2304.01874v2 [cs.LG] 12 Jun 2023

arxiv

Incremental Verification of Neural Networks

SHUBHAM UGARE, University of Illinois Urbana-Champaign, USA

DEBANGSHU BANERJEE, University of Illinois Urbana-Champaign, USA

SASA MISAILOVIC, University of Illinois Urbana-Champaign, USA

GAGANDEEP SINGH, University of Illinois Urbana-Champaign and VMware Research, USA

Complete verification of deep neural networks (DNNs) can exactly determine whether the DNN satisfies
a desired trustworthy property (e.g., robustness, fairness) on an infinite set of inputs or not. Despite the
tremendous progress to improve the scalability of complete verifiers over the years on individual DNNs, they
are inherently inefficient when a deployed DNN is updated to improve its inference speed or accuracy. The
inefficiency is because the expensive verifier needs to be run from scratch on the updated DNN. To improve
efficiency, we propose a new, general framework for incremental and complete DNN verification based on the
design of novel theory, data structure, and algorithms. Our contributions implemented in a tool named IVAN
yield an overall geometric mean speedup of 2.4x for verifying challenging MNIST and CIFAR10 classifiers and
a geometric mean speedup of 3.8x for the ACAS-XU classifiers over the state-of-the-art baselines.

CCS Concepts: « Theory of computation — Program analysis; Abstraction; - Computing methodolo-
gies — Neural networks.

Additional Key Words and Phrases: Verification, Robustness, Deep Neural Networks

ACM Reference Format:

Shubham Ugare, Debangshu Banerjee, Sasa Misailovic, and Gagandeep Singh. 2023. Incremental Verification
of Neural Networks. Proc. ACM Program. Lang. 7, PLDI, Article 185 (June 2023), 31 pages. https://doi.org/10.
1145/3591299

1 INTRODUCTION

Deep neural networks (DNNs) are being increasingly deployed for safety-critical applications
in many domains including autonomous driving [Bojarski et al. 2016], healthcare [Amato et al.
2013], and aviation [Julian et al. 2018]. However, the black-box construction, vulnerability against
adversarial changes to in-distribution inputs [Madry et al. 2017; Szegedy et al. 2014], and fragility
against out-of-distribution data [Chen et al. 2022; Gokhale et al. 2021] is the main hindrance to the
trustworthy deployment of deep neural networks in real-world applications. Recent years have
witnessed increasing work on developing verifiers for formally checking whether the behavior of
DNN:ss (see [Albarghouthi 2021; Urban and Miné 2021] for a survey) on an infinite set of inputs is
trustworthy or not. For example, existing verifiers can formally prove [Bak et al. 2020; Bunel et al.
2020b,a; Ehlers 2017; Gehr et al. 2018; Wang et al. 2018] that the infinite number of images obtained
after varying the intensity of pixels in an original image by a small amount will be classified correctly.
Verification yields better insights into the trustworthiness of DNNs than standard test-set accuracy
measurements, which only check DNN performance on a finite number of inputs. The insights can
be used for selecting the most trustworthy DNN for deployment among a set of DNNs trained for the

Authors’ addresses: Shubham Ugare, University of Illinois Urbana-Champaign, USA; Debangshu Banerjee, University
of Illinois Urbana-Champaign, USA; Sasa Misailovic, University of Illinois Urbana-Champaign, USA; Gagandeep Singh,
University of Illinois Urbana-Champaign and VMware Research, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2475-1421/2023/6-ART185

https://doi.org/10.1145/3591299

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

https://doi.org/10.1145/3591299
https://doi.org/10.1145/3591299
https://doi.org/10.1145/3591299

185:2 Shubham Ugare, Debangshu Banerjee, Sasa Misailovic, and Gagandeep Singh

same task. Existing verifiers can be broadly classified as either complete or incomplete. Incomplete
methods are more scalable but may fail to prove or disprove a trustworthiness property [Gehr et al.
2018; Salman et al. 2019; Singh et al. 2019a, 2018, 2019b; Xu et al. 2020; Zhang et al. 2018]. A complete
verifier always verifies the property if the property holds or otherwise returns a counterexample.
Complete verification methods are more desirable as they are guaranteed to provide an exact
answer for the verification task [Anderson et al. 2020; Bak et al. 2020; Bunel et al. 2020b,a; Ehlers
2017; Ferrari et al. 2022; Fromherz et al. 2021; Gehr et al. 2018; Palma et al. 2021; Wang et al. 2018,
2021; Zhang et al. 2022].

Limitation of Existing Works: The deployed DNNs are modified for reasons such as approxi-
mation [Blalock et al. 2020; Gholami et al. 2021], fine-tuning [Tajbakhsh et al. 2016], model repair
[Sotoudeh and Thakur 2019], or transfer learning [Weiss et al. 2016]. Various approximations such
as quantization, and pruning slightly perturb the DNN weights, and the updated DNN is used for
the same task [Gholami et al. 2021; Laurel et al. 2021; TFLite 2017]. Similarly, fine-tuning can also
be performed to repair the network on buggy inputs while maintaining the accuracy on the original
training inputs [Fu and Li 2022]. Each time a new DNN is created, expensive complete verification
needs to be performed to check whether it is trustworthy. A fundamental limitation of all existing
approaches for complete verification of DNNs is that the verifier needs to be run from scratch
end-to-end every time the network is even slightly modified. As a result, developers still rely on test
set accuracy as the main metric for measuring the quality of a trained network. This limitation of
existing verifiers restricts their applicability as a tool for evaluating the trustworthiness of DNNs.
This Work: Incremental and Complete Verification of DNNs: In this work, we address the
fundamental limitation of existing complete verifiers by presenting IVAN, the first general technique
for incremental and complete verification of DNNs. An original network and its updated network
have similar behaviors on most of the inputs, therefore the proofs of property on these networks are
also related. IVAN accelerates the complete verification of a trustworthy property on the updated
network by leveraging the proof of the same property on the original network. IVAN can be built
on top of any Branch and Bound (BaB) based method. The BaB verifier recursively partitions the
verification problem to gain precision. It is currently the dominant technology for constructing
complete verifiers [Anderson et al. 2019; Bak et al. 2020; Bunel et al. 2020b,a; Ehlers 2017; Ferrari
et al. 2022; Fromherz et al. 2021; Palma et al. 2021; Wang et al. 2018, 2021; Zhang et al. 2022].
Challenges: The main challenge in building an incremental verifier on top of a non-incremental one
is to determine which information to pass on and how to effectively reuse this information. Formal
methods research has developed numerous techniques for incremental verification of programs,
that reuse the proof from previous revisions for verifying the new revision of the program [Johnson
et al. 2013; Lakhnech et al. 2001; O’Hearn 2018; Stein et al. 2021]. However, often the program
commits are local changes that affect only a small part of the big program. In contrast, most DNN
updates result in weight perturbation across one or many layers of the network. This poses a
different and more difficult challenge than incremental program verification. Additionally, DNN
complete verifiers employ distinct heuristics for branching. A key challenge is to develop a generic
method that incrementally verifies a network perturbed across multiple layers and is applicable to
multiple complete verification methods, yet can provide significant performance benefits.

Our Solution: IVAN computes a specification tree — a novel tree data structure representing the
trace of BaB - from the execution of the complete verifier on the original network. We design
new algorithms to refine the specification tree to create a more compact tree. At a high level,
the refinement involves reordering the branching decisions such that the decisions that worked
well in the original verification are prioritized. Besides, it removes the branching decisions that
worked poorly in the original verification by pruning nodes and edges in the specification tree.
IVAN also improves the branching strategy in BaB for the updated network based on the observed

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

Incremental Verification of Neural Networks 185:3

Bound LA |
Verify /
@) (P, w) tod I oo — o @
¥ Y T Verified or CE
N
Branch H N
lUpdate Bound ;\

$ﬂ> x| I _'G/Q

(b, y) ™ ™ Verified or CE

i i+1
N Branch g A

7" N¢

Fig. 1. Workflow of IVAN from left to right. IVAN takes the original network N, input specification ¢ and
output specification ¢. It is built on top of a BaB-based complete verifier that utilizes an analyzer A for the
bounding, and heuristic H for branching. IVAN refines a specification tree TV, result of verifying N, to create

a compact tree ToNa and updated branching heuristic Hx. IVAN performs faster verification of N exploiting
both ToNa and Hp.

effectiveness of branching choices when verifying the original DNN. The compact specification tree
and the improved branching strategy guide the BaB execution on the updated network to faster
verification, compared to non-incremental verification that starts from scratch. IVAN yields up to
43x speedup over the baseline based on state-of-the-art non-incremental verification techniques
[Bunel et al. 2020b; Henriksen and Lomuscio 2021; Singh et al. 2018]. It achieves a geometric mean
speedup of 2.4x across challenging fully-connected and convolutional networks over the baseline.
IVAN is generic and can work with various common BaB branching strategies in the literature
(input splitting, ReLU splitting).

Main Contributions: The main contributions of this paper are:

e We present a novel, general framework for incremental and complete DNN verification by
designing new algorithms and data structure that allows us to succinctly encode influential
branching strategies to perform efficient incremental verification of the updated network.

e We identify a class of network modifications that can be efficiently verified by our framework
by providing theoretical bounds on the amount of modifications.

e We implement our approach into a tool named IVAN and show its effectiveness over multiple
state-of-the-art complete verification techniques, using distinct branching strategies (ReLU
splitting and input splitting), in incrementally verifying both local and global properties of
fully-connected and convolutional networks with ReLU activations trained on the popular
ACAS-XU, MNIST, and CIFAR10 datasets. Our results show that for MNIST and CIFAR10
classifiers, using the ReLU splitting technique [Henriksen and Lomuscio 2021] IVAN yields a
geometric mean speedup of 2.4x over the state-of-the-art baseline [Bunel et al. 2020b; Ehlers
2017]. For ACAS-XU, using the input splitting technique IVAN achieves a geometric mean
speedup of 3.8x over RefineZono [Singh et al. 2019c¢].

IVAN implementation is open-source, publicly available at https://github.com/uiuc-focal-lab/IVAN.
An extended version of this paper containing all the proofs and additional experiments is available
at https://arxiv.org/abs/2304.01874.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

https://github.com/uiuc-focal-lab/IVAN
https://arxiv.org/abs/2304.01874

185:4 Shubham Ugare, Debangshu Banerjee, Sasa Misailovic, and Gagandeep Singh

ReLU 1| ReLU ry
> » X3
01
> 2 > x4 4’
ReLU r, -31-29 ReLU 1y
¢ = {(ip,15) : i; € [0,1] A4, € [0,1]) w=(0,+1420)

Fig. 2. Example original network N and its perturbation N (blue weights). Each layer consists of a linear
function followed by the ReLU activation function. ¢ is the input specification and i is the output specification.

2 OVERVIEW

Figure 1 illustrates the high-level idea behind the workings of IVAN. It takes as input the original
neural network N, the updated network N¢, alocal or global input region ¢, and the output property
). The goal of IVAN is to check whether for all inputs in ¢, the outputs of networks N and N*¢
satisfy /. N and N have similar behaviors on the inputs in ¢, therefore the proofs of the property
on these networks are also related. IVAN accelerates the complete verification of the property
(¢,) on N? by leveraging the proof of the same property on N.
Neural Network Verifier: Popular verification properties considered in the literature have ¢ :=
CTy > 0, where C is a column vector and Y = N(X), for X € ¢. Most state-of-the-art complete
verifiers use BaB to solve this problem. These techniques use an analyzer that computes the linear
approximation of the network output Y through a convex approximation of the problem domain.
This linear approximation of Y is used to perform the bounding step to show for the lower bound
LB(CTY) that LB(CTY) > 0. If the bounding step cannot prove the property, the verification
problem is partitioned into subproblems using a branching heuristic H. The partitioning splits the
problem space allowing a more precise convex approximation of the split subproblems. This leads
to gains in the precision of LB computation. Various choices for the analyzer and the branching
strategies exist which represent different trade-offs between precision and speed.

IVAN leverages a specification tree representation and novel algorithms to store and transfer the
proof of the property from N to N for accelerating the verification on N¢. We show the workings
of IVAN through the following illustrative example.

2.1 llustrative Example

We consider the two networks N and N¢ with the same architecture as shown in Figure 2. Most
practical network updates result in network weight perturbations e.g., quantization, model repair,
and fine-tuning. Network N is obtained by updating (perturbing the weights) of network N. These
networks apply ReLU activation at the end of each affine layer except for the final layer. The weights
for the affine layers are shown on the edges. We consider the verification property (¢,) such that
¢ ={(iy,iz) : iy € [0,1] Aiz € [0,1]} and ¢ = (01 + 14 > 0). Let R = {ry, 12, 13, 14} denote the set
of ReLUs in the considered architecture. R is a function of the architecture of the DNNs and is
common for both N and N%.

