

This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.

Using a novel multiplexed algal cytological imaging (MACI) assay and machine learning as a way to characterize complex phenotypes in plant-type organisms

Journal:	<i>Environmental Science & Technology</i>
Manuscript ID	es-2023-07733f.R2
Manuscript Type:	Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Ostovich, Eric; University of Wisconsin-Milwaukee, School of Freshwater Science Klaper, Rebecca; University of Wisconsin Milwaukee, School of Freshwater Sciences

SCHOLARONE™
Manuscripts

1
2 **1 Using a novel multiplexed algal cytological imaging (MACI) assay and machine**
3 **2 learning as a way to characterize complex phenotypes in plant-type organisms**
4
5
6
7
8 3
9
10
11 4 Eric Ostovich¹, Rebecca Klaper^{1*}
12
13
14 5 ¹School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee,
15
16 6 Wisconsin, 53204, USA
17
18
19 7 Corresponding author email: rklaper@uwm.edu
20
21
22 8 Keywords: algae, ecotoxicology, phenotypic profiling, deep learning, high-throughput,
23
24 9 new approach methodologies
25
26
27
28 10 **ABSTRACT**
29
30 11 High-throughput phenotypic profiling assays, popular for their ability to characterize
31
32 12 alternations in single-cell morphological feature data, have been useful in recent years at
33
34 13 predicting cellular targets and mechanisms of action (MoAs) for different chemicals and
35
36 14 novel drugs. However, this approach has not been extensively used in environmental
37
38 15 toxicology due to the lack of studies and established methods for performing this kind of
39
40 16 assay in environmentally relevant species. Here, we developed a multiplexed algal
41
42 17 cytological imaging (MACI) assay, based on the subcellular structures of the unicellular
43
44 18 microalgae, *Raphidocelis subcapitata*, a toxicology and ecological model species.
45
46
47 19 Several different herbicides and antibiotics with unique MoAs were exposed to *R.*
48
49 20 *subcapitata* cells and MACI was used to characterize cellular impacts by measuring
50
51 21 subtle changes in their morphological features, including metrics of area, shape, quantity,
52
53 22 fluorescence intensity, and granularity of individual subcellular components. This study
54
55
56
57
58
59
60

1
2
3 23 demonstrates that MACI offers a quick and effective framework for characterizing
4
5 24 complex phenotypic responses to environmental chemicals, that can be used for
6
7 25 determining their MoAs and identifying their cellular targets in plant-type organisms.
8
9
10

11 26 **Synopsis**
12

13 27 This work proposes novel high-throughput phenotypic profiling and fluorescence imaging
14
15 28 techniques to predict/characterize the mechanisms of action of environmental chemicals.
16
17
18 29
19
20
21

22 30 **INTRODUCTION**
23

24 31 With increasing quantities and classes of contaminants introduced into commerce and
25
26 32 therefore found in the environment, there is a call for more rapid techniques for evaluating
27
28 33 their potential hazard in a quick and efficient manner. Therefore, there is a need for more
29
30 34 nontargeted (i.e. quantifying hundreds of distinct properties to identify unknown
31
32 35 responses), high-throughput profiling assays that can characterize biological activity,
33
34 36 identify potency thresholds, and predict mechanisms of action (MoAs),¹ as compared to
35
36 37 traditional targeted assays which only quantify singular, or few cellular functions or
37
38 38 properties.² In recent years, morphological/phenotypic profiling has been shown to
39
40 39 provide rich sources of data for interrogating biochemical perturbations as the morphology
41
42 40 of a cell is extremely sensitive and strongly influenced by factors such as metabolism,
43
44 41 genetic state, and environmental cues.³ Additionally, it has been shown that specific
45
46 42 biological perturbations deliver specific phenotypic profiles, and therefore any subset of
47
48 43 morphological features that deviate from that of healthy cells can serve as a fingerprint,
49
50 44 or unique identifier, to characterize biological activity.⁴ For example Gustafsdottir et al.
51
52
53
54
55
56
57
58
59
60

1
2
3 45 2013 demonstrated the ability of morphological profiling to capture a wide range of cellular
4 phenotypes after exposing U2OS cells exposed to 1600 different commercially available
5 compounds with a range of different MoAs. Furthermore, when comparing the fingerprint
6 of cells treated with novel compounds to that of cells treated with compounds with
7 previously established MoAs, the probable MoA of these novel compounds can then be
8 identified.⁵

9
10
11 51 Common high-throughput phenotypic profiling assays, like the Cell Painting Assay⁶,
12 52 involve the use of multiplexed fluorescence cytochemistry to visualize multiple subcellular
13 53 structures within a cell and high-content imaging to take hundreds of snapshots of their
14 54 morphology in an automated and consistent manner. These image data can then be
15 55 converted into quantitative data by using bioimage analysis to extract hundreds of
16 56 morphological features at the resolution of a single cell. These morphological features
17 57 include metrics related to cell size, shape, fluorescence intensity, texture, granularity, and
18 58 even spatial relationships between organelles which all represent subtle unbiased
19 59 descriptors of the phenotypic state. Currently, high-throughput phenotypic profiling
20 60 assays are used most often in the context of drug discovery and disease models. For
21 61 example, Hughes et al. (2020) used Cell Painting to screen 19,555 compounds and profile
22 62 the phenotypic response across several esophageal adenocarcinoma cell lines;
23 63 subsequent bioimage data was analyzed using hierarchical clustering and machine
24 64 learning methods across 733 individual morphological features per cell, including
25 65 measurements of size, shape, texture, and intensity. In doing so, this study successfully
26 66 identified novel drug targets, predicted the MoAs of test compounds through comparison
27 67 to a library of reference compounds, and discovered pharmacological classes that

1
2
3 68 targeted that specific type of cancer. However, this kind of assay may also have
4
5 69 applications in other fields like eco- and environmental toxicology.
6
7

8 70 Recently, the United States Environmental Protection Agency (USEPA) has begun to use
9
10 71 high-throughput phenotypic profiling for the screening and hazard identification of
11
12 72 environmental chemicals, however, only human-derived cell models are still largely being
13
14 73 used for this purpose.^{4,8} While human-derived cell models provide the advantage of
15
16 74 proven characterization and predictive power, they may not accurately represent
17
18 75 phenotypic responses in environmentally relevant species, like plants and algae, whose
19
20 76 cells are biologically distinct from animal cells. For example, DCMU (3-(3,4-
21
22 77 dichlorophenyl)-1,1-dimethylurea), or Diuron, has been reported to cause DNA damage
23
24 78 in certain types of human cancer cell lines⁹ but in plants and algae targets photosystem
25
26 79 II (PSII) proteins.¹⁰ Furthermore, human cell lines may not accurately represent
27
28 80 environmentally safe exposure levels for certain compounds, like ZnO nanoparticles, that
29
30 81 are relatively benign to humans,¹¹ but acutely toxic to algal species at low
31
32 82 concentrations.¹² Thus, cell models which are more environmentally relevant should be
33
34 83 considered. In particular, *Raphidocelis subcapitata*, a prevalent type of freshwater green
35
36 84 algae and an environmentally relevant organism, is a good candidate model to use for
37
38 85 high-throughput phenotypic profiling as it is a USEPA established model for
39
40 86 environmental toxicology¹³ and an important bioindicator species for
41
42 87 assessing/monitoring water quality.¹⁴ Additionally, its strictly unicellular nature makes it
43
44 88 beneficial for image-based assays in terms of downstream bioimage segmentation, which
45
46 89 may be more difficult to do for other common microalgae like *Chlamydomonas spp.*,
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 90 *Chlorella* spp., and *Scenedesmus* spp. that tend to form colonies or coenobia under
4 stress.^{15,16}
5
6

7
8 92 Here we describe a multiplexed algal cytological imaging (MACI) assay for the phenotypic
9 profiling of environmental chemicals, based on three subcellular structures that are
10
11 93 important for the architecture of *R. subcapitata* cells: the chloroplast, nuclei, and lipid
12
13 94 droplets. Each of these subcellular structures represent a different aspect of algal
14
15 physiology and can be used to characterize complex phenotypes and predict phytotoxic
16
17 mechanisms of action. For example, the chloroplast is an important subcellular
18
19 compartment for conducting photosynthesis, and features related to chloroplast
20
21 fluorescence can be used to describe relative levels of chlorophyll content between
22
23 treatments, and can even be used to calculate the quantum yield of PSII.¹⁷ Nuclei play a
24
25 crucial role in regulating gene expression and facilitating cellular division, and features
26
27 related to the number on nuclei per cell, as well as the relative amount of DNA content
28
29 101 per nucleus, can be used to describe instances of cell cycle disruption/arrest.^{15,18} And
30
31 102 lastly, lipid droplets, which are a collection of neutral lipids, often triacylglycerol (TAG),
32
33 103 and serve as an alternative form of energy storage to starch, are often indicators of cell
34
35 104 stress when accumulated in large quantities.¹⁹
36
37

38
39 107 As a proof of concept, this study aims to assess the ability of the MACI assay to
40
41 108 characterize and differentiate between cells which were exposed to various compounds
42
43 109 with unique MoAs. The performance of this assay was evaluated by testing a small set of
44
45 110 herbicides and antibiotics with already established MoAs, and preforming a hierarchical
46
47 111 clustering analysis of their phenotypic fingerprints. Additionally, a convolutional neural
48
49 112 network (CNN) machine learning model was trained off of a small subset of cell image
50
51
52
53
54
55
56
57
58
59

