Synthesizing Precise Static Analyzers for Automatic
Differentiation

JACOB LAUREL, University of Illinois at Urbana-Champaign, USA

SIYUAN BRANT QIAN, University of Illinois at Urbana-Champaign, USA and Zhejiang University, China
GAGANDEEP SINGH, University of Illinois at Urbana-Champaign and VMware Research, USA

SASA MISAILOVIC, University of Illinois at Urbana-Champaign, USA

We present Pasado, a technique for synthesizing precise static analyzers for Automatic Differentiation. Our
technique allows one to automatically construct a static analyzer specialized for the Chain Rule, Product Rule,
and Quotient Rule computations for Automatic Differentiation in a way that abstracts all of the nonlinear
operations of each respective rule simultaneously. By directly synthesizing an abstract transformer for the
composite expressions of these 3 most common rules of AD, we are able to obtain significant precision
improvement compared to prior works which compose standard abstract transformers together suboptimally.
We prove our synthesized static analyzers sound and additionally demonstrate the generality of our approach
by instantiating these AD static analyzers with different nonlinear functions, different abstract domains (both
intervals and zonotopes) and both forward-mode and reverse-mode AD.

We evaluate Pasado on multiple case studies, namely computing certified bounds on a neural network’s local
Lipschitz constant, soundly bounding the sensitivities of financial models, certifying monotonicity, and lastly,
bounding sensitivities of the solutions of differential equations from climate science and chemistry for verified
ranges of initial conditions and parameters. The local Lipschitz constants computed by Pasado on our largest
CNN are up to 2750X more precise compared to the existing state-of-the-art zonotope analysis. Additionally,
the bounds obtained on the sensitivities of the climate, chemical, and financial differential equation solutions
are between 1.31 — 2.81X more precise (on average) compared to a state-of-the-art zonotope analysis.

CCS Concepts: « Mathematics of computing — Differential calculus; Automatic differentiation; «
Theory of computation — Program analysis; Abstraction.

Additional Key Words and Phrases: Differentiable Programming, Abstract Interpretation

ACM Reference Format:

Jacob Laurel, Siyuan Brant Qian, Gagandeep Singh, and Sasa Misailovic. 2023. Synthesizing Precise Static
Analyzers for Automatic Differentiation. Proc. ACM Program. Lang. 7, OOPSLA2, Article 291 (October 2023),
29 pages. https://doi.org/10.1145/3622867

1 INTRODUCTION

Automatic Differentiation (AD) has served as the backbone for many applications across Computer
Science. Indeed, AD has driven much of the modern deep learning revolution since derivative com-
putations are essential both for training Deep Neural Networks (DNNs) and ensuring trustworthy
Machine Learning (ML). In particular, guarantees on derivatives are necessary for establishing

Authors’ addresses: Jacob Laurel, jlaurel2@illinois.edu, University of Illinois at Urbana-Champaign, USA; Siyuan Brant
Qian, siyuanq4@illinois.edu, University of Illinois at Urbana-Champaign, USA and Zhejiang University, China; Gagandeep
Singh, ggnds@illinois.edu, University of Illinois at Urbana-Champaign and VMware Research, USA; Sasa Misailovic,
misailo@illinois.edu, University of Illinois at Urbana-Champaign, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2475-1421/2023/10-ART291

https://doi.org/10.1145/3622867

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

HTTPS://ORCID.ORG/0000-0002-4065-4063
HTTPS://ORCID.ORG/0009-0007-9574-8423
HTTPS://ORCID.ORG/0000-0002-9299-2961
HTTPS://ORCID.ORG/0000-0001-7319-8845
https://doi.org/10.1145/3622867
https://orcid.org/0000-0002-4065-4063
https://orcid.org/0009-0007-9574-8423
https://orcid.org/0009-0007-9574-8423
https://orcid.org/0000-0002-9299-2961
https://orcid.org/0000-0002-9299-2961
https://orcid.org/0000-0001-7319-8845
https://doi.org/10.1145/3622867

291:2 Jacob Laurel, Siyuan Brant Qian, Gagandeep Singh, Sasa Misailovic

many important properties in ML systems, e.g., certifying Lipschitz bounds of DNNs [Jordan and
Dimakis 2020], demonstrating privacy of DNNs [Rosenberg et al. 2023], proving fairness [Gupta
et al. 2021] or providing explanations of how DNNs make their decisions [Lerman et al. 2021]. AD is
also used extensively in scientific computing for tasks as diverse as climate modeling [Mametjanov
et al. 2012], analyzing differential equations [Bendtsen and Stauning 1996; Ma et al. 2021] and
sensitivity analysis [Hovland et al. 2005]. Formalizations of derivatives computed using AD and
their properties also have widespread use in Graphics [Bangaru et al. 2021; Yang et al. 2022].

Given the importance of formalizing properties over derivatives, formal verification techniques
have recently been applied to AD [Hiickelheim and Hascoét 2022; Hiickelheim et al. 2018; Jordan
and Dimakis 2021; Laurel et al. 2022a]. In particular, abstract interpretation [Cousot and Cousot
1977] has been used to statically analyze AD code [Jordan and Dimakis 2021; Laurel et al. 2022a;
Vassiliadis et al. 2016] to ensure guaranteed bounds on derivatives.

Existing Abstract Interpretation work focuses primarily on developing precise abstract trans-
formers for linear operations and assignments [Cousot and Halbwachs 1978; Singh et al. 2017].
However, AD computations are highly non-linear. Compared to just the original program (called the
primal), the derivative program AD computes (called the adjoint) can have 2-5X more non-linear
operations [Griewank and Walther 2008], e.g., for the most common operations:

e Every composition with a non-linear function in the primal requires a separate composition with
that function’s derivative in the adjoint and an additional multiplication, due to the chain rule.

o A single multiplication in the primal leads to 2 separate multiplications in the adjoint due to the
product rule.

o A single division in the primal leads to 4 nonlinear operations in the adjoint due to quotient rule.

While one could reduce these groups of nonlinear operations to a series of basic (nonlinear) primi-
tives, and then compose the corresponding primitives’ abstract transformers, this construction loses
precision. Even leveraging variable sharing in AD programs to reduce the number of applications
of those basic abstract transformers, as in Laurel et al. [2022b] still loses precision as our evaluation
will show. While one could try to design custom abstract transformers for groups of nonlinear
operations, as in Singh et al. [2019a], this idea requires significant human expertise to handcraft
the transformers and must be redone for each different function (e.g. tanh(x), o(x)) [Fryazinov
et al. 2010] and for each different abstract domain. Hence to date, there exists no general recipe for
constructing AD static analyzers which can precisely abstract multiple non-linear operations for
different functions, support multiple abstract domains and support both modes of AD.

Challenges. We focus on developing a general technique to synthesize precise static analyzers
tailored to the needs and structure of AD. By abstracting multiple nonlinear computations all at once
instead of suboptimally composing abstractions of each primitive operation, we seek to significantly
improve the precision of the abstract interpretation of AD. Lastly, we seek to remove the burden
on the abstraction designer from having to design transformers for each function and each abstract
domain and each mode of AD. However, this approach must overcome two major challenges:

(1) Determine the right granularity for the abstraction. While grouping more operations together
for the abstraction improves precision, the difficulty in synthesizing abstract transformers scales
with the number of operations due to the need to solve multivariate optimization problems.
Hence we must identify patterns to abstract that strike a balance between scalability and preci-
sion. The composite abstraction of a group of AD operations should be general enough to yield
efficient and precise static analyzers for (1) multiple different functions (e.g. o(x), exp(x), Vx)
and (2) be instantiated with different abstract domains (e.g. interval, zonotope [Ghorbal et al.
2009], DeepPoly [Singh et al. 2019b]). Finally, we want to make sure the AD patterns we abstract
are general enough to support both forward-mode and reverse-mode AD.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

Synthesizing Precise Static Analyzers for Automatic Differentiation 291:3

(2) Prove the synthesis procedure obtains sound abstract transformers for different functions and
abstract domains. To synthesize an abstract transformer for a group of nonlinear operations
over multiple variables, one must first solve a multi-dimensional, non-convex optimization
problem to obtain soundness guarantees. However, we also want the proof techniques used to
prove soundness to be general so that we can easily apply them to different nonlinear functions
as well as have these proof technique support different abstract domains.

Our Work. To address these challenges, we propose Pasado. The main idea of Pasado is to
soundly synthesize precise linear abstract transformers that are tailored to the Chain rule, Product
Rule and Quotient Rule expressions of AD. Given their ubiquity in AD programs, we have identified
that these patterns strike a desirable balance between efficiency, precision and tractability of the
synthesized transformers. Pasado synthesizes sound abstract transformers for these composite,
multivariate, nonlinear AD expressions directly instead of naively composing standard abstractions
for each primitive nonlinear operation together. Additionally, Pasado supports both forward- and
reverse-mode AD. Pasado’s procedure is automated, hence one need not design hand-crafted
abstract transformers as in Singh et al. [2018] and Du et al. [2021]. Furthermore, Pasado is general
enough to support different function primitives and different abstract domains so that this idea can
be fully leveraged to synthesize general static analyzers for differentiable programming languages.
Lastly, Pasado is tractable, scalable and efficient enough to analyze large computations such as
automatically differentiating through Convolutional Neural Networks (CNNs).

Pasado synthesizes these abstract transformers using a multi-step procedure. We first use linear
regression to fit a hyperplane to the pattern we are trying to abstractly interpret. This step involves
sub-sampling the AD expression at concrete points in a given input interval and using those
evaluations for the linear regression. These input bounds may come from variables in the primal,
hence Pasado simultaneously uses existing abstract interpretation methods to obtain bounds on the
primal. Additionally, because the hyperplane is only a linear approximation it is unsound, hence we
must also account for the deviation between this hyperplane and the original function to maintain
soundness. Thus we solve for the maximum deviation between this hyperplane and the original
AD expression we are abstracting and use this deviation to obtain sound linear bounds enclosing
the hyperplane. A core part of our contribution is the mathematical proof of an efficient solution
to this maximization problem. Specifically, we show how to provably rule out virtually all critical
points, effectively reducing this optimization problem to examining boundary points.

We evaluate Pasado on multiple Case Studies including (1) robust sensitivity analysis of ODE
solutions for both Neural ODEs and climate models, (2) provable bounds on sensitivities of financial
models, (3) local Lipschitz robustness certification and (4) monotonicity certification. Due to
Pasado’s precision and scalability, the bounds obtained on the sensitivities of the climate, chemical,
and financial differential equation solutions are between 1.31 — 2.81X more precise (on average)
compared to a state-of-the-art zonotope AD analysis and on our largest CNN, the local Lipschitz
constants computed by Pasado are up to 2750X more precise compared to the existing state-of-the-
art zonotope AD analysis from Laurel et al. [2022b].

Contributions. In summary, this paper makes the following contributions:

(1) Approach. We present Pasado, a general formalism for synthesizing precise static analyzers
for composite AD expressions. Due to Pasado’s generality, this approach can be instantiated
for a broad class of functions with both forward and reverse mode AD and with different
abstract domains. (Sections 4.1-4.3)

(2) Guarantees. We formally prove the soundness of the abstract transformers synthesized by
Pasado (Section 4.4) and theorems about their precision and generality (Sections 4.5-4.6).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

291:4 Jacob Laurel, Siyuan Brant Qian, Gagandeep Singh, Sasa Misailovic

(3) Implementation. We implement Pasado as a practical tool and instantiate it with both
forward- and reverse-mode AD, as well as both the interval and zonotope domains and their
reduced product. (Section 5.1). Pasado is available at https://github.com/uiuc-arc/Pasado.

(4) Evaluation. We experimentally show the benefit of Pasado on Lipschitz certification, mono-
tonicity analysis and differential equation models from chemistry, finance, and climate
science, and derive polyhedral bounds on sensitivities of these ODE solutions for the first
time. (Sections 5.2-5.5)

2 EXAMPLE

We next proceed with a simple example illustrating our technique.

