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30

31 11 High-throughput phenotypic profiling assays, popular for their ability to characterize
33 12 alternations in single-cell morphological feature data, have been useful in recent years at
35 13 predicting cellular targets and mechanisms of action (MoAs) for different chemicals and
14 novel drugs. However, this approach has not been extensively used in environmental
40 15  toxicology due to the lack of studies and established methods for performing this kind of
42 16 assay in environmentally relevant species. Here, we developed a multiplexed algal
17  cytological imaging (MACI) assay, based on the subcellular structures of the unicellular
47 18 microalgae, Raphidocelis subcapitata, a toxicology and ecological model species.
49 19  Several different herbicides and antibiotics with unique MoAs were exposed to R.
o1 20 subcapitata cells and MACI was used to characterize cellular impacts by measuring
54 21  subtle changes in their morphological features, including metrics of area, shape, quantity,

56 22 fluorescence intensity, and granularity of individual subcellular components. This study
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demonstrates that MACI offers a quick and effective framework for characterizing
complex phenotypic responses to environmental chemicals, that can be used for

determining their MoAs and identifying their cellular targets in plant-type organisms.

Synopsis
This work proposes novel high-throughput phenotypic profiling and fluorescence imaging

techniques to predict/characterize the mechanisms of action of environmental chemicals.

INTRODUCTION

With increasing quantities and classes of contaminants introduced into commerce and
therefore found in the environment, there is a call for more rapid techniques for evaluating
their potential hazard in a quick and efficient manner. Therefore, there is a need for more
nontargeted (i.e. quantifying hundreds of distinct properties to identify unknown
responses), high-throughput profiling assays that can characterize biological activity,
identify potency thresholds, and predict mechanisms of action (MoAs)," as compared to
traditional targeted assays which only quantify singular, or few cellular functions or
properties.? In recent years, morphological/phenotypic profiing has been shown to
provide rich sources of data for interrogating biochemical perturbations as the morphology
of a cell is extremely sensitive and strongly influenced by factors such as metabolism,
genetic state, and environmental cues.® Additionally, it has been shown that specific
biological perturbations deliver specific phenotypic profiles, and therefore any subset of
morphological features that deviate from that of healthy cells can serve as a fingerprint,

or unique identifier, to characterize biological activity.* For example Gustafsdottir et al.
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2013 demonstrated the ability of morphological profiling to capture a wide range of cellular
phenotypes after exposing U20S cells exposed to 1600 different commercially available
compounds with a range of different MoAs. Furthermore, when comparing the fingerprint
of cells treated with novel compounds to that of cells treated with compounds with
previously established MoAs, the probable MoA of these novel compounds can then be

identified.®

Common high-throughput phenotypic profiling assays, like the Cell Painting Assays®,
involve the use of multiplexed fluorescence cytochemistry to visualize multiple subcellular
structures within a cell and high-content imaging to take hundreds of snapshots of their
morphology in an automated and consistent manner. These image data can then be
converted into quantitative data by using bioimage analysis to extract hundreds of
morphological features at the resolution of a single cell. These morphological features
include metrics related to cell size, shape, fluorescence intensity, texture, granularity, and
even spatial relationships between organelles which all represent subtle unbiased
descriptors of the phenotypic state. Currently, high-throughput phenotypic profiling
assays are used most often in the context of drug discovery and disease models. For
example, Hughes et al. (2020) used Cell Painting to screen 19,555 compounds and profile
the phenotypic response across several esophageal adenocarcinoma cell lines;
subsequent bioimage data was analyzed using hierarchical clustering and machine
learning methods across 733 individual morphological features per cell, including
measurements of size, shape, texture, and intensity. In doing so, this study successfully
identified novel drug targets, predicted the MoAs of test compounds through comparison

to a library of reference compounds, and discovered pharmacological classes that
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targeted that specific type of cancer. However, this kind of assay may also have

applications in other fields like eco- and environmental toxicology.