1
2
3 113 data in order to predict compound-specific perturbances. We propose that the MACI
4
5 114 assay is a quick and effective way to characterize complex phenotypes and predict
6
7 115 interactions with environmentally relevant chemicals in plant-type species.
8
9
10
11 116
12
13
14 117 **MATERIALS AND METHODS**
15
16 118 *Algal Cell Culture.*
17
18
19 119 A stock culture of *R. subcapitata*, inoculated at 1×10^5 Cells·mL⁻¹, was grown in a 1 L
20
21 120 Erlenmeyer flask and cultured in OECD 201 media²⁰. Cells were illuminated continuously
22
23 121 with a full spectrum T8 light bulb at a photon flux of 70 $\mu\text{E} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$. The stock culture was
24
25 122 mixed with an orbital shaker at a speed of 111 rpm.
26
27
28
29 123 *Exposure Setup.*
30
31
32 124 Eight different environmental chemicals with unique established MoAs (described in
33
34 125 **Table 1**), were exposed to cells for 24 hours at either 0 (control), 0.1, 1, or 10 μM .
35
36
37 126 **Table 1: Environmental Chemicals with Known MoAs**
38
39

Chemical	Mechanism of Action	Abbreviation	References
Aclonifen	Carotenoid Biosynthesis Inhibition	CBI	21
Carfentrazone	Membrane Disruption	MD	22
DCMU	PSII Photochemistry Inhibition	PPI	23
Glufosinate	N ₂ Metabolism Inhibition	NMI	24
H ₂ O ₂	Oxidative Stress	OS	25
Metolachlor	Very-Long-Chain Fatty Acid Synthesis Inhibition	VLCFASI	26
MSMA	OP Uncoupler/e- Transport Inhibition	OPU/e-TI	27
Zeocin	DNA Damage	DD	28

1
2
3 128 Each chemical was solubilized in either OECD 201 medium or 100% EtOH depending on
4
5 129 its solubility, and sonicated for 30 minutes to prepare a primary 1000 μM stock. A
6
7 130 secondary 100 μM stock solution was then prepared for each chemical by performing a
8
9 131 serial dilution from their respective primary stock solution into OECD 201 media. While
10
11 132 cells were growing exponentially, 900 μL aliquots of algal stock culture ($\sim 5 \times 10^5 \text{ Cells}\cdot\text{mL}^{-1}$)
12
13 133 were seeded into individual 1.5 mL microcentrifuge tubes. For each treatment, done in
14
15 134 quintuplicate, the respective secondary stock solution and/or OECD 201 medium was
16
17 135 added to each 900 μL cell suspension at a final volume of 1 mL. Resulting EtOH content
18
19 136 in final exposure samples ($\leq 1\%$) had a negligible effect on cell morphology
20
21 137 (**Supplementary Figure S1**). The samples were then placed under full spectrum
22
23 138 illumination, with tube lids open, at a photon flux of $70 \mu\text{E}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$ for 24 hours. 24 hours
24
25 139 was chosen for the exposure duration as this timepoint has been shown to better
26
27 140 delineate initial phenotypic impacts,⁸ however, longer timepoints can also be chosen
28
29 141 depending on the purpose of the exposure.

34
35 142 *Multiplexed Algal Cytological Imaging (MACI) Assay.*
36
37

39 143 At the conclusion of the exposure, aliquots from each sample were transferred to sterile
40
41 144 1.5 mL microcentrifuge tubes. Commercially available fluorescent probes and
42
43 145 glutaraldehyde were used to stain and fix multiple subcellular compartments of the algal
44
45 146 cells, respectively.

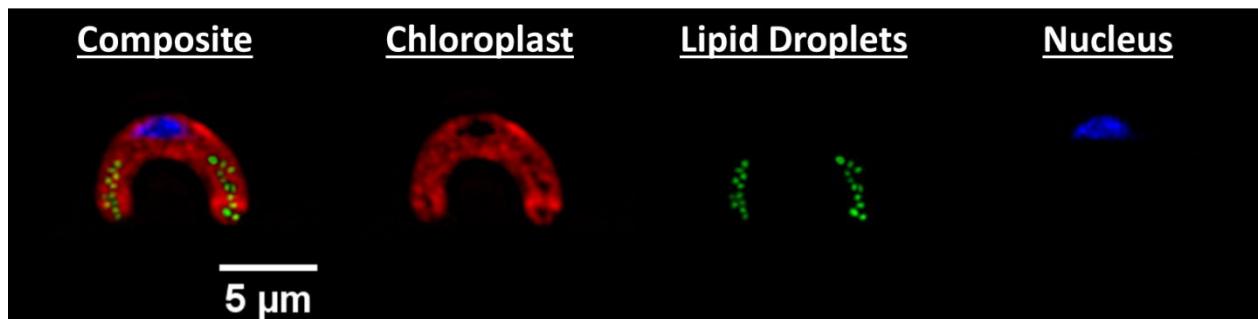


Figure 1: The MACI assay as seen in a *Raphidocelis subcapitata* cell. Representative fluorescence micrograph where each column represents a different fluorescently labeled subcellular compartment visualized by the MACI assay.

The chloroplast is auto fluorescent due to the presence of chlorophyll, and thus did not require a fluorescent probe, but NucBlue (Thermo Fisher, R37605) was used to label nuclei and BODIPY 505/515 (Thermo Fisher, D3921) was used to stain neutral lipid droplets, as seen in **Figure 1**. After the adding reagents to the sample aliquots, all reactions were incubated overnight at 4 °C to minimize enzymatic degradation and maintain the integrity of the subcellular structures. Cells can also be stored at 4 °C for as long as one week when fixed with higher concentrations of glutaraldehyde (~0.25%) for maximum recovery (Shapiro et al., 2001). Alternatively, for live cell imaging, it is recommended that all reagents, excluding glutaraldehyde, are added, and reactions are incubated in the dark at room temperature for 15-30 minutes. After incubating reactions, cells were centrifuged at 4000 x g for 5 min, washed 2x with 1X Phosphate Buffered Saline (PBS), and resuspended in PBS. Cells from each sample were loaded into a well of a glass bottom 384 well plate (Cellvis, P384W-1.5H-N) at a seeding density of ~ 2×10^3 cells·mm⁻² for optimal distribution of cells across the well surface. After loading cells, the well plate was then spun gently at 600RPM for 1 minute to concentrate cells at the bottom of the well. Alternatively, loaded well plates can also be set aside for 30-60 minutes at room temperature to allow cells to settle before imaging. Images were acquired at 9 sites

1
2
3 168 per well with an ImageXpress Micro XLS High-Content Screening System with a 60X Plan
4
5 169 Fluor 0.85 NA air immersion objective (Molecular Devices, 1-6300-0414), using the
6
7 170 fluorescent channels described in **Table 2**.
8
9
10
11 171

Table 2: MACI Fluorescence Cytochemistry parameters

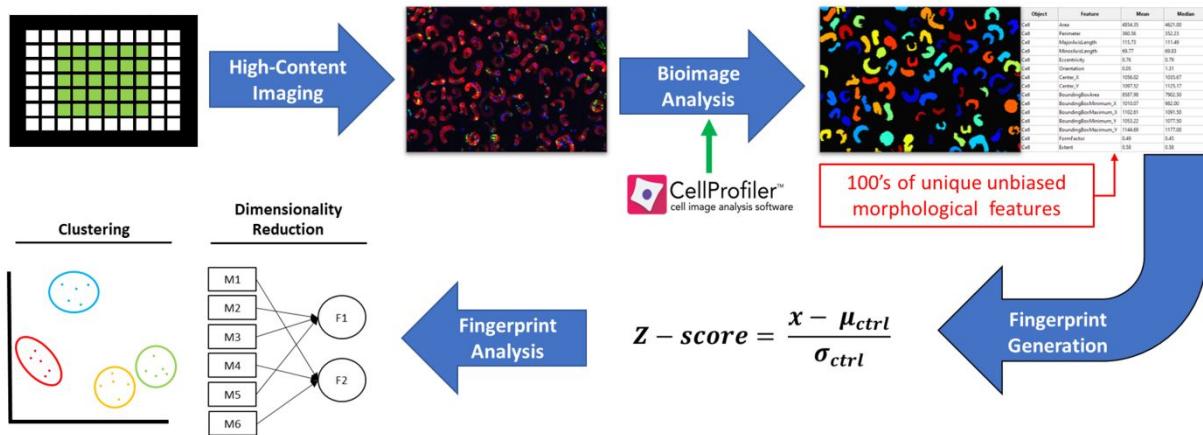
Organelle	Stain	Channel	Excitation (nm)	Emission (nm)
Chloroplast	Auto Fluorescent	Cy5	628/40	692/40
Lipid Droplets	BODIPY 505/515	GPF	472/30	520/35
Nuclei	NucBlue	DAPI	377/50	447/60

172
173 To enhance image contrast and resolution, the digital confocal feature was used during
174 image acquisition. For representative cell images with higher resolution, some images
175 were also acquired with a 100X CFI L PLAN EPI CC 0.85 NA air immersion objective
176 (Molecular Devices, 1-6300-0419).
177

Bioimage Analysis.

