will sum up the edge weights of its activated

neighbors to determine whether it should be activated. If the

sum is greater than or equal to the threshold, then the node

becomes activated, as shown by the equation below:

st+1
i =

{

1 if
∑

j Wijs
t
j ≥ τj

0 otherwise

where W is the edge weight matrix. Furthermore, a node that

has been activated (e.g., an initial seed node) remains activated

even if none of its neighbors are activated. One way to enforce

this constraint is by setting its threshold τv = 0 if s0v = 1.

The linear threshold model can be implemented as the

following function to predict the next state of the nodes:

s
t+1
i =

{

1 if st−1
i = 1

Step(
∑

j Wijs
t
j − τ i) otherwise

(1)

where Step(·) is an element-wise Heaviside step function

Step(xi) =

{

1 if xi ≥ 0

0 otherwise

2) Graph Convolutional Network (GCN): This is a graph

neural network that uses a message-passing mechanism to

learn the feature embedding for each node. The message-

passing takes the current embedding of each neighbor and

aggregates them to create the new node embedding. The

formulation of a GCN can be formally written as follows:

H(l+1) = σ(ÃH lθ(l)) (2)

where H(l+1) is the node embedding for (l + 1) layer, σ is

a nonlinear activation function (e.g., ReLU), θ is the model

parameters and Ã is the normalized adjacency matrix, which

is defined as follows:

Â = A+ I and Ã = D̃− 1

2 ÂD̃− 1

2 (3)

where I is the identity matrix and D̃ is a diagonal matrix

containing the degree of each node.

3) Random Walk.: A random walk traversal on a graph

starts from a source node ui and randomly chooses an im-

mediate neighbor of node ui to visit next. This process of

randomly selecting a node to visit next is repeated until the

length of the traversal is equal to d, a user-specified parameter.

Formally, the probability of visiting a node u is given by the

following equation:

P (ui = u|ui−1 = v) =

{

πvu, if (i, j) ∈ E

0, Otherwise

where πi,j is a normalized probability between the node i and

j. Note that a node can potentially be visited multiple times

during the random walk process.

Fig. 2: A schematic illustration of the IP-GNN framework. Here, s0 denotes the initial condition, τ denotes the threshold and

X is the initial feature embedding obtained from Node2Vec. The framework consists of two major componentsÐa modified

graph neural network with adaptive diffusion kernel (shaded area) and a linear threshold model used to generate the ground

truth activated nodes for each given seed. The output of IP-GNN corresponds to sT , which is the predicted state of the nodes

after T time steps.

IV. PROPOSED IP-GNN FRAMEWORK

Figure 2 contains a visual representation of our proposed

framework. The framework is designed to simulate the T -

step information propagation process of the linear threshold

model. As shown in the diagram, the framework employs a

modified GNN with adaptive diffusion kernel and a stack of

fully connected layers to learn the information propagation

process. During training, IP-GNN would query the linear

threshold model to generate a ground truth list of activated

nodes for validation. It will compare its output ŝ
T against

the ground truth s
T and uses the loss to update its model

parameters. Once the network has been trained, the learned

feature representation of the IP-GNN can be utilized for any

subsequent downstream tasks. A detailed explanation of the

framework is given in the subsections below.

A. Design of IP-GNN Architecture

Learning to simulate the output of the linear threshold model

using deep neural networks is not a trivial task. Our objective

here is to simulate the information propagation after multiple

time steps. A naive attempt would be to use a stack of fully

connected layers, but such a model would not be able to learn

well given the lack of information about the network topology.

For this reason, our framework uses a graph convolutional

network (GCN) but a fundamental problem still remains. A

vanilla GCN may only perform message passing effectively

up to neighbors that are two or three hops away due to its

well-documented over-smoothing effect [30]. As a result, the

vanilla GCN will not have access to a larger neighborhood

size information (i.e., T -hop neighbors) which is needed for

effective modeling of the diffusion process. Furthermore, the

relative strength of influence by the neighbors may depend on

how far they are located from each other.