Recently, the Unites States Environmental Protection Agency (USEPA) has begun to use
high-throughput phenotypic profiling for the screening and hazard identification of
environmental chemicals, however, only human-derived cell models are still largely being
used for this purpose.*® While human-derived cell models provide the advantage of
proven characterization and predictive power, they may not accurately represent
phenotypic responses in environmentally relevant species, like plants and algae, whose
cells are biologically distinct from animal cells. For example, DCMU (3-(3,4-
dichlorophenyl)-1,1-dimethylurea), or Diuron, has been reported to cause DNA damage
in certain types of human cancer cell lines® but in plants and algae targets photosystem
Il (PSIl) proteins.’® Furthermore, human cell lines may not accurately represent
environmentally safe exposure levels for certain compounds, like ZnO nanoparticles, that
are relatively benign to humans," but acutely toxic to algal species at low
concentrations.'? Thus, cell models which are more environmentally relevant should be
considered. In particular, Raphidocelis subcapitata, a prevalent type of freshwater green
algae and an environmentally relevant organism, is a good candidate model to use for
high-throughput phenotypic profiling as it is a USEPA established model for
environmental  toxicology’™® and an important bioindicator  species for
assessing/monitoring water quality.'# Additionally, its strictly unicellular nature makes it
beneficial forimage-based assays in terms of downstream bioimage segmentation, which

may be more difficult to do for other common microalgae like Chlamydomonas spp.,
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Chlorella spp., and Scenedesmus spp. that tend to form colonies or coenobia under

stress.15.16

Here we describe a multiplexed algal cytological imaging (MACI) assay for the phenotypic
profiling of environmental chemicals, based on three subcellular structures that are
important for the architecture of R. subcapitata cells: the chloroplast, nuclei, and lipid
droplets. Each of these subcellular structures represent a different aspect of algal
physiology and can be used to characterize complex phenotypes and predict phytotoxic
mechanisms of action. For example, the chloroplast is an important subcellular
compartment for conducting photosynthesis, and features related to chloroplast
fluorescence can be used to describe relative levels of chlorophyll content between
treatments, and can even be used to calculate the quantum yield of PSII.'” Nuclei play a
crucial role in regulating gene expression and facilitating cellular division, and features
related to the number on nuclei per cell, as well as the relative amount of DNA content
per nucleus, can be used to describe instances of cell cycle disruption/arrest.'>'8 And
lastly, lipid droplets, which are a collection of neutral lipids, often triacylglycerol (TAG),
and serve as an alternative form of energy storage to starch, are often indicators of cell

stress when accumulated in large quantities.'®

As a proof of concept, this study aims to assess the ability of the MACI assay to
characterize and differentiate between cells which were exposed to various compounds
with unique MoAs. The performance of this assay was evaluated by testing a small set of
herbicides and antibiotics with already established MoAs, and preforming a hierarchical
clustering analysis of their phenotypic fingerprints. Additionally, a convolutional neural

network (CNN) machine learning model was trained off of a small subset of cell image
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data in order to predict compound-specific perturbances. We propose that the MACI
assay is a quick and effective way to characterize complex phenotypes and predict

interactions with environmentally relevant chemicals in plant-type species.

MATERIALS AND METHODS

Algal Cell Culture.

A stock culture of R. subcapitata, inoculated at 1x105 Cells'mL-', was grown in a 1 L
Erlenmeyer flask and cultured in OECD 201 media 2. Cells were illuminated continuously
with a full spectrum T8 light bulb at a photon flux of 70 yE-m2-s-'. The stock culture was

mixed with an orbital shaker at a speed of 111 rpm.
Exposure Setup.

Eight different environmental chemicals with unique established MoAs (described in

Table 1), were exposed to cells for 24 hours at either O (control), 0.1, 1, or 10 M.

