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10 ABSTRAST

11 High-throughput phenotypic profiling assays, popular for their ability to characterize 

12 alternations in single-cell morphological feature data, have been useful in recent years at 

13 predicting cellular targets and mechanisms of action (MoAs) for different chemicals and 

14 novel drugs. However, this approach has not been extensively used in environmental 

15 toxicology due to the lack of studies and established methods for performing this kind of 

16 assay in environmentally relevant species. Here, we developed a multiplexed algal 

17 cytological imaging (MACI) assay, based on the subcellular structures of the unicellular 

18 microalgae, Raphidocelis subcapitata, a toxicology and ecological model species. 

19 Several different herbicides and antibiotics with unique MoAs were exposed to R. 

20 subcapitata cells and MACI was used to characterize cellular impacts by measuring 

21 subtle changes in their morphological features, including metrics of area, shape, quantity, 

22 fluorescence intensity, and granularity of individual subcellular components. This study 
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2

23 demonstrates that MACI offers a quick and effective framework for characterizing 

24 complex phenotypic responses to environmental chemicals, that can be used for 

25 determining their MoAs and identifying their cellular targets in plant-type organisms. 

26 Synopsis

27 This work proposes novel high-throughput phenotypic profiling and fluorescence imaging 

28 techniques to predict/characterize the mechanisms of action of environmental chemicals.

29

30 INTRODUCTION

31 With increasing quantities and classes of contaminants introduced into commerce and 

32 therefore found in the environment, there is a call for more rapid techniques for evaluating 

33 their potential hazard in a quick and efficient manner. Therefore, there is a need for more 

34 nontargeted (i.e. quantifying hundreds of distinct properties to identify unknown 

35 responses), high-throughput profiling assays that can characterize biological activity, 

36 identify potency thresholds, and predict mechanisms of action (MoAs),1 as compared to 

37 traditional targeted assays which only quantify singular, or few cellular functions or 

38 properties.2 In recent years, morphological/phenotypic profiling has been shown to 

39 provide rich sources of data for interrogating biochemical perturbations as the morphology 

40 of a cell is extremely sensitive and strongly influenced by factors such as metabolism, 

41 genetic state, and environmental cues.3 Additionally, it has been shown that specific 

42 biological perturbations deliver specific phenotypic profiles, and therefore any subset of 

43 morphological features that deviate from that of healthy cells can serve as a fingerprint, 

44 or unique identifier, to characterize biological activity.4 For example Gustafsdottir et al. 
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3

45 2013 demonstrated the ability of morphological profiling to capture a wide range of cellular 

46 phenotypes after exposing U2OS cells exposed to 1600 different commercially available 

47 compounds with a range of different MoAs. Furthermore, when comparing the fingerprint 

48 of cells treated with novel compounds to that of cells treated with compounds with 

49 previously established MoAs, the probable MoA of these novel compounds can then be 

50 identified.5

51 Common high-throughput phenotypic profiling assays, like the Cell Painting Assay6, 

52 involve the use of multiplexed fluorescence cytochemistry to visualize multiple subcellular 

53 structures within a cell and high-content imaging to take hundreds of snapshots of their 

54 morphology in an automated and consistent manner. These image data can then be 

55 converted into quantitative data by using bioimage analysis to extract hundreds of 

56 morphological features at the resolution of a single cell. These morphological features 

57 include metrics related to cell size, shape, fluorescence intensity, texture, granularity, and 

58 even spatial relationships between organelles which all represent subtle unbiased 

59 descriptors of the phenotypic state. Currently, high-throughput phenotypic profiling 

60 assays are used most often in the context of drug discovery and disease models. For 

61 example, Hughes et al. (2020) used Cell Painting to screen 19,555 compounds and profile 

62 the phenotypic response across several esophageal adenocarcinoma cell lines; 

63 subsequent bioimage data was analyzed using hierarchical clustering and machine 

64 learning methods across 733 individual morphological features per cell, including 

65 measurements of size, shape, texture, and intensity. In doing so, this study successfully 

66 identified novel drug targets, predicted the MoAs of test compounds through comparison 

67 to a library of reference compounds, and discovered pharmacological classes that 
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4

68 targeted that specific type of cancer. However, this kind of assay may also have 

69 applications in other fields like eco- and environmental toxicology. 