To allow the model to have access to a larger neighborhood

size, we modified the GCN to employ an adaptive diffusion

kernel [31] instead of a weighted adjacency matrix. This gives

us the flexibility to consider the influence of neighbors located

l-hops away, with learnable parameters {λl} associated with

each hop l. The adaptive kernel is defined as follows:

Q =

L
∑

l=0

λl

l!
Ãl, (4)

where Ã is the normalized adjacency matrix defined in Eqn.

(3) and λl is a learnable parameter that represents the influence

of nodes located l hops away. The framework still uses a

two-layer GCN, with its adjacency matrix replaced by the

adaptive diffusion kernel. The forward pass of our modified

GCN framework performs the following computation:

Z = Q(2)σ
(

Q(1)Xθ1

)

θ2 (5)

where the Q(i)’s correspond to the adaptive kernels (with

potentially different set of weight parameters λl’s), θ1 and

θ2 are the GCN parameters while σ refers to the ReLU

activation function. During training, the values of the learnable

parameters λ’s are initially set to 1 before they are updated

during backpropagation.

Conventional GCN requires an input matrix X correspond-

ing to the node features. However, since the linear threshold

model does not require access to the node features, we provide

a structural embedding of the nodes as the input feture matrix

X of the GCN. Specifically, we use the embedding generated

by the Node2Vec [32] algorithm. Node2Vec performs trun-

cated biased random walks to learn the feature embedding of

the nodes. The node embedding obtained is then concatenated

with the initial condition vector s0 as well as the threshold

vector τ before providing them as input to the GCN. Finally,

the GCN’s output Z will be sent through a stack of fully

connected layers, which uses a sigmoid function in its final

output layer, to generate predictions of the activation states of

the node at time step T . Specifically, the predicted output of

IP-GNN is as follows:

ŝ
T = FCN(Z) ∈ [0, 1]|V |, (6)

where Z is given by Eqn. (5).

B. Training Procedure

The IP-GNN framework will be trained to simulate the

information propagation given an initial seed, s
0. However,

given the combinatorial number of possible seeds, ensuring

the trained network generalizes well to any given input seed is

a challenge. To help with the training process, our framework

must be trained to use different initial seed configurations,

where each seed contains a subset of nodes assumed to be

activated. A naÈıve approach would be to use a uniform distri-

bution to select the seed nodes for activation. Unfortunately,

due to the scale-free property of most networks, this approach

may not be effective as it tends to choose low degree nodes

that have little influence on the information propagation. To

circumvent this issue, we employ a degree-based sampling

approach, in which the probability a node is chosen to be a

seed is proportional to its node degree. The higher the degree,

the more likely it will be selected as part of the initial seed.

This allows the algorithm to learn the feature embedding of

highly influential nodes in the network.

We created mini-batches of initial seed samples to train

our graph neural network. First, we query the linear threshold

model to obtain the T -step information propagation for each

initial seed sample s
0. The output of the linear threshold model

will be used as the ground truth list of activated nodes, sT .

This process is repeated for every seed sample in the mini-

batch to obtain their respective ground truth values. To improve

its efficiency and reduce the number of queries, a new mini-

batch is created only after the network has been trained for a

certain number of epochs1.

The mini-batches are used to train IP-GNN by updating

the parameters of our deep neural network (which includes

the learnable parameters of our adaptive diffusion kernel) in

such a way that its predicted output ŝT is consistent with the

ground truth s
T . To ensure accurate prediction of activated

nodes, we employ the following cross-entropy loss function:

LCE =
1

|V |

B
∑

b=1

|V |
∑

i=1

sTb,i log(ŝ
T
b,i)+(1−sTb,i) log(1− ŝTb,i) (7)

1We use 200 epochs for each new mini-batch of samples in our experiments.

where |V | is the number of nodes in the graph, B is the mini-

batch size, ŝTb,i is the prediction for node i being activated,

and sTb,i is its ground truth value for the seed sample b in the

mini-batch.