Table 1: Environmental Chemicals with Known MoAs

Chemical Mechanism of Action Abbreviation  References
Aclonifen Carotenoid Biosynthesis Inhibition CBI 21
Carfentrazone Membrane Disruption MD 22
DCMU PSII Photochemistry Inhibition PPI 23
Glufosinate N, Metabolism Inhibition NMI 24
H,0, Oxidative Stress oS 25
Metolachlor Very-Long-Chain Fatty Acid Synthesis Inhibition VLCFASI 26
MSMA OP Uncoupler/e- Transport Inhibition OPU/e-TI 27
Zeocin DNA Damage DD 28
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Each chemical was solubilized in either OECD 201 medium or 100% EtOH depending on
its solubility, and sonicated for 30 minutes to prepare a primary 1000 uM stock. A
secondary 100 uM stock solution was then prepared for each chemical by preforming a
serial dilution from their respective primary stock solution into OECD 201 media. While
cells were growing exponentially, 900 pL aliquots of algal stock culture (~5%10° Cells-mL-
1) were seeded into individual 1.5 mL microcentrifuge tubes. For each treatment, done in
quintuplicate, the respective secondary stock solution and/or OECD 201 medium was
added to each 900 pL cell suspension at a final volume of 1 mL. Resulting EtOH content
in final exposure samples (= 1%) had a negligible effect on cell morphology
(Supplementary Figure S1). The samples were then placed under full spectrum
illumination, with tube lids open, at a photon flux of 70 yE-m~2 -s~" for 24 hours. 24 hours
was chosen for the exposure duration as this timepoint has been shown to better
delineate initial phenotypic impacts,® however, longer timepoints can also be chosen

depending on the purpose of the exposure.

Multiplexed Algal Cytological Imaging (MACI) Assay.

At the conclusion of the exposure, aliquots from each sample were transferred to sterile
1.5 mL microcentrifuge tubes. Commercially available fluorescent probes and
glutaraldehyde were used to stain and fix multiple subcellular compartments of the algal

cells, respectively.
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Composite Chloroplast Lipid Droplets Nucleus

Figure 1: The MACI assay as seen in a Raphidocelis subcapitata cell. Representative
fluorescence micrograph where each column represents a different fluorescently labeled
subcellular compartment visualized by the MACI assay.

The chloroplast is auto fluorescent due to the presence of chlorophyll, and thus did not
require a fluorescent probe, but NucBlue (Thermo Fisher, R37605) was used to label
nuclei and BODIPY 505/515 (Thermo Fisher, D3921) was used to stain neutral lipid
droplets, as seen in Figure 1. After the adding reagents to the sample aliquots, all
reactions were incubated overnight at 4 °C to minimize enzymatic degradation and
maintain the integrity of the subcellular structures. Cells can also be stored at 4 °C for as
long as one week when fixed with higher concentrations of glutaraldehyde (~0.25%) for
maximum recovery (Shapiro et al., 2001). Alternatively, for live cell imaging, it is
recommended that all reagents, excluding glutaraldehyde, are added, and reactions are
incubated in the dark at room temperature for 15-30 minutes. After incubating reactions,
cells were centrifuged at 4000 x g for 5 min, washed 2x with 1X Phosphate Buffered
Saline (PBS), and resuspended in PBS. Cells from each sample were loaded into a well
of a glass bottom 384 well plate (Cellvis, P384W-1.5H-N) at a seeding density of ~2 x103
cells-mm~2 for optimal distribution of cells across the well surface. After loading cells, the
well plate was then spun gently at 600RPM for 1 minute to concentrate cells at the bottom
of the well. Alternatively, loaded well plates can also be set aside for 30-60 minutes at

room temperature to allow cells to settle before imaging. Images were acquired at 9 sites
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per well with an ImageXpress Micro XLS High-Content Screening System with a 60X Plan
Fluor 0.85 NA air immersion objective (Molecular Devices, 1-6300-0414), using the

fluorescent channels described in Table 2.