70 Recently, the Unites States Environmental Protection Agency (USEPA) has begun to use 

71 high-throughput phenotypic profiling for the screening and hazard identification of 

72 environmental chemicals, however, only human-derived cell models are still largely being 

73 used for this purpose.4,8 While human-derived cell models provide the advantage of 

74 proven characterization and predictive power, they may not accurately represent 

75 phenotypic responses in environmentally relevant species, like plants and algae, whose 

76 cells are biologically distinct from animal cells. For example, DCMU (3-(3,4-

77 dichlorophenyl)-1,1-dimethylurea), or Diuron, has been reported to cause DNA damage 

78 in certain types of human cancer cell lines9 but  in plants and algae targets photosystem 

79 II (PSII) proteins.10 Furthermore, human cell lines may not accurately represent 

80 environmentally safe exposure levels for certain compounds, like ZnO nanoparticles, that 

81 are relatively benign to humans,11 but acutely toxic to algal species at low 

82 concentrations.12 Thus, cell models which are more environmentally relevant should be 

83 considered. In particular, Raphidocelis subcapitata, a prevalent type of freshwater green 

84 algae and an environmentally relevant organism, is a good candidate model to use for 

85 high-throughput phenotypic profiling as it is a USEPA established model for 

86 environmental toxicology13 and an important bioindicator species for 

87 assessing/monitoring water quality.14 Additionally, its strictly unicellular nature makes it 

88 beneficial for image-based assays in terms of downstream bioimage segmentation, which 

89 may be more difficult to do for other common microalgae like Chlamydomonas spp., 
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5

90 Chlorella spp., and Scenedesmus spp. that tend to form colonies or coenobia under 

91 stress.15,16 

92 Here we describe a multiplexed algal cytological imaging (MACI) assay for the phenotypic 

93 profiling of environmental chemicals, based on three subcellular structures that are 

94 important for the architecture of R. subcapitata cells: the chloroplast, nuclei, and lipid 

95 droplets. Each of these subcellular structures represent a different aspect of algal 

96 physiology and can be used to characterize complex phenotypes and predict phytotoxic 

97 mechanisms of action. For example, the chloroplast is an important subcellular 

98 compartment for conducting photosynthesis, and features related to chloroplast 

99 fluorescence can be used to describe relative levels of chlorophyll content between 

100 treatments, and can even be used to calculate the quantum yield of PSII.17 Nuclei play a 

101 crucial role in regulating gene expression and facilitating cellular division, and features 

102 related to the number on nuclei per cell, as well as the relative amount of DNA content 

103 per nucleus, can be used to describe instances of cell cycle disruption/arrest.15,18 And 

104 lastly, lipid droplets, which are a collection of neutral lipids, often triacylglycerol (TAG), 

105 and serve as an alternative form of energy storage to starch, are often indicators of cell 

106 stress when accumulated in large quantities.19

107 As a proof of concept, this study aims to assess the ability of the MACI assay to 

108 characterize and differentiate between cells which were exposed to various compounds 

109 with unique MoAs. The performance of this assay was evaluated by testing a small set of 

110 herbicides and antibiotics with already established MoAs, and preforming a hierarchical 

111 clustering analysis of their phenotypic fingerprints. Additionally, a convolutional neural 

112 network (CNN) machine learning model was trained off of a small subset of cell image 
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6

113 data in order to predict compound-specific perturbances. We propose that the MACI 

114 assay is a quick and effective way to characterize complex phenotypes and predict 

115 interactions with environmentally relevant chemicals in plant-type species.

116

117 MATERIALS AND METHODS

118 Algal Cell Culture.

119 A stock culture of R. subcapitata, inoculated at 1×105 Cells·mL-1, was grown in a 1 L 

120 Erlenmeyer flask and cultured in OECD 201 media 20. Cells were illuminated continuously 

121 with a full spectrum T8 light bulb at a photon flux of 70 µE·m-2·s-1. The stock culture was 

122 mixed with an orbital shaker at a speed of 111 rpm.