178 After acquiring images, any image analysis software can be used to extract quantitative
179 data from the images. In this study, CellProfiler,³⁰ an open-source modular bioimage
180 analysis software, was used for image pre-processing, object segmentation, and
181 morphological feature extraction at the resolution of individual cells. A pipeline for
182 analyzing algal cells can be found in the supplementary information. The pipeline
183 identifies the chloroplast from the Cy5 channel, which spans most of the cell area of *R.*
184 *subcapitata*, to help aid a segmentation algorithm in identifying individual cells, or regions
185 of interest (ROI). These ROI are then used as a mask to identify which subcellular
186 structures belong to which cell. This pipeline extracts 450 unique morphological features
187 per cell related to area, shape, intensity, and granularity of each subcellular structure,
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
55510
55511
55512
55513
55514
55515
55516
55517
55518
55519
55520
55521
55522
55523
55524
55525
55526
55527
55528
55529
55530
55531
55532
55533
55534
55535
55536
55537
55538
55539
55540
55541
55542
55543
55544
55545
55546
55547
55548
55549
555410
555411
555412
555413
555414
555415
555416
555417
555418
555419
555420
555421
555422
555423
555424
555425
555426
555427
555428
555429
5554210
5554211
5554212
5554213
5554214
5554215
5554216
5554217
5554218
5554219
5554220
5554221
5554222
5554223
5554224
5554225
5554226
5554227
5554228
5554229
55542210
55542211
55542212
55542213
55542214
55542215
55542216
55542217
55542218
55542219
55542220
55542221
55542222
55542223
55542224
55542225
55542226
55542227
55542228
55542229
555422210
555422211
555422212
555422213
555422214
555422215
555422216
555422217
555422218
555422219
555422220
555422221
555422222
555422223
555422224
555422225
555422226
555422227
555422228
555422229
5554222210
5554222211
5554222212
5554222213
5554222214
5554222215
5554222216
5554222217
5554222218
5554222219
5554222220
5554222221
5554222222
5554222223
5554222224
5554222225
5554222226
5554222227
5554222228
5554222229
55542222210
55542222211
55542222212
55542222213
55542222214
55542222215
55542222216
55542222217
55542222218
55542222219
55542222220
55542222221
55542222222
55542222223
55542222224
55542222225
55542222226
55542222227
55542222228
55542222229
555422222210
555422222211
555422222212
555422222213
555422222214
555422222215
555422222216
555422222217
555422222218
555422222219
555422222220
555422222221
555422222222
555422222223
555422222224
555422222225
555422222226
555422222227
555422222228
555422222229
5554222222210
5554222222211
5554222222212
5554222222213
5554222222214
5554222222215
5554222222216
5554222222217
5554222222218
5554222222219
5554222222220
5554222222221
5554222222222
5554222222223
5554222222224
5554222222225
5554222222226
5554222222227
5554222222228
5554222222229
55542222222210
55542222222211
55542222222212
55542222222213
55542222222214
55542222222215
55542222222216
55542222222217
55542222222218
55542222222219
55542222222220
55542222222221
55542222222222
55542222222223
55542222222224
55542222222225
55542222222226
55542222222227
55542222222228
55542222222229
555422222222210
555422222222211
555422222222212
555422222222213
555422222222214
555422222222215
555422222222216
555422222222217
555422222222218
555422222222219
555422222222220
555422222222221
555422222222222
555422222222223
555422222222224
555422222222225
555422222222226
555422222222227
555422222222228
555422222222229
5554222222222210
5554222222222211
5554222222222212
5554222222222213
5554222222222214
5554222222222215
5554222222222216
5554222222222217
5554222222222218
5554222222222219
5554222222222220
5554222222222221
5554222222222222
5554222222222223
5554222222222224
5554222222222225
5554222222222226
5554222222222227
5554222222222228
5554222222222229
55542222222222210
55542222222222211
55542222222222212
55542222222222213
55542222222222214
55542222222222215
55542222222222216
55542222222222217
55542222222222218
55542222222222219
55542222222222220
55542222222222221
55542222222222222
55542222222222223
55542222222222224
55542222222222225
55542222222222226
55542222222222227
55542222222222228
55542222222222229
555422222222222210
555422222222222211
555422222222222212
555422222222222213
555422222222222214
555422222222222215
555422222222222216
555422222222222217
555422222222222218
555422222222222219
555422222222222220
555422222222222221
555422222222222222
555422222222222223
555422222222222224
555422222222222225
555422222222222226
555422222222222227
555422222222222228
555422222222222229
5554222222222222210
5554222222222222211
5554222222222222212
5554222222222222213
5554222222222222214
5554222222222222215
5554222222222222216
5554222222222222217
5554222222222222218
5554222222222222219
5554222222222222220
5554222222222222221
5554222222222222222
5554222222222222223
5554222222222222224
5554222222222222225
5554222222222222226
5554222222222222227
5554222222222222228
5554222222222222229
55542222222222222210
55542222222222222211
55542222222222222212
55542222222222222213
55542222222222222214
55542222222222222215
55542222222222222216
55542222222222222217
55542222222222222218
55542222222222222219
55542222222222222220
55542222222222222221
55542222222222222222
55542222222222222223
55542222222222222224
55542222222222222225
55542222222222222226
55542222222222222227
55542222222222222228
55542222222222222229
555422222222222222210
555422222222222222211
555422222222222222212
555422222222222222213
555422222222222222214
555422222222222222215
555422222222222222216
555422222222222222217
555422222222222222218
555422222222222222219
555422222222222222220
555422222222222222221
555422222222222222222
555422222222222222223
555422222222222222224
555422222222222222225
555422222222222222226
555422222222222222227
555422222222222222228
555422222222222222229
5554222222222222222210
5554222222222222222211
5554222222222222222212
5554222222222222222213
5554222222222222222214
5554222222222222222215
5554222222222222222216
5554222222222222222217
5554222222222222222218
5554222222222222222219
5554222222222222222220
5554222222222222222221
5554222222222222222222
5554222222222222222223
5554222222222222222224
5554222222222222222225
5554222222222222222226
5554222222222222222227
5554222222222222222228
5554222222222222222229
55542222222222222222210
55542222222222222222211
55542222222222222222212
55542222222222222222213
55542222222222222222214
55542222222222222222215
55542222222222222222216
55542222222222222222217
55542222222222222222218
55542222222222222222219
55542222222222222222220
55542222222222222222221
55542222222222222222222
55542222222222222222223
55542222222222222222224
55542222222222222222225
55542222222222222222226
55542222222222222222227
55542222222222222222228
55542222222222222222229
555422222222222222222210
555422222222222222222211
555422222222222222222212
555422222222222222222213
555422222222222222222214
555422222222222222222215
555422222222222222222216
555422222222222222222217
555422222222222222222218
555422222222222222222219
555422222222222222222220
555422222222222222222221
555422222222222222222222
555422222222222222222223
555422222222222222222224
555422222222222222222225
555422222222222222222226
555422222222222222222227
555422222222222222222228
555422222222222222222229
5554222222222222222222210
5554222222222222222222211
5554222222222222222222212
5554222222222222222222213
5554222222222222222222214
5554222222222222222222215
5554222222222222222222216
5554222222222222222222217
5554222222222222222222218
5554222222222222222222219
5554222222222222222222220
5554222222222222222222221
5554222222222222222222222
5554222222222222222222223
5554222222222222222222224
5554222222222222222222225
5554222222222222222222226
5554222222222222222222227
5554222222222222222222228
5554222222222222222222229
55542222222222222222222210
55542222222222222222222211
55542222222222222222222212
55542222222222222222222213
55542222222222222222222214
55542222222222222222222215
55542222222222222222222216
55542222222222222222222217
55542222222222222222222218
55542222222222222222222219
55542222222222222222222220
55542222222222222222222221
55542222222222222222222222
55542222222222222222222223
55542222222222222222222224
55542222222222222222222225
55542222222222222222222226
55542222222222222222222227
55542222222222222222222228
55542222222222222222222229
555422222222222222222222210
555422222222222222222222211
555422222222222222222222212
555422222222222222222222213
555422222222222222222222214
555422222222222222222222215
555422222222222222222222216
555422222222222222222222217
555422222222222222222222218
555422

1
2
3 188 which is then exported to a local SQLite database file. Data tables were extracted from
4
5 189 the SQLite database file using the RSQLite package in R.³¹
6
7
8
9 190 **NOTE:** Image naming rules and module settings in the MACI pipeline may need to be
10
11 191 optimized for other microscopes and experiments.



28
29
30 193 **Figure 2:** Phenotypic profiling workflow. General overview of the steps taken to conduct
31 phenotypic profiling using image-based data. After perturbing and staining the algae cells,
32 they are seeded into a 384-glass bottom well plate for high-content imaging. A CellProfiler
33 pipeline (or a pipeline from any image analysis software) is used to convert the image
34 data into quantitative data at the resolution of a single cell. Phenotypic fingerprints are
35 then generated by calculating z-scores, and analyzed by reducing data dimensionality
36 and/or performing a clustering analysis.

37
38
39
40 201 *Phenotypic Profiling - Fingerprint Analysis.*
41
42
43 202 Phenotypic response data was analyzed using a general phenotypic profiling workflow
44
45 (Figure 2). Data was firstly processed by aggregating single-cell morphological feature
46 measurements to per-image and then per-well values, which was done by taking the cell
47 and image means, respectively. Secondly, well data from each compound and dose were
48
49 205 then normalized to the non-treated cell control by computing a Z-score:
50
51
52
53 206

208 where x is the feature value, μ_{ctrl} is the mean feature value of the control, and σ_{ctrl} is the
209 standard deviation of the feature value of the control. In order to verify whether each
210 compound elicited a change to the entire phenotypic profile of treated cells and to
211 characterize compound-specific phenotypic changes, a partial least squares-discriminant
212 analysis (PLS-DA) was performed in R using the mixOmics package.³² Before feeding
213 phenotypic response data into the PLS-DA models, an ANOVA was performed across all
214 features for each reference chemical to remove any non-informative features with little
215 variance (p-values > 0.05). Lastly, factor analysis was used to further reduce the
216 dimensionality of phenotypic data vectors, and the fingerprints were subsequently
217 compared to one another using hierarchical clustering based on Pearson correlation in
218 R. Different data-analysis strategies are discussed in the supplementary information.