Additionally, to ensure that the model can accurately learn

initial seed configurations that can produce a large number of

activated nodes, the following weighted mean square error is

also calculated:

Lmse =

B
∑

b=1

Kb

|V |

|V |
∑

i=1

(ŝTb,i − sTb,i)
2 (8)

where Kb =
∑

i s
T
b,i is the actual number of activated nodes

after T propagation steps for sample b in the mini-batch.

The weight factor Kb

|V | gives a higher penalty if the model

incorrectly predicts the number of activated nodes when Kb

is large for the given sample b.

Another challenge in training the network is to reconcile

the discrete-valued ground truth activation states against the

continuous-valued prediction of our deep neural network. In

particular, a small change in the predicted sigmoid-layer output

may not significantly alter the loss, causing the gradient of

the network to saturate easily. To overcome this challenge,

we employ the following entropy regularization to bias the

predicted output towards either 0 or 1 when compared against

the ground truth activation states of the nodes:

LER = −
1

|V |

B
∑

b=1

|V |
∑

i=1

ŝTb,i log(ŝ
T
b,i) (9)

Note that the entropy is maximized when all the ŝb,i are equal

to 0.5 and minimized when ŝb,i goes to 0 or 1.

The overall loss function to be optimized by the IP-GNN

network is

Ltotal = αLCE + βLmse + γLER (10)

where α, β and γ are hyper-parameters. Note that the loss

function above is defined for one seed sample in the mini-

batch. After the loss is calculated for all seed samples in the

mini-batch, the gradient of the total loss will be used to update

the model parameters during backpropagation.

V. EXPERIMENTS

This section gives a detailed description of the experiments

performed as well as the datasets used. The code implemen-

tation is available at https://github.com/frsantosp/IP-GNN.

A. Data Description

The experiments were performed using the following 4 real-

world networks datasets. A summary of the characteristics for

each dataset can be found in Table I.

• Facebook [33]: This network dataset was obtained from

the Stanford Network Analysis Project (SNAP). The

nodes represent Facebook users while the edges represent

friendship relations among the users.

• German Credit [34]: This dataset contains information

about customers of a German bank. Each node represents

TABLE I: Summary description of datasets.

Dataset |V | |E|
Wikipedia 889 2,900

Facebook 1045 53498

FB Food 620 2100

German 1000 24970

a bank customer while each edge represents a pair of

customers with similar paying habits.

• Facebook Food [35]: This dataset contains verified Face-

book pages that focus mainly on the topic of food. The

nodes represent Facebook pages while the edges represent

mutual likes between the pages.

• Wikipedia [35]: This dataset corresponds to the

Wikipedia voting data. The data was collected since the

beginning of Wikipedia until 2008. The nodes represent

Wikipedia users while the edges are votes between users.

B. Experimental Setup

Our model consists of a two-layer GCN with 4096 hidden

neurons in each layer along with a 4-layer fully-connected

network with a hidden representation of size 512. We used

Adam as our optimizer for both GCN and the fully connected

layers. The learning rate was set to 0.01 for the GCN and

0.0001 for the fully connected layers. The model was trained

using a batch size of 64 for a maximum of 2000 epochs. The

switching to a new mini-batch of seed samples occured at

every 200 epochs. The hyperparameters associated with our

loss function were set to α = 1, β = 0.1, and γ = 0.0001.

Each initial seed configuration was designed to have K0 = 50
activated nodes.

C. Metrics

After the deep neural network had been trained, for evalu-

ation purposes, we randomly generated another 500 samples

of initial seed configurations, s
0, for each dataset. We then

applied the linear threshold model to obtain the ground truth

set of activated nodes, sT , associated with each seed sample.