123 Exposure Setup.

124 Eight different environmental chemicals with unique established MoAs (described in 

125 Table 1),  were exposed to cells for 24 hours at either 0 (control), 0.1, 1, or 10 µM. 

126 Table 1: Environmental Chemicals with Known MoAs

Chemical Mechanism of Action Abbreviation References
Aclonifen Carotenoid Biosynthesis Inhibition CBI 21

Carfentrazone Membrane Disruption MD 22

DCMU PSII Photochemistry Inhibition PPI 23

Glufosinate N2 Metabolism Inhibition NMI 24

H2O2 Oxidative Stress OS 25

Metolachlor Very-Long-Chain Fatty Acid Synthesis Inhibition VLCFASI 26

MSMA OP Uncoupler/e- Transport Inhibition OPU/e-TI 27

Zeocin DNA Damage DD 28

127
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7

128 Each chemical was solubilized in either OECD 201 medium or 100% EtOH depending on 

129 its solubility, and sonicated for 30 minutes to prepare a primary 1000 µM stock. A 

130 secondary 100 µM stock solution was then prepared for each chemical by preforming a 

131 serial dilution from their respective primary stock solution into OECD 201 media. While 

132 cells were growing exponentially, 900 µL aliquots of algal stock culture (~5×105 Cells·mL-

133 1) were seeded into individual 1.5 mL microcentrifuge tubes. For each treatment, done in 

134 quintuplicate, the respective secondary stock solution and/or OECD 201 medium was 

135 added to each 900 µL cell suspension at a final volume of 1 mL. Resulting EtOH content 

136 in final exposure samples (≤ 1%) had a negligible effect on cell morphology 

137 (Supplementary Figure S1). The samples were then placed under full spectrum 

138 illumination, with tube lids open, at a photon flux of 70 µE·m−2 ·s−1 for 24 hours. 24 hours 

139 was chosen for the exposure duration as this timepoint has been shown to better 

140 delineate initial phenotypic impacts,8 however, longer timepoints can also be chosen 

141 depending on the purpose of the exposure.

142 Multiplexed Algal Cytological Imaging (MACI) Assay.

143 At the conclusion of the exposure, aliquots from each sample were transferred to sterile 

144 1.5 mL microcentrifuge tubes. Commercially available fluorescent probes and 

145 glutaraldehyde were used to stain and fix multiple subcellular compartments of the algal 

146 cells, respectively. 
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8

147

148 Figure 1: The MACI assay as seen in a Raphidocelis subcapitata cell. Representative 
149 fluorescence micrograph where each column represents a different fluorescently labeled 
150 subcellular compartment visualized by the MACI assay. 

151 The chloroplast is auto fluorescent due to the presence of chlorophyll, and thus did not 

152 require a fluorescent probe, but NucBlue (Thermo Fisher, R37605) was used to label 

153 nuclei and BODIPY 505/515 (Thermo Fisher, D3921) was used to stain neutral lipid 

154 droplets, as seen in Figure 1. After the adding reagents to the sample aliquots, all 

155 reactions were incubated overnight at 4 °C to minimize enzymatic degradation and 

156 maintain the integrity of the subcellular structures. Cells can also be stored at 4 °C for as 

157 long as one week when fixed with higher concentrations of glutaraldehyde (~0.25%) for 

158 maximum recovery (Shapiro et al., 2001). Alternatively, for live cell imaging, it is 

159 recommended that all reagents, excluding glutaraldehyde, are added, and reactions are 

160 incubated in the dark at room temperature for 15-30 minutes. After incubating reactions, 

161 cells were centrifuged at 4000 x g for 5 min, washed 2x with 1X Phosphate Buffered 

162 Saline (PBS), and resuspended in PBS. Cells from each sample were loaded into a well 

163 of a glass bottom 384 well plate (Cellvis, P384W-1.5H-N) at a seeding density of ~2 ×103 

164 cells·mm−2 for optimal distribution of cells across the well surface. After loading cells, the 

165 well plate was then spun gently at 600RPM for 1 minute to concentrate cells at the bottom 

166 of the well. Alternatively, loaded well plates can also be set aside for 30-60 minutes at 

167 room temperature to allow cells to settle before imaging. Images were acquired at 9 sites 
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9

168 per well with an ImageXpress Micro XLS High-Content Screening System with a 60X Plan 

169 Fluor 0.85 NA air immersion objective (Molecular Devices, 1-6300-0414), using the 

170 fluorescent channels described in Table 2. 