219 *Phenotypic Profiling - Convolutional Neural Networks.*

220 In addition to fingerprint analysis, a CNN was also trained on a small subset of cells
221 (~10.5%) using the classifier module on CellProfiler Analyst (Ver 3.0).³³ Only a small
222 percentage of the cells were chosen to build the CNN model as to avoid the possibility of
223 overfitting (for example, the model may start to associate well location with the
224 compounds instead of the actual cell features), however, it is worth noting that in the
225 scope of this exposure, ~10.5% of cells is still a sufficiently large number of observations.
226 A separate bin was created for each chemical-treated and the non-treated cell control in
227 the classifier module, where around 1000 randomly fetched cells from each treatment
228 were placed in each respective bin (**Figure 5**). After training the CNN, it was used to score

1
2
3 229 the entire experiment by classifying individual cells into predicted phenotypic classes, and
4
5 230 computing enrichment scores for each sample as the logit area under the receiver
6
7 operating characteristic curve. An ANOVA and a Tukey post-hoc test was used to
8
9 232 evaluate the significance of predicted phenotypic class enrichments for each treatment.
10
11
12 233 *Statistical Analysis.*
13
14

15
16 234 All statistical analyses were performed using R Studio ^{34,35}. A Shapiro-Wilk test was used
17
18 235 to verify normal distribution and a One-Way ANOVA was used to compare variance
19
20 236 among group means, while a Tukey post-hoc test was used for multiple comparisons. In
21
22 237 each analysis, significant differences were determined with a 95% confidence interval.
23
24
25 238
26
27
28
29 239 **RESULTS AND DISCUSSION.**
30
31 240 *Complex changes in phenotypes of cells upon chemical exposure can be defined using*
32
33 241 *MACI.*
34
35
36 242 After perturbing cells with respective chemicals and conducting MACI, a CellProfiler
37
38 243 pipeline was used to convert the high-content image data into quantitative data. From
39
40 244 these data 450 unique, unbiased, morphological features were extracted at the resolution
41
42 245 of a single cell, which were used to generate phenotypic fingerprints of molecular
43
44 246 interaction. In order to verify whether each chemical elicited a significant change to cell
45
46 247 morphology, we characterized the cellular responses to each chemical, individually, by
47
48 248 comparing changes in their complex phenotypic profiles with increasing concentration.
49
50
51 249 This was done with a PLS-DA, which is a supervised machine learning algorithm that
52
53 250 projects multidimensional datasets onto two-dimensional planes in order to predict
54
55
56
57
58
59
60

1
2
3 251 responses between groups. Based on the PLS-DA response plots (**Figure 3**), each
4
5 252 chemical treatment displays a significant collective separation between response groups,
6
7 253 thereby indicating that each chemical does elicit a significant, and measurable, change
8
9 254 to cell morphology after 24 hours. Variable importance in projection (VIP) scores were
10
11 255 also extracted from each PLS-DA response plot (**Supplementary Table S1**). VIP scores
12
13 256 indicate the features, or predictors, which are most influential in driving the separation
14
15 257 between response groups and can, therefore, help characterize groups of phenotypic
16
17 258 markers that are unique to chemicals with specific MoAs. In this case, predictors with VIP
18
19 259 scores above 1.0 were considered most important.
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

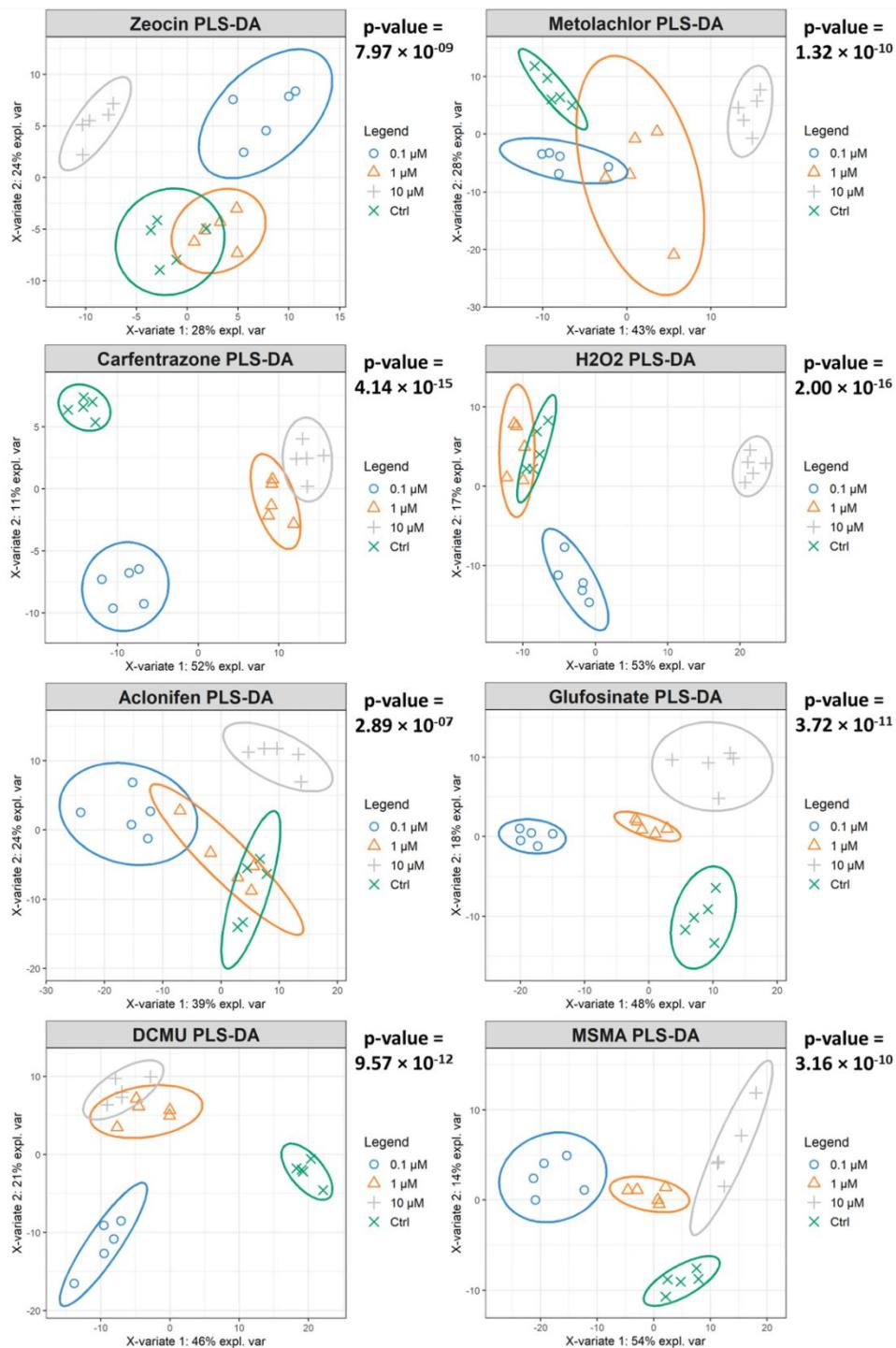


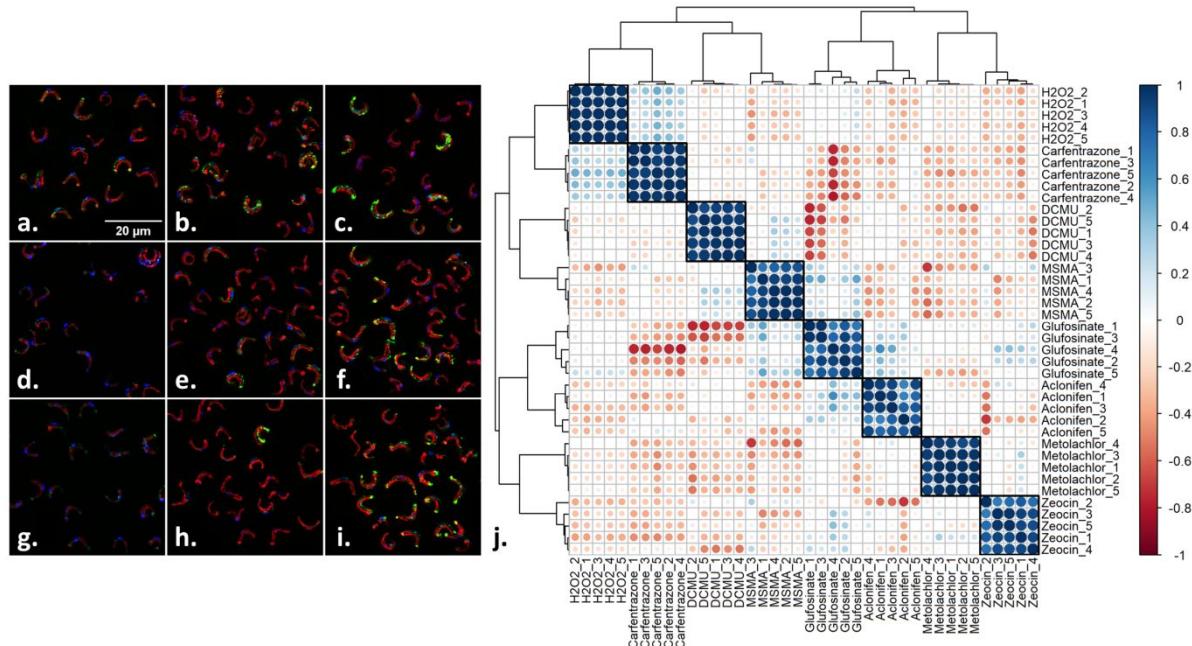
Figure 3: Phenotypic responses to environmental chemicals. A partial least squares-discriminant analysis (PLS-DA) response plot for each chemical graphically describes the change across complex morphological feature data with increasing concentration; ellipses represent 95% confidence intervals and p-values represent ANOVA statistics across the 1st latent variable between response groups.