We compared the ground truth activation against the predicted

output of IP-GNN, ŝT , using the following metrics:

• Precision:

Precision =
True Positives

True Positives + # False Positive

• Recall:

Recall =
True Positives

True Positives + # False Negatives

• F1-score:

F1-score = 2×
Recall × Precision

Recall + Precisions

• Root Mean Square Error:

RMSE(y, ŷ) =

√

∑N−1
i=0 (yi − ŷi)2

N

• Correlation:

r(x, y) =

∑n

i=1(xi − x̄)(yi − ȳ)
√

∑n

i=1(xi − x̄)2
√

∑n

i=1(yi − ȳ)2

Precision, recall, and F1-score were used to evaluate the

correctness of the activated nodes. Specifically, these metrics

would compare s
T against ŝ

T for each initial seed configu-

ration. The reported results correspond to the average value

of these metrics computed over the 500 samples. RMSE and

correlation compare the actual number of activated nodes

against the predicted number. To do this, we first sum up

the predicted activated nodes, K̂T =
∑|V |

i=1 ŝ
T
i and the actual

activated nodes KT =
∑|V |

i=1 s
T
i for each sample. We then

create a vector containing the KT and K̂T values for all the

samples before calculating their RMSE and correlation values.

D. Results

Table II summarizes the performance of IP-GNN on all

4 datasets. For the Wikipedia dataset, IP-GNN achieved a

precision value of 0.9538, which means 95% of the nodes

predicted to be activated were supposed to be active according

to the linear threshold model. The recall for IP-GNN was

found to be 0.9317, meaning 93% of the true activated nodes

were correctly predicted to be active. The F1-score was also

high, 0.9415, which suggests that our model was able to

correctly predict the activated nodes in the Wikipedia dataset

with a low number of false positives and false negatives.

The RMSE shows that, on average, around 31.65 nodes

were misclassified for this specific dataset. Considering that

the graph size is 889, the number of misclassified nodes is

relatively small, which is about 3.6%. The correlation value

is also high at 0.8816. As can be seen from Figure 4, there is

a clear linear trend when plotting the predicted versus actual

number of activated nodes for the 500 test samples.

The same trend was observed for the other 3 datasets.

The precision, recall, and F1-scores were consistently above

0.93 for all datasets. Though the RMSE values for Facebook

and German datasets were slightly higher, if we consider the

size of the graphs, the error rate remained to be around 3%,

which is similar to the magnitude observed in the Wikipedia

dataset. The correlation values were above 0.8 for three out

of the four datasets. The only dataset with a correlation value

below 0.8 was the Facebook dataset. As shown in 4, a linear

trend is still detectable for the Facebook dataset, though it is

not as clear as the trend observed in other datasets. Despite

its lower correlation, the RMSE shows that the model still

performs quite well as its prediction error is only 36.57 nodes

on average.

Figure 3 shows the true positive and false positive rates of

IP-GNN on the four datasets. For the Wikipedia, Facebook

and German datasets, their false positive rates were mostly

below 0.2 while the true positive rates were mostly above

0.8. The Facebook food dataset struggles slightly by having

a higher false positive rate (above 0.2) for some of the seed

samples but still maintains a high true positive rate.

TABLE II: Performance evaluation for IP-GNN on four real-world datasets.

Precision Recall F1 RMSE Corr

Wikipedia 0.9538 ± 0.0378 0.9317 ± 0.0362 0.9415 ± 0.0194 31.65 0.8816

Facebook 0.9507 ± 0.0442 0.9305 ± 0.0349 0.9392 ± 0.0213 36.57 0.7008

FB Food 0.9383 ± 0.0577 0.9668± 0.0210 0.9475 ± 0.0303 27.58 0.8180

German Credit 0.9439 ± 0.0398 0.9634 ± 0.0298 0.9524 ± 0.0148 33.68 0.8377

Fig. 3: Comparison of true positive and false positive rates of IP-GNN on 500 test samples.

Fig. 4: Comparison of actual and predicted number of activated nodes by IP-GNN on 500 test samples.

VI. CONCLUSIONS

This paper presents a novel method of using deep neural

networks to simulate influence propagation. We designed a

framework that uses an adaptive diffusion kernel to overcome

the oversmoothing problem of GCN, thus allowing IP-GNN

to learn the influence propagation process beyond the 2-

hop message passing of GCN. We also present an effective

way to effectively train the model so it can achieve higher

accuracy and fast convergence. Empirical results on 4 real-

world datasets verified the effectiveness of our approach.