Table 2: MACI Fluorescence Cytochemistry parameters

Organelle Stain Channel Excitation (nm) Emission (nm)
Chloroplast Auto Fluorescent Cy5 628/40 692/40
Lipid Droplets BODIPY 505/515 GPF 472/30 520/35
Nuclei NucBlue DAPI 377/50 447/60

To enhance image contrast and resolution, the digital confocal feature was used during
image acquisition. For representative cell images with higher resolution, some images
were also acquired with a 100X CFI L PLAN EPI CC 0.85 NA air immersion objective

(Molecular Devices, 1-6300-0419).
Bioimage Analysis.

After acquiring images, any image analysis software can be used to extract quantitative
data from the images. In this study, CellProfiler,3® an open-source modular bicimage
analysis software, was used for image pre-processing, object segmentation, and
morphological feature extraction at the resolution of individual cells. A pipeline for
analyzing algal cells can be found in the supplementary information. The pipeline
identifies the chloroplast from the Cy5 channel, which spans most of the cell area of R.
Subcapitata, to help aid a segmentation algorithm in identifying individual cells, or regions
of interest (ROI). These ROI are then used as a mask to identify which subcellular
structures belong to which cell. This pipeline extracts 450 unique morphological features

per cell related to area, shape, intensity, and granularity of each subcellular structure,

ACS Paragon Plus Environment



oNOYTULT D WN =

188

189

190

191

192

193
194
195
196
197
198
199

200

201

202

203

204

205

206

Environmental Science & Technology

which is then exported to a local SQLite database file. Data tables were extracted from

the SQLite database file using the RSQLite package in R.3

NOTE: Image naming rules and module settings in the MACI pipeline may need to be

optimized for other microscopes and experiments.

High-Content Bioimage
Imaging Analysis

CellProfiler 100’s of unlgue unbiased J
Dimensionality cellimage analysis software morphological features
Clustering Reduction

Fingerprint

7 — Hetrt Fingerprint
= re= ——— .
Analysis SETe Octrt Generation

Figure 2: Phenotypic profiling workflow. General overview of the steps taken to conduct
phenotypic profiling using image-based data. After perturbing and staining the algae cells,
they are seeded into a 384-glass bottom well plate for high-content imaging. A CellProfiler
pipeline (or a pipeline from any image analysis software) is used to convert the image
data into quantitative data at the resolution of a single cell. Phenotypic fingerprints are
then generated by calculating z-scores, and analyzed by reducing data dimensionality
and/or preforming a clustering analysis.

Phenotypic Profiling - Fingerprint Analysis.

Phenotypic response data was analyzed using a general phenotypic profiling workflow
(Figure 2). Data was firstly processed by aggregating single-cell morphological feature
measurements to per-image and then per-well values, which was done by taking the cell
and image means, respectively. Secondly, well data from each compound and dose were

then normalized to the non-treated cell control by computing a Z-score:

10
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where x is the feature value, .., is the mean feature value of the control, and o, is the
standard deviation of the feature value of the control. In order to verify whether each
compound elicited a change to the entire phenotypic profile of treated cells and to
characterize compound-specific phenotypic changes, a partial least squares-discriminant
analysis (PLS-DA) was performed in R using the mixOmics package.32 Before feeding
phenotypic response data into the PLS-DA models, an ANOVA was performed across all
features for each refence chemical to remove any non-informative features with little
variance (p-values > 0.05). Lastly, factor analysis was used to further reduce the
dimensionality of phenotypic data vectors, and the fingerprints were subsequently
compared to one another using hierarchical clustering based on Pearson correlation in

R. Different data-analysis strategies are discussed in the supplementary information.
Phenotypic Profiling - Convolutional Neural Networks.

In addition to fingerprint analysis, a CNN was also trained on a small subset of cells
(~10.5%) using the classifier module on CellProfiler Analyst (Ver 3.0).33 Only a small
percentage of the cells were chosen to build the CNN model as to avoid the possibility of
overfitting (for example, the model may start to associate well location with the
compounds instead of the actual cell features), however, it is worth noting that in the
scope of this exposure, ~10.5% of cells is still a sufficiently large number of observations.
A separate bin was created for each chemical-treated and the non-treated cell control in
the classifier module, where around 1000 randomly fetched cells from each treatment

were placed in each respective bin (Figure 5). After training the CNN, it was used to score
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the entire experiment by classifying individual cells into predicted phenotypic classes, and
computing enrichment scores for each sample as the logit area under the receiver
operating characteristic curve. An ANOVA and a Tukey post-hoc test was used to

evaluate the significance of predicted phenotypic class enrichments for each treatment.
Statistical Analysis.