1
2
3 266 Based on the top 10 VIP scores for each PLS-DA model, response groups of each
4
5 267 chemical were delineated with a distinct combination of phenotypic markers, thus
6
7 268 indicating that MACI can be used to characterize compound-specific interactions. For
8
9 269 example, exposure to Aclonifen, a carotenoid biosynthesis inhibitor,²¹ was most
10
11 270 distinguishable by changes in nuclear shape features while exposure to Metolachlor, a
12
13 271 very-long-chain fatty acid synthesis inhibitor,²⁶ was most distinguishable by changes in
14
15 272 features related to lipid droplet granularity. There were also some phenotypic markers
16
17 273 that overlapped for certain chemicals. For example, cells treated with H₂O₂ and Zeocin,
18
19 274 a DNA damaging agent,²⁸ both garnered the same top three chloroplast normalized
20
21 275 moment features. However, the VIP ranking order of these phenotypic markers, as well
22
23 276 as the overall combination of markers, were still distinct between chemical profiles.
24
25 277 Therefore, when using phenotypic profiling for predicting chemical MoAs, the entire
26
27 278 profile, rather than the individual features, should be considered.

289
290 279 *Impacts of chemicals can be separated using MACI through hierarchically clustering*
291
292 280 *phenotypic fingerprints.*

293
294 281 The ability of MACI to delineate subtle phenotypes of chemical-specific perturbation was
295
296 282 evaluated, firstly, by comparing the phenotypic fingerprints of each chemical treatment to
297
298 283 one another. For this purpose, the 10 μ M data was used as this was the concentration
299
300 284 that caused the largest change in morphology, compared to the control, for most of the
301
302 285 chemicals after 24 hours. After constructing the phenotypic fingerprints, an ANOVA was
303
304 286 used to identify individual features that carry little information, which were removed from
305
306 287 the analysis given a p-value > 0.05. Additionally, factor analysis was used to further
307
308 288 reduce the dimensionality of the phenotypic data vectors down to 7 eigen features/factors

1
2
3 289 in order to minimize redundant measurements adding noise while still preserving the
4
5 290 variance within the dataset, as suggested by Young et al., 2008. The optimal number of
6
7 291 factors was determined with a non-graphical Cattell's scree test.
8
9



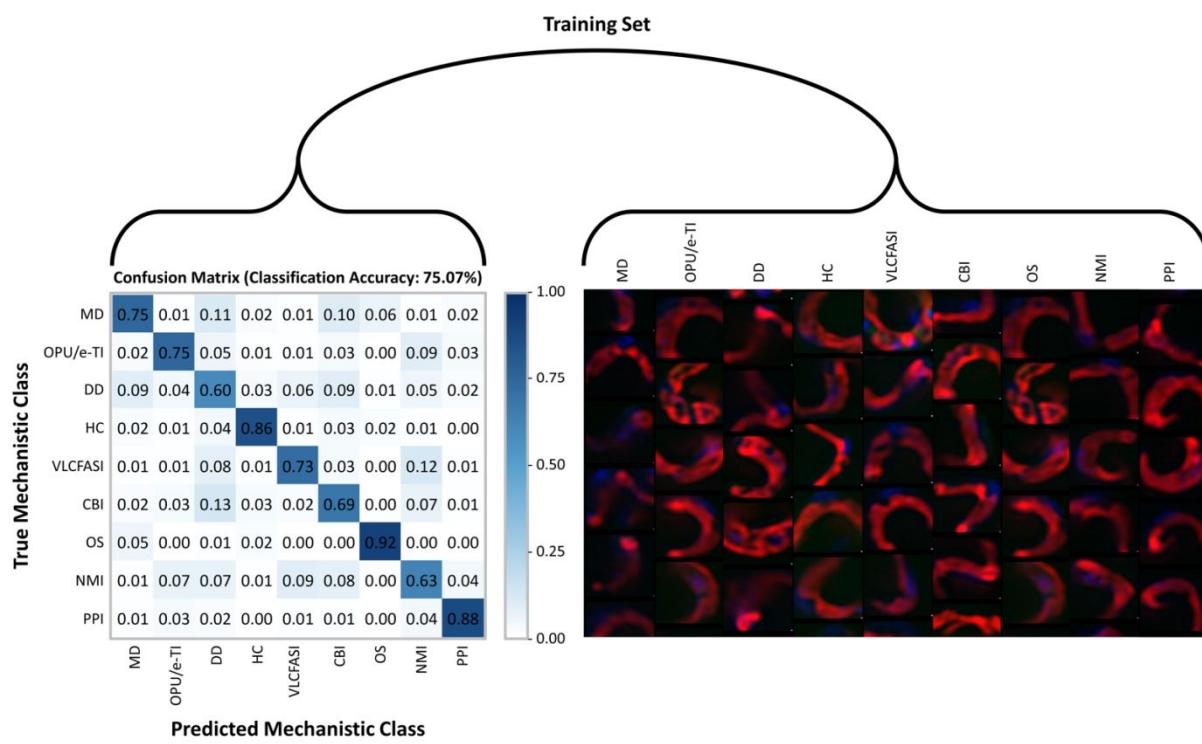
292
293 **Figure 4:** Phenotypic responses of environmental chemicals compared to one another.
294 (a.-i.) MACI labeling patterns in nine different treatment groups; (a.) Healthy Cells, (b.)
295 Zeocin, (c.) Metolachlor, (d.) Carfentrazone, (e.) MSMA, (f.) Glufosinate, (g.) H₂O₂, (h.)
296 DCMU, and (i.) Aclonifen treated cells. (j) Pearson correlation matrix across unique
297 phenotypic responses. Chemical-treated samples are hierarchically clustered based on
298 their Pearson coefficient in relation to the other chemical-treated samples; dendograms
299 and boxes represent individual clusters.

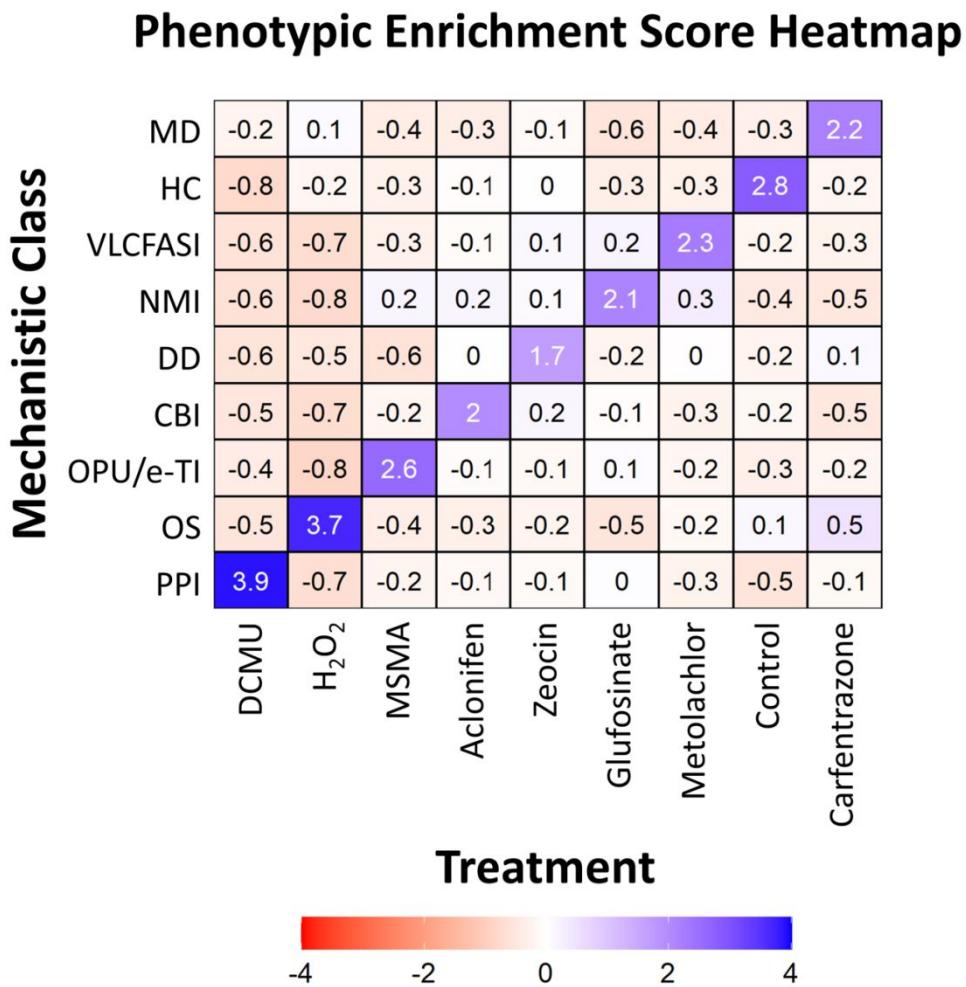
300 The phenotypic fingerprints across all replicates for each chemical were hierarchically
301 clustered based on their Pearson correlation coefficient in relation to one another (**Figure**
302 **4**). The hierarchical clustering analysis was able to identify 8 separate clusters (**Figure**
303 **4j**). All of the clusters grouped individual replicates of the same chemical treatment
304 together, thus indicating high correlation across replicates and reproducibility in cell-
305 chemical interactions. However, some treatments were slightly less robust than others.
306 For example, samples treated with Glufosinate and Aclonifen had less correlation