Branch and Bound: We consider a complete verifier that uses a sound analyzer A based on the
exact encoding of the affine layers and the common triangle linear relaxation [Bunel et al. 2020b,a;
Ehlers 2017] for over-approximating the non-linear ReLU function. If due to over-approximation of

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

Incremental Verification of Neural Networks 185:5

the ReLU function, the analyzer cannot prove or disprove the property, the verifier partitions the
problem by splitting the problem domain. The analyzer is more precise if it separately analyzes the
split subproblems and merges the results. There are two main strategies for branching considered
in the literature, input splitting [Anderson et al. 2020; Wang et al. 2018], and ReLU splitting [Bunel
et al. 2020b,a; Ehlers 2017; Ferrari et al. 2022; Palma et al. 2021]. We show IVAN’s effectiveness on
both branching strategies in our evaluation (Section 6.1, Section 6.4). However, for this discussion,
we focus on ReLU splitting which is scalable for the verification of high-dimensional inputs.
ReLU splitting: An unsolved problem is partitioned into two cases, where the cases assume the
input X; to ReLU unit r; satisfies the predicates x; > 0 and X; < 0 respectively. Splitting a ReLU r;
eliminates the analyzer imprecision in the approximation of r;. When we split all the ReLUs in R,
the analyzer is exact. Nevertheless, splitting all R is expensive as it requires 2/%| analyzer bounding
calls. The state-of-the-art techniques use the heuristic function H to find the best ReLU to split at
each step, leading to considerably scalable complete verification.

The branching function H scores the ReLUs R for branching at each unsolved problem to partition
the problem. If R” C R denotes the subset of ReLUs that are not split in the current subproblem,
then the verifier computes r = arg maxg, H to choose the r for the current split. H is a function of
the exact subproblem that it branches and hence depends on ¢, ¢/, the network, and the branching
assumptions made for the subproblem. However, for the purpose of this running example, we
consider a simple constant branching heuristic H that ranks H(r1) > H(rs) > H(rs) > H(r)
independent of the subproblem and the network. This assumption is only for the illustration of our
idea, we show in the evaluation (Section 6) that IVAN can work with state-of-the-art branching
heuristics [Bunel et al. 2020b; Henriksen and Lomuscio 2021].

2.2 IVAN Algorithm

Specification Tree: IVAN uses a rooted binary tree data structure to store the trace of splitting
decisions during BaB execution. A specification split is a finer specification parameterized by the
subset of ReLUs in R. The root node is associated with the specification (¢,). All other nodes
represent the specification splits obtained by splitting the problem domain recursively. Each internal
node in the tree has two children, the result of the branching of the associated specification.

The split decision can be represented as a predicate. For a ReLU r; with input %;, let r} := (%; > 0)
and r; := (%; < 0) denote the split decisions. A split of ReLU r; at node n creates two children nodes
n; and n,, each encoding the new specification splits. Each edge in the specification tree represents
the split decision made at the branching step. An edge connects an internal node with its child
node, and we label it with the additional predicate that is assumed by the child subproblem. A split
of ReLU r at node n adds nodes n; and n, that are connected with edges labeled with predicates
r{ and r; respectively. If ¢, = (¢’, 1) is the specification split at n, then ¢, = (¢’ A r*, 1) and
@n, = (¢’ Ar~,¥). The names of the nodes have no relation to the networks or the property, they
are used for referencing a particular specification. However, the edges of the tree are tied to the
network architecture through the labels. Although the specification tree is created as a trace of
verification of a particular network N, it is only a function of the ReLU units in the architecture of
N. This allows us to use the branching decisions in the specification tree for guiding the verification
of any updated network N that has the same architecture as N. We use LBy (n) to denote the
lower bound LB(CTY) obtained by the analyzer A on for the subproblem encoded by n, on the
network N.

Figure 3 demonstrates the steps of BaB execution on N. Each node represents the specification
refined by BaB. We use function LBy (n) to denote the LB(CTY) = LB(o; + 14) value obtained by
the analyzer A at node n. The specification is verified for the subproblem of n if the LBy (n) > 0.
If LBy(n) < 0, the analyzer returns a counterexample (CE). The CE is a point in the convex

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

185:6 Shubham Ugare, Debangshu Banerjee, Sasa Misailovic, and Gagandeep Singh

Branch n, with ReLU r,

L AT AW

Fig. 3. Steps in Branch and Bound algorithm for complete verification of N. The nodes are labeled with a
name and the LBx (n). The nodes in the specification tree are annotated with their specifications. The edges
are labeled with the branching predicates. Each step in BaB partitions unsolved specifications in TiN into
specification splits in lefl The proof is complete when all specification splits corresponding to the leaf nodes
are solved.

approximation of the problem domain and it may be possible that it is spurious, and does not belong
to the concrete problem domain. If the CE is not spurious, the specification is disproved and the
proof halts. But, if the CE is spurious then the problem is unsolved, and it is further partitioned.

In the first step, for the specification (¢, /) encoded by the root node ny, the analyzer computes
LBNn(ny) = -7, which is insufficient to prove the specification. Further, the CE provided by the
analyzer is spurious, and thus the analyzer cannot solve the problem. The root node n, specification
(¢, ¥) is split by ReLU split of r; chosen by the heuristic function H. Accordingly, in the specification
tree, the node ny is split into two nodes n; and ny, with the specification splits (¢ A rf, 1) and
(¢ A r{,) respectively. This procedure of recursively splitting the problem and correspondingly
updating the specification tree continues until either all the specifications of the leaf nodes are
verified, or a CE is found. In the final specification tree (TN in this case), the leaf nodes are
associated with the specifications that the analyzer could solve, and the internal nodes represent
the specifications that the analyzer could not solve for network N. For BaB starting from scratch,
each node in the specification tree maps to a specification that invoked an analyzer call in BaB
execution. Figure 3 presents that the verifier successfully proves the property with a specification
tree containing 9 nodes. Thus, the verification invokes the analyzer 9 times and performs 4 nodes
branchings for computing LB.

Figure 4a presents the specification tree for N at end of the verifying the property (¢,).
Although the LB(CTY) computed by the analyzer for each node specifications is different for N¢
compared to N, the final specification tree is identical for both networks. Our techniques in IVAN
are motivated by our observation that the final specification tree for network N and its updated
version N“ have structural similarities. Moreover, we find that for a DNN update that perturbs the
network weight within a fixed bound, these trees are identical. We claim that there are two reasons
for this: (i) the specifications that are solved by the analyzer for N are solved by the analyzer for N¢
(specifications of the leaf nodes of the specification tree) and (ii) the specifications that are unsolved
by the analyzer for N are unsolved for N¢ (specifications of the internal nodes of the specification
tree). In Section 4.4, we provide theoretical bounds on the network perturbations such that these

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

Incremental Verification of Neural Networks

ny, 122 ny 122 ns, 122 g, —2.88

v N

ny, 13.8 ng, 5.9

(a) BaB specification tree for N¢. It requires 9
node boundings and 4 node branchings.

185:7

e,
. .
:/ \:;

ny, 138 ng, 5.9

(b) BaB specification tree for N¢ with reuse. It
requires 5 node boundings and 0 node branchings.

ng, — 8.7 r;' ry
V N{ /

7s,7.45
n;,7.45 X ny, —2.58 ~ r;' ry
VN
7, 14.0 7g,0.54
ny, 14.0 ny,0.54

(c) BaB specification tree for N¢ with reorder. It
requires 5 node boundings and 2 node branchings.

(d) BaB specification tree for N* with IVAN. It
requires 3 node boundings and 0 node branchings.

Fig. 4. BaB specification tree for various techniques proposed for incremental verification.

claims hold true (Theorem 4). Nevertheless, for networks obtained by perturbation beyond the
theoretical bounds, the specification trees are still similar if not identical. In our evaluation, we
observe this similarity for large networks with practical updates e.g., quantization (Section 6).

Reuse: We first introduce our concept of specification tree reuse which uses T¥, the final tree

after verifying N, as the starting tree T.N" for the verification of N In contrast, the standard BaB
verification starts with a single node tree that represents the unpartitioned initial specification
(¢,¥). In the reuse technique, IVAN starts BaB verification of N from the leaves of TV ‘=
T}V . For our running example, analyzer A successfully verifies N¢ specifications for all the leaf

nodes of the specification tree TON “ (Figure 4b). We show that for any specification tree (created
on the same network architecture), verifying the subproblem property on all the leaves of the
specification tree is equivalent to verifying the main property (¢,) (Lemma 1). Verifying the
property on N“ from scratch requires 9 analyzer calls and 4 node branchings. However, with the
reuse technique, we could prove the property with 5 analyzer calls corresponding to the leaves
of TN “ and without any node branching. Theorem 4 guarantees that the specification of the leaf
nodes should be verified on N¢ by the analyzer if the network perturbations are lower than a
fixed bound. Although for larger perturbations, we may have to split leaves of TV “ further for
complete verification, we empirically observe that the reuse technique is still effective to gain
speedup on most practical network perturbations.

Reorder: A split is more effective if it leads to fewer further subproblems that the verifier has
to solve to prove the property. Finding the optimal split is expensive. Hence, the heuristic H is
used to estimate the effectiveness of a split, and to choose the split with the highest estimated
effectiveness. Often the estimates are imprecise and lead to ineffective splits. We use LBy (n) to give
an approximation to quantifying the effectiveness of a split. We discuss this exact formulation of
the observed effectiveness scores Hyps in Section 4.3. Our second concept in IVAN is based on our

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

185:8 Shubham Ugare, Debangshu Banerjee, Sasa Misailovic, and Gagandeep Singh

f . n’
v ' Tp
3 L |
S+ Mo " :
A T~ : Prune 73 i
A 2 H rf ry
” v~ E - / \
/ \ [5 \ =
s e
3 ny, ns g - ;r 5
N ‘
ity fig
2y ng)

Fig. 5. IVAN removes the ineffective split r1 at ng and construct a new specification tree Tp.

insight that if a particular branching decision is effective for verifying N then it should be effective
for verifying N¢. Likewise, if a particular branching decision is ineffective in the verification of N, it
should be ineffective in verifying N“. Based on this insight, we use the observed effectiveness score
of splits in verifying N to modify the original branching heuristic H to an improved heuristic Ha.
H)j takes the weighted sum of original branching heuristic H and observed effectiveness scores on
N denoted by H,ps. We formulate the effectiveness of a split and Hy in Section 4.3. For simplicity,
in the running example, we rerank the ReLUs based on the observed effectiveness of the splits as
Ha(ry) > Ha(r3) > Ha(r2) > Ha(ry). Figure 4c presents the specification tree for verifying N with
the updated branching heuristic Hx that requires 5 analyzer calls and 2 node branchings. Reorder
technique starts from scratch with a different branching order Hx and it is incomparable in theory
to the reuse technique. In Section 6.2, we observe that reorder works better in most experiments.
Bringing All Together: Our main algorithm combines our novel concepts of specification tree reuse
and reorder yielding larger speedups than possible with only reuse or reorder. Specification tree
reuse and reorder are not completely orthogonal and thus combining them is not straightforward.
Since in reuse we start verifying N with the final specification tree TV, the splits are already

performed with the original order (ry, r4, 13, r, in our example). Our augmented heuristic function
Hp will have a limited effect if we reuse TON ‘= T]f‘[, since the existing tree branches may already be
sufficient to prove the property.
Constructing a Pruned Specification Tree: It is difficult to predict the structure of the tree with
augmented order. For instance, in our example, N is verified with ry, ry, 3, r; order and we have
ij" branched in that order. However, we cannot predict the final structure of the specification tree
if branched with our augmented order ry, r3, r, r; without actually performing those splits from
scratch (as it was done in Figure 4c).

We solve this problem with our novel pruning operation that removes ineffective splits from

ij‘] and constructs a new compact tree Tp. Figure 5 shows the construction of pruned tree Tp for

our running example. We remove the split r; at ng as it is less effective. Removing ry from T}Y also
eliminates the nodes n; and n,. The subtrees rooted at n; and n, are the result of split r;. If we undo
the split r; at node ng, then ny should follow the branching decisions taken by one of its children.
For this, we can choose either the subtree of nj or ny, and attach it to ny. We describe the exact
method of choosing which subtree to keep in Section 4.3. For this example, our approach chooses to
keep the subtree of node n, and eliminates the subtree at node n;. The pruning procedure leads to
the discarding of entire subtrees creating a tree with fewer leaf nodes (leaf nodes ns, ny are deleted
in the example along with internal nodes ny, n;). Consequently, we obtain a more compact tree
with only influential splits in the specification tree.

We start the verification of N from the leaf nodes of the pruned tree i.e. TON “ = Tp. For our
running example specification splits of all leaf nodes of Tp are verified by the analyzer and no
further splitting is needed. Figure 4d presents the final specification tree in case we initialize the

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

Incremental Verification of Neural Networks 185:9

proof with the compact tree obtained from the IVAN algorithm. We show the time complexity of
incremental verification in Section 4.2. For the running example, the incremental proof requires
only 3 analyzer calls and no branching calls, and it is a significant reduction to the 9 analyzer calls
and 5 node branchings performed by the baseline starting from scratch.

3 PRELIMINARIES

In this section, we provide the necessary background on complete neural network verification.

3.1 Neural Network Verification

Neural Networks Neural networks are functions N : R™ — R™. In this work, we focus on
layered neural networks obtained by a sequential composition of [layers Nj : R"™ — RN ... Nj:
R™-1 — R™_ Each layer N; applies an affine function (convolution or linear function) followed by a
non-linear activation function to its input. The choices for non-linear activation functions are ReLU,
sigmoid, or tanh. ReLU (x) = max(0, x) is most commonly used activation function. In Section 4, we
focus on the most common BaB verifiers that partition the problems using ReLU splitting in ReLU
networks. The i-th layer of each network N; : R — R™*! is defined as N;(x) = ReLU(A; X + B;)
where i € [I].