171 Table 2: MACI Fluorescence Cytochemistry parameters

Organelle Stain Channel Excitation (nm) Emission (nm)
Chloroplast Auto Fluorescent Cy5 628/40 692/40

Lipid Droplets BODIPY 505/515 GPF 472/30 520/35
Nuclei NucBlue DAPI 377/50 447/60

172

173 To enhance image contrast and resolution, the digital confocal feature was used during 

174 image acquisition. For representative cell images with higher resolution, some images 

175 were also acquired with a 100X CFI L PLAN EPI CC 0.85 NA air immersion objective 

176 (Molecular Devices, 1-6300-0419). 

177 Bioimage Analysis.

178 After acquiring images, any image analysis software can be used to extract quantitative 

179 data from the images. In this study, CellProfiler,30 an open-source modular bioimage 

180 analysis software, was used for image pre-processing, object segmentation, and 

181 morphological feature extraction at the resolution of individual cells. A pipeline for 

182 analyzing algal cells can be found in the supplementary information. The pipeline 

183 identifies the chloroplast from the Cy5 channel, which spans most of the cell area of R. 

184 subcapitata, to help aid a segmentation algorithm in identifying individual cells, or regions 

185 of interest (ROI). These ROI are then used as a mask to identify which subcellular 

186 structures belong to which cell. This pipeline extracts 450 unique morphological features 

187 per cell related to area, shape, intensity, and granularity of each subcellular structure, 
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10

188 which is then exported to a local SQLite database file. Data tables were extracted from 

189 the SQLite database file using the RSQLite package in R.31 

190 NOTE:  Image naming rules and module settings in the MACI pipeline may need to be 

191 optimized for other microscopes and experiments. 

192

193 Figure 2: Phenotypic profiling workflow. General overview of the steps taken to conduct 
194 phenotypic profiling using image-based data. After perturbing and staining the algae cells, 
195 they are seeded into a 384-glass bottom well plate for high-content imaging. A CellProfiler 
196 pipeline (or a pipeline from any image analysis software) is used to convert the image 
197 data into quantitative data at the resolution of a single cell. Phenotypic fingerprints are 
198 then generated by calculating z-scores, and analyzed by reducing data dimensionality 
199 and/or preforming a clustering analysis.

200

201 Phenotypic Profiling - Fingerprint Analysis.

202 Phenotypic response data was analyzed using a general phenotypic profiling workflow 

203 (Figure 2). Data was firstly processed by aggregating single-cell morphological feature 

204 measurements to per-image and then per-well values, which was done by taking the cell 

205 and image means, respectively. Secondly, well data from each compound and dose were 

206 then normalized to the non-treated cell control by computing a Z-score:
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11

207 ……………………………..………(1)𝑍 ― 𝑠𝑐𝑜𝑟𝑒 =  
𝑥 ― µ𝑐𝑡𝑟𝑙
𝜎𝑐𝑡𝑟𝑙

208 where  is the feature value,  is the mean feature value of the control, and  is the 𝑥 µ𝑐𝑡𝑟𝑙 𝜎𝑐𝑡𝑟𝑙

209 standard deviation of the feature value of the control. In order to verify whether each 

210 compound elicited a change to the entire phenotypic profile of treated cells and to 

211 characterize compound-specific phenotypic changes, a partial least squares-discriminant 

212 analysis (PLS-DA) was performed  in R using the mixOmics package.32 Before feeding 

213 phenotypic response data into the PLS-DA models, an ANOVA was performed across all 

214 features for each refence chemical to remove any non-informative features with little 

215 variance (p-values > 0.05). Lastly, factor analysis was used to further reduce the 

216 dimensionality of phenotypic data vectors, and the fingerprints were subsequently 

217 compared to one another using hierarchical clustering based on Pearson correlation in 

218 R. Different data-analysis strategies are discussed in the supplementary information.

219 Phenotypic Profiling - Convolutional Neural Networks.

220 In addition to fingerprint analysis, a CNN was also trained on a small subset of cells 

221 (~10.5%) using the classifier module on CellProfiler Analyst (Ver 3.0).33 Only a small 

222 percentage of the cells were chosen to build the CNN model as to avoid the possibility of 

223 overfitting (for example, the model may start to associate well location with the 

224 compounds instead of the actual cell features), however, it is worth noting that in the 

225 scope of this exposure, ~10.5% of cells is still a sufficiently large number of observations. 