Running Example. A key application of static analysis of Automatic Differentiation that we
target in this work is for robust sensitivity analysis of ordinary differential equation (ODE) solvers.
We note that we are the first to consider such a static analysis. Our running example consists of
automatically differentiating through the ODE solver (as in Ma et al. [2021]) for a simple ODE. Our
ODE is a popular energy balance model used in climate science [Kaper and Engler 2013], where the
global temperature T is a function of time ¢ and Q, R, @, e are the global insolation, heat capacity,
albedo and (scaled) emissivity parameters respectively. This ODE is given as:

dT_ Q-(1-a)—e-T*

i R (1)

The program that we will statically analyze solves this ODE numerically, thus obtaining a
sequence [Ty, ..., Ty of temperatures for m time steps. To solve the ODE numerically, we will need
the system dynamics function (RHS of Eq. 1) which as can be seen, is described by the function

4
f(T,t,Q,a,e,R) = M' The program for a simple Euler ODE solver applied to Eq. 1, which
we will denote as ODESolvery is given below:

1| function ODESolver(Q,a, e, R, fo, To, step_size, steps) :

2 for (i=1; i < steps; i++) {

3 T; Ti-1 + f(Ti-1,ti-1,Q, @, e,R) - step_size // Euler integrator
4 t; ti_1 + step_size }

5 return T,t

Thus by solving the ODE numerically (instead of symbolically) we can automatically differentiate
through the numerical ODE solver itself, to get the derivative of the numerical solver’s output with
respect to the initial condition inputs, in this case Tp.

Applying AD to ODESolve is possible because ODESolve is itself a differentiable program since
it performs only differentiable operations, which are just addition, multiplication (by the step size),
as well as the multiplications, division, subtraction, and the (4”1) power function found inside of
the dynamics f. Automatically differentiating through ODESolve will allow us to better understand

how sensitive the numerical solution of ODEs are to different initial conditions or parameters (e.g.

. . . B0DESo1 .a.e.R to,Ty.step_sizest
different values of e or R). Hence we will ultimately compute olver Qe a]% bstep sizesteps)

Abstract Sensitivity Analysis. However, our goal is to not just automatically differentiate
through ODESolve to perform the sensitivity analysis at individual points (as done in Ma et al.
[2021]), rather our goal is to abstractly compute these sensitivities for an entire range of initial
conditions. Furthermore, since the physical parameters of this climate ODE can vary (e.g. e has
dependence on the weather), we want this sensitivity analysis to capture an entire range of feasible

parameter values. This abstract sensitivity analysis is performed by abstractly interpreting AD
JO0DESolver(Q.,a.e,R.t,To,step_size,steps) .
o or

applied to the ODE solver. Hence we abstractly compute

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

https://github.com/uiuc-arc/Pasado

Synthesizing Precise Static Analyzers for Automatic Differentiation 291:5

1|T[0].real, T[0].dual = ... // These values are passed in as inputs

2| e.real, e.dual =

3|R.real, R.dual = ...

4| step_size = ... // always treated as fixed scalar constant

5|Q, alpha = ... // treated as fixed scalar constants for this example

6 |C = Q«(1-alpha) // constant propagation for Q and alpha (both are constants)
7

8 |il.real FourthPower (T[0].real) // Computes Line 3 of ODESolve

9|il.dual = 4«Cube(T[0].real)«T[0].dual // Chain Rule

11 [i2.real
12 | i2 . dual

e.real«il.real
(e.real+il.dual)+(e.dual«il.real) // ProductRule

14 | i3 .real, i3.dual = C - i2.real, -i2.dual // Linearity

16 | i4 . real = i3.real/R.real
17 | i4 .dual = ((i3.dual«R.real) - (i3.real«R.dual)) / Square(R.real) // Quotient Rule

19 | T[1].real, T[1].dual = (step_size~i4.real)+T[0].real, (step_size«i4.dual)+T[0].dual

Fi

g. 1. Unrolled AD source code for differentiating a single iteration of ODESolve

various ranges of Ty, e and R. This abstract sensitivity analysis can be viewed as a static analysis
(using abstract interpretation) of a differentiable program, in this case the ODESolve program.

Specification. By performing the AD-based sensitivity analysis abstractly for ranges of initial
conditions and parameter values, we can ultimately prove properties like the monotonicity of
the numerical ODE solution with respect to the initial values for all values in the given input
ranges. Proving monotonicity of the final ODE solution with respect to the initial conditions has
been shown to be important for understanding physical processes [Wang et al. 2022]. Proving
monotonicity of the output of this climate model with respect to the initial temperature conditions
for a range of values and atmospheric conditions, allows us to prove properties such as the future
temperature (after N time steps) being a strictly increasing function of the current temperature (the
initial condition), even under a range of different atmospheric conditions. Thus, our goal in this
example is to prove monotonicity of the future temperature computed by ODESolve s with respect
to the initial temperature, T after N = 12 steps when both Ty and the atmospheric conditions are
known only up to some interval. We will prove this property by certifying that the derivative is
always non-zero. While abstract interpretation of AD has been done before [Laurel et al. 2022a,b;
Vassiliadis et al. 2016], we will soon see that those techniques are not precise enough to prove the
monotonicity property that we are interested in.

Example Source Code. Since ODE solvers run for a fixed, finite number of iterations, conceptu-
ally they can be unrolled. Hence the first step is to unroll the ODE solver program into straight-line
code that we can abstractly interpret. For illustration simplicity, Pasado’s abstract AD applied to
a single iteration of ODESolvey is shown in Fig. 1, however, Pasado can analyze any fixed, finite
number of iterations, though more iterations will diminish the precision. Indeed, the full results of
Pasado’s analysis after 12 iterations are later shown in Fig. 3. Since we are performing AD, we must
also keep track of each variable’s derivative. For this example, we elect for forward mode AD, hence
we store each variable’s value in the real component and its derivative in the associated dual
component, as we encode derivatives using the canonical dual numbers [Griewank and Walther
2008]. Hence, our concrete semantics are first-order version of [Laurel et al. 2022b]. As will be seen
later, our approach is general enough to support both forward and reverse mode AD. Lines 1-5
correspond to program statements that read in and store the input values for the initial condition
To, as well as the parameter values for Q, @, e and R.

Chain Rule. On line 9, we compute the derivative of composing the 4" power function with
the input variable Tp, stored in variable i1. Due to the chain rule, this step also requires multiplying

4th

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

291:6 Jacob Laurel, Siyuan Brant Qian, Gagandeep Singh, Sasa Misailovic

by T[@].dual. We compute the derivative of this function application using the chain rule, where
in this case diTOTO4 = 4T;. Between the cube function (Cube(T[01)), and the multiplication by
T[0@].dual, there are 3 nonlinear operations (all multiplications) involved in the computation of
i1.dual. These multiple nonlinear operations pose a direct challenge for the subsequent abstract
interpretation, however, as we will see, Pasado is specifically designed to overcome this challenge.
Product Rule. To propagate derivatives through the computation, we now need to compute
the derivative of the product of T with e. This step involves computing the product rule for
the program variables i1 and e. However, as can be seen on line 12, the product rule involves 2
nonlinear multiplication operations. Upon computing both the product of T* with e (line 11) and its
derivative (line 12), we next execute line 14 to compute the difference of this product with Q- (1 -a),
which has already been stored in variable C in line 6. Because of linearity, the derivative of this
difference (line 14) is straightforward to compute. Thus upon completion of line 14, we finally have
computed both the numerator of the dynamics function f, and its associated derivative.
Quotient Rule. Having computed the intermediate expression needed for the numerator, we
next come to the division operation shown in line 16. To compute the derivative of this division,
AD must compute the quotient rule, as shown in line 17. It is important to see that the quotient rule
has 4 nonlinear operations, which as mentioned, pose challenges for precise abstract interpretation.
Upon computing the quotient and its derivative (with respect to Ty), we finally compute the value
of the next time step, T and its associated derivative in line 19. Thus we now have both the value

of the temperature at the next time step as well as the derivative of the temperature at the next

. . e ey 00DESolve ,a,e,R by, Ty,step_size,steps
time step with respect to the initial condition, which is just rQ aT(()) ki) We

will next see how to abstractly interpret this AD computation precisely using Pasado.

Precise Abstract Interpretation with Pasado. As observed in the preceding description,
there are multiple nonlinear operations involved in computing the derivatives that are stored
in the intermediate variables’ dual components. These nonlinearities present a challenge for
precise abstract interpretation, as precise numerical abstract domains like zonotopes and polyhedra
were originally designed for analyzing linear functions and are thus not well suited for handling
nonlinear operations [Adjé et al. 2010]. For instance, with the zonotope abstract domain, each
nonlinear operation introduces a new noise symbol, thus the large number of nonlinear operations
(like multiplications) in AD runs the risk of substantial over-approximation. Existing abstract
interpretations for AD [Laurel et al. 2022a,b] suffer from these weaknesses and, as we will later see,
produce bounds that are too loose to be useful for our analysis.

For this example, we will use the reduced product of the zonotope domain with intervals
to represent our abstraction. Pasado’s synthesis method produces precise abstractions for both
domains improving the precision of the reduced product. As we will later see, our construction is
general and thus could be instantiated with other abstract domains such as the DeepPoly domain
or quadratic zonotopes. Since we are using the reduced product of zonotopes with intervals, the
abstract program state is shown in purple where { Var = ay +), ; aj€j, Ivar = ¢, uyqr = ¢, | signifies
that variable Var (which could be either a real or dual component) is abstractly represented with
affine form ag +), ; 4€j, but also maintains, tighter, refined bounds [c;, ¢,]. Here aj, ¢;, ¢, € R and
each €; € [-1, 1] is a noise symbol, which intuitively is a term in a first-order symbolic polynomial.

Fig. 2 shows the abstract interpretation of the original source code. In this example we want to

AODESOL ,a.e.R 1. Ty, step_size,
abstractly compute guaranteed bounds on olver (Qae atT(; vstep SizeSteps) hen Ty € [275,400],

R € [2.65,2.95], e € [0.60,0.90], @ = 0.3, Q = 342, step_size = 0.025 and steps = 1. For the scaled
emmisivity e, the value of ¢ is the Stefan-Boltzmann constant 5.67 - 1078 Thus to specify these
bounds over the input, we initialize the abstract program state as shown in lines 2-16.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

Synthesizing Precise Static Analyzers for Automatic Differentiation 291:7

Synthesized Abstraction for Chain Rule. The first computation we perform is the computation
of the quartic power function on line 18 and its derivative on line 21. As our contribution is focused
solely on constructing synthesized abstraction for just the derivative terms, we use the standard
interval and zonotope multiplication abstract transformers for the quartic function on line 18.
It is important to note that after abstractly executing line 18 but before executing line 21, the
zonotope abstract state will have 8 noise symbols €;_g. To abstractly interpret line 21, we use
Pasado’s synthesized abstract transformer instead of the standard zonotope multiplication abstract
transformer. The first step of Pasado’s synthesis procedure is to solve a linear regression problem
for A, B, C € R such that within the box [I7(o].reats Ur[0].reat] X [IT[0].dual> ¥T[0].dual] C R%:

A - (T[0].real) + B - (T[0].dual) + C ~ 4 - (T[0].real)® - (T[0].dual)

Pasado performs this step by sampling uniformly-spaced points in the box, which here is
[275,400]X[1, 1]. For each sampled point x;, y; we evaluate 4x7-y; which is used as the “ground-truth”
for the linear regression. For this example linear regression produces the result: A = 1378673.47, B =
0, C = —304748724.48. Hence the affine form will be i1.dual = AT[O] real +BT[].dual + C + Depeny,
where €. is a single new noise symbol and the hat notation denotes the variable’s affine form
stored in the abstract state. The next step is computing D by soundly bounding the error between
this linear approximation and the true function 4 - (T[0].real)® - (T[0].dual), as shown in Eq. 2

D= max l4x> - y — (Ax + By + C)| (2)
x€[275,400],y€[1,1]

Noting that [ZT[OJ.,«M[, uT[OJ.real] = [275,400] and [lT[OJ.dual’ uT[OJ_dual] = [1,1]. While at first
glance this may seem like a difficult nonconvex, multivariable optimization problem a core con-
tribution of Pasado is proving that we can reduce this multivariable optimization problem to
simpler 1D optimization subproblems as well as just checking the corner points. Hence we can
actually find the exact value of D by solving for roots of 12(T[0].real)? - Ir(o].duat — A = 0 and
12(T[0].real)? - Ur[o].dual — A = 0, checking those roots and additionally checking the corner
points {Ir(o].reat UT[0].real} X {IT[0].dual> UT[0].dual }- The coefficient D will be used as the new noise
symbol’s magnitude to ensure the linear approximation is still a sound zonotopic enclosure.