At a high level, neural network verification involves proving that all network outputs correspond-
ing to a chosen set of inputs satisfying the input specification ¢ satisfy a given logical property .
We first define the input and output specifications that we consider in this work:

DEFINITION 1 (INPUT SPECIFICATION). For a neural network N : R™ — R™, ¢, is a connected
region and ¢; C R™. Input specification ¢ : R™ — {true, false} is a predicate over the input
region ¢;.

DEFINITION 2 (OUTPUT SPECIFICATION). For a neural network with n; neurons in the output layer.

output specification yy : R™ — {true, false} is a predicate over the output region.

The output property ¢ could be any logical statement taking a truth value true or false. In our
paper, we focus on properties that can be expressed as Boolean expressions over linear forms. Most
DNN verification works consider such properties.

p(¥)=(CTY 20) (1)
We next define the verification problem solved by the verifiers:
DEFINITION 3 (VERIFICATION PROBLEM). The neural network verification problem for a neural

network N, an input specification ¢ and a logical property i is to prove whether ¥X € ¢;. (N (X)) =
true or provide a counterexample otherwise.

A complete verifier always verifies the property if it holds or returns a counterexample otherwise.
Formally, it can be defined as:

DEFINITION 4 (COMPLETE VERIFIER). A complete verifier V for an input specification ¢, a neural
network N, an output property y satisfies the following property:

V(h, ¥, N) = Verified = VX € ¢; . (N(X)) = true

3.2 Branch and Bound for Verification

In this Section, we discuss the branch and bound techniques for complete verification of DNNs. The
BaB approach in these techniques use a divide-and-conquer algorithm to compute the LB(CTY) for
proving (CTY > 0) (Eq. 1). We next discuss the bounding and branching steps in BaB techniques.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

185:10 Shubham Ugare, Debangshu Banerjee, Sasa Misailovic, and Gagandeep Singh

Bounding: The bounding step uses an analyzer to find a lower bound LB(CTY). In complete
verifiers, the analyzers are exact for linear functions (e.g., DeepZ [Singh et al. 2018], DeepPoly
[Singh et al. 2019b]). However, they over-approximate the non-linear activation function through a
convex over-approximation. We define these sound analyzers as:

DEFINITION 5 (SOUND ANALYZER). A sound analyzer A on an input specification ¢, a DNN N, an
output property y returns Verified, Unknown, or Counterexample. It satisfies the following properties:

A(¢, ¢, N) = Verified = VX € ¢, (N(X)) = true
A(¢, ¢, N) = Counterexample = 3IX € ¢;.¥/(N(X)) = false

Branching: If the analyzer cannot prove a property, the BaB verifier partitions the problem into
easier subproblems to improve analyzer precision. Algorithm 1 presents the pseudocode for the
BaB verification. The algorithm maintains a Unsolved list of problems that are currently not proved
or disproved. It initializes the list with the main verification problem. Line 5 performs the bounding
step in the BaB algorithm using the analyzer A. For simplicity, we abuse the notation and use
A(prob, N) for denoting the analyzer output instead of A(¢, ¥/, N). Here, the prob encapsulates the
input and output specifications ¢, /. Line 13 partitions the unsolved problem into subproblems.
The algorithm halts when either the A finds a counterexample on one of the subproblems or the list
of unsolved problems is empty. There are two common branching strategies for BaB verification,
input splitting and ReLU splitting, which we describe next.

Algorithm 1 Branch and Bound

1: function BAB(N, problem)

2 Unsolved « [(problem)]

3 while Unsolved is not empty do

4 for prob € Unsolved do

5: status[prob] = A(prob, N) > Bounding step
6 for prob € Unsolved do

7 if status[prob] = Verified then

8

9

Unsolved.remove(prob) > Remove verified subproblems

if status[prob] = Counterexample then
10: return Counterexample for prob > Return if a counterexample is found
11: if status[prob] = Unknown then
12: Unsolved.remove(prob)
13: [subprob,, subprob,] « split(prob) > Branching step
14: Unsolved.insert(subprob,, subprob,)
15: return Verified

Input Splitting: In input splitting, the input region ¢, for verification is partitioned. The typical
choice is to cut a selected input dimension in half while the rest of the dimensions are unchanged.
The dimension to cut is decided by the branching strategy used. This technique is known to be 8-
complete for any activation function [Anderson et al. 2019], but does not scale for high-dimensional
input space. In many computer vision tasks, the input is an image with 1000s of pixels. Thus, a high-
dimensional perturbation region on such input cannot be branched efficiently for fast verification.
ReLU Splitting: State-of-the-art techniques that focus on verifying DNNs with high-dimensional
input and ReLU activation, use ReLU splitting. We denote a ReLU unit for i-th layer and j-th index
as a function x; ; = max(%; ;, 0), where x; ; and x; ; are the pre-activation and post-activation values
respectively. The analyzer computes lower bounds [b and upper bounds ub for each intermediate

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

Incremental Verification of Neural Networks 185:11

variable in the DNN.If [b(%; ;) > 0, then the ReLU unit simply acts as the identify function x; ; = x; ;.
If ub(x; ;) < 0, then the ReLU unit operates as a constant function x; ; = 0. In both of these cases,
the ReLU unit is a linear function. However, if Ib(%; ;) < 0 < ub(X;;), we cannot linearize the
ReLU function exactly. We call such ReLU units ambiguous ReLUs. In ReLU splitting, the unsolved
problem is partitioned into two subproblems such that one subproblem assumes %; ; < 0 and the
other assumes %; ; > 0. This partition allows us to linearize the ReLU unit in both subproblems
leading to a boost in the overall precision of the analyzer. The heuristic used for selecting which
ReLU to split significantly impacts the verifier speed.

BaB for Other Activation Functions: BaB-based verification can work with the most commonly
used activation functions (tanh, sigmoid, leaky ReLU).

(1) For piecewise linear activation functions such as leaky ReLU, activation splitting approaches
(e.g, ReLU splitting) can be used for complete verification.

(2) For other activation functions (tanh, sigmoid), BaB with activation splitting cannot yield
complete verification but can be used to improve the precision of sound and incomplete
verification [Dutta et al. 2017; Miiller et al. 2021].

(3) Although input splitting is less efficient in the aforementioned cases for high dimensional
DNN inputs, it can be applied with any activation function (tanh, sigmoid, ReLU, leaky ReLU).

4 INCREMENTAL VERIFICATION

In this section, we describe our main technical contributions and the IVAN algorithm. We first
formally define the specification tree structure used for incremental verification (Section 4.1). Next,
we formulate the problem of incremental verification (Section 4.2). In Section 4.3, we illustrate the
techniques used in our algorithm. We characterize the effectiveness of our technique by computing
a class of networks for which our incremental verification is efficiently applicable in Section 4.4.

4.1 Specification Tree for BaB

IVAN uses the specification tree to store the trace of splitting decisions that the BaB verifier makes
on its execution. A specification tree can be used for any BaB branching method (e.g, input splitting),
but without loss of generality, our discussion focuses on ReLU splitting. Let N denote the class of
networks with the same architecture, and let R denote the set of ReLUs in this architecture. The
specification tree captures the ReLU splitting decisions and the split specifications in the execution
of BaB for a property (¢, /), where we define (¢,) :== ¢ — .

For a ReLU r; with input %;, let r} := (%; > 0) and r; := (%; < 0). We define a split decision as:

DEFINITION 6 (SPLIT DECISION). For a ReLUr € R, a split decision isr’ € {r*,r~} wherer’ is
assigned the predicate r* orr~.

A specification split of (¢, ¢) is a specification stronger than (¢, /) parameterized by the subset
of ReLUs in R and the corresponding split decisions. Formally,

DEFINITION 7 (SPECIFICATION SPLIT). For a set of ReLUs R’ = {ry,ry...r} € R, and ReLU split
decision ri? € {r7,r{} for eachr;, the corresponding specification split of (¢, /) is (¢ A rf A rz? Ao r,?c, V).

Since @ € R, (4,) is a split specification of itself. Let S denote the set of specification splits that
can be obtained from (¢, {/). Each node n in the tree encodes a specification split in S. Each edge
in the specification tree is labeled with a ReLU split decision r’. Let Nodes(T) denote the nodes of
the tree T and Leaves(T) denote the leaves of the tree T.

Mapping Nodes to Specification Splits: The specification associated with the root node is (¢,).
The function Children(n) maps a node n to either the pair of its children or @ if n has no children. If n;
and n, are the children of node n and ¢, = (¢’,¥) is the specification split at n, then ¢,,, = (¢’ Ar*, ¢)

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

185:12 Shubham Ugare, Debangshu Banerjee, Sasa Misailovic, and Gagandeep Singh

and ¢, = (¢’ Ar~,¢). For the specifications ¢, ¢p;, ¢n, the following statement holds:
(@n, A @n,) & ¢n (2)

This relationship implies that verifying the parent node specification is equivalent to verifying the
two children node’s specifications. Formally, we can now define the specification tree as:

DEFINITION 8 (SPECIFICATION TREE). Given a set of ReLU R, a rooted full binary tree T is a speci-
fication tree, if for a node n € Nodes(T), and nodes nj, n, € Children(n), edge (n, n;) is labeled with
predicate r* and edge (n, n,) is labeled with predicate r~, forr € R.

Algorithm 2 Split operation BaB uses a branching function H for choos-
1: function SpLrr(T, n, r) ing the ReLU to split. We define this branching
2: Input: Specification tree T, a leaf node n € function in terms of the node n of the specifi-

Leaves(T), aReLU r € R for splitting the node cation tree as:
3: Output: returns newly added nodes
4 ny « Add_Child(n, r*) DEFINITION 9 (BRANCHING HEURISTIC).
5 n, « Add_Child(n, r™) Given a set of ReLU R, a network N, and a node
6 return n;, n, n in the specification tree, if P C R denote the

set of ReLUs split in the path from the root node
of the specification tree to n then the branching heuristic H(N, n,r) computes a score h € R estimating
the effectiveness of ReLUr € R/P for splitting the specification (¢,) of the node n.

We next state the split operation on a specification tree. Algorithm 2 presents the steps in the
split operation.
o Split Operation: Every ReLU split adds two nodes to the specification tree at a given leaf node n.
The BaB algorithm chooses the ReLU arg max, . g,p H(N, n,r) to split at node n using the heuristic
function.

4.2 Incremental Verification: Problem Formulation

Give a set of networks N with the same architecture with a set of ReLUs R, 7n be the set of all
specification trees defined over R. There exists a partial order (<) on 7 through standard subgraph
relation. BaB execution on a network N € N traces a sequence of trees Ty, T; ... Ty € 7 such that
T; < Tiy1. It halts with the final tree Ty when it either verifies the property or finds a counterexample.
The construction of T;; from T; depends on the branching function H (Definition 9).

Incremental Verification: The incremental verification problem is to efficiently reuse the infor-
mation from the execution of verification of network N for the faster verification of its updated
version N?. Standard BaB for verification of N¢ starts with a single node tree while the incremental
verifier starts with a tree TON “ € Ty that is not restricted to be a tree with a single node. We modify
the final specification tree T]f‘] from the verification of N to construct TV". The branching heuristic
H,j for incremental verification is derived from the branching heuristic H based on the efficacy
of various branching decisions made during the proof for N. Formally, the complete incremental

verifier we propose is defined as:
DEFINITION 10 (COMPLETE AND INCREMENTAL VERIFIER). A Complete and Incremental Verifier

Va takes a neural network N, an input specification ¢, an output property y, analyzer A, the branching
heuristic Hy and the initial tree TONa .VA(N4, @, 9, TONa, Hp) returns Verified if N¢ satisfies the property
(¢,), otherwise, it returns a Counterexample.

Algorithm 3 presents the incremental verifier algorithm for verifying the perturbed network. It
takes Hp and TON “ as input. It maintains a list of active nodes which are the nodes corresponding to
the specifications that are yet to be checked by the analyzer. It initializes the list of active nodes
with leaves of tree T)¥ “ (line 2). The main loop runs until the active list is empty (line 3) or it

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

Incremental Verification of Neural Networks 185:13

Algorithm 3 Verifying Perturbed Network

Input: N4, property (¢,1), Initial specification tree TON “, branching heuristic Hp
Output: Verifiedif the specification (§,) is verified, otherwise a Counterexample

1: TN? « Initialize TN® as TON “

2: Active = Leaves(TéV) > Initialize active list as Leaves(TON “
3: while Active is not empty do
4: for n € Active do
5: status[n] « A(n) > Bounding step
6 for n € Active do
7: if status[n] = Verified then
8 Active.remove(n) > Remove verified nodes
9 if status[n] = Counterexample then
10: Active.empty()
11: return Counterexamplefor n > Return if a counterexample is found
12: if status[n] = Unknown then
13: Active.remove(n)
14: Tehosen <— argmax, g Ha(N,n,r) > Use Hp to choose the split ReLU
15: np,nr — Split(TN® 1, renosen) > Branching step
16: Active.insert(ny, ny)

17: return Verified

discovers a counterexample (line 9). At each iteration, it runs the analyzer on each node in the
active list (line 5). The nodes that are Verified are removed from the list (line 8), whereas the nodes
that result in Unknown are split. The new children are added to the active list (line 12).