All statistical analyses were performed using R Studio 3435, A Shapiro-Wilk test was used
to verify normal distribution and a One-Way ANOVA was used to compare variance
among group means, while a Tukey post-hoc test was used for multiple comparisons. In

each analysis, significant differences were determined with a 95% confidence interval.

RESULTS AND DISCUSSION.
Complex changes in phenotypes of cells upon chemical exposure can be defined using

MACI.

After perturbing cells with respective chemicals and conducting MACI, a CellProfiler
pipeline was used to convert the high-content image data into quantitative data. From
these data 450 unique, unbiased, morphological features were extracted at the resolution
of a single cell, which were used to generate phenotypic fingerprints of molecular
interaction. In order to verify whether each chemical elicited a significant change to cell
morphology, we characterized the cellular responses to each chemical, individually, by
comparing changes in their complex phenotypic profiles with increasing concentration.
This was done with a PLS-DA, which is a supervised machine learning algorithm that

projects multidimensional datasets onto two-dimensional planes in order to predict

12
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responses between groups. Based on the PLS-DA response plots (Figure 3), each
chemical treatment displays a significant collective separation between response groups,
thereby indicating that each chemical does elicit a significant, and measurable, change
to cell morphology after 24 hours. Variable importance in projection (VIP) scores were
also extracted from each PLS-DA response plot (Supplementary Table S1). VIP scores
indicate the features, or predictors, which are most influential in driving the separation
between response groups and can, therefore, help characterize groups of phenotypic
markers that are unique to chemicals with specific MoAs. In this case, predictors with VIP

scores above 1.0 were considered most important.
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Figure 3: Phenotypic responses to environmental chemicals. A partial least squares-
discriminant analysis (PLS-DA) response plot for each chemical graphically describes the
change across complex morphological feature data with increasing concentration;
ellipses represent 95% confidence intervals and p-values represent ANOVA statistics
across the 15t latent variable between response groups.
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Based on the top 10 VIP scores for each PLS-DA model, response groups of each
chemical were delineated with a distinct combination of phenotypic markers, thus
indicating that MACI can be used to characterize compound-specific interactions. For
example, exposure to Aclonifen, a carotenoid biosynthesis inhibitor,?" was most
distinguishable by changes in nuclear shape features while exposure to Metolachlor, a
very-long-chain fatty acid synthesis inhibitor,26 was most distinguishable by changes in
features related to lipid droplet granularity. There were also some phenotypic markers
that overlapped for certain chemicals. For example, cells treated with H,O, and Zeocin,
a DNA damaging agent,?® both garnered the same top three chloroplast normalized
moment features. However, the VIP ranking order of these phenotypic markers, as well
as the overall combination of markers, were still distinct between chemical profiles.
Therefore, when using phenotypic profiling for predicting chemical MoAs, the entire

profile, rather than the individual features, should be considered.

Impacts of chemicals can be separated using MACI through hierarchically clustering

phenotypic fingerprints.