An important detail is that because of our technique, the abstract transformer for the composite
expression 4*Cube (T[0].real)*T[0].dual only introduces a single new noise symbol (Dépeqy),
hence why there are only nine noise symbols (e1—9) as shown in line 22. This insight is critical, as
evaluating the same expression with the standard zonotope multiplications would introduce three
noise symbols instead of one. It is known that having fewer noise symbols can lead to computational
savings [Turner 2020], and this reduction helps us offset some of the cost of synthesizing trans-
formers Furthermore, we can use the same technlque to solve the simpler optimization problems

4x -y and max -y, which can be used to give us refined interval
xe[275,400],ye[1,1] x€[275,400],y€[1, 1J

lower and upper bounds, which in this case are [8.318 - 107, 2.56 - 10®]. While these bounds appear
large, they will eventually be scaled to a tight range upon multiplication with e since e < 1077,
Further, while in this case these interval bounds are identical to those obtained via standard interval
arithmetic, for other functions, our optimally solved bounds are often much more precise. We
take the intersection of the bounding box of the affine form which is [6.759 - 107, 2.56 - 108] with
[8.318 - 107,2.56 - 10®] to get the final refined lower and upper bounds. In this case the refined
interval bounds obtained by solving the two simpler optimization problems are strictly tighter
than the affine form’s bounding box (hence the result is still [8.318 - 107, 2.56 - 10%]), however, this
need not always be true, hence why we take the intersection. A key benefit of our approach is that
because our abstract transformers use interval bounds to solve their optimization problem they

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

291:8 Jacob Laurel, Siyuan Brant Qian, Gagandeep Singh, Sasa Misailovic

1|T[0].real, T[0].dual = ... // These values are passed in as inputs
2 | { T[0].real = 337.5 + -62.5€1, I [0].real = 275, UT[0].real = 400 §
3 | L T[0).dual = 1, I7(0).duar = L, UT[0].dual = 1 §
4|e.real, e.dual = ...
5| { ereal =4.25- 1078 + -8.50 - 10 ™% €3, Lo rear = 3.40 - 1078, g peqr = 5.1- 1078 §
6 | { edual =0, le gyar = 0, te.dual =0 §
7 |R.real, R.dual = .
8 | { Rreal = 2.8 + -0.15€s5, IR yeal = 2.65, UR yeal = 2.95 §
9 | { Rdual =0, Ir guar = 0, UR.dual =0 §
10 | step_size = ... // always treated as fixed scalar constant
11 | { step_size = 0.025, Lszep_size = 0.025, Ustep size = 0.025 §
12 | Q, alpha = ... // treated as fixed scalar constants for this example

13 | { Q=342 lp = 342, up = 342 §

14 | { alpha = 0.3, lospha = 0.3, Uaipha = 0.3 §

15 | C = Q«(1-alpha) // constant propagation for Q and alpha (both are constants)
16 | { C=239.4, Ic = 239.4, uc = 239.4 §

18 | i1.real = FourthPower(T[0].real) // Computes Line 3 of ODESolvef

19 | { il.real = 12974633789.062 + -9610839843.75€; + 889892578.12¢7 + 2124633789.062¢€3,

20 | Liprear = 5719140625, i1 reqr = 25600000000 §

21| il.dual = 4+«Cube(T[0].real)+«T[0].dual // Chain Rule

22 | { il.dual = 161798882.57 + -86167091.83¢€; + 8034025.58¢€9, Li1 guar = 83187500, U1 gual = 256000000 §

24 | i2 . real = e.real+il.real

25 | { i2.real = 551.78 + -408.72¢; + -110.35€3 + 37.84€7 + 90.35€5 + 107.38€10, Liz rear = 194.57, Uz rear = 1306.45 §
26 | i2.dual = (e.real+il.dual)+(e.dual«il.real) // ProductRule

27 | {i2.dual = 6.88 + -3.66€; + 2.94e-15€; + 7.03e-15€5 + 0.34€9 + 2.17€11, Lip.dual = 2.83, Ui duar = 13.06 §

29 | i3 .real, i3.dual = C - i2.real, - i2.dual // Linearity
30 | { i3.real = -312.38 + 408.72€; + 110.35€3 + -37.84€7 + -90.35€g + -107.38€10, L3 rear = —1067.05, i3 reqr = 44.82 §
31 | { i3.dual = -6.88 + 3.66€1 + -2.94e-15€7 + -7.03e-15€5 + -0.34€9 + -2.17€11, li3.dual = —13.06, Uj3.gyar = —2.83 §

33| i4.real = i3.real/R.real

34 | { idreal = -111.9 + 146.39€; + 39.52€3 + -5.38€5 + -13.55€7 + -32.36€3 + -38.46€1) + -0.61€12 + 14.48¢€13,

35 | Ligyear = —402.66, Uig reqr = 16.91 §

36 | i4.dual = ((i3.dual«R.real)-(i3.real+R.dual))/Square(Rreal)// Quotient Rule

37 | { i4.dual = -2.47 + 1.31€; + -0.0009¢3 + -0.15€5 + 0.0003€7 + 0.0007€5 + 0.0009€19 + -0.12€9 + -0.78€717 + 0.11€14,
38 lig.dual = -4.93, Uis.dual = _0-965

40 [T[1].real, T[1].dual = (step_sizexi4.real)+T[0].real, (step_size«i4.dual)+T[0].dual
41 | { T[1].real = 334.7 + -58.84¢€1 + 0.99€3 + -0.13€5 + -0.33€7 + -0.81€5 + -0.96€1¢ + -0.015€12 + 0.36€13,

42 IT[1).real = 272.25, UT[1].real = 397.15§

43 | { T[1].dual = 0.94 + 0.03€; + -2.01e-5€3 + -0.004€5 + 6.88e-6€7 + 1.64e-5€5 + -0.003€9 + 1.95e-5€10 + -0.02€17 + 0.002€14,

44 | Ilp(1).dual = 0.8767, ur(1].rear = 0.9760§

Fig. 2. Abstractly Interpreted AD source code for differentiating a single iteration of ODESolve

can directly benefit from having these refined bounds which directly leads to more precise affine
forms. In contrast, as noted in [Turner 2020], the standard zonotope transformers for multiplication
cannot take advantage of the refined bounds to improve precision of the resulting affine form.
Synthesized Abstraction for Product Rule. Pasado’s next step is to compute the product in line
24, as well as the derivative using the product rule in line 26. As mentioned, Pasado is focused solely
on developing precise abstractions for the derivatives, hence the multiplication of the real parts in
line 24 uses the standard interval and zonotope domain multiplications. Similarly to the chain rule,
our synthesized abstract transformer will solve a linear regression problem for new A, B,C, D, E € R

such that in the region [le.reala ureal] X [le.duala ue.dual] X [lil.reala uil.real] X [lil.duala uil.dual]:

A- (ereal) + B- (e.dual) +C - (il.real) + D - (il.dual) + E ~ e.real - il.dual + e.dual - il.real

Hence the resulting affine form is i2.dual = A(e.real) + B(e.dual) + C(il.real) + D(il.dual) + E+
Féyen In this example, the linear regression finds the new coefficients shouldbe A = 0, B = —6- 10724,
C=3-107%*,D =4.25-10"8 and E = =5 - 10~ '*. Our abstraction must also solve for the maximum

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

Synthesizing Precise Static Analyzers for Automatic Differentiation 291:9

error F. Among our key contributions is proving that for the product rule, this error can be obtained
by just enumerating the 2* corner points. Hence we compute F as:

max [(x1°y2)+(x2-y1) — (Ax1+By1 +Cx2+ Dy, +E) |
(x1,y1.%2,Y2) €
{Ue.reatste.reat } X{le.auatste.dual } X{ it reatstir.real } X {li1.duat-Wirduat }

In this example, F = 2.17. While our example has two multiplications on line 26, Pasado introduces
only a single noise symbol (Fépe.,) instead of two as the standard zonotope multiplication would.
Furthermore, we can solve a simpler version of the previous optimization problem for direct interval
lower and upper bounds using the same approach (enumerating over the corners) and then take
the intersection of those with the bounding box of the affine form. Performing this procedure
ultimately gives us i2.dual’s refined bounds of [2.83, 13.06] as shown on line 27.

Synthesized Abstraction for Quotient Rule. Upon computing the products, computing the
affine transformations on line 29 is straightforward. Hence the abstract interpreter next proceeds to
line 33 to compute the quotient. The derivative is computed via quotient rule on line 36. As before,
Pasado uses linear regression to solve for coefficients A, B, C, D, E € R such that

(R.real - i3.dual) — (i3.real - R.dual)
R.real?
Here the values are A = -4.2 - 107%, B = 0.35,C = 1.01, D = 6.5 - 107%, and E = -2.84, where
the resulting affine form is i4.dual = A(m) + B(W) + C(R.r—_‘?l) + D(m) + E + Fepe.
Solving for the maximum error, F, is more involved, as we must solve:

A- (i3.real) + B - (i3.dual) + C- (R.real) + D - (R.dual) +E ~

x . —_— x .
max |(2 Y1) 2(1Y) — (Axy 4+ By; + Cxy + Dy, + E) |
x1€[lis reatsWis.reat |, Y1 € [i3 duat-Wis.duat] x2

x2€[IR real-UR reat |, Y2 €[IR dual-UR.dual |

The solution to this optimization requires Pasado to solve for roots of a cubic equation, as we will
see. However, Pasado can likewise use that same technique to directly solve for optimal interval

(x2-y1) = (x1-y2) (2 y1) = (x1-y2)
x2 x2

bounds: min and max over the same 4D region as above. We ultimately

obtain the affine forzm shown in line 43 an(21 the refined bounds [0.8767,0.9760] in line 44.
Results. Abstractly interpreting the computation using Pasado’s synthesized transformers offers

notable precision gains over standard interval and zonotope abstract transformers. As mentioned,

Pasado’s bounds on the derivative after one iteration are: [0.8767,0.9760], whereas, the respective

100 i % = = = T : il Fig. 3. Comparison of Pasado with in-
0.75 52 &i f,:- Ez‘ 1 terval and zonotope abstract AD for
= T I ?2 '.'%: = ~,; bounding derivative-based sensitivi-
2 050 £ = Bo4qgy i{ ties with respect to Ty for 12 full iter-
z T ' i ations of ODESolve . Each region be-
E 025 - Z - _ tween line segments of the same color
2 oo NN NUSENUNIN SNURR NNV S W U - Slorrcets e represents the interval bound com-
- 1 puted by that respective method’s
—0.25 o — T corresponding abstract AD. The dots

p
oso — Pasado s represent the sensitivities evaluated
‘ Scalar concretely, using scalar points sam-

pled from the input intervals.
1 2 3 4 5 6 7 8 9 10 11 12

Time Step

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

291:10 Jacob Laurel, Siyuan Brant Qian, Gagandeep Singh, Sasa Misailovic

bounds computed with intervals are [0.862,0.978] and with zonotopes are [0.868,1.013]. While
Figs. 1 and 2 show only a single iteration, the benefits of Pasado compound over multiple iterations.

Fig. 3 shows the bounds computed for up to N = 12 iterations by both Pasado and the interval
and zonotope AD baselines. This plot shows how Pasado’s improvement compounds, and how after
12 iterations (full code not shown), Pasado’s derivative bounds stay provably positive, and thus can
prove monotonicity with respect to Ty, whereas interval and zonotope abstract AD cannot.