1
2
3 307 between replicates within their respective clusters in comparison to other chemical
4 treatments, however, their overall correlations were still considerably high. Interestingly,
5 308 some correlations between clusters could also been seen. For example, Carfentrazone
6 and H₂O₂ clusters exhibited fairly high correlation to one another. This is not all that
7 310 surprising, though, due to the similarity in the way each of these chemicals interact with
8 311 algal cells and the stark visual similarities between their MACI labeling patterns (**Figure**
9 312 **4d.** and **4g.**, respectively). Additionally, DCMU and MSMA clusters, whose MoAs are both
10 313 related to electron transport inhibition,^{23,27} bore some slight correlation to one another.
11 314 However, despite all of these intertreatment correlations, MACI was still sensitive to the
12 315 subtle differences in their phenotypic responses as seen by the clear separation of
13 316 treatment clusters (**Figure 4j**), thus suggesting that this assay can be used to successfully
14 317 predict compound-specific perturbations and discriminate between chemicals with unique
15 318 MoAs.
16
17

18 320 *Chemical MoAs can be identified based on phenotypic response using convolutional*
19 *neural networks.*
20

21 322 In addition to hierarchical clustering analysis, we also took a deep learning approach to
22 323 analyze complex phenotypes and delineate chemicals by their MoA, using convolutional
23 324 neural networks. CNNs are a type of artificial neural network, which are most notable for
24 325 the way they process image data similarly to the visual cortex of the human brain.³⁷
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60





341
342 **Figure 6:** Phenotypic enrichment score heatmap. The CNN model classifies each cell
343 across the entire experiment with a predicted mechanistic class based on its phenotype.
344 Enrichment scores for each mechanistic class are calculated in each sample. Heatmap
345 values represent average treatment enrichment scores; white colored numbers represent
346 significantly enriched mechanistic classes for respective treatments.

347 Despite some confusion in the discrimination of mechanistic classes, the CNN model was
348 still able to classify each treatment with the correct MoA. This is visualized in the heatmap
349 of enrichment scores (**Figure 6**) where each treatment was significantly enriched in the
350 appropriate mechanistic class. Based on these results, the deep learning approach
351 reinforced the ability of MACI to separate chemicals by MoA. However, both deep learning
352 and hierarchical clustering analyses proved to be robust and sensitive to subtle changes
353 in complex phenotypes.

1
2
3 354 *Complex phenotypic profiles are more efficient at predicting mechanisms of action rather*
4
5 355 *than single interpretable features.*

6
7
8 356 A majority of the morphological features used for phenotypic profiling are not interpretable
9
10 357 on their own. Zernike moments, for example, measure specific aspects of an object's
11
12 358 radial distribution,³⁸ and when multiple Zernike moments across multiple orders are
13
14 359 combined together, they become powerful mathematical descriptors of that object's
15
16 360 shape. Although they can be useful for reconstructing patterns and for detecting subtle
17
18 361 changes in cell shape,³⁹ individual Zernike moments, by themselves, do not hold much
19
20 362 intrinsic nor biological meaning. However, there are a select few of morphological features
21
22 363 that do hold some biological relevance, such as those related to the intensity and quantity
23
24 364 of fluorescence signals, which we can use to elucidate interesting biological phenomena.
25
26
27 365 For example, measurements of integrated intensity, which is the sum of pixel intensity
28
29 366 values over a ROI,⁴⁰ directly correlate to the number fluorophores in that ROI, and thus
30
31 367 directly or indirectly measure relative levels of target biomolecular content. This kind of
32
33 368 measurement has been used for analyzing endpoints related to changes in protein
34
35 369 content⁴¹ and for determining cell cycle stages based on the relative abundance of DNA
36
37 370 content.^{42,43} Another useful metric is quantifying the number of fluorescent objects within
38
39 371 a single cell. For example, measuring the number of intracellular vesicles has been used
40
41 372 to study endpoints related to the cellular uptake of micro/nano plastic particles⁴⁴ and for
42
43 373 analyzing the intracellular trafficking of certain proteins.⁴⁵ In regard to *R. subcapitata*,
44
45 374 three features that have relevance to algal physiology are the number of nuclei/cell, and
46
47 375 the chloroplast and lipid droplet integrated intensities, which are related to chlorophyll and
48
49 376 TAG content, respectively (**Supplementary Table S2**).

1
2
3 377 Often the phenotypic measurements that scientists are most interested in analyzing, such
4
5 378 as the above-mentioned features, are not always the best predictors for characterizing
6
7 379 the MoA of different compounds due to their lack of specificity. For example, 4 out of 8
8
9 380 treatments significantly increased chlorophyll content, while 4 out of 8 treatments also
10
11 381 significantly increased the average number of nuclei/cell, in some cases to similar
12
13 382 magnitudes while following similar trends to one another. TAG content was only
14
15 383 significantly increased in Metolachlor treated cells, but most treatments did not elicit a
16
17 384 significant change in TAG content. Furthermore, when using these three features in a
18
19 385 hierarchical clustering analysis, based on Pearson correlation, the analysis was not
20
21 386 sensitive enough to discriminate between chemical-specific perturbation (Supplementary
22
23 387 **Figure S2**), as compared to the previous hierachal clustering analysis using the entire
24
25 388 profile (**Figure 4**). Ultimately, when conducting high-content phenotypic profiling, it is
26
27 389 advised to evaluate changes in the entire profile, rather than changes in individual or
28
29 390 select morphological features alone, as they do not hold enough information that can
30
31 391 directly be linked to a specific MoA⁵.
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

392 *Applications of MACI, its advantages and limitations.*

41 393 As the use of high-throughput phenotypic profiling assays become more popular, the
42
43 394 MACI assay, in particular, could have several applications in environmental science.
44
45 395 MACI could be used to screen the thousands of chemicals in the marketplace currently
46
47 396 being reevaluated through efforts such as ToxCast for potential environmental toxicity
48
49 397 and mechanism of action. Furthermore, it could be used to study the potential impacts
50
51 398 of those emerging contaminants and environmental chemicals by characterizing their
52
53 399 cellular targets and identifying their phytotoxic MoAs. This could be especially useful if

1
2
3 400 used alongside the Cell Painting assay with other environmentally relevant models like
4 401 drosophila and rainbow trout gill cell lines to make cross-species toxicological
5 402 comparisons that span multiple trophic levels. Additionally, in the context of environmental
6 403 risk assessment, MACI could also be used to help prioritize which emerging contaminants
7 404 and environmental chemicals require further evaluation. Once patterns are developed for
8 405 a broad array of mechanisms of action it could also be used as a novel technology for the
9 406 rapid detection and monitoring of chemicals and specifically emerging contaminants in
10 407 the environment. We also hope to develop this technology further as a means to study
11 408 more complex environmental samples with mixtures of chemicals that have different
12 409 MoAs, which may be made possible with continuing advancements in machine learning
13 410 techniques.

14
15 411 MACI could also be used as an *in vitro* model to drive developments in herbicide and
16 412 agrochemical discovery. Green microalgae cells, like *R. subcapitata*, bear several
17 413 similarities to the mesophyll cells of higher order terrestrial plants in terms of the cellular
18 414 components, and their constituents, they contain, the environmental processes they carry
19 415 out, and the evolutionarily conserved pathways and molecules they utilize.^{46,47}
20 416 Furthermore, since many herbicides and agrochemicals are delivered to plants via foliar
21 417 application, MACI could be used for identifying cellular targets and determining MoAs of
22 418 novel herbicides and agrochemicals. However, this technique may not be as useful for
23 419 soil-based herbicides and agrochemicals.

24
25 420 Currently several high-throughput screening assays exist in addition to high-throughput
26 421 phenotypic profiling, such as high-throughput transcriptomics and high-throughput
27 422 proteomics. While both of these assays provide a rich molecular level understanding of

1
2
3 423 chemical interactions, they can be extremely time-consuming, costly, and computationally
4 424 expensive. In comparison, MACI, as an image-based profiling assay, provides the
5 425 advantage of low cost and high speed, while still retaining a capacity for in-depth
6 426 characterization and classification.^{48,49} Additionally, assays which measure the differential
7 427 expression of transcripts and proteins rely heavily on well-established annotations for
8 428 those transcripts and proteins. This is an issue for most environmentally relevant
9 429 organisms, like *R. subcapitata*, which have not been annotated to the extent with which
10 430 human disease models have.⁵⁰ However, another advantage of MACI, and other image-
11 431 based profiling assays, is that they only require comparisons to a library of reference
12 432 chemicals with established MoAs in order to derive meaning from the phenotypic
13 433 response of novel or unstudied chemicals⁵. Lastly, MACI provides the advantage of
14 434 greater experimental precision as each individual cell, of which there can be up to
15 435 100,000's-1,000,000's in any given experiment, serves as an independent, technical
16 436 measurement, thereby, also limiting the impact of measurement error.⁵¹ Some limitations
17 437 of this approach also exist. As with all image-based high-throughput phenotypic profiling
18 438 assays, this approach requires the use of a high-content automated fluorescence imaging
19 439 system, which can be a significant initial investment. While, images taken with standard
20 440 fluorescence microscopes can be analyzed in a similar manner to that of images taken
21 441 on a high-content imaging system, the lack of automation can lead to an abundance of
22 442 human error during image acquisition, thus decreasing the effectiveness of the assay.
23 443 Secondly, small differences in image acquisition parameters, like Z-offsets, laser power,
24 444 and acquisition times, could potentially greatly impact the downstream feature extraction
25 445 and data analysis. As a result, it has not yet been proven that image data can be directly

56
57
58
59
60

1
2
3 446 compared between imaging platforms.⁵ Since having a library reference set of image data
4
5 447 is an important aspect of this kind of assay, this means that a separate library would have
6
7 448 to be established for each individual imaging platform, rather than being able to share
8
9 449 libraries across imaging platforms. However, with the development of machine learning
10
11 450 and new statistical practices for phenotypic profiling, it may become possible to do so in
12
13 451 the future.