The ability of MACI to delineate subtle phenotypes of chemical-specific perturbance was
evaluated, firstly, by comparing the phenotypic fingerprints of each chemical treatment to
one another. For this purpose, the 10 uM data was used as this was the concentration
that caused the largest change in morphology, compared to the control, for most of the
chemicals after 24 hours. After constructing the phenotypic fingerprints, an ANOVA was
used to identify individual features that carry little information, which were removed from
the analysis given a p-value > 0.05. Additionally, factor analysis was used to further

reduce the dimensionality of the phenotypic data vectors down to 7 eigen features/factors

15
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in order to minimize redundant measurements adding noise while still preserving the
variance within the dataset, as suggested by Young et al., 2008. The optimal number of

factors was determined with a non-graphical Cattell’s scree test.
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Figure 4: Phenotypic responses of environmental chemicals compared to one another.
(a.-i.) MACI labeling patterns in nine different treatment groups; (a.) Healthy Cells, (b.)
Zeocin, (c.) Metolachlor, (d.) Carfentrazone, (e.) MSMA, (f.) Glufosinate, (g.) H.O,, (h.)
DCMU, and (i.) Aclonifen treated cells. (j) Pearson correlation matrix across unique
phenotypic responses. Chemical-treated samples are hierarchically clustered based on
their Pearson coefficient in relation to the other chemical-treated samples; dendrograms
and boxes represent individual clusters.

The phenotypic fingerprints across all replicates for each chemical were hierarchically
clustered based on their Pearson correlation coefficient in relation to one another (Figure
4). The hierarchical clustering analysis was able to identify 8 separate clusters (Figure
4j.). All of the clusters grouped individual replicates of the same chemical treatment
together, thus indicating high correlation across replicates and reproducibility in cell-
chemical interactions. However, some treatments were slightly less robust than others.

For example, samples treated with Glufosinate and Aclonifen had less correlation
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between replicates within their respective clusters in comparison to other chemical
treatments, however, their overall correlations were still considerably high. Interestingly,
some correlations between clusters could also been seen. For example, Carfentrazone
and H,O, clusters exhibited fairly high correlation to one another. This is not all that
surprising, though, due to the similarity in the way each of these chemicals interact with
algal cells and the stark visual similarities between their MACI labeling patterns (Figure
4d. and 4q., respectively). Additionally, DCMU and MSMA clusters, whose MoAs are both
related to electron transport inhibition,?32” bore some slight correlation to one another.
However, despite all of these intertreatment correlations, MACI was still sensitive to the
subtle differences in their phenotypic responses as seen by the clear separation of
treatment clusters (Figure 4j), thus suggesting that this assay can be used to successfully
predict compound-specific perturbations and discriminate between chemicals with unique

MoAs.

Chemical MoAs can be identified based on phenotypic response using convolutional

neural networks.

In addition to hierarchical clustering analysis, we also took a deep learning approach to
analyze complex phenotypes and delineate chemicals by their MoA, using convolutional
neural networks. CNNs are a type of artificial neural network, which are most notable for

the way they process image data similarly to the visual cortex of the human brain.3”
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Figure 5: Convolutional neural network construction. A small subset of randomly fetched
cells in each treatment are fed into a convolutional neural network model. Based on the
training data, this CNN model yields a classification accuracy of 75.07% at correctly
classifying cells by their true mechanistic class.

In CellProfiler Analyst, a CNN was trained on a small subset of randomly fetched cells
from each treatment (~10.5% of cells from the entire experiment) using 50x50 neurons
per layer. Based on the confusion matrix (Figure 5), the CNN model was less robust at
distinguishing certain mechanistic classes from one another, such as cells with
membrane disruption vs DNA damage or cells with inhibited N, metabolism vs inhibited
very-long-chain fatty acid synthesis. However, the CNN model was still able to predict the
correct mechanistic class across training cells with moderately good classification at an
accuracy of 75.07% (Figure 5). Once trained, the CNN model was used to score each
cell in the experiment, based on its individual phenotype, with a predicted mechanistic

class, and then calculate enrichment scores for each sample.
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22 342  Figure 6: Phenotypic enrichment score heatmap. The CNN model classifies each cell

37 343 across the entire experiment with a predicted mechanistic class based on its phenotype.
38 344 Enrichment scores for each mechanistic class are calculated in each sample. Heatmap
39 345 values represent average treatment enrichment scores; white colored numbers represent
40 346  significantly enriched mechanistic classes for respective treatments.