3 PRELIMINARIES

We now detail the necessary preliminaries for describing both automatic differentiation as well as
abstract interpretation. We also detail some of the key mathematical requirements for Pasado.

3.1 Automatic Differentiation Implementation

Forward-Mode AD. In forward-mode AD, one computes both the primal (the original program)
as well as the tangent derivatives simultaneously in a single forward pass. For functions f : R™ —
R”, computing the full Jacobian via forward mode requires m passes, hence forward mode is
more efficient when m < n. Since the computation of both the original primal program and the
derivatives are interwoven into a single forward pass and thus happens simultaneously, one must
designate separate variables for the primal (the real part) and the associated derivatives (the dual
part). This separation of variables into disjoint sets is canonically implemented with dual numbers
[Griewank and Walther 2008], where the real component of the dual number encodes the variables
of the primal, and the dual component of the dual number encodes the associated derivatives.
The standard rules of calculus — chain rule, product rule and quotient rule can be encoded by
overloading the respective arithmetic operation for dual numbers. For a given variable x, we will
denote the real part as x.real and the dual part storing the associated derivative as x.dual.

Reverse-Mode AD. Inreverse mode AD, one first computes the primal and then back-propagates
the derivatives from the output variable back to the input variables [Griewank and Walther 2008].
For functions f : R™ — R”", computing the full Jacobian via reverse mode requires n passes, hence
reverse mode is more efficient when m > n. Unlike with forward-mode AD, in reverse-mode AD
the original program (the primal) is computed in its entirety before even a single derivative is
computed. However, one still needs a separate set of variables to store the derivatives. Following
convention, we will simply let x denote a given variable in the primal and X denote the adjoint
derivative for x that is computed in the backward pass.

3.2 Abstract Interpretation

We now describe the necessary preliminaries of Abstract Interpretation. Abstract Interpretation
[Cousot and Cousot 1977] is a framework for soundly over-approximating the set of possible
executions of a program. For Pasado’s analysis, we require the following:

(1) A numerical abstract domain, A which may be either Intervals or any abstract domain that can
represent linear transformations exactly (e.g. Zonotopes, Quadratic Zonotopes, Polyhedra).
A can also be a reduced product of those aforementioned domains.

(2) A concretization function y : A — P (R") that maps an abstract element in the Abstract
Domain to sets of AD program states (which are just tuples of n real numbers.).

(3) A bounding box function Range : A — R" x R" that takes an abstract element describing
sets of AD program states of n variables and returns the bounds on each variable.

(4) Sound abstract transformers, T}i : A — A, for each univariate nonlinear function f : R — R.

The functions we consider are {log(x), exp(x), Vx, x%, x>, x*, tanh(x), o(x), NormalCDF(x)}.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

Synthesizing Precise Static Analyzers for Automatic Differentiation 291:11

(5) Sound abstract transformers, Toﬁp A — A, for each binary operation op € {+, —, *, /}.

Additionally, unique to our approach is that we will also require a guaranteed root solver for the
second derivative of each nonlinear function f listed in (4), so that we can solve for all x* € [I, u] (or
certify that none exist inside [I, u]) such that f”/(x*) = C for any given C. For this root-solving, one
may use a verified root finding technique like Bisection or a verified Newton’s method, however for
many of the functions such that f”~! has an analytical formula, we can use the analytical formula
to solve for x* directly. For instance when f(x) = exp(x), we know " ~(x) = log(x).

For our purposes we will use the reduced product of the Zonotope domain with the Interval
domain as this combination is essentially a (restricted) polyhedral domain that is more expressive
than standard zonotopes, however as described in Theorem 4.5, our construction would equally work
for other domains which can symbolically express linear relationships exactly such as quadratic
zonotopes, or the DeepPoly domain.

For our purposes an abstract state a € A will map each variable x; to both an affine form,
alx;].x; = xip + 2 cj€j and an interval a[x;].[Ly,, uy,]. The bounding box function returns the
intersection of the associated interval with the bound on the affine form, hence Range(a[x;]) =
[xio — 2 lcjl, xio + 22 [ejl] M a[xi]. [L, ux,]. Since we take the reduced product, our concretization
function uses both the standard interval and zonotope concretization functions yi,¢, yzono [Ghorbal
et al. 2009] and is given as:

y(a) = {(xl, o Xp) € R (X1, .. Xn) € YZono (alx;].x) N Yint (/\ a xj,ux]])}
1

Jj= J=1

As mentioned in Section 2, for analyzing the real (non-derivative) part of the program we will
use the given domain’s standard abstract transformers required in (4) and (5) hence Pasado only
focuses on synthesizing abstractions for the derivative terms to improve precision. Further, since
addition can already be done exactly with zonotopes, Pasado will use the standard transformers for
addition, even in the derivative computations.

4 SYNTHESIZING PRECISE STATIC ANALYZERS
We now present Pasado, our technique for synthesizing precise abstract transformers, specialized
for AD. Pasado’s technique allows us to synthesize precise abstract transformers for the Chain Rule,

Product Rule and Quotient Rule of Calculus, which we will denote Tﬁ , Tg , Tﬂ A — A. Pasado

will use standard abstract transformers (e.g.,]E , Tfp required in Section 3.2) to abstract the primal

computation and T’j R Tﬁ, Tg to abstract the derivative computation.

Since both forward-mode AD and reverse-mode AD ultimately use these same rules, we can
synthesize precise abstractions for each of the core operations for either mode of AD. The only
difference between AD modes is the order of application, for instance in forward mode for a € A,

the application order would be Tg (Tf(Tgf (T}t (a)))) whereas for reverse mode the order would be
Tﬁ (Tcﬂ,f (7;ﬁ (Tfﬂ(a)))) as the entire primal must be abstracted before any derivatives can be. While

there are other rules of calculus, like the generalized power rule, for which our techniques are
inapplicable (due to differences in the Hessian behavior), these three rules comprise the majority of
nonlinear AD operations and thus are the most important.

Pasado’s abstract transformer synthesis involves a combination of linear regression at uniformly
spaced points and solving a nonlinear optimization problem to ensure soundness. For tractability,
we limit the number of sampled grid points used in the linear regression (which trades off precision).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

291:12 Jacob Laurel, Siyuan Brant Qian, Gagandeep Singh, Sasa Misailovic

gty :
T gty :
gy

(b) (©

Fig. 4. Visualization of Pasado’s abstract transformer synthesis for the Chain rule pattern g(x,y) = o(x) -
(1-0(x))-yon[-1,1] X [-1,1]. In (a), the blue surface represents g(x,y). In (b), the blue dots on the blue
surface represent evaluations of g(x, y) at grid sampled points. The hyperplane in (b) is computed by
performing linear regression with these blue points and has equation Ax + By + C. In (c), the red lines show
the difference between g(x, y) and the plane and D represents the maximum such difference. The lower and
upper orange planes in (c) are the enclosing linear bounds given by Ax + By + C + D. The enclosing bounds
are parallel for the Zonotope domain and here the maximum difference D occurs at a corner point.

4.1 Chain Rule Synthesized Transformer

The first rule of Calculus for which we want to synthesize a precise abstraction is the Chain Rule.
For functions f,g : R — R, the chain rule is mathematically given as:

flg(w)" = f'(g(w) - ¢'(w)
Forward-Mode Chain Rule. In forward-mode AD this rule is implemented via:
z.real = f(x.real);

z.dual = [’ (x.real) - x.dual;

where intuitively, x.real = g(u), x.dual = ¢’ (u), z.real = f(g(u)), and z.dual = f(g(u))’.
Reverse-Mode Chain Rule. Likewise in reverse-mode AD, this rule is implemented as:
z=f(x); ..
zZ=..
X +=f'(x) - 2
where the "..." at the end of the first line represents the break between the end of the primal part
of the differentiable program and the start of the adjoint part of the same differentiable program,
which computes all the derivatives (e.g. z, X).
Chain Rule Abstraction Pattern. Based on these implementations, the main expression, present
in both forward and reverse AD, for which we want to synthesize an abstract transformer, Tﬁf, is:

l9(x.y) = f'(x) - y|
The benefit of synthesizing an abstraction for this chain rule pattern is that this pattern could
have multiple nonlinear operations. For instance, if f(x) = o(x), then f’(x) = o(x) - (1 — o(x)),
which has a nonlinear multiplication, in addition to the nonlinear multiplication with y. Thus

naively composing the abstract transformers for each nonlinear operation e.g., Tf(T*‘i (T# (Tﬁ (a))))
as in Laurel et al. [2022b] can lead to imprecision. Particularly when using zonotopes, each of those
nonlinear operations introduces a new noise symbol which adds additional over-approximation. In

contrast, Tgf introduces only a single noise symbol for the entire chain rule derivative expression.
Abstraction. We now present how to abstract the chain rule pattern. Algorithm 1 presents
the abstract transformer Tcﬂ,f and Fig. 4 presents a geometric intuition. The core idea is to sample

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

Synthesizing Precise Static Analyzers for Automatic Differentiation 291:13

Algorithm 1 Chain Rule Abstract Transformer Tgf

Input: Abstract state a where X = a[x].x and §y = a[y].y
Iy, ux < Range(a[x])

ly,uy < Range(aly])

grid « GridSample([Ly, ux] x [ly, uy])

pts = {f'(x) -y : (x,y) € grid}

A, B,C « LinearRegression(grid, pts)

ifA=0thenA «— A+6

D« max lf"(x) -y = (Ax + By + C)|
x€[Lettx].y€lly.uy]
Luc min]f'(x) ‘v, max fx) -y

X€[Le,ux |,y€[ly,uy x€[Le,ux]yelly,uyl
return AX + By + C+ Depeny, [1u]

uniformly spaced points that lie within the range of the input intervals and then solve a linear
regression problem to find the best linear approximation of f”(x) - y at those points. However, the
most critical step for proving soundness is solving a challenging multidimensional, nonconvex
optimization problem, to soundly enclose the linear approximation, which we now describe.

Optimization Problem. The core technical difficulty of the Chain Rule abstract transformer lies
in solving the following equation for the maximum deviation between the linear approximation
(Ax + By + C) and the function f’(x) - y itself (example shown in Fig. 4). This maximum deviation
is needed to obtain the tightest enclosure around the linear approximation (Ax + By + C) such that
this enclosure still provably contains the range of f”(x) - y. This deviation D is computed as:

D= max If"(x)-y— (Ax + By + O)| (3)
X€ [Leux |, ye[ly,uy]

Pasado reduces this multivariate, non-convex optimization problem into two simpler univariate
problems as well as simply checking the four corner points: {Iy, ux} X {l, uy} (we provide a full
explanation in Section 4.4). For the correctness of our proof which is subsequently shown in
Theorem 4.1, it is a technical requirement that A # 0. If linear regression obtains A = 0, we perturb
A by a small quantity, § < 107°. To solve the two univariate optimization problems, we compute
all x* € [Iy, uy] such that f”’(x*) = % and all x™ € [I, uy] such that f”"(x*) = %. Thus we must
also examine the points (x*,1,) and (x**, uy). We can solve for all x* and x™* using the guaranteed
root solver that we required in Section 3.2. Hence the optimization problem ultimately reduces to:

D= max If'(x) -y— (Ax + By + O)|
(09) € ({laysttzy Y X ALy sty }) UL (1), (1)}

While inspired by Ryou et al. [2021], our proof technique is more general as we can handle any
f satisfying the properties of Section 3.2. The generality of our approach also stems from expanding
this proof technique to other patterns arising from AD. We also show how to adapt this proof to
obtain precise interval domain transformers. Indeed, the key benefit is that we can use virtually
the same proof to get the exact lower and upper bounds of f’(x) - y for the given input intervals.
Hence we can compute optimal lower and upper bounds, [and u, as follows:

= min f(x)-y (4)
() € (st Y X ALy sy }) UL (L), (%)}
u= max f(x)-y (5)

() € ({haey sty Y X {Lyy sty }) UL (), ()}

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

291:14 Jacob Laurel, Siyuan Brant Qian, Gagandeep Singh, Sasa Misailovic

The core benefit of having both zonotope affine forms and separately computed interval lower
and upper bounds is that not only does the same proof strategy give us sound abstractions for both
domains, but by taking their reduced product, we can always use the interval results to refine the
zonotope, as in Singh et al. [2019¢] to enhance precision.