The results of this research open the door for many different

possibilities. One possible research direction is to extend the

framework to other diffusion models such as Independent

Cascade. Another possible research direction is to investigate

the value of the learned embedding for other downstream tasks

such as forecasting information cascade, influence maximiza-

tion, node classification, etc.

ACKNOWLEDGMENT

This material is based upon work supported by the NSF

Program on Fairness in AI in collaboration with Amazon under

grant #IIS-1939368. Any opinion, findings, and conclusions

or recommendations expressed in this material are those of

the author(s) and do not necessarily reflect the views of the

National Science Foundation or Amazon.

REFERENCES

[1] W. Chen, C. Wang, and Y. Wang, ªScalable influence maximization for
prevalent viral marketing in large-scale social networks,º in Proceedings

of the 16th ACM SIGKDD international conference on Knowledge

discovery and data mining, 2010, pp. 1029±1038.
[2] T. N. Dinh, H. Zhang, D. T. Nguyen, and M. T. Thai, ªCost-effective vi-

ral marketing for time-critical campaigns in large-scale social networks,º
IEEE/ACM Transactions on Networking, vol. 22, no. 6, pp. 2001±2011,
2013.

[3] J.-H. Cho, S. Rager, J. O’Donovan, S. Adali, and B. D. Horne,
ªUncertainty-based false information propagation in social networks,º
ACM Transactions on Social Computing, vol. 2, no. 2, pp. 1±34, 2019.

[4] J.-H. Cho, T. Cook, S. Rager, J. O’Donovan, and S. Adali, ªModeling
and analysis of uncertainty-based false information propagation in social
networks,º in GLOBECOM 2017-2017 IEEE Global Communications

Conference. IEEE, 2017, pp. 1±7.
[5] Z. Wang, C. Xia, Z. Chen, and G. Chen, ªEpidemic propagation with

positive and negative preventive information in multiplex networks,º
IEEE transactions on cybernetics, vol. 51, no. 3, pp. 1454±1462, 2020.

[6] C. Xia, L. Wang, S. Sun, and J. Wang, ªAn sir model with infection delay
and propagation vector in complex networks,º Nonlinear Dynamics,
vol. 69, pp. 927±934, 2012.

[7] F. Xiong, Y. Liu, Z.-j. Zhang, J. Zhu, and Y. Zhang, ªAn information
diffusion model based on retweeting mechanism for online social
media,º Physics letters A, vol. 376, no. 30-31, pp. 2103±2108, 2012.

[8] A. Guille, H. Hacid, C. Favre, and D. A. Zighed, ªInformation diffusion
in online social networks: A survey,º ACM Sigmod Record, vol. 42,
no. 2, pp. 17±28, 2013.

[9] N. Barbieri, F. Bonchi, and G. Manco, ªTopic-aware social influence
propagation models,º Knowledge and information systems, vol. 37, pp.
555±584, 2013.

[10] D. Kempe, J. Kleinberg, and ÂE. Tardos, ªMaximizing the spread of
influence through a social network,º in Proceedings of the ninth ACM

SIGKDD international conference on Knowledge discovery and data

mining, 2003, pp. 137±146.
[11] Y. Li, J. Fan, Y. Wang, and K.-L. Tan, ªInfluence maximization on

social graphs: A survey,º IEEE Transactions on Knowledge and Data

Engineering, vol. 30, no. 10, pp. 1852±1872, 2018.
[12] S. Krishnan, P. Butler, R. Tandon, J. Leskovec, and N. Ramakrishnan,

ªSeeing the forest for the trees: new approaches to forecasting cascades,º
in Proceedings of the 8th ACM Conference on Web Science, 2016, pp.
249±258.

[13] L. Weng, F. Menczer, and Y.-Y. Ahn, ªVirality prediction and community
structure in social networks,º Scientific reports, vol. 3, no. 1, pp. 1±6,
2013.

[14] T. N. Kipf and M. Welling, ªSemi-supervised classification with graph
convolutional networks,º arXiv preprint arXiv:1609.02907, 2016.