226 A separate bin was created for each chemical-treated and the non-treated cell control in 

227 the classifier module, where around 1000 randomly fetched cells from each treatment 

228 were placed in each respective bin (Figure 5). After training the CNN, it was used to score 
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229 the entire experiment by classifying individual cells into predicted phenotypic classes, and 

230 computing enrichment scores for each sample as the logit area under the receiver 

231 operating characteristic curve. An ANOVA and a Tukey post-hoc test was used to 

232 evaluate the significance of predicted phenotypic class enrichments for each treatment.

233 Statistical Analysis.

234 All statistical analyses were performed using R Studio 34,35. A Shapiro-Wilk test was used 

235 to verify normal distribution and a One-Way ANOVA was used to compare variance 

236 among group means, while a Tukey post-hoc test was used for multiple comparisons. In 

237 each analysis, significant differences were determined with a 95% confidence interval.

238

239 RESULTS AND DISCUSSION.

240 Complex changes in phenotypes of cells upon chemical exposure can be defined using 

241 MACI.

242 After perturbing cells with respective chemicals and conducting MACI, a CellProfiler 

243 pipeline was used to convert the high-content image data into quantitative data. From 

244 these data 450 unique, unbiased, morphological features were extracted at the resolution 

245 of a single cell, which were used to generate phenotypic fingerprints of molecular 

246 interaction. In order to verify whether each chemical elicited a significant change to cell 

247 morphology, we characterized the cellular responses to each chemical, individually, by 

248 comparing changes in their complex phenotypic profiles with increasing concentration. 

249 This was done with a PLS-DA, which is a supervised machine learning algorithm that 

250 projects multidimensional datasets onto two-dimensional planes in order to predict 
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251 responses between groups. Based on the PLS-DA response plots (Figure 3), each 

252 chemical treatment displays a significant collective separation between response groups, 

253 thereby indicating that each chemical does elicit a significant, and measurable, change 

254 to cell morphology after 24 hours. Variable importance in projection (VIP) scores were 

255 also extracted from each PLS-DA response plot (Supplementary Table S1). VIP scores 

256 indicate the features, or predictors, which are most influential in driving the separation 

257 between response groups and can, therefore, help characterize groups of phenotypic 

258 markers that are unique to chemicals with specific MoAs. In this case, predictors with VIP 

259 scores above 1.0 were considered most important.
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260

261 Figure 3: Phenotypic responses to environmental chemicals. A partial least squares-
262 discriminant analysis (PLS-DA) response plot for each chemical graphically describes the 
263 change across complex morphological feature data with increasing concentration; 
264 ellipses represent 95% confidence intervals and p-values represent ANOVA statistics 
265 across the 1st latent variable between response groups.
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266 Based on the top 10 VIP scores for each PLS-DA model, response groups of each 

267 chemical were delineated with a distinct combination of phenotypic markers, thus 

268 indicating that MACI can be used to characterize compound-specific interactions. For 

269 example, exposure to Aclonifen, a carotenoid biosynthesis inhibitor,21 was most 

270 distinguishable by changes in nuclear shape features while exposure to Metolachlor, a 

271 very-long-chain fatty acid synthesis inhibitor,26 was most distinguishable by changes in 

272 features related to lipid droplet granularity. There were also some phenotypic markers 

273 that overlapped for certain chemicals. For example, cells treated with H2O2 and Zeocin, 

274 a DNA damaging agent,28 both garnered the same top three chloroplast normalized 

275 moment features. However, the VIP ranking order of these phenotypic markers, as well 

276 as the overall combination of markers, were still distinct between chemical profiles. 

277 Therefore, when using phenotypic profiling for predicting chemical MoAs, the entire 

278 profile, rather than the individual features, should be considered.

279 Impacts of chemicals can be separated using MACI through hierarchically clustering 

280 phenotypic fingerprints.

281 The ability of MACI to delineate subtle phenotypes of chemical-specific perturbance was 

282 evaluated, firstly, by comparing the phenotypic fingerprints of each chemical treatment to 

283 one another. For this purpose, the 10 µM data was used as this was the concentration 

284 that caused the largest change in morphology, compared to the control, for most of the 

285 chemicals after 24 hours. After constructing the phenotypic fingerprints, an  ANOVA was 

286 used to identify individual features that carry little information, which were removed from 

287 the analysis given a  p-value > 0.05. Additionally, factor analysis was used to further 

288 reduce the dimensionality of the phenotypic data vectors down to 7 eigen features/factors 
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289 in order to minimize redundant measurements adding noise while still preserving the 

290 variance within the dataset, as suggested by Young et al., 2008. The optimal number of 

291 factors was determined with a non-graphical Cattell’s scree test.