Optimal Incremental Verification: We define the partial function Timey : Ty X Ty — R,
Timep (TON “ TfN a) for a fixed complete incremental verifier V, as the time taken by V, that starts

from T(f\] “ and halts with the final tree T}V “. Timey,(H, Hy) and Timet(T}V , TON “) are the time for

constructing Hy from H, and TV “ from T}V respectively. We pose the optimal incremental verification
problem as an optimization problem of finding the best Hy, TY “ such that the time of incremental
verification is minimized. Formally, we state the problem as:

arg min [TimeA(TONu, T}Va) + Time,(H, Hp) + Timet(T]fV, T(fva)] (3)
Ha, TN

The search space for TN “ is exponential in terms of R, and the search space for Hy is infinite.
Further, Time, is a complicated function of Hp, TON “ that does not have a closed-form formulation.
As a result, it is not possible to find an optimal solution.

Simplifying Assumptions: To make the problem tractable we make a simplifying assumption that
for all networks with the same architecture, each branching and bounding step on each invocation
takes a constant time t; and t4 respectively. We can now compute Timep (T.¥ ; T}V “) as:

Theorem 1. (Timep for incremental verification). If the incremenatl verifier Vp halts with the final

a a a a - Na a
tree T]f‘] , then TimeA(TON ,TJ{V) = (ta +ty) - (|N0des(T}V)|+ W) —ty- |Leaves(T}V)|

The proof of the theorem is in Appendix 9.2.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

185:14 Shubham Ugare, Debangshu Banerjee, Sasa Misailovic, and Gagandeep Singh

In this work, we focus on a class of algorithms for which the preprocessing times Timey,(H, Hp)
and Time; (T}V , TON a) are << Timep (TON “ T;V a). Furthermore, we also focus on branching heuristics

used in practice where ty; << t4. Equation 3 simplifies to finding Hy and TY “ such that the following
a a a - Na
expression TimeA(TON ,T}V) =ta- (|N0des(T}V)|+ L Nodes(T,”)1

5) is minimized. Rewriting and
ignoring the constant term we get

0 a |Nodes(TN)| — [Nodes(TN“)| |Nodes(TN®)|
Timen (T, TN') = tA~(L A f (4)

2 2

4.3 IVAN Algorithm for Incremental Verification

We describe the novel components of our algorithm and present the full workflow in Algorithm 5.
Our first technique called reuse focuses on minimizing |Nodes(T}V 9] - |Nodes(T(fV “)| in Equa-

tion 4. Our second reorder technique focuses on minimizing |Nodes(TN")|. The Ha, T(fv “ obtained

by reuse and reorder are distinct. IVAN algorithm combines these d];stinct solutions, to reduce
Timep (TN, T}V“).

Reuse: This technique is based on the observation that the BaB specification trees should be similar
for small perturbations in the network. Accordingly, in the method, we use the final specification
tree for N as the initial tree for the verification of N i.e. T}V = T;V , and keep the Hy = H unchanged.
We formally characterize a set of networks obtained by small perturbation for which T,V ‘= T}V is
sufficient for verifying N® without any further splitting in Section 4.4.

Reorder: Reorder technique focuses on improving the branching heuristic H such that it reduces

INodes(T;V “)], and TON “ is single node tree with ny encoding the specification (¢, /). If we start
TON ‘= T}V , |Nodes(T}V “)| is at least |Nodes(TfN)|, and thus, we start TON “ from scratch allowing the

technique to minimize |Nodes(TJ],V “)|. We create a branching function Hy from H with the following

two changes. (i) The splits that worked effectively for the verification of the N should be prioritized.
(i) The splits that were not effective should be deprioritized. To formalize the effectiveness of
splits, we define the LBy (n) as the lower bound computed by the analyzer A on the network N
for proving the property ¢, encoded by the node n. Further, using the function LBy we define an
improvement function Iy represents the effectiveness of a ReLU split at a specific node as:

In(n,r) = min(LBn (n,) — LBy (n), LBy (n;) — LBn(n)) %)

where nj, n, € Children(n) in the specification tree T}V . We use Iy to define the observed effective-

ness Hyps(r) from a split r on the entire specification tree for N. It is defined as the mean of the
improvement over each node where split r was made. Let Q C Nodes(T}") denote a set of nodes
where split r was made. Then,

ZneQ In(n,1)

Hops(r) = (6)
o Q]
Using the H,ys(r) score we update the existing branching function as:
Ha(n,r) =a-H(nr)+(1-a) - (Hops(r) — 6). 7

Here, we introduce two hyperparameters o and 0. The hyperparameter « € [0, 1] controls the
importance given to the actual heuristic score and the observed improvement from the verification
on N.If @ = 1, then Hp depends only on the original branching heuristic score. If & = 0, then it fully
relies on observed split scores. The hyperparameter 6 ensures that our score positively changes
score for r that have H,,s(r) > 6 and negatively change scores for Hyps(r) < 6.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

Incremental Verification of Neural Networks 185:15

Constructing a Pruned Specification Tree: The two reordering goals of prioritizing and depriori-
tizing effective and ineffective splits are difficult to combine with reuse. However, instead of starting
from scratch, we can construct a specification tree Tp from TN excluding the ineffective splits. For

f
ne Nodes(TJf\[), where ReLU r splits n, we denote the set of bad splits as the set 8 (T}V) of the pairs

(n,r) such that the improvement score Iy(n,r) < 6. For (n,r) € B(T;V) while constructing the

pruned tree our algorithm chooses a child ny of n. If a ReLU ry, is split at ng in T}V , it performs a
split r¢ in the corresponding node in Tp, and skips over the bad split r. The subtree corresponding
to the other child ny is eliminated and not added to our pruned tree. We choose nj such that:

ng = argmin LBxn(n,) — LBy (n) (8)

ny, € Children(n)

We choose such ny over ny since LBy (n) is closer to LBy (ng) than LBy (ny). Further, combining
Equation 5 and 8, we can show (LBn(nx) — LBy(n)) < 0, i.e. their difference is bounded. We
anticipate that on the omission of the split r, the subtree corresponding to ny is a better match to
the necessary branching decisions following n than n.

Algorithm 4 presents the top-down construction of Tp. The algorithm starts from the root of TJ},V
and recursively traverses through the children constructing Tp. It maintains a queue Q of nodes yet
to be explored and a map M that maps nodes from the tree T to the corresponding new nodes in
Tp. At a node n, if (n, r) is not a bad split, it performs the split r at the corresponding mapping 7.
Otherwise, if 7y is the split at ny, it skips over r and performs the split of ¢ at i. The newly created
children from a split of 7 are associated with children of ny using M. The children of nj are added
in the Q and they are recursively processed in the next iteration for further constructing Tp. Tp is
still a specification tree satisfying the Definition 4.1 by construction. The specifications ¢, of a
node n in Tp can be constructed using a path from the root to n.

Algorithm 4 Creating a Pruned Tree

Input: specification tree T}V “ hyperparameter 6 Algorithm 5 Incremental Verification
Output: Pruned tree Tp Algorithm

1: Ryoot < root of e, Aroot <— copy of Nyoor Input: Original network N,

2: Tp « Initialize a new tree with iyt Perturbed network N4,

3: Q « Initialize list with 1,0t property (¢, ¥),

4: M « Initialize an empty map analyzer A,

5: M[nyoot] < Rroot branching heuristic H,

6: while Q is not empty do hyperparameters

7: n «— Q.pop(); r < split at node n; i < M|[n] aand 6,

8: if In(n,r) < 6 then incremental verifier Vp

9: ng < argmin,, ¢ children(n) LBN (nk) — LBy (n) ~ Output: Verification result for N and N¢
10: re < split at node ny 1: resultN, T}V — V(N, ¢, ¢, H)
11: ny, ny < ng.children; fiy, ity «— Split(Tp, A, ry)

2: T(fva — PrunedTree(T]}CV, 0)

12: M([n;] « ap M[n,] « n, H UpdateH(H. TN 0

13: Q.push(n;y); Q.push(n;) 3 Ha — UpdateH(H, e ,a)a

14: else 4: resultN® « VA(N%, ¢, 9, TON JHp) v
15: npny « n.children; iy, iy — Split(Tp, i, r) Incremental verification step calls Algo-
16: M[n;] « i M[ny] < 7y rithm 3

17: Q.push(n;); Q.push(ny) 5: return resultN, resultN¢

18: return Tp

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

185:16 Shubham Ugare, Debangshu Banerjee, Sasa Misailovic, and Gagandeep Singh

Main algorithm: Algorithm 5 presents IVAN’s main algorithm for incremental verification that
combines all the aforementioned techniques. It takes as inputs the original network N, a perturbed

network N, input specification ¢, and an output property i. It prunes the final tree T}V obtained

in the verification of N and constructs TV “ (line 2). It computes the updated branching heuristic
Hy using Equation 7 (line 3). It uses T “ and Hj for performing fast incremental verification of
networks N¢ (line 4).

We next state the following lemma that states - verifying the property (¢,) is equivalent to
verifying the specifications for all the leaves.

Lemma 1. The specifications encoded by the leaf nodes of a specification tree T maintain the following

invariance.
(A\ <on)<=>(¢e¢>
neleaves(T)

We next use the lemma to prove the soundness and completeness of our algorithm. All the proofs
are in Appendix 9.2.

Theorem 2. (Soundness of Verification Algorithm). If Algorithm 5 verifies the property (§, V) for the
network N, then the property must hold.

Theorem 3. (Completeness of Verification Algorithm). If for the network N¢, the property (¢,)
holds then Algorithm 5 always terminates and produces Verified as output.

Scope of IVAN: IVAN utilizes the specification tree to store the trace of the BaB proof. The IVAN
algorithm enhances this tree by reusing and refining it to enable faster BaB proof of updated
networks. Our paper focuses on using IVAN to verify ReLU networks with BaB that implements
ReLU splitting. However, we expect that IVAN’s principles can be extended to networks with other
activation functions (tanh, sigmoid, leaky ReLU) for which BaB has been applied for verification.

4.4 Network Perturbation Bounds

In this section, we formally characterize a class of perturbations on a network N where our proposed
"Reuse" technique attains maximum possible speed-up. Specifically, we focus on modifications
affecting only the last layer which represent many practical network perturbations (e.g, transfer
learning, fine-tuning). The last layer modification assumption is only for our theoretical results in
this section. Our experiments make no such assumption and consider perturbations applied across
the original network.

We leave the derivation of perturbation bounds corresponding to the full IVAN to future work as
it requires theoretically modeling the effect of arbitrary network perturbations on DNN output as
well as complex interactions between "Reuse” and "Reorder” techniques. Given a specification tree
T and network architecture N, we identify a set of neural networks Cr(/N) such that any network
N? € Cr(N) can be verified by reusing T.

We assume the weights are changed by the weight perturbation matrix &.If Ny = ReLU(A;- X +By)
then last layer of N is N/ = ReLU((A; + &) - X + By).

DEFINITION 11 (LAST LAYER PERTURBED NETWORK). Given a network N with architecture N,
the set of last layer perturbed networks is M(N,5) € N, such that if N®* € M(N,J) then (Vi €
[[-1])-Ni = Nf, Ny = ReLU(A; - X + B;), N} = ReLU((A; + &) - X + By) and ||E||r < 6.

We next compute the upper bound of §, for which if the property can be proved/disproved using
specification tree T in N then the same property can be proved/disproved in N using the same
T. Therefore, once we have the proof tree T that verifies the property in N we can reuse T for

Ul - IIF denotes the Frobenius norm of a matrix

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

Incremental Verification of Neural Networks 185:17

Table 1. Models and the perturbation € used for the evaluation for incremental verification.

Model Architecture Dataset #Neurons Training Method €
ACAS-XU Networks 6 X 50 linear layers ACAS-XU 300 Standard [Julian et al. 2019] -
FCN-MNIST 2 X 256 linear layers MNIST 512 Standard 0.02
CONV-MNIST 2 Conv, 2 linear layers ~ MNIST 9508 Certified Robust [Balunovic and Vechev 2020] 0.1
CONV-CIFAR 2 Conv, 2 linear layers CIFAR10 4852 Empirical Robust [Dong et al. 2018] 2—25
CONV-CIFAR-WIDE 2 Conv, 2 linear layers CIFAR10 6244 Certified Robust [Wong and Kolter 2018a] ziss
CONV-CIFAR-DEEP 4 Conv, 2 linear layers CIFAR10 6756 Certified Robust [Wong and Kolter 2018a] %

verifying any perturbed network N* € M(N, §). Assuming the property (¢,) and the analyzer A
are the same for any perturbed network N¢ € M(N, §) the upper bound of § only depends on N
and T.