[15] K.-H. N. Bui, J. Cho, and H. Yi, ªSpatial-temporal graph neural network
for traffic forecasting: An overview and open research issues,º Applied

Intelligence, vol. 52, no. 3, pp. 2763±2774, 2022.
[16] T. Wilson, P.-N. Tan, and L. Luo, ªA low rank weighted graph con-

volutional approach to weather prediction,º in 2018 IEEE International

Conference on Data Mining (ICDM). IEEE, 2018, pp. 627±636.

[17] B. Perozzi, R. Al-Rfou, and S. Skiena, ªDeepwalk: Online learning
of social representations,º in Proceedings of the 20th ACM SIGKDD

international conference on Knowledge discovery and data mining,
2014, pp. 701±710.

[18] S. Aral, L. Muchnik, and A. Sundararajan, ªDistinguishing influence-
based contagion from homophily-driven diffusion in dynamic networks,º
Proceedings of the National Academy of Sciences, vol. 106, no. 51, pp.
21 544±21 549, 2009.

[19] M. Granovetter, ªThreshold models of collective behavior,º American

journal of sociology, vol. 83, no. 6, pp. 1420±1443, 1978.
[20] T. C. Schelling, Micromotives and macrobehavior. WW Norton &

Company, 2006.
[21] M. Pautasso and M. J. Jeger, ªEpidemic threshold and network structure:

The interplay of probability of transmission and of persistence in small-
size directed networks,º Ecological Complexity, vol. 5, no. 1, pp. 1±8,
2008.

[22] S. Aral and P. S. Dhillon, ªSocial influence maximization under em-
pirical influence models,º Nature human behaviour, vol. 2, no. 6, pp.
375±382, 2018.

[23] P. VeličkoviÂc, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, ªGraph attention networks,º 2018.

[24] W. L. Hamilton, R. Ying, and J. Leskovec, ªInductive representation
learning on large graphs,º 2018.

[25] F. Masrour, T. Wilson, H. Yan, P.-N. Tan, and A. Esfahanian, ªBursting
the filter bubble: Fairness-aware network link prediction,º in Proceedings

of the AAAI conference on artificial intelligence, vol. 34, no. 01, 2020,
pp. 841±848.

[26] M. Zhang and Y. Chen, ªLink prediction based on graph neural net-
works,º Advances in neural information processing systems, vol. 31,
2018.

[27] Z. Zhu, Z. Zhang, L.-P. Xhonneux, and J. Tang, ªNeural bellman-ford
networks: A general graph neural network framework for link predic-
tion,º Advances in Neural Information Processing Systems, vol. 34, pp.
29 476±29 490, 2021.

[28] E. MÈuller, ªGraph clustering with graph neural networks,º Journal of

Machine Learning Research, vol. 24, pp. 1±21, 2023.
[29] F. M. Bianchi, D. Grattarola, and C. Alippi, ªSpectral clustering with

graph neural networks for graph pooling,º in International conference

on machine learning. PMLR, 2020, pp. 874±883.
[30] Q. Li, Z. Han, and X.-M. Wu, ªDeeper insights into graph convolutional

networks for semi-supervised learning,º 2018.
[31] J. Zhao, Y. Dong, M. Ding, E. Kharlamov, and J. Tang, ªAdaptive

diffusion in graph neural networks,º Advances in neural information

processing systems, vol. 34, pp. 23 321±23 333, 2021.
[32] A. Grover and J. Leskovec, ªnode2vec: Scalable feature learning for

networks,º 2016.
[33] J. Leskovec and A. Krevl, ªSNAP Datasets: Stanford large network

dataset collection,º http://snap.stanford.edu/data, Jun. 2014.
[34] D. Dua and C. Graff, ªUCI machine learning repository,º 2017.

[Online]. Available: http://archive.ics.uci.edu/ml
[35] R. A. Rossi and N. K. Ahmed, ªThe network data repository with

interactive graph analytics and visualization,º in AAAI, 2015. [Online].
Available: https://networkrepository.com