42 347 Despite some confusion in the discrimination of mechanistic classes, the CNN model was
348  still able to classify each treatment with the correct MoA. This is visualized in the heatmap
47 349 of enrichment scores (Figure 6) where each treatment was significantly enriched in the
49 350 appropriate mechanistic class. Based on these results, the deep learning approach
351 reinforced the ability of MACI to separate chemicals by MoA. However, both deep learning
s4 352 and hierarchical clustering analyses proved to be robust and sensitive to subtle changes

56 353 in complex phenotypes.
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Complex phenotypic profiles are more efficient at predicting mechanisms of action rather

than single interpretable features.

A majority of the morphological features used for phenotypic profiling are not interpretable
on their own. Zernike moments, for example, measure specific aspects of an object’s
radial distribution,®® and when multiple Zernike moments across multiple orders are
combined together, they become powerful mathematical descriptors of that object’s
shape. Although they can be useful for reconstructing patterns and for detecting subtle
changes in cell shape,3® individual Zernike moments, by themselves, do not hold much
intrinsic nor biological meaning. However, there are a select few of morphological features
that do hold some biological relevance, such as those related to the intensity and quantity
of fluorescence signals, which we can use to elucidate interesting biological phenomena.
For example, measurements of integrated intensity, which is the sum of pixel intensity
values over a ROI,%0 directly correlate to the number fluorophores in that ROI, and thus
directly or indirectly measure relative levels of target biomolecular content. This kind of
measurement has been used for analyzing endpoints related to changes in protein
content*' and for determining cell cycle stages based on the relative abundance of DNA
content.*243 Another useful metric is quantifying the number of fluorescent objects within
a single cell. For example, measuring the number of intracellular vesicles has been used
to study endpoints related to the cellular uptake of micro/nano plastic particles** and for
analyzing the intracellular trafficking of certain proteins.*® In regard to R. subcapitata,
three features that have relevance to algal physiology are the number of nuclei/cell, and
the chloroplast and lipid droplet integrated intensities, which are related to chlorophyll and

TAG content, respectively (Supplementary Table S2).

20

ACS Paragon Plus Environment

Page 20 of 29



Page 21 of 29

oNOYTULT D WN =

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Environmental Science & Technology

Often the phenotypic measurements that scientists are most interested in analyzing, such
as the above-mentioned features, are not always the best predictors for characterizing
the MoA of different compounds due to their lack of specificity. For example, 4 out of 8
treatments significantly increased chlorophyll content, while 4 out of 8 treatments also
significantly increased the average number of nuclei/cell, in some cases to similar
magnitudes while following similar trends to one another. TAG content was only
significantly increased in Metolachlor treated cells, but most treatments did not elicit a
significant change in TAG content. Furthermore, when using these three features in a
hierarchical clustering analysis, based on Pearson correlation, the analysis was not
sensitive enough to discriminate between chemical-specific perturbance (Supplementary
Figure S2), as compared to the previous hierarchal clustering analysis using the entire
profile (Figure 4). Ultimately, when conducting high-content phenotypic profiling, it is
advised to evaluate changes in the entire profile, rather than changes in individual or
select morphological features alone, as they do not hold enough information that can

directly be linked to a specific MoAS.

Applications of MACI, its advantages and limitations.

As the use of high-throughput phenotypic profiling assays become more popular, the
MACI assay, in particular, could have several applications in environmental science.
MACI could be used to screen the thousands of chemicals in the marketplace currently
being reevaluated through efforts such as ToxCast for potential environmental toxicity
and mechanism of action. Furthermore, it could be used to study the potential impacts
of those emerging contaminants and environmental chemicals by characterizing their

cellular targets and identifying their phytotoxic MoAs. This could be especially useful if
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used alongside the Cell Painting assay with other environmentally relevant models like
drosophila and rainbow trout gill cell lines to make cross-species toxicological
comparisons that span multiple trophic levels. Additionally, in the context of environmental
risk assessment, MACI could also be used to help prioritize which emerging contaminants
and environmental chemicals require further evaluation. Once patterns are developed for
a broad array of mechanisms of action it could also be used as a novel technology for the
rapid detection and monitoring of chemicals and specifically emerging contaminants in
the environment. We also hope to develop this technology further as a means to study
more complex environmental samples with mixtures of chemicals that have different
MoAs, which may be made possible with continuing advancements in machine learning

techniques.