4.2 Product Rule Synthesized Transformer

The next rule of calculus for which we wish to synthesize a precise abstract transformer, T}E is the
Product Rule. For functions f, g : R — R, the product rule is mathematically given as:

(f() - gw) = f'(u) - g(w) + f(u) - g'(w)
Forward-Mode Product Rule. In forward-mode AD, the product rule is implemented via:
z.real = x.real - y.real;

z.dual = (x.dual - y.real) + (x.real - y.dual);

where intuitively, x.real = f(u), y.real = g(u), x.dual = f’(u), and y.dual = ¢'(u). It is
important to note that the computation of z.dual involves 2 nonlinear multiplications.
Reverse-Mode Product Rule. Similarly, in reverse-mode AD, the product rule is encoded as:

y +=x - E;
Product Rule Abstraction Pattern. Based on the product rule implementations shown above,
the computational pattern for which we want to synthesize an abstraction is:

‘g(xl,yl,xz,yz) = (x1-y2) + (x2 - 1) ‘

In the event that some of the arguments are zero, this pattern could involve a single multiplication.
Conversely, when all arguments are nonzero, this pattern entails two nonlinear multiplications. In
particular, the instantiation of this abstraction for reverse-mode AD can be seen as a special case
whereby we set the first argument x; to 0.

Abstraction. We now present Pasado’s synthesis technique for the product rule abstract trans-

former, Tg in Algorithm 2. As with the chain rule pattern, we synthesize the coefficients by solving
a linear regression, and a tractable, but nonconvex optimization problem.

There is another key benefit to Pasado’s product rule abstract transformer. The standard zonotope
multiplication operates directly on the coefficients of the input affine forms. As a result, the standard
abstract transformer cannot leverage tighter ranges on the inputs, as these ranges are never taken
into account. Thus, when performing the two multiplications of the product rule with regular
zonotopes, the ability to leverage improved precision from a reduced product is limited. In contrast,
since Pasado’s synthesized abstraction directly incorporates the bounds on the input, Pasado can
immediately benefit from the improved precision that a reduced product with intervals offers.

Optimization Problem. For the product rule abstraction, we must solve the following 4D
nonlinear, nonconvex optimization problem:

F= max |(x1 - y2) + (x2 - y1) — (Ax1 + By1 + Cxz + Dy + E)| (6)
X1 € [y ey Ly €Ly, uy,
X2 € [y sty |, Y2 € [y, 1y, |

The benefit of this optimization problem is that we only need to check the 2* corner points, i.e.,

{Le uxe, } X {ly, uy, } X {L,, ux, } X {ly,, uy, }, hence the optimization problem of Eq. 6 reduces to:

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

Synthesizing Precise Static Analyzers for Automatic Differentiation 291:15

Algorithm 2 Product Rule Abstract Transformer TIE

Input: Abstract state a where X1 = a[x;].x1, 71 = a[y1].91, X2 = a[x2].%3, and 73 = a[y2].72
Ly, ux, < Range(a[x;]) and [,,u, < Range(a[yi])

Ly, ux, < Range(a[x;]) and [, u,, < Range(a[y:])

grid « GridSample([Ly,, ux,] X [ly,, ty,] X [Ls,, tx,] X [Ly,, ty,])

pts — {(x1 - y2) + (x2 - y1) + (%1, Y1, X2, y2) € grid}

A,B,C, D, E « LinearRegression(grid, pts)

F e max [(x1 - y2) + (x2 - y1) — (Ax1 + By + Cxz + Dy, + E)|

xle[lxlsuxl]»ylE[lyl,uyl
xze[lxz,uxz]»yZE[lyZ’uyZ]

Lu« min (x1 - y2) + (x2 - Y1), max (x1-y2) + (x2-y1)
X1 € [y sty 1 yn €[y 1y,] X1 € [y sty Ly €[Lyy o1y,
xze[lxzyuxz]sy2€[ly2»uy2] Xze[lxz,uxz],yze[lyz,uyz]

return AXx; + By + Cx; + Dys + E + Fepew, [Lu]

F_

= max
(xl,yI:XZyyZ)E{lxl,uxl }X{lyl’uyl }X{lxz,uxz }X{lyZ’uyz}

[(x1 - y2) + (x2 - y1) — (Axy + By; + Cxz + Dy, + E) |

However, as with the chain rule, we will also solve for the lower and upper bounds, ! and u,
for (x1 - y2) + (x2 - y1) exactly. Furthermore, we can use the same proof technique to obtain these
bounds and thus merely enumerate over the 2* corners to evaluate the expression, hence:

= min (x1 - y2) + (2 - y1) (7)

(xlyyl,xZ;yZ)E{lxl,uxl }x{lyl,uyl }X{lxz,uxz }x{lyZ’uyz }

u= max (x1-y2) + (x2 - y1) ®)

(x1,y1,xz,yz)€{lx1,ux1 }X{lylyuyl }X{le,uXZ }X{lyzyuy2}

4.3 Quotient Rule Synthesized Transformer

Synthesizing an abstract transformer for Quotient Rule is challenging due to the divisions and
multiplications involved. In fact, many works [Shi et al. 2020; Stolfi and De Figueiredo 1997]
decompose the abstraction of the division x/y into first abstracting the univariate function 1/y,
then abstracting the multiplication of that intermediate result with x. However, our goal is to
avoid decomposing these expressions into basic primitives, as naively composing primitive abstract
transformers leads to imprecision. For functions f,g : R — R, the quotient rule is defined as:

f(u)), _ W) - g(w) — f(w) - g'(w)
g(u) g(u)?

(

Forward-Mode Quotient Rule. In forward-mode AD the quotient rule is implemented as:

x.real
z.real = ;

y.real’

x.dual - y.real — x.real - y.dual

(y.real)?

z.dual = ;

where intuitively z.dual = (%)’, x.dual = f'(u), and y.dual = ¢’ (u).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

291:16 Jacob Laurel, Siyuan Brant Qian, Gagandeep Singh, Sasa Misailovic

Reverse-Mode Quotient Rule. Likewise in reverse-mode AD the quotient rule is encoded as:

If one were to take the computational pattern of z.dual, but set x.dual = 0, the structure of
the computation would be similar to the computation of 3. The abstraction for X can be handled

separately using the chain rule abstraction Tﬁf, as the chain rule abstraction for log’(y) - z is é

Quotient Rule Abstraction Pattern. Based on the quotient rule implementations shown above,
the computational pattern for which we want to synthesize an abstract transformer is:

(2 - y1) = (x1- 42)
grnyrxzy) = x2 L
2

This pattern is a desirable choice for having a single abstraction, T¥ because there are 3 nonlinear
multiplications and a nonlinear division, hence the pattern would otherwise be abstracted with the
composition T (T/‘i(ﬂi (T*ﬂ (T*ﬁ (a)))))). Furthermore there is a high degree of correlation between
the numerator and denominator since they both contain x;, however, due to the imprecision most
abstract interpreters face in the presence of multiple nonlinearities, it is hard to precisely capture
this dependency. Further, as mentioned, the computation of 7 in the reverse mode is a special
instance of this abstraction pattern when the second argument y; = 0.

Abstraction. We now present the synthesis of the abstract transformer for the Quotient Rule, Tﬁ,
which Algorithm 3 presents. As before, Pasado must solve an optimization problem to obtain sound
bounds around the synthesized linear approximation (obtained via regression). To ensure that there
are not additional interior critical points to consider, we require some constraints on the synthesized
coefficients A, B, C, D, E given in terms of the input bounds ky, € {Iy,, ux,}, ky, € {ly,, uy,}. Further
it is simple to enforce these constraints - if the synthesized coefficients do not satisfy the following
constraints, we can perturb the coefficients by some small §, which will not affect the abstraction’s
precision, but will ensure soundness. The conditions we require are:
qﬁ_—/\%_lcyl ﬂ/\lik /\éfﬁk

A? AD 2c BT M BT ®

The Adjust function checks that the coefficients obtained by the linear regression satisfy these
constraints, and if not, it will add small perturbations (§ < 10~°) until the conditions are satisfied.

Optimization Problem. To obtain a sound enclosure around the linear approximation for the
Quotient rule, we must solve the following nonlinear, nonconvex 4D optimization problem:

Kx,

. (29 =) gy By 4 Oy 4 Dy, +))
xle[lxllum]’yle[lyl’uyll x2

xX2€ [lx2 sUxy l.y2€ [lyzsuyz]

This optimization problem is more difficult than the one needed for the product rule, however,
much of the core idea is the same and it is still tractable to solve automatically. We will still need
to check all 2* corner points {ly,, ux, } X {ly,, uy, } X {Lx,, ux,} X {I,, uy,}, however, we will also
need to check for potential critical points where the gradient could be zero and that cannot be

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

Synthesizing Precise Static Analyzers for Automatic Differentiation 291:17

Algorithm 3 Quotient Rule Abstract Transformer Tg

Input: Abstract state a where X7 = a[x;].x1, §1 = aly1].91, X2 = a[x2].%3, and 72 = a[y2] .72
Ly, ux, < Range(a[x;]) and [,,u, < Range(a[y:])
ly,, ux, < Range(a[x,]) and [,,,u,, < Range(a[y,])

grid « GridSample([ly,, ux,] X [y, tiy,] X [Leys ts,] X [Ly,, uy, 1)
pts «— {W s (X1, Y1, %2, Y2) € grid}
A,B,C,D,E « LinearRegression(grid, pts)
Adjust(A,B,C, D, E)
F «— max
X1 €[Loy tiney Ly €[Ly suy, |
XZE[lxzsuxz]»yZG[lyZ’uyg]

(ery) = (x1-y2)
x2

- (AX] +By1 +CXZ +Dy2 +E)|

2

Lu (2 y1) = (x1-y2) max (2 y1) = (x1-y2)
bl 2 > 2
xle[lxl,uxl]:yle[lyl’uyl] *2 xle[lxlsuxl];yle[lylyuyl] *2
X2 € [y sty 1, Y2 € [Ly, iy, | X2€ [Ly Uiy 1 Y2 € [Lyy iy, |

return Ax; + By + Cx; + Diys + E + Fepew, [Lu]

immediately ruled out by the Hessian test. Thankfully, solving for these critical points involves
only univariate cubic polynomial equations, as we will be able to provably rule out any interior
critical point where x;, y1, and y, are not fixed to their respective lower or upper bounds. Thus the
only potential critical points are along the edges of the 4D hypercube where x;, y;, and y, are fixed.
To find these potential critical points, we only have to solve a cubic polynomial in x,. Thus this
set will still be finite as each cubic polynomial has at most 3 real roots. We now define this set of
potential critical points, S as solutions to 8 possible cubic equations.