16
17
18 452 Overall, based on the work described in this study, MACI provides a potentially quick and
19
20 453 effective framework for characterizing complex phenotypes and compound-specific
21
22 454 interactions which is suitable for predicting chemical MoAs in plant-type organisms. This
23
24 455 work demonstrates the power and benefit of image-based phenotypic profiling in general,
25
26 456 which is a technique that may continue to drive many advancements in the field of
27
28 457 environmental science and technology.

31
32 458 **Associated Content**

33
34
35 459 Supporting Information: Description of different data-analysis strategies for image-based
36
37 460 phenotypic profiling. Tables reporting the molecular weight & logKow (Table S1), and VIP
38
39 461 scores (Table S2) for reference compounds. Table and description for interpretable
40
41 462 features of biological relevance (Table S3). Figures displaying phenotypic responses to
42
43 463 ethanol (Figure S1) and Pearson correlation matrix based on minimal feature data (Figure
44
45 464 S2) (DOC).

465 **Acknowledgements**

466 This work was supported by the National Science Foundation under the Grant No.
467 CHE-2001611, the NSF Center for Sustainable Nanotechnology. The CSN is part of the
468 Centers for Chemical Innovation Program.

469

470 **REFERENCES**

- 471 1. Thomas, R. S., Bahadori, T., Buckley, T. J., Cowden, J., Deisenroth, C., Dionisio, K. L., Frithsen, J. B., Grulke, C. M., Gwinn, M. R., Harrill, J. A., Higuchi, M., Houck, K. A., Hughes, M. F., Hunter, E. S., Isaacs, K. K., Judson, R. S., Knudsen, T. B., Lambert, J. C., Linnenbrink, M., Martin, T. M., Newton, S. R., Padilla, S., Patlewicz, G., Paul-Friedman, K., Phillips, K. A., Richard, A. M., Sams, R., Shafer, T. J., Woodrow Setzer, R., Shah, I., Simmons, J. E., Simmons, S. O., Singh, A., Sobus, J. R., Strynar, M., Swank, A., Tornero-Valez, R., Ulrich, Elin M., Villeneuve, D. L., Wambaugh, J. F., Wetmore, B. A., & Williams, A. J. The next generation blueprint of computational toxicology at the U.S. Environmental protection agency. *Toxicol. Sci.* **169**, 317–332 (2019).
- 479 2. Caicedo, J. C., Singh, S. & Carpenter, A. E. Applications in image-based profiling of perturbations. *Curr. Opin. Biotechnol.* **39**, 134–142 (2016).
- 481 3. Gustafsdottir, S. M., Ljosa, V., Sokolnicki, K. L., Wilson, J. A., Walpita, D., Kemp, M. M., Seiler, K. P., Carrel, H. A., Golu, T. R., Schreiber, S. L., Clemons, P. A., Carpenter, A. E., & Shamji, A. F. Multiplex cytological profiling assay to measure diverse. *PLoS One* **8**, 1–7 (2013).
- 484 4. Willis, C., Nyffeler, J. & Harrill, J. Phenotypic Profiling of Reference Chemicals across Biologically Diverse Cell Types Using the Cell Painting Assay. *SLAS Discov.* **25**, 755–769 (2020).
- 486 5. Svenningsen, E. B. & Poulsen, T. B. Bioorganic & Medicinal Chemistry Establishing cell painting in a smaller chemical biology lab – A report from the frontier. *Bioorg. Med. Chem.* **27**, 2609–2615 (2019).
- 489 6. Bray, M., Singh, S., Han, H., Davis, C. T., Borgeson, B., Hartland, C., Kost-alimova, M., Gustafsdottir, S. M., Gibson, C. C., Carpenter, A. E. Cell Painting , a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. *11*, 1757–1774 (2016).
- 492 7. Hughes, R. E., Elliott, R. J.R., Munro, A. F., Makda, A., O'Neill, J. R., Hupp, T., & Carragher, Neil O. High-Content Phenotypic Profiling in Esophageal Adenocarcinoma Identifies Selectively Active Pharmacological Classes of Drugs for Repurposing and Chemical Starting Points for Novel Drug Discovery. *SLAS Discov.* **25**, 770–782 (2020).
- 496 8. Nyffeler, J. Willis, C. Lougee, R., Richard, A., Paul-friedman, K., & Harrill, J. A. Bioactivity screening of environmental chemicals using imaging-based high- throughput phenotypic profiling. *Toxicol. Appl. Pharmacol.* **389**, 114876 (2020).
- 499 9. Huovinen, M., Loikkanen, J., Naarala, J. & Vähäkangas, K. Toxicity of diuron in human cancer cells.

1
2
3 500 *Toxicol. Vitr.* **29**, 1577–1586 (2015).
4
5 501 10. Magnusson, M., Heimann, K. & Negri, A. P. Comparative effects of herbicides on photosynthesis
6 502 and growth of tropical estuarine microalgae. *Mar. Pollut. Bull.* **56**, 1545–1552 (2008).
7
8 503 11. Nohynek, G. J., Dufour, E. K. & Roberts, M. S. Nanotechnology, cosmetics and the skin: Is there a
9 504 health risk? *Skin Pharmacol. Physiol.* **21**, 136–149 (2008).
10
11 505 12. Aruoja, V., Dubourguier, H. C., Kasemets, K. & Kahru, A. Toxicity of nanoparticles of CuO, ZnO and
12 506 TiO₂ to microalgae *Pseudokirchneriella subcapitata*. *Sci. Total Environ.* **407**, 1461–1468 (2009).
13
14 507 13. U.S. Environmental Protection Agency. Ecological Effects Test Guidelines OCSPP 850.4500: Algal
15 508 Toxicity. Office of Chemical Safety and Pollution Prevention; Washington, D.C. (EPA-712C-006.
16 509 *United States Environ. Prot. Agency* **26** (2012).
17
18 510 14. Yamagishi, T., Yamaguchi, H., Suzuki, S., Horie, Y. & Tatarazako, N. Cell reproductive patterns in
19 511 the green alga *Pseudokirchneriella subcapitata* (= *Selenastrum capricornutum*) and their
20 512 variations under exposure to the typical toxicants potassium dichromate and 3,5-DCP. (2017).
21 513 doi:10.1371/journal.pone.0171259
22
23 514 15. Zachleder, V. & Vítová, M. *The Physiology of Microalgae. The Physiology of Microalgae* (Springer
24 515 Cham, 2016). doi:10.1007/978-3-319-24945-2
25
26 516 16. Rocuzzo, S., Couto, N., Karunakaran, E., Kapoore, R. V., Butler, Thomas O. Mukherjee, J.
27 517 Hansson, E. M., Beckerman, A. P., & Pandhal, J. Metabolic Insights Into Infochemicals Induced
28 518 Colony Formation and Flocculation in *Scenedesmus subspicatus* Unraveled by Quantitative
29 519 Proteomics. *Front. Microbiol.* **11**, 1–17 (2020).
30
31 520 17. Jakob, T., Schreiber, U., Kirchesch, V., Langner, U. & Wilhelm, C. Estimation of chlorophyll content
32 521 and daily primary production of the major algal groups by means of multiwavelength-excitation
33 522 PAM chlorophyll fluorometry: Performance and methodological limits. *Photosynth. Res.* **83**, 343–
34 523 361 (2005).
35
36 524 18. Hlavová, M., Vítová, M., Bišová, K. & Zachleder, V. M. DNA Damage during G2 Phase Does Not
37 525 Affect Cell Cycle Progression of the Green Alga *Scenedesmus quadricauda*. (2011).
38 526 doi:10.1371/journal.pone.0019626
39
40 527 19. Ischebeck, T., Krawczyk, H. E., Mullen, R. T., Dyer, J. M. & Chapman, K. D. Lipid droplets in plants
41 528 and algae: Distribution, formation, turnover and function. *Semin. Cell Dev. Biol.* **108**, 82–93
42 529 (2020).
43
44 530 20. OECD. Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test. Organization for
45 531 Economic Cooperation and Development. OECD Guidelines for Testing of Chemicals, Section 2.
46 532 OECD Publishing Service, Paris, France. (2011). doi:https://doi. org/10.1787/9789264069923
47
48 533 21. Almeida, A. C., Gomes, T., Langford, K., Thomas, K. V. & Tollefsen, K. E. Oxidative stress in the
49 534 algae *Chlamydomonas reinhardtii* exposed to biocides. *Aquat. Toxicol.* **189**, 50–59 (2017).
50
51 535 22. Li, X., Volrath, S. L., Nicholl, D. B. C., Chilcott, C. E., Johnson, M. A., Ward, E. R., & Law, M. D.
52 536 Development of Protoporphyrinogen Oxidase as an Efficient Selection Marker for *Agrobacterium*
53 537 *tumefaciens*-Mediated Transformation of Maize. *Plant Physiol.* **133**, 736–747 (2003).
54
55 538 23. Glauch, L. & Escher, B. I. The Combined Algae Test for the Evaluation of Mixture Toxicity in
56
57
58
59
60