We next introduce some useful notations that help us explicitly compute the upper bound of §.
Given T let 7 (N;, T) be the over-approximated region computed by the analyzer A that contains
all feasible outputs N; of the i-th layer of the original network. Note # (Nj, T) depends on the ¢ and
analyzer A but we omit them to simplify the notation. Let V-(N, T) denote whether the property
(¢, ¥) can be verifed on network N with T. Proof of Theorem 4 is presented in Section 9.3

— ; T
LB(F (N, T)) = v enfl%g,j) c'Y 9)
V7(N,T) = (LB(¥ (N, T)) > 0) (10)
n(N,T) = yeitax Y1l (11)

|LB(F(N..T))]
Theorem 4. If§ < &N

V(N4 T).

then for any perturbed network N € M(N,) Vq#-(N,T)

The proof of the theorem is in Appendix 9.3.
5 METHODOLOGY

Networks and Properties. We evaluate IVAN on models with various architectures that are trained
with different training methods. Similar to most of the previous literature, we verify Lo,-based local
robustness properties for MNIST and CIFAR10 networks and choose standard e values used for
evaluating complete verifiers. For the verification of global properties in Section 6.4 we use the
standard set of ACAS-XU properties that are part of the VNN-COMP benchmarks [Bak et al. 2021].
Table 1 presents the evaluated models and the choice of € for the local robustness properties.
Network Perturbation. Similar to previous works [Paulsen et al. 2020a; Ugare et al. 2022], we
use quantization to generate perturbed networks. Specifically, we use int8 and int16 post-training
quantizations. The quantization scheme has the form [TFLite 2017]: r = s(q — zp). Here, q is the
quantized value and r is the real value; s which is the scale and zp which is the zero point are the
parameters of quantization. Our experiments use symmetric quantization with zp = 0.

Baseline. We use the following baseline BaB verifiers:

e For proving the local robustness properties, we use LP-based triangle relaxation for bounding
[Bunel et al. 2020b; Ehlers 2017], and we use the estimation based on coefficients of the
zonotopes for choosing the ReLU splitting [Henriksen and Lomuscio 2021].

e For the verification of ACAS-XU global properties, we use RefineZono [Singh et al. 2019c].
RefineZono uses DeepZ [Singh et al. 2018] analyzer with input splitting. This baseline is used
only for experiments in Section 6.4.

Experimental Setup. We use 64 cores of an AMD Ryzen Threadripper CPU with the main memory
of 128 GB running the Linux operating system. The code for our tool is written in Python. We use
the GUROBI [Gurobi Optimization, LLC 2018] solver for our LP-based analyzer.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

185:18 Shubham Ugare, Debangshu Banerjee, Sasa Misailovic, and Gagandeep Singh

Hyperparameters. We use Optuna tuner [Akiba et al. 2019] for tuning the hyperparameters. We
present more details and sensitivity analysis of the hyperparameters in Section 6.3.

6 EXPERIMENTAL EVALUATION

We evaluate the effectiveness of IVAN in verifying the local robustness properties of the quantized
networks. We then analyze how various tool components contribute to the overall result. We further
show the sensitivity of speedup obtained by IVAN to the hyperparameters. We also stress-test
IVAN on large random perturbation to the network. Finally, we evaluate the effectiveness of IVAN
on global property verification with input splitting.

6.1 Effectiveness of IVAN

—— timeout — timeout

(a) FCN-MNIST with INT16 quantization (b) FCN-MNIST with INT8 quantization
Fig. 6. IVAN speedup for the verification of local robustness properties on FCN-MNIST .

Figure 6 presents the speedup obtained by IVAN on FCN-MNIST . The x-axis displays the time
taken by the baseline verifier for the verification in Seconds. The y-axis denotes the speedup
obtained by IVAN over the baseline on a specific verification instance. Each cross in the plot shows
results for a specific verification property. The vertical line denotes the timeout for the experiment
and the dashed line is to separate instances that have a speedup greater than 1x.

We observe that IVAN gets higher speedup on hard instances that take more time for verification
on the baseline. IVAN has a small overhead for storing the specification tree compared to the
baseline. For hard specifications that result in large specification trees, this overhead is insignificant
compared to the improvement in the verification time. Our techniques that reuse and refine the
tree focus on speeding up such hard specifications. However, for specifications that are easy to
prove with small specification trees, we see a slight slowdown in verification time. Since these easy
specifications are verified quickly by both IVAN and the baseline, they are irrelevant in overall
verification time over all the specifications. For instance, the box labeled by c; in Figure 6a contains
all of the 83 cases with low (< 1.2x) speedup on int16 quantized network. Despite low speedup, all
of them take 16.27s to verify with IVAN. Whereas the case labeled by c¢; alone takes 75.54s on the
baseline and 1.73s on IVAN, leading to a 43x speedup — caused by reducing BaB tree size from 345
nodes to 28 nodes on pruning, out of which only 14 leaf nodes are active and lead to analyzer calls.

We observe a similar pattern in the case of the int8 quantized network in Figure 6b. It shows
that the cases confined in box cs3, despite having lower speedup, take relatively less time. The cases
included in box ¢4 in Figure 6b have a much higher impact on the overall verification time. Box c3
includes the majority of the low-speedup 83 cases that take a total of 18.44s time for verification
with IVAN. Whereas for 5 cases in box ¢4 with higher speedups, take 401 analyzer calls with baseline
and 118 analyzer calls with IVAN. Accordingly, solving them takes 130.6s with the baseline and
40.26s with IVAN, leading to a 3.3x speedup.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

Incremental Verification of Neural Networks 185:19

16
— timeout
8 * X ® — timeout .
_23? 4 % 4 x
g " . s o
S, 3
[- 32 x
%X i [(% o’ x
1 e 2Lk i
1 === ECNSCEI G S B K= mm e O -
0
0 2 4 8 16 32 64 128
Time ° 2 4 8 16 32 64 128
Time
(a) CONV-MNIST with INT16 quantization (b) CONV-MNIST with INT8 quantization
8 . 8 .
— timeout — timeout "
4 * x 4
Qo Qo 223 x
> =}
el el
32 e
Q. * Q.
n x X 0 x x
1 # 1 ==-m= I T N £~
° 2 4 8 16 32 64 128 256 512 ° 2 4 8 16 32 64 128 256 512
Time Time
(c) CONV-CIFAR-WIDE with INT16 quant. (d) CONV-CIFAR-WIDE with INT8 quant.

Fig. 7. IVAN speedup for the verification of local robustness properties.

Figure 7 presents speedup for several other networks. IVAN is notably more effective on hard-to-
verify specifications that take more than 10s to verify using the baseline. It achieves 3.1x geomean
speedup on such cases. In many cases, we see more solved cases by IVAN over the baseline. For in-
stance, the box c5 in Figure 7a contains 2 cases that baseline does not solve within the timeout of 100s,
but IVAN solves them in 90.6s and 95.8s each. We show speedup vs. time plots for other networks
(CONV-CIFAR , CONV-CIFAR-DEEP) and more statistics of our evaluation in Appendix 9.1.

6.2 Overall Speedup

We observe no cases when the baseline verifies the property and IVAN exceeds the timeout. We
cannot compute the speedup for the cases where the baseline exceeds the timeout. Therefore, we
compute the overall speedup over the set S that denotes all the cases that are solved by the baseline
within the time limit. 7(c) and rjysn(c) denote the time taken by baseline and IVAN on the case ¢

respectively, then we compute the overall speedup as Sp = %

Table 2 presents the comparison of the contribution of each technique used in IVAN for each
model. Column +Solved in each case displays the number of extra verification problems solved
by the technique in comparison to the baseline. Columns in IVAN[Reuse] present results on only
using the reuse technique. Columns in IVAN[Reorder] show results on using the reorder technique.
Columns in IVAN present the results on using all techniques from Section 4. Column Sp for each
technique demonstrates the overall speedup obtained compared to the baseline. We observe that in
most case combination of all techniques performs better than reuse and reordering. We see that

reorder performs better than reuse except for one case (FCN-MNIST on int8).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

185:20 Shubham Ugare, Debangshu Banerjee, Sasa Misailovic, and Gagandeep Singh

Table 2. Ablation study for overall speedup across all properties for different techniques in IVAN.

Model Approximation | IVAN[Reuse] IVAN[Reorder] IVAN
Sp +Solved | Sp +Solved | Sp +Solved
FCN-MNIST int16 251x 0 271x 0 443x O
int8 1.07x 0 1.64x 0 2.02x 0
CONV-MNIST int16 1.62x 0 2.15x 0 3.09x 2
int8 127x 2 1.34x 3 1.71x 4
CONV-CIFAR int16 1.02x 0 1.57x 2 2.52x 2
int8 1.08x 0 1.53x 0 1.78x 0
CONV-CIFAR-WIDE int16 143x 1 1.51x 0 1.87x 2
int8 0.75x 0 1.62x 1 1.53x 2
CONV-CIFAR-DEEP int16 1.64x 0 229x 0 321x O
int8 1.15x 0 1.13x 1 1.25x 1

6.3 Hyperparameter Sensitivity Analysis

(a) IVAN[Reorder] (b) IVAN

Fig. 8. Speedup for the combination of hyperparameter values on FCN-MNIST with int16 quantization.

Figure 8 plots the heatmap for IVAN speedup on various hyperparameter values. The x-axis
shows the hyperparameter « value and the y-axis shows the 6 value. Each point in the greed is
annotated with the observed Sp on setting the corresponding hyperparameter values. Figure 8a
presents the plot for IVAN with on reorder technique. («, 8) = (0.25,0.01) is the highest speedup
point. Choosing 6 = 0 implies that are not deprioritizing the splitting decisions that did not work
well. In that case, we observe no speedup with reordering, showing the necessity of 6 in our Hp
formulation. Figure 8b presents the same plot for our main algorithm that also reuses the pruned
tree. We observe that the speedup is less sensitive to hyperparameter value changes in this plot.
This is expected since reordering starts from single node T “ and purely relied on Hy formulation
for the speedup. While our main technique also reuses the tree, even when 6 = 0 it can get ~2.5x
speedup.

6.4 Global Properties with Input Splitting

We show that IVAN is effective in speeding up the state-of-the-art verifier RefineZono [Singh
et al. 2019c] when verifying global properties. This baseline employs input splitting based on a
strong branching strategy. Figure 9 presents the speedup achieved by IVAN over this baseline.
Overall, IVAN achieves a 9.5x speedup in the int16 quantization case and a 3.1x speedup in the int8
quantization case. Previous work has observed that ACAS-XU properties take a large number of
splits with most analyzers. For the int16 case, the average value of |T]£V “| with our baseline is 285.4.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

Incremental Verification of Neural Networks

16 - 16 -
timeout timeout
X MK X XK x X X *
. x %R e 4 R s o X:xx M
£3 XX Xx x x x
X X x % * X % % XK x x
S ox x S4 F x 5% wx XX g
ie] S x X x X Xx
8 x x 8 x xX x
x
Qo 25 Q !“} x £33 |
2 X 2 %kx P
n x " n o
o * = r B X2,
1 1 - 5
%
x
x
0 o
0 2 4 8 16 0 2 4 8 16
Time Time

(a) ACAS-XU networks with INT16 quantization

185:21

(b) ACAS-XU networks with INT8 quantization

Fig. 9. IVAN speedup for the verification of global ACAS-XU properties.

The baseline takes a total of 305s time for verifying cases that have large tree |T}V “| > 5.IVAN

verifies those properties in 32s.

6.5 Random Weight Perturbations

In this experiment, we stress-test IVAN for in-

cremental verification by applying uniformran- Table 3. IVAN speedup on uniform random weight per-

dom perturbation on the DNN weights. Here, turbations

we perturbed each weight in the network by Weight perturbation
2%, 5%, and 10%. Even the smallest of these per- Model 2% 5% | 10%
Furbatlons (2%) to each of the Welghts already FON-MNIST Lesx | 157x | 0.87x
induces larger overall changes in the network CONV-MNIST 1.97% | 057% | 0.57x
than those caused by practical methods such as CONV-CIFAR 1.29x | 1.09x | 0.69x
quantization, pruning, and fine-tuning that of- CONV-CIFAR-WIDE | 1.42x | 1.08x | 0.96x
ten non-uniformly affect specific layers of the CONV-CIFAR-DEEP | 1.32x | 1.06x | 1.05x

network. For each network and perturbation,
we run IVAN and the baseline to verify 100 properties and compute the average speedup of IVAN
over the baseline.

Table 3 presents the average speedups obtained by IVAN. Each row shows the IVAN speedup
under various weight perturbations for a particular network. We see that in most cases IVAN
speedup reduces as the perturbations to the weights increase. It is because the specification tree for
the perturbed network is no longer similar to the one for the original network. If IVAN is used in
such cases, it uses suboptimal splits leading to higher verification time.