S={(x1,y1, %2, y2) : x1 €{lx, e, }, y1 € {1y, gy, } Y2 € {1y, iy,) ng+y1x2—2x1y2 =0,x2€[L,, uy,]}

Thus we can solve the maximization problem of Eq. 9 by enumerating over the corner points
and all points in S, reducing the problem to:

(x2 - y1) — (x1 - y2)

max 5
(X1, Y1,%2,Y2) € { Lty } X Ly ttyy 3 X { Ly stiney } X} {1y, 1y, } X5

us

— (AX1 +By1 + CXZ +Dy2 +E)|

This strategy of solving for roots of a cubic equation to check as possible extrema can also be
used to solve for the optimal interval lower and upper bounds. Hence we compute the following:

. (x2 - y1) — (x1 - y2) . (x2 - y1) — (x1 - y2)
[= min > = min >
x1€[lx1,ux1],y1€[ly1,uy1] xZ {lxl,uxl}X{lylyuyl}X{lxz,uxz}x{lyzyuyz} x2
X2€[Ly Uy 1 Y2 € [Lyy iy, | us

(10)
X9 * — (X1 - X9 - — (xq -
u= max (2 - y1) 2(1 y2) = max (x2 - y1) 2(1 Y2)
X1 € [Ley sty [yr €[Ly, oy, | X5 { ey sty XLy sty Y% Dy stioey X { Ly sttyy x?
x2€[Ly, L y2 €[lyy.tty, | us
(11)

where the only difference is that the set S in Equations 10 and 11 isnow given by S = {(x1, y1, X2, 42) :

2
X1 € {lxla Uy, 2 Y1 € {lyla Uy, 2 Ya € {lyp uyz}axZ = Xyllyz’xz € [lxp uxz]}~

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

291:18 Jacob Laurel, Siyuan Brant Qian, Gagandeep Singh, Sasa Misailovic

4.4 Soundness

In this section we prove the soundness of Pasado’s synthesized abstract transformers. At a high level,
our proof relies on the fact that at interior critical points the Hessian will be indeterminant (ensuring
they are saddle points). Intuitively, this insight allows for ruling out the (multi-dimensional) interior,
and thus checking only (lower dimensional) boundaries to solve the optimization problem.

THEOREM 4.1. The Chain Rule Transformers Tﬂf, synthesized by Pasado for any f : R — R obeying
the properties of Sec. 3.2 are sound. Equivalently fora € A, {f'(x) -y : (x,y) € y(a)} C y(TCﬁf(a))

Proor. Let f(x) : R = Rand A, B,C € R be the coefficients inferred by the linear regression.

To ensure soundness of Tcﬁf, our goal reduces to solving the following optimization problem:

MAXxe[Luy] yellyuy] If (%) -y = (Ax + By + C)|
Instead of looking for interior critical points with the first derivative test, we first examine the
Hessian, H, of f’(x) - y — (Ax + By + C) which is given as:

@y @)
=" "o

The Hessian determinant is —(" (x)?) which is always < 0. For any x such that f”(x) # 0, then
—(f”(x)?) < 0, ruling out any interior critical point since the Hessian determinant is negative.
Further, any x such that f”/(x) = 0 cannot be a critical point, since from the first derivative test
f”(x) — A = 0 is necessary for a critical point, however, if f”/(x) = 0 then f"”"(x) - A= -A # 0,
since we required A # 0. Thus the optimal value will occur along the 4 boundary lines of the
square. The first two boundary lines (x = I, or x = u,) are simple, since the optimal value of a
linear function will occur at the end points, thus it suffices to check the 4 corners {l, u,} X {I,, u,}.
For the boundary lines where we fix y = I, or y = u,, we now only have to solve univariate
optimization problems. Applying the first derivative test to f’(x)l, and f”(x)u, we must solve for
all x* € [Ly, uy] such that " (x*)l, — A = 0 as well as all x™* € [I, u,] such that f” (x**)u, —A = 0.
However, these equations can be solved as we already required that one has a verified root solver
for f’. Hence we just check (x*,1,) and (x™,u,) for all x*, x™* € [l u,] returned by the root
solver. Furthermore, the Hessian determinant of —(f’(x) - y — (Ax + By + C)) will be identical, and
any critical point of f’(x) - y — (Ax + By + C) will be a critical point of —(f” (x) -y — (Ax + By +C)),
hence we need not worry about the absolute value in the maximization problem. The full details
can be found in the appendix [Laurel et al. 2023a].

O

THEOREM 4.2. The Product Rule Transformer, ! synthesized by Pasado is sound. Equivalently for
ach fxye+xy (g y) € r(@) € y(T(@)

Proor. (sketch) The Hessian for (x1 - yo) + (x2 - y1) — (Ax; + By; + Cx3 + Dy, + E) at any point is
0 0 0 1
. {0 0 1 0 . "
the matrix 010 0 which has both positive and negative eigenvalues, meaning the Hessian
1 0 0 O

is everywhere indeterminant. Hence any potential critical point is necessarily a saddle point, thus
the extrema must occur along the boundaries. We repeat this procedure for each of the (g) 3D
boundary optimization problems where in each case 1 of the 4 dimensions is fixed to a lower or

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

Synthesizing Precise Static Analyzers for Automatic Differentiation 291:19

0 0 010 0 1 0 1 0
upper boundary. The (unique) 3D sub-problem Hessians are [0 0 1f,{0 0 Of,and|1 0 0
0 1 0|1 0 O 0 0 0

all of which have both positive and negative eigenvalues meaning any interior point along the 3D
boundary of the 4D cube is necessarily a saddle point. Repeating this same procedure for the 2D
subproblems we again find that all 2D Hessians are either indeterminant which implies any interior
critical point is a saddle (thus the extrema occurs on the corners) or the 2D subproblem is such that
the function is linear in which case the extrema will also occur only on the corners. Furthermore, by
lemma A.1 these same properties hold for —((x7 - y2) + (x2 - y1) — (Ax; + By; + Cx; + Dy + E)) thus
handling the absolute value in the maximization problem. The full proof is found in the appendix.

O

THEOREM 4.3. The Quotient Rule Transformer, Té synthesized by Pasado is sound. Equivalently for
a €A, (A (%, y2) € y(a)) € Y(T(a)

0 0 = 0

Proor. (sketch) The 4D Hessian is |34, _, 6(y1xZ_xf§,2) 4y, 2x, | and its determinant is
3 xZ x, x; x;
T 0 & 0

8, meaning that the the Hessian has no zero eigenvalues since x; # 0. Furthermore, by Sylvester’s

criteria the Hessian is neither positive definite nor negative definite, hence it is indeterminant
which implies any interior critical point is necessarily a saddle point, thus the extrema will occur
along a boundary of the 4D cube. The cases for optimizing along these 3D boundaries, and their
respective 2D boundaries, and their respective 1D boundaries are all shown in the Appendix. O

Given the similarity in all three proofs, the same ideas could theoretically be used to support other
nonlinear expressions, provided their respective Hessians also rule out interior critical points.

4.5 Precision

Having now defined how to solve the optimization problems needed for Pasado’s abstract trans-
formers and their soundness, we can now state the following theorem about their precision:

THEOREM 4.4. The lower and upper interval bounds computed by Pasado’s synthesized abstract
transformers in Equations 4, 5, 7, 8, 10, and 11 are optimal for the interval domain.

Proor. (sketch) Since Pasado solves these optimization problems exactly, instead of upper
bounding the maximum or lower bounding the minimum, the bounds cannot be any tighter. O

Hence for these AD patterns, a standard interval arithmetic where one composes abstractions
of each primitive function or operation (Ttt T‘i ») can never be more precise than Pasado. Further,

because Pasado uses the standard abstract transformers in the real (primal) part of the program,
those bounds are at least as precise as standard interval arithmetic, thus Pasado’s derivative bounds
are never less precise than abstractly interpreting AD with the interval domain.

4.6 Generality

While we focus on the zonotope and interval abstract domains, Pasado is applicable to other abstract
domains that can represent linear relationships symbolically. We now state how to use Pasado to
obtain sound transformers for quadratic and polynomial zonotopes and the DeepPoly domains.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

291:20 Jacob Laurel, Siyuan Brant Qian, Gagandeep Singh, Sasa Misailovic

THEOREM 4.5. The abstract transformers synthesized by Pasado are also sound transformers for
quadratic and polynomial zonotopes and for the DeepPoly domain.

Proor. As we only synthesize linear transformations of the input affine forms, if these affine
forms were replaced with quadratic or polynomial forms, a linear transformation of them would
still be a valid quadratic or polynomial term expressible in those domains. For adapting the chain
rule to the DeepPoly domain we set the lower linear bound to be a* = Ax; + By; + (C — D) and the
upper linear bound to be a* = Ax; + By; + (C + D) instead of returning an affine form and still use
[, u for the interval bounds. Likewise for adapting the product and quotient rule transformers to the
DeepPoly domain we set the lower linear bound as a® = Ax; + By; + Cxy + Dy, + (E — F) and the
upper linear bound as a* = Ax; + By; + Cxz + Dy, + (E + F) and use [, u for the interval bounds. O

Thus, Pasado’s combined support for multiple AD computational patterns, function primitives, and
abstract domains, provides the necessary generality for synthesizing static analyzers for AD.

5 CASE STUDIES

We now present multiple Case Studies demonstrating the benefits of synthesizing precise abstract
transformers tailored to the structure of both forward-mode AD (Sections 5.2 and 5.4) and reverse-
mode AD (Sections 5.3 and 5.5).

5.1 Methodology

We describe our experimental setup. We ran the experiments in Sections 5.2 and 5.3 on a 10-core
Apple M1 Pro SoC with 16 GB of unified memory. We ran the experiments in Sections 5.4 and 5.5
on a 32-core AMD Ryzen Threadripper PRO 3975WX CPU and an NVIDIA RTX A5000 GPU with
512 GB RAM. In all experiments, as baselines, we use AD with the interval domain [Laurel et al.
2022a] and AD with the zonotope domain [Laurel et al. 2022b], which collectively comprise the
state of the art for abstracting AD.

Implementation. We implement Pasado in Python, using a combination of the affapy li-
brary [Helaire et al 2021], the micrograd library [Karpathy et al. 2020] and PyTorch [Paszke et al.
2019]. Pasado’s implementation assumes ideal real arithmetic and is thus not floating-point sound
(though floating-point sound versions of the operations exist [Miné 2004]). While the part of the
implementation using affapy supports all cases, the part written in PyTorch leverages the specific
structure of DNNs and is thus only applicable to DNN benchmarks. For the experiments in Sections
5.2, 5.3, and 5.5 we implemented the baselines ourselves, as there was no existing code-base to use,
however for Section 5.4 we used the implementation of [Laurel et al. 2022b] directly.

5.2 Robust Sensitivity Analysis of Ordinary Differential Equations

This first case study involves performing provable sensitivity analysis on the solutions of ODEs.
As mentioned in the example section, to perform sensitivity analysis on the numerical solution
of any ODE, one must automatically differentiate through the ODE solver. For these experiments
we instantiate our technique with forward-mode AD. In our experiments we use a 4th-order
Runge-Kutta numerical solver which is more complicated than the Euler method, but a more
commonly used and accurate solver in practice. Hence for this evaluation ODESolve does not use
Euler integration (unlike the example in Section 2). We now examine the following ODEs:

Chemistry ODE. This ODE is taken from Kitchin [2018]; Saltelli et al. [2005] and models the
concentration of chemical species C4 as a function of time ¢t. The ODE is parameterized by rate

constants k; and k_;.

dC
d—f = —k;-Ca+k_1-(Co—Ca) (12)

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

Synthesizing Precise Static Analyzers for Automatic Differentiation 291:21

° 10! o

= .
S0
2
E o
- —
(9]
2
£ ,y ® oo .
Q
g Interval
@ Zonotope
107! 4x 107" 6x107" 10°
Pasado Interval Width Pasado Interval Width
(a) (b)

Fig. 5. Scatter plots in logarithmic scales comparing the interval widths of the bounds on the derivatives of
(a) ODESolvenn with respect to k1 and (b) ODESolve s with respect to To.

0.3

0.00 T
- - - - 7T 0.2 T

[Nk Al

-0.05 s . - - - == L L7
Z 8 -7 .-
> T T L L
S 010 & 01 T
= L7 L 1T
g ES I EERN R
$ —0.15 T T - 0.0 é ﬁ é ’é
—— Zonotope T L T - T7 -+ 2 1
-0.20 Pasado T L T T == - - 1]
Scalar S -0.1 + - _
—0.25 . P
12 3 45 6 7 8 9 101112 13 14 15 16 12 3 45 6 7 8 9 101112 13 14 15 16

Time Step

Fig. 6. Bounds on the sensitivities of ODESolveny with respect to ki (left) and k_1 (right). Each region
between line segments of the same color represents the interval bound computed by that respective method’s
abstract AD. The dots represent the sensitivities evaluated at points sampled from the input intervals.