1
2
3 539 Environmental Samples. **39**, 2496–2508 (2020).
4
5 540 24. Nagai, T. Sensitivity differences among seven algal species to 12 herbicides with various modes of
6 541 action. *J. Pestic. Sci.* **44**, 225–232 (2019).
7
8 542 25. Geer, T. D., Kinley, C. M., Iwinski, K. J., Calomeni, A. J. & Rodgers, J. H. Comparative toxicity of
9 543 sodium carbonate peroxyhydrate to freshwater organisms. *Ecotoxicol. Environ. Saf.* **132**, 202–211
10 544 (2016).
11
12 545 26. Machado, M. D. & Soares, E. V. Reproductive cycle progression arrest and modification of cell
13 546 morphology (shape and biovolume) in the alga *Pseudokirchneriella subcapitata* exposed to
14 547 metolachlor. *Aquat. Toxicol.* **222**, 105449 (2020).
15
16 548 27. Dayan, F. E. & Zaccaro, M. L. de M. Chlorophyll fluorescence as a marker for herbicide
17 549 mechanisms of action. *Pestic. Biochem. Physiol.* **102**, 189–197 (2012).
18
19 550 28. Čížková, M., Slavková, M., Vítová, M., Zachleder, V. & Bišová, K. Response of the green alga
20 551 *Chlamydomonas reinhardtii* to the DNA damaging agent zeocin. *Cells* **8**, 1–15 (2019).
21
22 552 29. Shapiro, H. M., Perlmutter, N. G. & Shapiro, H. M. A simple and highly efficient fixation method
23 553 for *Chrysochromulina polylepis* (Prymnesiophytes) for analytical flow cytometry. *Cytometry* **44**,
24 554 126–132 (2001).
25
26 555 30. Stirling, D. R., Swain-Bowden, M. J., Lucas, A. M., Carpenter, A. E., Cimini, B. A., & Goodman, A.
27 556 CellProfiler 4: improvements in speed, utility and usability. *BMC Bioinformatics* **22**, 1–11 (2021).
28
29 557 31. Müller, K., Wickham, H., James, D. A. & Falcon, S. RSQLite: SQLite Interface for R. (2023).
30 558 doi:<https://rsqlite.r-dbi.org>, <https://github.com/r-dbi/RSQLite>.
31
32 559 32. Rohart, F., Gautier, B., Singh, A. & Lê Cao, K.-A. mixOmics: An R package for ‘omics feature
33 560 selection and multiple data integration. *PLoS Comput. Biol.* **13**, 1–14 (2017).
34
35 561 33. Stirling, D. R., Carpenter, A. E. & Cimini, B. A. CellProfiler Analyst 3.0: accessible data exploration
36 562 and machine learning for image analysis. *Bioinformatics* **37**, 3992–3994 (2021).
37
38 563 34. R Core Team. R: A Language and Environment for Statistical Computing. (2019).
39
40 564 35. RStudio Team. RStudio: Integrated Development Environment for R. (2020).
41
42 565 36. Young, D. W., Bender, A., Hoyt, J., McWhinnie, E., Chirn, G. W., Tao, Charles Y., Tallarico, J. A.,
43 566 Labow, M., Jenkins, J. L., Mitchison, T. J., & Feng, Y. Integrating high-content screening and
44 567 ligand-target prediction to identify mechanism of action. *Nat. Chem. Biol.* **4**, 59–68 (2008).
45
46 568 37. Dürr, O. & Sick, B. Single-cell phenotype classification using deep convolutional neural networks.
47 569 *J. Biomol. Screen.* **21**, 998–1003 (2016).
48
49 570 38. Allen, P., Calcagni, A., Robson, A. G. & Claridge, E. Investigating the potential of Zernike
571 polynomials to characterise spatial distribution of macular pigment. *PLoS One* **14**, 1–19 (2019).
50
51 572 39. Boland, M. V., Markey, M. K. & Murphy, R. F. Automated recognition of patterns characteristic of
573 subcellular structures in fluorescence microscopy images. *Cytometry* **33**, 366–375 (1998).
52
53 574 40. Subramanian, G. & Vijaya, A. Iterative Intensity Integration Technique (IIIT) for contouring
575 reflective surfaces. *Opt. Lasers Eng.* **93**, 92–99 (2017).
56
57
58
59
60

1
2
3 576 41. Farid, K. M. N. & Derouiche, A. *Quantifying Compartment-Specific Protein Translocation in*
4 577 *Astrocytes by Object-Oriented Image Analysis: Mitochondrial Translocation of PKCδ*. In: *Di*
5 578 *Benedetto, B. (eds) Astrocytes. Methods in Molecular Biology* **1938**, (Humana Press; New York;
6 579 NY., 2019).

7
8 580 42. Roukos, V., Pegoraro, G., Voss, T. C. & Misteli, T. Cell cycle staging of individual cells by
9 581 fluorescence microscopy. *Nat. Protoc.* **10**, 334–348 (2015).

10
11 582 43. Gomes, C. J., Harman, M. W., Centuori, S. M., Wolgemuth, C. W. & Martinez, J. D. Measuring DNA
12 583 content in live cells by fluorescence microscopy. *Cell Div.* **13**, 1–10 (2018).

13
14 584 44. Schmidt, A., Mühl, M., Brito, W. A. da S., Singer, D. & Bekeschus, S. Antioxidant Defense in
15 585 Primary Murine Lung Cells following Short- and Long-Term Exposure to Plastic Particles.
16 586 *Antioxidants* **12**, 1–24 (2023).

17
18 587 45. Cejas, R. B., Tamaño-Blanco, M. & Blanco, J. G. Analysis of the intracellular traffic of IgG in the
19 588 context of Down syndrome (trisomy 21). *Sci. Rep.* **11**, 1–12 (2021).

20
21 589 46. Lu, Y. & Xu, J. Phytohormones in microalgae: A new opportunity for microalgal biotechnology?
22 590 *Trends Plant Sci.* **20**, 273–282 (2015).

23
24 591 47. Riaz, A., Deng, F., Chen, G., Jiang, W., Zheng, Q., Riaz, B., Mak, M., Zeng, F., & Chen, Z. H.
25 592 Molecular Regulation and Evolution of Redox Homeostasis in Photosynthetic Machinery.
26 593 *Antioxidants* **11**, 1–23 (2022).

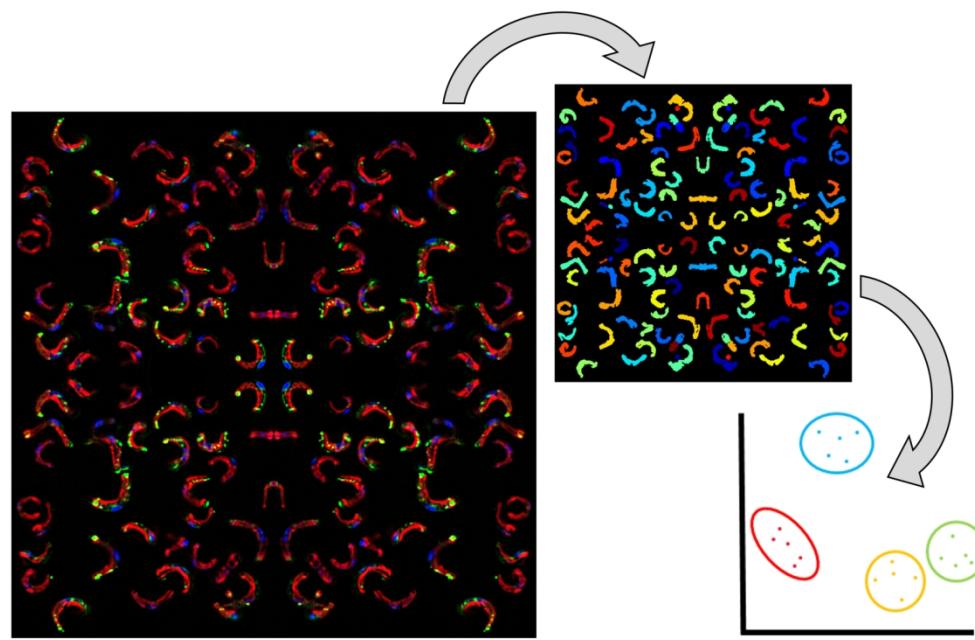
27
28 594 48. Ljosa, V., Caie, P. D., Horst, Rob., Sokolnicki, K. L., Jenkins, E. L., Daya, S., Roberts, M. E., Jones, T.
29 595 R., Singh, S., Genovesio, A., Clemons, P. A., Carragher, N. O., & Carpenter, A. E., Comparison of
30 596 Methods for Image- Based Profiling of Cellular Morphological Responses to Small-Molecule
31 597 Treatment. *SLAS-DISCOVERY* **18**, 1321–1329 (2013).

32
33 598 49. Feng, Y., Mitchison, T. J., Bender, A., Young, D. W. & Tallarico, J. A. Multi-parameter phenotypic
34 599 profiling: Using cellular effects to characterize small-molecule compounds. *Nat. Rev. Drug Discov.*
35 600 **8**, 567–578 (2009).

36
37 601 50. Suzuki, S., Yamaguchi, H., Nakajima, N. & Kawachi, M. *Raphidocelis subcapitata*
38 602 (=Pseudokirchneriella subcapitata) provides an insight into genome evolution and environmental
39 603 adaptations in the Sphaeropleales. *Sci. Rep.* **8**, 1–13 (2018).

40
41 604 51. Blainey, P., Krzywinski, M. & Altman, N. Points of significance: Replication. *Nat. Methods* **11**, 879–
42 605 880 (2014).

43
44 606
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



This work uses novel high-throughput phenotypic profiling and fluorescence imaging techniques to predict/characterize the mechanisms of action of environmental chemicals.

74x47mm (600 x 600 DPI)