292

293 Figure 4: Phenotypic responses of environmental chemicals compared to one another. 
294 (a.-i.) MACI labeling patterns in nine different treatment groups; (a.) Healthy Cells, (b.) 
295 Zeocin, (c.) Metolachlor, (d.) Carfentrazone, (e.) MSMA, (f.) Glufosinate, (g.) H2O2, (h.) 
296 DCMU, and (i.) Aclonifen treated cells. (j) Pearson correlation matrix across unique 
297 phenotypic responses. Chemical-treated samples are hierarchically clustered based on 
298 their Pearson coefficient in relation to the other chemical-treated samples; dendrograms 
299 and boxes represent individual clusters.

300 The phenotypic fingerprints across all replicates for each chemical were hierarchically 

301 clustered based on their Pearson correlation coefficient in relation to one another (Figure 

302 4). The hierarchical clustering analysis was able to identify 8 separate clusters (Figure 

303 4j.). All of the clusters grouped individual replicates of the same chemical treatment 

304 together, thus indicating high correlation across replicates and reproducibility in cell-

305 chemical interactions. However, some treatments were slightly less robust than others. 

306 For example, samples treated with Glufosinate and Aclonifen had less correlation 
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307 between replicates within their respective clusters in comparison to other chemical 

308 treatments, however, their overall correlations were still considerably high. Interestingly, 

309 some correlations between clusters could also been seen. For example, Carfentrazone 

310 and H2O2 clusters exhibited fairly high correlation to one another. This is not all that 

311 surprising, though, due to the similarity in the way each of these chemicals interact with 

312 algal cells and the stark visual similarities between their MACI labeling patterns (Figure 

313 4d. and 4g., respectively). Additionally, DCMU and MSMA clusters, whose MoAs are both 

314 related to electron transport inhibition,23,27 bore some slight correlation to one another. 

315 However, despite all of these intertreatment correlations, MACI was still sensitive to the 

316 subtle differences in their phenotypic responses as seen by the clear separation of 

317 treatment clusters (Figure 4j), thus suggesting that this assay can be used to successfully 

318 predict compound-specific perturbations and discriminate between chemicals with unique 

319 MoAs.

320 Chemical MoAs can be identified based on phenotypic response using convolutional 

321 neural networks.

322 In addition to hierarchical clustering analysis, we also took a deep learning approach to 

323 analyze complex phenotypes and delineate chemicals by their MoA, using convolutional 

324 neural networks. CNNs are a type of artificial neural network, which are most notable for 

325 the way they process image data similarly to the visual cortex of the human brain.37
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326

327 Figure 5: Convolutional neural network construction. A small subset of randomly fetched 
328 cells in each treatment are fed into a convolutional neural network model. Based on the 
329 training data, this CNN model yields a classification accuracy of 75.07% at correctly 
330 classifying cells by their true mechanistic class.

331 In CellProfiler Analyst, a CNN was trained on a small subset of randomly fetched cells 

332 from each treatment (~10.5% of cells from the entire experiment) using 50x50 neurons 

333 per layer. Based on the confusion matrix (Figure 5), the CNN model was less robust at 

334 distinguishing certain mechanistic classes from one another, such as cells with 

335 membrane disruption vs DNA damage or cells with inhibited N2 metabolism vs inhibited 

336 very-long-chain fatty acid synthesis. However, the CNN model was still able to predict the 

337 correct mechanistic class across training cells with moderately good classification at an 

338 accuracy of 75.07% (Figure 5). Once trained, the CNN model was used to score each 

339 cell in the experiment, based on its individual phenotype, with a predicted mechanistic 

340 class, and then calculate enrichment scores for each sample.
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341

342 Figure 6: Phenotypic enrichment score heatmap. The CNN model classifies each cell 
343 across the entire experiment with a predicted mechanistic class based on its phenotype. 
344 Enrichment scores for each mechanistic class are calculated in each sample. Heatmap 
345 values represent average treatment enrichment scores; white colored numbers represent 
346 significantly enriched mechanistic classes for respective treatments.