However, instead of numerically solving the ODE given in Eq. 12, we train a neural network,
NN, to learn the dynamics such that NN (ky, k_1,Co,Ca) = —k1 - Cqg + k_1 - (Co — C4), hence we
will actually numerically solve the following Neural ODE:

dstA =NN(kl’k—15C0’ CA) (13)

The neural ODE approximation produces nearly identical results, hence it serves as a useful
surrogate model and also as a representative workload for ODEs where the underlying dynamics are
some learned model. In Kitchin [2018]; Saltelli et al. [2005], the authors perform sensitivity analysis
on this chemistry model using AD. However, those works computed sensitivities at scalar points
only, hence we are the first to abstractly compute this derivative-based sensitivity analysis for sets of
points. A key reason for performing the sensitivity analysis is to understand how sensitive the final
concentration is to the rate constant parameters k; and k_;. For this evaluation, we parameterize
the ODE solver by the neural network dynamics function NN, thus ODESolveyy denotes a 4"
order Runge-Kutta solver for Eq. 13. Thus we abstractly interpret AD to compute precise bounds on
both a%lODESolveNN(kl, k_1,ty, Co, Cag, h,n) and T:ODESolveNN(kl, k_1,ty, Co, Ca, h,n), where
h is the step size and n is the number of time steps.

In Fig. 5a, we plot the point (toyrs — lourss Uother — lother), Where the bounds l,,rs and ugy,s are
with respect to k; and obtained from Pasado and l,;per and ugsper are the respective lower and
upper bounds computed by the other method (regular intervals, regular zonotopes), for each input
configuration and for each method. The red line denotes the identity function y = x, hence any
plotted point that lies above the red line signifies that Pasado’s bounds were tighter, as a point

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

291:22 Jacob Laurel, Siyuan Brant Qian, Gagandeep Singh, Sasa Misailovic

will lie above the line if and only if % > 1. Furthermore, both the x- and y-axes use
logarithmic scales, hence even if points visually appear close together, the difference in precision
may be substantial. The input ranges we use to generate this plot are all the 512 combinations of
ki =348k, k1 =3%8,,Co=1+8¢,,Ca=1%6c,,ty=0,n={810,12,16} and h € {0.025,0.1},
where &, € {0.05,0.1,0.15,0.2}, 5, € {0.1,0.2,0.25,0.3}, 8¢, € {0.1,0.2}, 6c, € {0.1,0.2}, which
are based on the ranges considered in Saltelli et al. [2005].

Fig. 5a shows that in all input configurations, all the points for the baseline approaches lie above
the red line, meaning that Pasado produces the most precise results. In all 512 cases the derivative
bound computed with Pasado is strictly contained inside the bound computed via interval AD,
and likewise in 497/512 cases the bound computed via Pasado is contained strictly inside the
bound computed via zonotope AD (the bounds are incomparable in 15/512 cases). Only 20/512
green points are shown since in the other cases, the interval analysis generates results that are
too over-approximate (> 10%) to be meaningful. The geometric mean of precision improvement
over all green points (comparing Pasado to interval AD) is 60.89 times, and the geometric mean of
precision improvement over all orange points (comparing Pasado to zonotope AD) is 1.65 times.

We next focus on a specific input configuration for finer granularity. For our specific config-
uration we use the following ranges to perform the sensitivity analysis of the Chemical ODE:
ki € [2.95,3.05], k_; € [2.8,3.2], 1 = 0, Cy € [0.9,1.1], C4 € [0.8,1.2], h = 0.025, and n = 16, again
based on the ranges considered in Saltelli et al. [2005]. Fig. 6 illustrates the bounds on these sensi-
tivities for the numerical solution of Eq. 12 with respect to k; and k_;, with the x-axis representing
the time steps and the y-axis representing the sensitivities. For each color, the upper and lower
line segments represent the upper and lower bounds obtained by that method, respectively. We
can see from both figures that Pasado always produce narrower bounds compared to the standard
zonotope analysis. Additionally, within all the 16 time steps, as is shown in the left subfigure
of Fig. 6, Pasado can formally prove the monotonicity of ODESolveyny with respect to k; in this
configuration (monotonically decreasing since the sensitivity is strictly less than 0), while the
zonotope analysis cannot prove the monotonicity after the 12th step.

We measure the performance of the three methods by calculating the average runtimes for

one specific input configuration over 16 time steps, since varying input bounds has negligible
effects on runtimes. The average runtimes for the interval AD and zonotope AD are 0.12 and 81
seconds, respectively. Pasado takes 47 seconds on average, which is faster than zonotope AD - this
improvement directly results from Pasado storing fewer noise symbols, which we found to be the
biggest computational bottleneck of the affapy library.
Climate ODE. The Climate ODE is the same as in the example section and is taken from Kaper
and Engler [2013] and models the global mean temperature through an energy balance model.
In Fig. 5b, we plot the points representing (Uours — lours, Uother — lother) for the derivative of the
numerical solution of Eq. 1 with respect to the initial condition Ty following the same format as
Fig. 5a. The input ranges we use to generate this plot are all the 32 combinations of Ty = 337.5 + 7,
R € {2.65,2.95}, 0 € {342,360+90}, a € {0.35,0.325+0.025}, 0 € {3.402224652x1078,5.103336978x
1078}, n = {8,12} and h € {0.025,0.05}, where &7, € {37.5,62.5}, which are based on realistic
ranges discussed in Walsh [2015].

All of the points for the baseline approaches in Fig. 5b lie above the red line (Pasado), indicating
that Pasado yields more accurate results in all cases, and additionally for all 32 of the configurations,
the derivative bounds computed by Pasado are strictly contained within the bounds computed
via interval AD and zonotope AD. The geometric mean of the precision improvement over all
green points (comparing Pasado to interval AD) is approximately 2.85 times, and the geometric
mean of the precision improvement over all orange points (comparing Pasado to zonotope AD) is

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

Synthesizing Precise Static Analyzers for Automatic Differentiation 291:23

2
10° « Interval

Zonotope

Baseline Interval Width

10° 10! 10° 10° 10° 10° 10!
Pasado Interval Width

Fig. 7. Scatter plots in logarithmic scales comparing the interval widths of the output bounds on the reverse-

mode derivatives of the Black-Scholes solution with respect to K, S, o, 7, and r, from left to right, respectively.

approximately 1.31 times. Additionally, we observe that the benefit gained from Pasado becomes
more pronounced for larger input intervals, as demonstrated by the greater vertical distance
between the data points and the red line as we move further right along the x-axis.

Fig. 3 in Section 2 represents a plot of a specific input configuration and shows the bounds
on the sensitivities of numerical solution of Eq. 1 with respect to the initial condition input Tp,
formatted identically to each subfigure of Fig. 6. The input configuration used for the plot in Fig. 3
is Ty € {275,400}, R € {2.65,2.95}, Q = 342, & = 0.35, o € {3.402224652 x 1078, 5.103336978 X 1078},
h =0.025, and n = 12. Again, Pasado produces the most precise bounds among the three methods.
Within all the 12 iterations, Pasado can show the monotonicity of the numerical solution with
respect to the initial condition Tp.

We measure the performance of the three methods by calculating the average runtimes for one
specific input configuration over 12 time steps, since varying input bounds has negligible effects
on runtimes. The average runtimes for the interval AD, zonotope AD, and Pasado are 0.0044, 0.068,
and 0.25 seconds, respectively.

5.3 Black Scholes

In the next case study, we use our synthesized AD abstractions to compute bounds on the derivatives
of the Black-Scholes solution with respect to the different parameters. The Black-Scholes model is a
solution to a Partial Differential Equation (PDE) modeling financial option values. The parameters
of the Black-Scholes model are volatility o, time 7, strike price K, spot price S and interest rate r. The
derivatives of the Black-Scholes solution with respect to these parameters are commonly known
as the "greeks," and while prior work has computed bounds on the greeks [Vassiliadis et al. 2016],
only the interval domain was used, hence this experiment demonstrates the precision improvement
obtained from using Pasado’s synthesized abstract transformers. Since there are multiple inputs
but only a single output, we elect for (abstract) reverse-mode AD.

For this experiment we compare our approach against both interval and zonotope abstract AD.
We perform the evaluation for different ranges of the parameter values to study how varying the
size of the input intervals affects the precision. The input ranges we use are all the 54 combinations
of K =100 + 8k, S =105+ Js5, 0 =5 £+ 84, T = 0.08219 £+ §;, r = 0.0125 + §,, where 5k € {1,5,10},
d; € {1,5,10}, 85 € {0.5,1, 2}, §; € {0.001,0.01}, &, = 0.001. Furthermore, there are 5 greeks and
54 different configurations, hence there are 270 total derivative bounds computed.

We plot the points (tours — lours, Uother — lother) in Fig. 7 for all the derivatives of the Black-
Scholes solution with respect to the five "greeks," with the same layout as Fig. 5a. As can be seen, in
all cases all points lie above the red line, hence demonstrating that Pasado produces the most precise
results. The bounds computed with Pasado are strictly contained inside the bounds computed
with zonotope AD in 263/270 cases (rest are incomparable). The geometric mean of the precision
improvement over all green points (comparing Pasado to interval AD) is approximately 4.03 times,
and the geometric mean of the precision improvement over all orange points (comparing Pasado to

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

291:24 Jacob Laurel, Siyuan Brant Qian, Gagandeep Singh, Sasa Misailovic

3-Layer FFNN 4-Layer FFNN 5-Layer FFNN FFNNBiG
5100
@
c
o
o)
N
=10
S
a
£
10°
107 107! 107 107! 107 107! 107 107!
Omax Omax Cmax Omax
(a) Average upper bounds on the local Lipschitz constants for the interval AD, zonotope AD, and Pasado.
o 3-Layer FFNN 4-Layer FFNN 5-Layer FFNN FFNNBIG
£ 10.0 7\ VS ™\ Ia
< / 30 / 100 / 150 / \
/
2 / 20 100 ‘
o T / /
O 50 / f 50 /
= 10 / / 50 /
= / /
= Vi / /
o 25 /
g A / v A
5 = 0 == === O
107 107! 107 107! 107 107! 107 107!
Cmax Omax Omax Cmax

(b) Increase in precisions of Pasado over zonotope AD.

Fig. 8. Lipschitz robustness of FFNNs with 3 (far left), 4 (left-center), or 5 (right-center) affine layers and
FFNNBIG (far right) against the haze perturbation on 1000 correctly classified test images. The top row (Fig. 8a)
shows the average upper bounds on the local Lipschitz constant with respect to different ap,qx for the interval
AD, zonotope AD, and Pasado. The bottom row (Fig. 8b) shows the increase in precision of Pasado, computed
as the ratio of the zonotope-bounded Lipschitz constant over the Pasado-bounded Lipschitz constant.

zonotope AD) is approximately 2.81 times. Furthermore, for larger input intervals (further right
along the x-axis) the improvement obtained from Pasado becomes more substantial, as evidenced
by the higher vertical distance of the points above the line.

We measure the runtime performance of each method by calculating the average runtimes across
all input configurations. The average runtimes (per configuration) for the interval AD, zonotope
AD, and Pasado are 0.0015, 0.01, and 0.05 seconds, respectively.

5.4 Lipschitz Robustness of Neural Networks

In this case study, we consider the task of computing the local Lipschitz constant of a neural
network’s output with respect to an adversarial perturbation parameter as in [Laurel et al. 2022a,b].
We study DNNs trained on the MNIST dataset and consider the Haze perturbation given as
pa(xi;) = (1 — a)x; + a, where « represents the amount of haze effects and x; corresponds
to the i input pixel. For the sake of direct comparison, we evaluate on the same range of values
for the perturbation parameter « as in Laurel et al. [2022b].