MACI could also be used as an in vitro model to drive developments in herbicide and
agrochemical discovery. Green microalgae cells, like R. subcapitata, bear several
similarities to the mesophyll cells of higher order terrestrial plants in terms of the cellular
components, and their constituents, they contain, the environmental processes they carry
out, and the evolutionarily conserved pathways and molecules they utilize.#647
Furthermore, since many herbicides and agrochemicals are delivered to plants via foliar
application, MACI could be used for identifying cellular targets and determining MoAs of
novel herbicides and agrochemicals. However, this technique may not be as useful for

soil-based herbicides and agrochemicals.

Currently several high-throughput screening assays exist in addition to high-throughput
phenotypic profiling, such as high-throughput transcriptomics and high-throughput

proteomics. While both of these assays provide a rich molecular level understanding of
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chemical interactions, they can be extremely time-consuming, costly, and computationally
expensive. In comparison, MACI, as an image-based profiling assay, provides the
advantage of low cost and high speed, while still retaining a capacity for in-depth
characterization and classification.*84° Additionally, assays which measure the differential
expression of transcripts and proteins rely heavily on well-established annotations for
those transcripts and proteins. This is an issue for most environmentally relevant
organisms, like R. subcapitata, which have not been annotated to the extent with which
human disease models have.5® However, another advantage of MACI, and other image-
based profiling assays, is that they only require comparisons to a library of reference
chemicals with established MoAs in order to derive meaning from the phenotypic
response of novel or unstudied chemicals®. Lastly, MACI provides the advantage of
greater experimental precision as each individual cell, of which there can be up to
100,000’s-1,000,000’s in any given experiment, serves as an independent, technical
measurement, thereby, also limiting the impact of measurement error.>’ Some limitations
of this approach also exist. As with all image-based high-throughput phenotypic profiling
assays, this approach requires the use of a high-content automated fluorescence imaging
system, which can be a significant initial investment. While, images taken with standard
fluorescence microscopes can be analyzed in a similar manner to that of images taken
on a high-content imaging system, the lack of automation can lead to an abundance of
human error during image acquisition, thus decreasing the effectiveness of the assay.
Secondly, small differences in image acquisition parameters, like Z-offsets, laser power,
and acquisition times, could potentially greatly impact the downstream feature extraction

and data analysis. As a result, it has not yet been proven that image data can be directly

23

ACS Paragon Plus Environment



oNOYTULT D WN =

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Environmental Science & Technology

compared between imaging platforms.® Since having a library reference set of image data
is an important aspect of this kind of assay, this means that a separate library would have
to be established for each individual imaging platform, rather than being able to share
libraries across imaging platforms. However, with the development of machine learning
and new statistical practices for phenotypic profiling, it may become possible to do so in

the future.

Overall, based on the work described in this study, MACI provides a potentially quick and
effective framework for characterizing complex phenotypes and compound-specific
interactions which is suitable for predicting chemical MoAs in plant-type organisms. This
work demonstrates the power and benefit of image-based phenotypic profiling in general,
which is a technique that may continue to drive many advancements in the field of

environmental science and technology.

Associated Content

Supporting Information: Description of different data-analysis strategies for image-based
phenotypic profiling. Tables reporting the molecular weight & logKow (Table S1), and VIP
scores (Table S2) for reference compounds. Table and description for interpretable
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ethanol (Figure S1) and Pearson correlation matrix based on minimal feature data (Figure

S2) (DOC).
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This work uses novel high-throughput phenotypic profiling and fluorescence imaging techniques to
28 predict/characterize the mechanisms of action of environmental chemicals.
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