347 Despite some confusion in the discrimination of mechanistic classes, the CNN model was 

348 still able to classify each treatment with the correct MoA. This is visualized in the heatmap 

349 of enrichment scores (Figure 6) where each treatment was significantly enriched in the 

350 appropriate mechanistic class. Based on these results, the deep learning approach 

351 reinforced the ability of MACI to separate chemicals by MoA. However, both deep learning 

352 and hierarchical clustering analyses proved to be robust and sensitive to subtle changes 

353 in complex phenotypes. 
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354 Complex phenotypic profiles are more efficient at predicting mechanisms of action rather 

355 than single interpretable features.

356 A majority of the morphological features used for phenotypic profiling are not interpretable 

357 on their own. Zernike moments, for example, measure specific aspects of an object’s 

358 radial distribution,38 and when multiple Zernike moments across multiple orders are 

359 combined together, they become powerful mathematical descriptors of that object’s 

360 shape. Although they can be useful for reconstructing patterns and for detecting subtle 

361 changes in cell shape,39 individual Zernike moments, by themselves, do not hold much 

362 intrinsic nor biological meaning. However, there are a select few of morphological features 

363 that do hold some biological relevance, such as those related to the intensity and quantity 

364 of fluorescence signals, which we can use to elucidate interesting biological phenomena. 

365 For example, measurements of integrated intensity, which is the sum of pixel intensity 

366 values over a ROI,40 directly correlate to the number fluorophores in that ROI, and thus 

367 directly or indirectly measure relative levels of target biomolecular content. This kind of 

368 measurement has been used for analyzing endpoints related to changes in protein 

369 content41 and for determining cell cycle stages based on the relative abundance of DNA 

370 content.42,43 Another useful metric is quantifying the number of fluorescent objects within 

371 a single cell. For example, measuring the number of intracellular vesicles has been used 

372 to study endpoints related to the cellular uptake of micro/nano plastic particles44 and for 

373 analyzing the intracellular trafficking of certain proteins.45 In regard to R. subcapitata, 

374 three features that have relevance to algal physiology are the number of nuclei/cell, and 

375 the chloroplast and lipid droplet integrated intensities, which are related to chlorophyll and 

376 TAG content, respectively (Supplementary Table S2).
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377 Often the phenotypic measurements that scientists are most interested in analyzing, such 

378 as the above-mentioned features, are not always the best predictors for characterizing 

379 the MoA of different compounds due to their lack of specificity. For example, 4 out of 8 

380 treatments significantly increased chlorophyll content, while 4 out of 8 treatments also 

381 significantly increased the average number of nuclei/cell, in some cases to similar 

382 magnitudes while following similar trends to one another. TAG content was only 

383 significantly increased in Metolachlor treated cells, but most treatments did not elicit a 

384 significant change in TAG content. Furthermore, when using these three features in a 

385 hierarchical clustering analysis, based on Pearson correlation, the analysis was not 

386 sensitive enough to discriminate between chemical-specific perturbance (Supplementary 

387 Figure S2), as compared to the previous hierarchal clustering analysis using the entire 

388 profile (Figure 4). Ultimately, when conducting high-content phenotypic profiling, it is 

389 advised to evaluate changes in the entire profile, rather than changes in individual or 

390 select morphological features alone, as they do not hold enough information that can 

391 directly be linked to a specific MoA5.

392 Applications of MACI, its advantages and limitations.

393 As the use of high-throughput phenotypic profiling assays become more popular, the 

394 MACI assay, in particular, could have several applications in environmental science. 

395 MACI could be used to screen the thousands of chemicals in the marketplace currently 

396 being reevaluated through efforts such as ToxCast for potential environmental toxicity 

397 and mechanism of action.   Furthermore, it could be used to study the potential impacts 

398 of those emerging contaminants and environmental chemicals by characterizing their 

399 cellular targets and identifying their phytotoxic MoAs. This could be especially useful if 
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400 used alongside the Cell Painting assay with other environmentally relevant models like 

401 drosophila and rainbow trout gill cell lines to make cross-species toxicological 

402 comparisons that span multiple trophic levels. Additionally, in the context of environmental 

403 risk assessment, MACI could also be used to help prioritize which emerging contaminants 

404 and environmental chemicals require further evaluation. Once patterns are developed for 

405 a broad array of mechanisms of action it could also be used as a novel technology for the 

406 rapid detection and monitoring of chemicals and specifically emerging contaminants in 

407 the environment.  We also hope to develop this technology further as a means to study 

408 more complex environmental samples with mixtures of chemicals that have different 

409 MoAs, which may be made possible with continuing advancements in machine learning 

410 techniques.  