7 RELATED WORK

Neural Network Verification: Recent works introduced several techniques for verifying properties
of neural networks [Anderson et al. 2019, 2020; Bunel et al. 2020b; Ehlers 2017; Kabaha and Drachsler-
Cohen 2022; Katz et al. 2017b; Laurel et al. 2022; Tjeng et al. 2017; Wang et al. 2018, 2021; Yang
et al. 2022]. For BaB-based complete verification, previous works used distinct strategies for ReLU
splitting. Ehlers [2017] and Katz et al. [2017a] used random ReLU selection for splitting. Wang et al.
[2018] computes scores based on gradient information to rank ambiguous ReLU nodes. Similarly,
Bunel et al. [2020b] compute scores based on a formula based on the estimation equations in [Wong
and Kolter 2018b]. Henriksen and Lomuscio [2021] use coefficients of zonotopes for these scores.
Incremental Neural Network Verification: Fischer et al. [2022] presented the concept of sharing
certificates between specifications. They reuse the proof for L, specification computed with abstract
interpretation-based analyzers based on the notion of proof templates, for faster verification of
patch and geometric perturbations. Ugare et al. [2022] showed that the reusing of proof is possible

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

185:22 Shubham Ugare, Debangshu Banerjee, Sasa Misailovic, and Gagandeep Singh

between networks. It uses a similar concept of network adaptable proof templates. It is limited to
certain properties (patch, geometric, Ly) and works with abstract interpretation-based incomplete
verifiers. Wei and Liu [2021] considers incremental incomplete verification of relatively small
DNNs with last-layer perturbation. All of these works cannot handle incremental and complete
verification of diverse specifications, which is the focus of our work

Differential Neural Network Verification: ReluDiff [Paulsen et al. 2020a] presented the concept
of differential neural network verification. The follow-up work of [Paulsen et al. 2020b] made it
more scalable. ReluDiff can be used for bounding the difference in the output of an original network
and a perturbed network corresponding to an input region. ReluDiff uses input splitting to perform
complete differential verification. Our method is complementary to ReluDiff and can be used to
speed up the complete differential verification with multiple perturbed networks, performing it
incrementally. Cheng and Yan [2020] reuse previous interval analysis results for the verification of
the fully-connected networks where the specifications are only defined over the last linear layer of
an updated network. In contrast, IVAN performs end-to-end verification and operates on a more
general class of networks, specifications, and perturbations.

Warm Starting Mixed Integer Linear Programming (MILP) Solvers: State-of-the-art MILP
solvers such as GUROBI [Gurobi Optimization, LLC 2018] and CPLEX [Cplex 2009] support warm
starting that can accelerate the optimization performance. MILP can warm start based on initial
solutions that are close to the optimal solution. This allows MILP solvers to avoid exploring paths
that do not improve on the provided initial solution and can help the solver to converge faster. The
exact implementation details of these closed-sourced commercial solvers are unavailable. Regardless,
our experiments with MILP warm starting of GUROBI for incremental DNN verification showed
insignificant speedup.

Incremental Program Verification: Incremental verification has improved the scalability of
traditional program verification to an industrial scale [Johnson et al. 2013; Lakhnech et al. 2001;
O’Hearn 2018; Stein et al. 2021]. Incremental program analysis tasks reuse partial results [Yang et al.
2009], constraints [Visser et al. 2012] and precision information [Beyer et al. 2013] from previous
runs for faster analysis of individual commits. Frequently, the changes made by the program are
limited to a small portion of the overall program (and its analysis requires significant attention
to the impact on control flow). whereas DNN updates typically alter the weights of multiple
layers throughout the network (but with no impact on control flow). Therefore, incremental DNN
verification presents a distinct challenge compared to the incremental verification of programs.
Incremental SMT Solvers: Modern SMT solvers such as Z3 [De Moura and Bjerner 2008] and
CVC5 [Barbosa et al. 2022] during constraint solving learn lemmas, which are later reused to solve
similar problems. The incrementality of these solvers is restricted to the addition or deletion of
constraints. They do not consider reuse in cases when the constraints are perturbed as in our case.

8 CONCLUSION

Current complete approaches for DNN verification re-run the verification every time the network
is modified. In this paper, we presented IVAN, the first general, incremental, and complete DNN
verifier. IVAN captures the trace of the BaB-based complete verification through the specification
tree. We evaluated our IVAN on combinations of networks, properties, and updates. IVAN achieves
up to 43x speedup and geometric mean speedup of 2.4x in verifying DNN properties.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their comments. This research was supported in part by NSF
Grants No. CCF-1846354, CCF-1956374, CCF-2008883, CCF-2217144, CCF-2238079, CNS-2148583,
USDA NIFA Grant No. NIFA-2024827 and Qualcomm innovation fellowship.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

Incremental Verification of Neural Networks 185:23

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019. Optuna: A Next-generation
Hyperparameter Optimization Framework. In Proceedings of the 25rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining.

Aws Albarghouthi. 2021. Introduction to Neural Network Verification. verifieddeeplearning.com. arXiv:2109.10317 [cs.LG]
http://verifieddeeplearning.com.

Filippo Amato, Alberto Lopez, Eladia Maria Pefia-Méndez, Petr Vanhara, Ales Hampl, and Josef Havel. 2013. Artificial
neural networks in medical diagnosis. Journal of Applied Biomedicine 11, 2 (2013).

Greg Anderson, Shankara Pailoor, Isil Dillig, and Swarat Chaudhuri. 2019. Optimization and Abstraction: A Synergistic
Approach for Analyzing Neural Network Robustness. In Proc. Programming Language Design and Implementation (PLDI).

Ross Anderson, Joey Huchette, Will Ma, Christian Tjandraatmadja, and Juan Pablo Vielma. 2020. Strong mixed-integer
programming formulations for trained neural networks. Mathematical Programming (2020).

Stanley Bak, Changliu Liu, and Taylor T. Johnson. 2021. The Second International Verification of Neural Networks
Competition (VNN-COMP 2021): Summary and Results. CoRR abs/2109.00498 (2021). arXiv:2109.00498 https://arxiv.org/
abs/2109.00498

Stanley Bak, Hoang-Dung Tran, Kerianne Hobbs, and Taylor T. Johnson. 2020. Improved Geometric Path Enumeration for
Verifying ReLU Neural Networks. In Computer Aided Verification - 32nd International Conference, CAV 2020, Los Angeles,
CA, USA, July 21-24, 2020, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 12224), Shuvendu K. Lahiri and
Chao Wang (Eds.). Springer, 66-96. https://doi.org/10.1007/978-3-030-53288-8_4

Mislav Balunovic and Martin Vechev. 2020. Adversarial Training and Provable Defenses: Bridging the Gap. In International
Conference on Learning Representations. https://openreview.net/forum?id=SJxSDxrKDr

Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed,
Mudathir Mohamed, Aina Niemetz, Andres Notzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng,
Cesare Tinelli, and Yoni Zohar. 2022. cvc5: A Versatile and Industrial-Strength SMT Solver. In Tools and Algorithms
for the Construction and Analysis of Systems - 28th International Conference, TACAS 2022, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part
I (Lecture Notes in Computer Science, Vol. 13243), Dana Fisman and Grigore Rosu (Eds.). Springer, 415-442. https:
//doi.org/10.1007/978-3-030-99524-9_24

Dirk Beyer, Stefan Lowe, Evgeny Novikov, Andreas Stahlbauer, and Philipp Wendler. 2013. Precision Reuse for Efficient
Regression Verification. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering (Saint
Petersburg, Russia) (ESEC/FSE 2013). Association for Computing Machinery, New York, NY, USA, 389-399. https:
//doi.org/10.1145/2491411.2491429

Davis W. Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John V. Guttag. 2020. What is the State of Neural
Network Pruning?. In Proceedings of Machine Learning and Systems 2020, MLSys 2020, Austin, TX, USA, March 2-4, 2020.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D Jackel,
Mathew Monfort, Urs Muller, Jiakai Zhang, et al. 2016. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 (2016).

Rudy Bunel, Jingyue Lu, Ilker Turkaslan, Pushmeet Kohli, P Torr, and P Mudigonda. 2020b. Branch and bound for piecewise
linear neural network verification. Journal of Machine Learning Research 21, 2020 (2020).

Rudy R Bunel, Oliver Hinder, Srinadh Bhojanapalli, and Krishnamurthy Dvijotham. 2020a. An efficient nonconvex reformu-
lation of stagewise convex optimization problems. Advances in Neural Information Processing Systems 33 (2020).

Jiefeng Chen, Yixuan Li, Xi Wu, Yingyu Liang, and Somesh Jha. 2022. Robust Out-of-distribution Detection for Neural
Networks. In AAAI-22 Workshop on Adversarial Machine Learning and Beyond.

Chih-Hong Cheng and Rongjie Yan. 2020. Continuous Safety Verification of Neural Networks. arXiv:2010.05689 [cs.LG]

IBM ILOG Cplex. 2009. V12. 1: User’s Manual for CPLEX. International Business Machines Corporation 46, 53 (2009), 157.

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An Efficient SMT Solver. In Proceedings of the Theory and Practice of
Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,
Hungary) (TACAS’08/ETAPS 08). Springer-Verlag, Berlin, Heidelberg, 337-340.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. 2018. Boosting Adversarial
Attacks With Momentum. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. 2017. Output Range Analysis for Deep Neural

Networks. CoRR abs/1709.09130 (2017). arXiv:1709.09130 http://arxiv.org/abs/1709.09130

Ruediger Ehlers. 2017. Formal verification of piece-wise linear feed-forward neural networks. In International Symposium
on Automated Technology for Verification and Analysis.

Claudio Ferrari, Mark Niklas Mueller, Nikola Jovanovi¢, and Martin Vechev. 2022. Complete Verification via Multi-Neuron
Relaxation Guided Branch-and-Bound. In International Conference on Learning Representations. https://openreview.net/
forum?id=1_amHf1o0aK

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

https://arxiv.org/abs/2109.10317
http://verifieddeeplearning.com
https://arxiv.org/abs/2109.00498
https://arxiv.org/abs/2109.00498
https://arxiv.org/abs/2109.00498
https://doi.org/10.1007/978-3-030-53288-8_4
https://openreview.net/forum?id=SJxSDxrKDr
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1145/2491411.2491429
https://doi.org/10.1145/2491411.2491429
https://arxiv.org/abs/2010.05689
https://arxiv.org/abs/1709.09130
http://arxiv.org/abs/1709.09130
https://openreview.net/forum?id=l_amHf1oaK
https://openreview.net/forum?id=l_amHf1oaK

185:24 Shubham Ugare, Debangshu Banerjee, Sasa Misailovic, and Gagandeep Singh

Marec Fischer, Christian Sprecher, Dimitar I. Dimitrov, Gagandeep Singh, and Martin T. Vechev. 2022. Shared Certificates
for Neural Network Verification. In Computer Aided Verification - 34th International Conference, CAV 2022, Haifa, Israel,
August 7-10, 2022, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 13371), Sharon Shoham and Yakir Vizel
(Eds.). Springer, 127-148. https://doi.org/10.1007/978-3-031-13185-1_7

Aymeric Fromherz, Klas Leino, Matt Fredrikson, Bryan Parno, and Corina Pasareanu. 2021. Fast Geometric Projections for
Local Robustness Certification. In International Conference on Learning Representations. https://openreview.net/forum?
id=zWy1luxjDdZ]

Feisi Fu and Wenchao Li. 2022. Sound and Complete Neural Network Repair with Minimality and Locality Guarantees. In
International Conference on Learning Representations. https://openreview.net/forum?id=xS8AMYiEav3

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin Vechev. 2018. Ai2:
Safety and robustness certification of neural networks with abstract interpretation. In 2018 IEEE Symposium on Security
and Privacy (SP).

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer. 2021. A Survey of Quantization
Methods for Efficient Neural Network Inference. CoRR abs/2103.13630 (2021). arXiv:2103.13630

Tejas Gokhale, Rushil Anirudh, Bhavya Kailkhura, Jayaraman J. Thiagarajan, Chitta Baral, and Yezhou Yang. 2021. Attribute-
Guided Adversarial Training for Robustness to Natural Perturbations. In AAAI AAAI Press, 7574-7582.

Gurobi Optimization, LLC. 2018. Gurobi Optimizer Reference Manual.

Patrick Henriksen and Alessio Lomuscio. 2021. DEEPSPLIT: An Efficient Splitting Method for Neural Network Verification
via Indirect Effect Analysis. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-
21, Zhi-Hua Zhou (Ed.). International Joint Conferences on Artificial Intelligence Organization, 2549-2555. https:
//doi.org/10.24963/ijcai.2021/351 Main Track.

Kenneth Johnson, Radu Calinescu, and Shinji Kikuchi. 2013. An Incremental Verification Framework for Component-
Based Software Systems. In Proceedings of the 16th International ACM Sigsoft Symposium on Component-Based Software
Engineering (Vancouver, British Columbia, Canada) (CBSE °13). Association for Computing Machinery, New York, NY,
USA, 33-42. https://doi.org/10.1145/2465449.2465456

Kyle D. Julian, Mykel J. Kochenderfer, and Michael P. Owen. 2018. Deep Neural Network Compression for Aircraft Collision
Avoidance Systems. CoRR abs/1810.04240 (2018).

Kyle D. Julian, Mykel J. Kochenderfer, and Michael P. Owen. 2019. Deep Neural Network Compression for Aircraft Collision
Avoidance Systems. Journal of Guidance, Control, and Dynamics 42, 3 (mar 2019), 598-608. https://doi.org/10.2514/1.
003724

Anan Kabaha and Dana Drachsler-Cohen. 2022. Boosting Robustness Verification of Semantic Feature Neighborhoods.
https://doi.org/10.48550/ARXIV.2209.05446

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. 2017a. Reluplex: An efficient SMT solver for
verifying deep neural networks. In International Conference on Computer Aided Verification.

Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. 2017b. Reluplex: An Efficient SMT Solver
for Verifying Deep Neural Networks. In Computer Aided Verification - 29th International Conference, CAV 2017, Heidelberg,
Germany, July 24-28, 2017, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 10426). https://doi.org/10.1007/978-
3-319-63387-9_5

Yassine Lakhnech, Saddek Bensalem, Sergey Berezin, and Sam Owre. 2001. Incremental Verification by Abstraction. In Tools
and Algorithms for the Construction and Analysis of Systems: 7th International Conference, TACAS 2001, T. Margaria and
W. Yi (Eds.), Vol. 2031. Springer-Verlag, Genova, Italy, 98-112.

Jacob Laurel, Rem Yang, Atharva Sehgal, Shubham Ugare, and Sasa Misailovic. 2021. Statheros: Compiler for Efficient
Low-Precision Probabilistic Programming. In Design Automation Conference (DAC). 787-792.

Jacob Laurel, Rem Yang, Shubham Ugare, Robert Nagel, Gagandeep Singh, and Sasa Misailovic. 2022. A General Construction
for Abstract Interpretation of Higher-Order Automatic Differentiation. Proc. ACM Program. Lang. 6, OOPSLAZ2, Article
161 (oct 2022), 29 pages. https://doi.org/10.1145/3563324

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. 2017. Towards deep learning
models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017).

Christoph Miiller, Francois Serre, Gagandeep Singh, Markus Piischel, and Martin Vechev. 2021. Scaling Polyhedral Neural
Network Verification on GPUs. Proc. Machine Learning and Systems (MLSys) (2021).

Peter W. O’Hearn. 2018. Continuous Reasoning: Scaling the impact of formal methods. In Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, Anuj Dawar and Erich
Gradel (Eds.). ACM, 13-25. https://doi.org/10.1145/3209108.3209109

Alessandro De Palma, Harkirat S. Behl, Rudy R. Bunel, Philip H. S. Torr, and M. Pawan Kumar. 2021. Scaling the Convex
Barrier with Active Sets. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

https://doi.org/10.1007/978-3-031-13185-1_7
https://openreview.net/forum?id=zWy1uxjDdZJ
https://openreview.net/forum?id=zWy1uxjDdZJ
https://openreview.net/forum?id=xS8AMYiEav3
https://arxiv.org/abs/2103.13630
https://doi.org/10.24963/ijcai.2021/351
https://doi.org/10.24963/ijcai.2021/351
https://doi.org/10.1145/2465449.2465456
https://doi.org/10.2514/1.g003724
https://doi.org/10.2514/1.g003724
https://doi.org/10.48550/ARXIV.2209.05446
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1145/3563324
https://doi.org/10.1145/3209108.3209109

Incremental Verification of Neural Networks 185:25

Brandon Paulsen, Jingbo Wang, and Chao Wang. 2020a. ReluDiff: differential verification of deep neural networks. In
ICSE °20: 42nd International Conference on Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020. https:
//doi.org/10.1145/3377811.3380337

Brandon Paulsen, Jingbo Wang, Jiawei Wang, and Chao Wang. 2020b. NEURODIFF: Scalable Differential Verification of
Neural Networks using Fine-Grained Approximation. In 35th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2020, Melbourne, Australia, September 21-25, 2020. https://doi.org/10.1145/3324884.3416560

Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang. 2019. A Convex Relaxation Barrier to Tight
Robustness Verification of Neural Networks. In Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada.

Gagandeep Singh, Rupanshu Ganvir, Markus Piischel, and Martin Vechev. 2019a. Beyond the single neuron convex barrier
for neural network certification. In Advances in Neural Information Processing Systems.

Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Piischel, and Martin Vechev. 2018. Fast and effective robustness
certification. Advances in Neural Information Processing Systems 31 (2018).

Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev. 2019b. An abstract domain for certifying neural
networks. Proceedings of the ACM on Programming Languages 3, POPL (2019).

Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev. 2019c. Boosting Robustness Certification of Neural
Networks. In International Conference on Learning Representations.

Matthew Sotoudeh and Aditya V. Thakur. 2019. Computing Linear Restrictions of Neural Networks. In Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada.

Benno Stein, Bor-Yuh Evan Chang, and Manu Sridharan. 2021. Demanded abstract interpretation. In PLDI °21: 42nd ACM
SIGPLAN International Conference on Programming Language Design and Implementation, Virtual Event, Canada, June
20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.). ACM, 282-295. https://doi.org/10.1145/3453483.3454044

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus. 2014.
Intriguing properties of neural networks. In 2nd International Conference on Learning Representations, ICLR 2014, Banff,
AB, Canada, April 14-16, 2014, Conference Track Proceedings.

Nima Tajbakhsh, Jae Y Shin, Suryakanth R Gurudu, R Todd Hurst, Christopher B Kendall, Michael B Gotway, and Jianming
Liang. 2016. Convolutional neural networks for medical image analysis: Full training or fine tuning? IEEE transactions
on medical imaging 35, 5 (2016), 1299-1312.

TFLite. 2017. TF Lite post-training quantization. https://www.tensorflow.org/lite/performance/post_training_quantization.

Vincent Tjeng, Kai Xiao, and Russ Tedrake. 2017. Evaluating robustness of neural networks with mixed integer programming.
arXiv preprint arXiv:1711.07356 (2017).

Shubham Ugare, Gagandeep Singh, and Sasa Misailovic. 2022. Proof transfer for fast certification of multiple approximate
neural networks. Proc. ACM Program. Lang. 6, OOPSLA (2022), 1-29. https://doi.org/10.1145/3527319

Caterina Urban and Antoine Miné. 2021. A Review of Formal Methods applied to Machine Learning. https://doi.org/10.
48550/ARXIV.2104.02466

Willem Visser, Jaco Geldenhuys, and Matthew B. Dwyer. 2012. Green: Reducing, Reusing and Recycling Constraints in
Program Analysis. In Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering (Cary, North Carolina) (FSE ’12). Association for Computing Machinery, New York, NY, USA, Article 58,
11 pages. https://doi.org/10.1145/2393596.2393665

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018. Efficient formal safety analysis of neural
networks. In Advances in Neural Information Processing Systems.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter. 2021. Beta-CROWN: Efficient
Bound Propagation with Per-neuron Split Constraints for Complete and Incomplete Neural Network Verification. arXiv
preprint arXiv:2103.06624 (2021).

Tianhao Wei and Changliu Liu. 2021. Online Verification of Deep Neural Networks under Domain or Weight Shift. CoRR
abs/2106.12732 (2021). arXiv:2106.12732 https://arxiv.org/abs/2106.12732

Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. 2016. A survey of transfer learning. Journal of Big data 3, 1 (2016),
1-40.

Eric Wong and Zico Kolter. 2018a. Provable defenses against adversarial examples via the convex outer adversarial polytope.
In International Conference on Machine Learning.

Eric Wong and Zico Kolter. 2018b. Provable Defenses against Adversarial Examples via the Convex Outer Adversarial
Polytope. In Proceedings of the 35th International Conference on Machine Learning.

Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya Kailkhura, Xue Lin, and Cho-Jui
Hsieh. 2020. Automatic Perturbation Analysis for Scalable Certified Robustness and Beyond. (2020).

Guowei Yang, Matthew B. Dwyer, and Gregg Rothermel. 2009. Regression model checking. In 2009 IEEE International
Conference on Software Maintenance. 115-124. https://doi.org/10.1109/ICSM.2009.5306334

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

https://doi.org/10.1145/3377811.3380337
https://doi.org/10.1145/3377811.3380337
https://doi.org/10.1145/3324884.3416560
https://doi.org/10.1145/3453483.3454044
https://doi.org/10.1145/3527319
https://doi.org/10.48550/ARXIV.2104.02466
https://doi.org/10.48550/ARXIV.2104.02466
https://doi.org/10.1145/2393596.2393665
https://arxiv.org/abs/2106.12732
https://arxiv.org/abs/2106.12732
https://doi.org/10.1109/ICSM.2009.5306334

185:26 Shubham Ugare, Debangshu Banerjee, Sasa Misailovic, and Gagandeep Singh

Rem Yang, Jacob Laurel, Sasa Misailovic, and Gagandeep Singh. 2022. Provable Defense Against Geometric Transformations.
arXiv:2207.11177 [cs.LG]

Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter. 2022. General Cutting Planes
for Bound-Propagation-Based Neural Network Verification. In Advances in Neural Information Processing Systems, Alice H.
Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (Eds.). https://openreview.net/forum?id=5haAJAcofjc

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. 2018. Efficient neural network robustness
certification with general activation functions. In Advances in neural information processing systems.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

https://arxiv.org/abs/2207.11177
https://openreview.net/forum?id=5haAJAcofjc

Incremental Verification of Neural Networks 185:27

9 APPENDIX

9.1 Evaluation Results

8 - 4 -
— timeout —— timeout
4 X
o q a2
> =]
el el
D, @
(0] (9}
) . @ i
1 == A X = oo oo -
1 === ffwon
0 0 2 4 8 16 32 64 128 256 512 0 0 2 4 8 16 32 64 128 256 512
Time Time
(a) CONV-CIFAR with INT16 quantization (b) CONV-CIFAR with INT8 quantization
16 x 8
— timeout — timeout
8 x
4
Q. Q.
S 4 x =] x *
el ©
] x 02
Q x (9]
Q. Q. x
n 2 N x 0 * N
, . T s A N N I L 1 S 3 MR X000 36 =K== = === === o 2
0 0 2 4 8 16 32 64 128 256 512 0 0 2 4 8 16 32 64 128 256 512
Time Time
(c) CONV-CIFAR-DEEP with INT16 quanti- (d) CONV-CIFAR-DEEP with INT8 quantiza-
zation tion

Fig. 10. IVAN speedup for the verification of locus robustness properties.

We give more detailed statistics on our experiments in Table 4. We separate the results into two
cases easy instances (IT;V | < 5) and hard instances (IT}V | > 5). IVAN focuses on hard instances,
thus we observe more speedup in those cases. Column v/c/u shows the number of instances that
are Verified, Counterexample, and Unknown respectively. Columns Costpase and Costpyan present the
average number of analyzer calls made by baseline and IVAN respectively. Columns Solvedy,s. and
Solvedyysn show the number of instances solved by the baseline and IVAN respectively. Columns
Timepgse and Timeryan give the time taken for verification by the baseline and IVAN respectively.

\T}’\gs \T}’\>5
Model Perturbation | Cases v/c/u vie/u Costyese Costiyay | Solvedpase Solvednan Timepase Timenpn | Solvedpy, —Solvednan Timepese Timepay
FCN-MNIST int16 100 85/13/2 85/13/2 | 7.53 1.94 86 86 19.06 18.06 12 12 16039 2281
int8 100 85/13/2 85/13/2 | 7.24 4.04 86 86 20.73 20.14 12 12 17487 79.84
CONV-MNIST int16 9% 74/8/14 76/8/12 | 8.64 374 72 72 123.22 11351 10 12 7794 298.91
ints 9% 71/8/17 75/8/13 | 8.95 371 70 70 11059 104.65 9 13 71335 284.01
CONV-CIFAR int16 56 33/8/15 35/8/13 | 30.16 7.12 40 40 44.07 42.85 1 3 105429 30036
int16 56 33/8/15 33/8/15 | 5.63 3.07 40 40 41.77 46.09 1 1 16428 73.61
CONV-CIFAR-WIDE int8 73 29/32/12 31/32/10 | 11.16 3.44 56 56 131.14 127.89 5 7 1002.33 272.6
int16 73 30/32/11 32/32/9 17.56 11.19 56 56 123.08 123.98 6 8 1168.83 829.82
CONV-CIFAR-DEEP int16 59 27/23/9 27/23/9 6.32 176 45 45 152.37 131.44 5 5 557.32 90.24
int8 59 25/23/11 26/23/10 | 9.04 4.47 45 45 151.32 137.61 3 4 812.87 396.85

Table 4. Summary of statistics on verifying all models with baseline and IVAN

We observe that IVAN significantly improves the verifier’s performance for verification of
specifications that need specification trees of size greater than 5. These proofs contribute to a
substantial portion of overall time, and thus IVAN offers a large overall speedup. We observe that

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

185:28 Shubham Ugare, Debangshu Banerjee, Sasa Misailovic, and Gagandeep Singh

IVAN offers insignificant improvement in the verification time for cases with a small specification
tree TJ{‘] . These cases are verified by the baseline in less time. There is not too much our techniques
such as reordering and pruning and can do for the already compact trees.

9.2 Proofs for Theorems
Theorem 1. (Timep for incremental verification). If the incremenatl verifier Vo halts with the final

a a a a - Na a
tree T}V , then TimeA(TON ,T}V) = (ta +ty) - (|Nodes(T;V)|+ W) —ty- |Leaves(T}V)|

Proor. The incremental verifier starts by bounding Leaves(T," “) to check the property, and if
needed, it recursively branches the nodes further.