411 MACI could also be used as an in vitro model to drive developments in herbicide and 

412 agrochemical discovery. Green microalgae cells, like R. subcapitata, bear several 

413 similarities to the mesophyll cells of higher order terrestrial plants in terms of the cellular 

414 components, and their constituents, they contain, the environmental processes they carry 

415 out, and the evolutionarily conserved pathways and molecules they utilize.46,47 

416 Furthermore, since many herbicides and agrochemicals are delivered to plants via foliar 

417 application, MACI could be used for identifying cellular targets and determining MoAs of 

418 novel herbicides and agrochemicals. However, this technique may not be as useful for 

419 soil-based herbicides and agrochemicals. 

420 Currently several high-throughput screening assays exist in addition to high-throughput 

421 phenotypic profiling, such as high-throughput transcriptomics and high-throughput 

422 proteomics. While both of these assays provide a rich molecular level understanding of 
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423 chemical interactions, they can be extremely time-consuming, costly, and computationally 

424 expensive. In comparison, MACI, as an image-based profiling assay, provides the 

425 advantage of low cost and high speed, while still retaining a capacity for in-depth 

426 characterization and classification.48,49 Additionally, assays which measure the differential 

427 expression of transcripts and proteins rely heavily on well-established annotations for 

428 those transcripts and proteins. This is an issue for most environmentally relevant 

429 organisms, like R. subcapitata, which have not been annotated to the extent with which 

430 human disease models have.50  However, another advantage of MACI, and other image-

431 based profiling assays, is that they only require comparisons to a library of reference 

432 chemicals with established MoAs in order to derive meaning from the phenotypic 

433 response of novel or unstudied chemicals5. Lastly, MACI provides the advantage of 

434 greater experimental precision as each individual cell, of which there can be up to 

435 100,000’s-1,000,000’s in any given experiment, serves as an independent, technical 

436 measurement, thereby, also limiting the impact of measurement error.51 Some limitations 

437 of this approach also exist. As with all image-based high-throughput phenotypic profiling 

438 assays, this approach requires the use of a high-content automated fluorescence imaging 

439 system, which can be a significant initial investment. While, images taken with standard 

440 fluorescence microscopes can be analyzed in a similar manner to that of images taken 

441 on a high-content imaging system, the lack of automation can lead to an abundance of 

442 human error during image acquisition, thus decreasing the effectiveness of the assay. 

443 Secondly, small differences in image acquisition parameters, like Z-offsets, laser power, 

444 and acquisition times, could potentially greatly impact the downstream feature extraction 

445 and data analysis. As a result, it has not yet been proven that image data can be directly 
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446 compared between imaging platforms.5 Since having a library reference set of image data 

447 is an important aspect of this kind of assay, this means that a separate library would have 

448 to be established for each individual imaging platform, rather than being able to share 

449 libraries across imaging platforms. However, with the development of machine learning 

450 and new statistical practices for phenotypic profiling, it may become possible to do so in 

451 the future. 

452 Overall, based on the work described in this study, MACI provides a potentially quick and 

453 effective framework for characterizing complex phenotypes and compound-specific 

454 interactions which is suitable for predicting chemical MoAs in plant-type organisms. This 

455 work demonstrates the power and benefit of image-based phenotypic profiling in general, 

456 which is a technique that may continue to drive many advancements in the field of 

457 environmental science and technology.

458 Associated Content

459 Supporting Information: Description of different data-analysis strategies for image-based 

460 phenotypic profiling. Tables reporting the molecular weight & logKow (Table S1), and VIP 

461 scores (Table S2) for reference compounds. Table and description for interpretable 

462 features of biological relevance (Table S3). Figures displaying phenotypic responses to 

463 ethanol (Figure S1) and Pearson correlation matrix based on minimal feature data (Figure 

464 S2) (DOC).
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This work uses novel high-throughput phenotypic profiling and fluorescence imaging techniques to 
predict/characterize the mechanisms of action of environmental chemicals. 
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