Consequently, the verifier performs the bounding step for Leaves(T;¥ “) and all the new nodes in
T}‘] “ added to T(f\’ “

It performs the branching step for all newly added internal nodes in the specification tree. The
number of new internal nodes can be computed as (|Nodes(TJ£Va)| - |Leaves(T}Vu)| - |Nodes(T0Na)| +
|Leaves(T0Na)|)

Accordingly, we can compute:

Timen(T)", T3") = ta - (|Nodes(TN")| - |Nodes(T;"")| + |Leaves(Ty")
+iy- (|Nodes(r;v“)| - |Leaves(TJ£‘]a)| — |Nodes(TN")| + |Leaves(TN")|)
= (ta +1tg) - odes 9 - odes ¢ + |Leaves ¢ — ty - |Leaves ‘
(ta+ tr) - (|Nodes(TYN")| = [Nodes(Ty"")| + |Leaves(Ty\ ")) = ta - [Leaves(TN")|

]

Lemma 1. The specifications encoded by the leaf nodes of a specification tree T maintain the following
invariance.

(A\ qon)<=><¢—>¢>
neleaves(T)

Proor. We prove this claim using structural induction on the specification tree.
It is trivially true for the specification tree of a single node. Since ¢, = ¢ — ¥, we can conclude
q)nmoz — ¢ - ¢
For the inductive step, we assume that for a tree T; with i splits, the hypothesis is true. If we split
node ng € Leaves(T;), we get a tree T;4; with leaf nodes n} and n;.

/\ (pn) = (p >) (Induction hypothesis)
neleaves(T;)
G”n) A, = (9 = V)
neleaves(T;) /ns
(pn) A Qut N n; &= (9 = ¢) (From equation 2)
neLeaves(T;) /ng
/\ (pn) = (p > ¥) (Combining previous equations)
neLeaves(Ti1)

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

Incremental Verification of Neural Networks 185:29

Hence, the invariance is true for the specification tree T;;; as well. This completes our induction,
and hence, our hypothesis is proved. O

Lemma 2. (Termination). Algorithm 5 always terminates.

Proor. At each specification tree node, we split a ReLU r € R that was not split before. Since
|R| is finite, the specification tree cannot have depth > |R|. Thus, Algorithm 3 always terminates.
O

Theorem 2. (Soundness of Verification Algorithm). If Algorithm 5 verifies the property (¢,) for the
network N, then the property must hold.

Proor. Let Tx be the set of specification trees over the architecture N, such that N, N* ¢ N
By construction T}V € Tn. Algorithm 5 prunes TJ{V to get the tree TN". We see that TN € Ty since
our deletion operation preserves the specification tree property of the tree.

Further branching from T,V “ leads to the final tree T}V “ during the incremental verification. The
branching step performs the multiple Split operations, and therefore T}" ‘e Tn.

Algorithm 3 removes a node from the active list only when it is verified. (Line 2) and A is a sound
analyzer for the bounding step for verifying each node (Definition 5).

Thus, if Algorithm 5 returns Verified then for each leaf node n € Leaves(T), ¢, holds.

Since T}V “ € Tn, we can use the Lemma 1 and conclude that the property (¢, 1) must hold. O

Theorem 3. (Completeness of Verification Algorithm). If for the network N°, the property (¢,)
holds then Algorithm 5 always terminates and produces Verified as output.

Proor. The proof of termination is in Lemma 2. We prove the claim, (¢, 1) holds then the
Algorithm 5 returns Verified through contradiction. Suppose Algorithm 5 does not return Verified.
Since the algorithm always terminates, it must terminate with a Counterexample.

From Lemma 1 we know that (¢ —) = ¢, This can be transformed to ¢, = —(¢ — ¥)
Thus, if our algorithm returns a Counterexample for a specification tree node n that implies —¢,
holds for some node n.

Hence, this statement implies =(¢ — ¥)

This contradicts the assumption of this theorem. Hence, Algorithm 5 must return Verified. O

9.3 Proofs for Network Perturbation Bounds
Theorem 4. If§ < W then for any perturbed network N* € M(N,d) V&(N,T)
V(N4 T).

Proor. We first show that if § < W then -V#(N,T) = V@ (N4T). The specifica-

tion tree T could not verify the property on N then 3Y € F(Nj, T) such that CTY = LB(F (N, T)) <
0. We show that the same specification tree (T) can not prove the property on any N € M(N,)
by showing that LB(N{, T) < 0. In the following part of proof we show that 3Y" € # (N, T) such
that CTY’ < 0 which makes LB(F (N% T)) < 0.

cTy =cTy+cT(y’' -v)
<CTY +[Cll2ll (Y = V)]l
<CTy+|Cl,-6- n(N;, T) (Using Lemma 3)
< LB(F(N;,T)) + |LB(F (N, T))| <0 given LB(F(N,,T)) <0

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

185:30 Shubham Ugare, Debangshu Banerjee, Sasa Misailovic, and Gagandeep Singh

We now show that § < %—Ig\ﬁ);l then Vo-(N,T) = V7#(N% T). We prove this by contradiction.

Suppose LB(N},T) < 0 then 3Y” € F (N}, T) such that CTY’ < 0. Swapping N with N¢ in lemma 3
we can show Y € (N, T) such that ||Y — Y'||2 < & - n(N%T). Given perturbation is done only
at the final layer Vi € [l — 1] N; = N which implies n(N,T) = n(N%T). AsY € F(N;,T) then
CTy > LB(F (N, T)).
CTy =cTy+cT(y' -v)

> CTY —[IClM(Y = V)2

>CTY —||C|lz- 8- 7(N,T) (Using Lemma 3)

> LB(F (N, T)) - |ILB(F (N, T))| > 0 given LB(F(N,,T)) > 0

The above derivation shows that CTY” > 0 which contradicts the assumptions that CTY’ < 0 and
LB(F(N%T)) < 0. o

Theorem 5. The incremental verification time on any perturbed network N® € M(N,5) with

< W%T);l ista - |Leaves(T)| provided TONa =T and V&-(N,T) = True.

Proor. This result directly follows from Theorem 4. As V-(N, T) = True, the proposed algorithm
will terminate within Leaves(T) number of bounding steps. O

[LB(T (N, 7)) ”
n(N,T)

For any network N¢ € M(N,d) with § < % the baseline verifier can only verify the

property with T}V . (using results from Theorem 4). Therefore, the baseline verifier makes at least

LB(N,T) = min
TeT

|N0des(T}V)| number of analyzer calls before terminating. While for any perturbed network N¢ the
incremental verifier always terminates within |Leaves(TY)| analyzer calls. (Theorem 5) Assuming

all bounding steps take the same time then the speed up achieved by the incremental verifier
|Nodes(TJ£‘T)|
|Leaves(T;\’)\
baseline and incremental verifier such that Ty an = Tpasetine = T-

over the baseline is . Note we assume the same branching heuristic is used by both the

Theorem 6. For any perturbed network N* € M(N, §) with § < |Lf|3|(cl\ﬂ,2T)| the incremental verifier

. a . |Nodes(TN) |
with TN = T}V always achives speed up ofm

True and the branching heuristic H is unchanged.

over the baseline verifier provided Vq-(N, TJ{V) =

N
|LB(N,T)| ILB(F(N.T;"))]
PROOF. As == < 1CTn(N.TN.I-1)

number of bounding steps for any N¢ € M(N, §). (Using Theorem 5). Apart from T}ﬁ\’ all specifi-
cation trees T € T were unsuccessful in verifying the property for N. As shown in the following
derivation all specification trees apart from TfN will fail to prove the property for any network
N% e M(N,9).

the proposed algorithm always terminate within |Leaves(T}V)|

VT € T(T < T}V) = =V#(N,T)
= -V7#(N%T) [Using Theorem 4]

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

Incremental Verification of Neural Networks 185:31

In this part, we briefly explain how the analyzers handle non-linear activation functions like
ReLU unit while verifying neural networks. This is helpful in understanding the following proofs.
Let x = ReLU(X) represents a relu unit with input % and output x. As described in Section 3.2
we cannot linearize ambiguous ReLU units where [b(%) < 0 < ub(X). Therefore, the analyzer
over-approximates the output of ambiguous ReLU unit using convex relaxation. sec:proofs2 convex

Al

=

l u l u I

(a) Box relaxation (b) Qudrilateral relaxation (c) Triangle relaxation

Fig. 11. Different convex relaxations of ambiguous ReLU units. The dark line represents the actual output of
the ReLU unit and the shaded regions represent the over-approximated convex relaxations of the output.

relaxations for ambiguous ReLUs shown in Fig. 11, the box relaxation is easiest to compute but
is imprecise. On the other hand, triangle relaxation is the most precise but complicated, while
quadrilateral relaxation achieves a middle ground between them. For all theoretical derivation
presented below, we assume that the analyzer uses quadrilateral relaxation because it is more precise
than box relaxation and simpler than triangle relaxation. Let Aj; ..u (%) denotes over-approximated

convex region of ReLU(x). For any ambiguous ReLU unit, x = ReLU(X) the ALLU(J?) under
quadrilateral relaxation is defined by the following constraints.
x>0 x>x ub(x) > x (13)

Lemma 3. Let N and N¢ be two [-layer networks with the same architecture and weight perturbation
made only at the last layer . If || E||r < & thenVY € F (N, T),3Y’ € F (N T) suchthat||Y-Y’||; <
§-n(N,T).

Proor. Let Y[j] denotes the j-th coordinate of Y and A[j] and &[] represent the j-th row of
A and & respectively. Y € (N, T) then 3X € F(N(-1), T) such that Y = A/ X + B; and (V)),
Y[j] € Aﬁew(f/[j]). As first [— 1 layers of both N and N are same then X € ¥ (N> ,T). Let
Y’ = (A; + &)X + B;. We first show that (¥}), |[Y[j] = Y’[j]]| < IE[j]Il2 - n(N, T).

Y [j1 - Y[l = e[j1x]
< 18z - 11Xl
< 8Lz - n(N,T)

In the following part of the proof we show how to constuct Y’[;] such that |Y'[j] — Y[j]| <
IEj1ll2-n(N, T) while ensuring that Y’[j] € A%, ,(Y’[j]). In this case A%, ,(Y’[}]) is the convex
region defined by constraints presented in Eq. 13.
OCasel:Y’[j]ZE) R
— Case 1.a ub(Y'[j]) 2 Y[j] = Y'[j])
In this case Y’ [j] = Y[] satisfies the constraints defined in Eq. 13. Therefore, Y'[j] = Y[j] €
Ay (V' TID-

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

185:32 Shubham Ugare, Debangshu Banerjee, Sasa Misailovic, and Gagandeep Singh

- Case 1.b Y'[j] > Y[j])))
Y € F(N,,T) then Y[j] € AﬁeLU(Y[j]) and Y[j] > Y[j]. We show below for Y'[j] = Y'[j] €
At o (YLD and [Y[5] = Y'[j1] < lI8L)]1l2 - n(N, T)
[Y[j1 = Y'[j]l = Y[j] - Y'[j]| (for Case 1.b we define Y'[j] = Y[}])
<IY[j1=Y'[J1l (given Y'[j] > Y[j] = Y[j])
< &Lz - n(N,T)
- Case L.c Y[j] > ub(Y'[j]))
For this case we define Y’[j] = ub(Y’[j]). We show below that |Y[j] = Y'[j]| < lIE[j]]l2 -
n(N,T).
[Y[i1 = Y'[j]] = [Y[j] —ub(Y’[j])] (for Case 1.c we define Y [j] = ub(Y"[j]))

< [ub(Y[j]) - ub(Y'[i])| (given ub(Y[j]) = Y[j] > ub(Y"[j]))
< €Lz - n(N, T)
e Case 2: Y'[j] <0
— Case 2.aub(Y’'[j]) 2 Y[j] =0
Similar to case 1.a weAdeﬁne Y'[j] =Y[j].
— Case 2b. Y[j] > ub(Y'[j]) R
For this case we define Y'[j] = max(0,ub(Y’[j])). The proof |Y[j]-Y"[j1| < [IE[j]ll2-n(N, T)
is same as case 1.c.

In all the previous cases we assumed j-th ReLU unit of the final layer is not splitted. Otherwise
for Y[j] either 0 or Y[j] = Y[j]. Similarly Y'[] either 0 or Y’[j] = Y’[j]. In all of these cases
[Y[j1 = Y'[jII < 18]]Iz - n(N, T) as we already proved |Y[j] = Y’[IIIE[j]ll2 - n(N, T) All these
cases we have shown that (Vj) |Y[j] = Y'[j]| < [|E[i]llz - n(N,T) with Y’ € F(N4T)

ni+1

Iy = Y/lI5 = > YL - Y[/
Jj=1

ni+1

IY = Y'II5 < (N, T)?-)" 81
j=1

IY =Yl <8 n(N,T)

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.

	Abstract
	1 Introduction
	2 Overview
	2.1 Illustrative Example
	2.2 IVAN Algorithm

	3 Preliminaries
	3.1 Neural Network Verification
	3.2 Branch and Bound for Verification

	4 Incremental Verification
	4.1 Specification Tree for BaB
	4.2 Incremental Verification: Problem Formulation
	4.3 IVAN Algorithm for Incremental Verification
	4.4 Network Perturbation Bounds

	5 Methodology
	6 Experimental Evaluation
	6.1 Effectiveness of IVAN
	6.2 Overall Speedup
	6.3 Hyperparameter Sensitivity Analysis
	6.4 Global Properties with Input Splitting
	6.5 Random Weight Perturbations

	7 Related Work
	8 Conclusion
	References
	9 Appendix
	9.1 Evaluation Results
	9.2 Proofs for Theorems
	9.3 Proofs for Network Perturbation Bounds