Fig. 8 shows the results of Lipschitz certification for feed-forward neural networks (FFNNs) with
3, 4, and 5 affine layers. The test accuracies for these three FFNNs are 92.7%, 89.2%, and 86.7%,
respectively. Fig. 8a illustrates the bounds on the Lipschitz constants, where the x-axis represents
the values of a4, and the y-axis represents the average upper bounds on the corresponding
Lipschitz constants (smaller being preferable) for interval AD, zonotope AD, and Pasado. Fig. 8b
exhibits the increase in precision of Pasado over zonotope AD, with the x-axis showing the values
of max and the y-axis showing the ratio of the zonotope-bounded Lipschitz constants over the
Pasado-bounded Lipschitz constants (larger being preferable). Given that the results produced
by zonotope AD and Pasado are orders of magnitude smaller than those from interval AD for
®max > 1072, we employ logarithmic scales for both the x- and the y-axes to enable a more visually
clear separation between the curves representing zonotope AD and Pasado.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

Synthesizing Precise Static Analyzers for Automatic Differentiation 291:25

As shown in Fig. 8, there is a significant improvement in precision when using Pasado in
comparison to using the interval AD or zonotope AD. In particular, for sufficiently large values of
®max, specifically where a,qx > 1072, the bounds on the Lipschitz constants for 5-layer network
that we compute are between 4 — 100X smaller than the bounds computed by the zonotope AD.
In contrast, for smaller values of &gy, particularly when a,qx < 1073, Pasado and zonotope AD
produce Lipschitz constants of nearly identical magnitudes.

We measure the performance of the three methods by calculating the average runtime across all
input configurations used to generate the plots. For the 3-layer network, the average runtimes for
the interval AD, zonotope AD, and Pasado are 0.00338, 0.00210, and 0.0636 seconds, respectively.
For the 4-layer network, the average runtimes are 0.00383, 0.00352, and 0.0969 seconds, respectively.
For the 5-layer network, the average runtimes are 0.00469, 0.00533, and 0.135 seconds, respectively.

The far right subfigure in Fig. 8 shows that Pasado is scalable to a larger FFNN, specifically the
FFNNBIG architecture from Singh et al. [2019b]. The test accuracy for our FFNNBIG instance is
95.8%. As in previous plots, both the x- and the y-axes use logarithmic scales. Compared to the
zonotope analysis, Pasado can be up to 182X more precise and the local Lipschitz constants can be
up to 2.01 x 10° smaller. The average runtimes for interval AD, Zonotope AD and Pasado on the
FFNNBIG network are 0.0542, 0.361, and 1.49 seconds, respectively.

To further illustrate the scalability and versatility of Pasado, we also evaluate it on three convolu-
tional neural networks (CNNs), namely ConvSmALL, CONVMED, and CoNVBIG, as defined in Singh
et al. [2018], which are state-of-the-art CNN benchmarks for verification. When the convolutional
layers of these networks are unrolled into an equivalent affine layer, the corresponding number of
intermediate neurons is more than 25, 000, which means Pasado’s chain rule abstract transformer
will be called that number of times, hence these benchmarks highlight Pasado’s scalability.

Fig. 9 presents the results of Lipschitz robustness analysis for ConvSmaLL, CONVMED, and
ConvBIG. The test accuracies for these three CNNs are 98.5%, 99.2%, and 98.9%, respectively. As
in previous plots, we use logarithmic scales for clarity. Across all three CNNs, Pasado generates
much more precise bounds. Notably, in the CoNvB1G network, Pasado can offer up to 2750x greater
precision, and the local Lipschitz constants can be up to 1.99 x 10! smaller. For CONVSMALL,
the average runtimes for the interval analysis, zonotope analysis, and Pasado are 3.38, 3.64, and
4.70 seconds, respectively. For CONVMED, the average runtimes are 5.11, 5.70, and 7.27 seconds,
respectively. For CONVBIG, the average runtimes are 115, 212, and 191 seconds, respectively.

In summary, we observe that as the network architectures become larger, the precision improve-
ments offered by Pasado become more pronounced. Furthermore, in the largest convolutional
benchmark, ConvBIG, the runtime of Pasado was actually faster than the standard zonotope AD
analysis baseline. This behavior is the consequence of Pasado generating fewer noise symbols
compared to standard zonotope transformers, similar to the observation in the ODE benchmarks
of Section 5.2. Hence, for sufficiently large benchmarks (like CNNs), the computational savings
obtained by propagating fewer noise symbols (as Pasado does) outweigh the costs (e.g. due to the
linear regression) associated with Pasado’s more precise abstract transformers.

5.5 Monotonicity Analysis of an Adult Income Network

In this case study, we conduct a monotonicity analysis on a multilayer perceptron (MLP) trained
on the Adult dataset [Becker and Kohavi 1996]. Monotonocity has been shown to be highly
desirable in order to ensure fairness [Shi et al. 2022; Sivaraman et al. 2020]. Our MLP takes
87 input features (where 81 of the 87 features result from one-hot encodings of the original
dataset’s categorical variables), passes these features through two hidden layers (each containing 10
neurons and applying tanh activation), and outputs a single binary classification score predicting
the income level. Our goal is to verify the monotonicity (both increasing and decreasing) of

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

291:26 Jacob Laurel, Siyuan Brant Qian, Gagandeep Singh, Sasa Misailovic

CONVSMALL CoNvMED ConvBic

10

10°

*"" _e— Zonotope
Interval

3

0 + pasado 0

Lipschitz Constant

*
0.0632 0.1125 0.2000 0.3557 0.6325 0.0632 0.1125 0.2000 0.3557 0.6325 0.0632 0.1125 0.2000 0.3557 0.6325

Xmax Amax ®max
(a) Average upper bounds on the local Lipschitz constants for the interval AD, zonotope AD, and Pasado.

CONVSMALL CoNVMED ConvBic

@

3
@
S

2000

N
3

1500

w
s

1000

I
S

500

Lipschitz Constant Ratio

S5

0
0.0632 0.1125 0.2000 0.3557 0.6325 0.0632 0.1125 0.2000 0.3557 0.6325 0.0632 0.1125 0.2000 0.3557 0.6325
Qmax Xmax Qmax

(b) Increase in precisions of Pasado over zonotope AD.
Fig. 9. Lipschitz robustness of CoNnvSMALL (left), CoNvMED (center), and ConvBIG (right) against the haze
perturbation on 30 correctly classified test-set images. The top row (Fig. 9a) presents the average upper
bounds on the local Lipschitz constant with respect to different amqx for the interval AD, zonotope AD, and
Pasado. The bottom row (Fig. 9b) presents the increase in precision of the Pasado domain, computed as the
ratio of the zonotope-bounded Lipschitz constant over the Pasado-bounded Lipschitz constant.

the MLP’s output with respect to 5 continuous input features which are: Age, Education-Num,
Capital Gain, Capital Loss, and Hours per week. Whereas prior work [Shi et al. 2022] varied one
feature at a time while holding the value of all other features as fixed, our experiments allow
all 5 of the aforementioned continuous features to simultaneously vary within interval bounds.
Hence we abstractly interpret the continuous features with a 5D Le,-ball, with a radius € € [0, 1],
while holding all the remaining features as fixed. Since training data is normalized to have zero
mean and unit variance, passing a 5D Le-ball with ¢ = 0.4 through the MLP is equivalent to
exploring an infinite set of inputs that satisfy Age € [33.2,44.1], Education-Num € [9.05,11.1],
Capital Gain € [-1900,4060], Capital Loss € [—73.7,249], and Hours per week € [35.5,45.4]. For
this analysis, we used Pasado’s reverse-mode AD abstract transformers. Hence in a single (abstract)
pass, Pasado computes bounds on the partial derivatives of the output with respect to each of the
five input features.

For each Ly-ball radius €, Pasado abstractly computes 500
bounds on the five partial derivatives when the origi-
nal input is perturbed by the Ly-ball for 100 different
inputs, computing 500 partial derivative bounds in to-
tal. In addition, we compare Pasado against interval AD
and zonotope AD. For a given input L-ball, to verify
monotonicity with respect to a chosen feature, the partial
derivative bound with respect to that feature should prov-
ably exclude 0, meaning the interval should be strictly 0.0 02 04 06 0.8
positive (monotonically increasing) or strictly negative Le-ball radius e
(monotonically decreasing). This condition ensures that Fig. 10. Counts of verifiably monotonic fea-
the MLP is monotonic with respect to that feature for all ~tures of Adult MLP over 100 test-set inputs.

—— Interval
—+— Zonotope

—=— Pasado

Verifiably Monotonic Features

o

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

Synthesizing Precise Static Analyzers for Automatic Differentiation 291:27

input points in the given Le,-ball. Hence in Fig. 10, we show the total number of partial derivative
bounds that exclude 0 over 100 test inputs, for different-sized Lo,-balls.

Fig. 10 shows that the ability of interval AD to prove monotonicity sharply decreases for € > 0.05
due to the inherent imprecision of the interval domain. For small € such as 0 < € < 0.2, zonotope
AD and Pasado produce similar counts, meaning both can prove monotonicity. However, their
respective performances diverge as € increases. When 0.2 < € < 0.6, the counts for zonotope AD
decline rapidly to nearly zero, whereas the counts for Pasado remain high. Hence, in these cases
Pasado can prove monotonicity in significantly more instances. For € > 0.6, all three analyses
struggle to prove monotonicity for most continuous input features. The average runtimes for the
interval AD, zonotope AD, and Pasado are 0.079, 12, and 39 seconds, respectively. In summary,
Pasado is able to prove the most monotonicity specifications across all inputs.

6 RELATED WORK

Composite and Synthesized Abstractions. The idea of abstracting a composite numeric expres-
sion all at once (as Pasado does) to obtain better precision than sub-optimally composing individual
abstract transformers for nonlinear primitives has emerged in the literature. While beneficial for
improving precision, abstracting composite expressions is challenging because soundly bounding a
composite expression typically involves solving a nonconvex, multivariable optimization problem.
As discussed in Fryazinov et al. [2010], these problems typically cannot be solved by hand due to
the need to consider interior critical points (as Pasado does). Hence recent works [Ko et al. 2019;
Kochdumper et al. 2022; Paulsen and Wang 2022a,b; Ryou et al. 2021; Singh et al. 2019a] have tried
to synthesize precise composite abstractions by solving an optimization problem (using gradient
methods or SMT solvers). However, none of these works target AD, thus none of these techniques
can leverage the structure of an AD computation as Pasado does. Further, unlike [Paulsen and
Wang 2022a,b] we do not use an SMT solver, as we can solve our optimization problems directly.

Abstract Interpretation of AD. Abstract interpretation has also been applied to AD [Jordan
and Dimakis 2021; Laurel et al. 2022a,b; Misra et al. 2023; Vassiliadis et al. 2016], however, all
of these works use either the standard interval domain or standard zonotope domain abstract
transformers, and compose them naively instead of jointly abstracting multiple AD operations
as we do. Furthermore, [Jordan and Dimakis 2021; Laurel et al. 2022a; Vassiliadis et al. 2016] are
only formalized for a single abstract domain and thus cannot immediately produce general static
analyzers for a more general set of abstract domains as Pasado can. While Laurel et al. [2022b] can
be instantiated with different abstract domains, that work uses standard abstract transformers and
thus cannot dynamically synthesize new abstractions and only supports forward mode AD.

7 CONCLUSION

We present Pasado, the first technique for synthesizing precise static analyzers tailored specifically
to Automatic Differentiation. We show the generality of Pasado by instantiating it for the Product
Rule, Quotient Rule and Chain Rule patterns, with the latter supporting multiple different non-linear
functions. Pasado’s generality also extends to multiple different abstract domains and both forward-
mode and reverse-mode AD. Our evaluation on multiple challenging scenarios from machine
learning and scientific computing shows that Pasado significantly improves precision compared to
prior techniques while simultaneously offering scalability to large computations including CNNs.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their comments. This research was supported in part by
NSF Grants No. CCF-1846354, CCF-1956374, CCF-2008883, CNS-2148583, CCF-2217144, and CCF-
2238079, a gift from Meta, Google research scholar award, and a Sloan UCEM Graduate Scholarship.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

291:28 Jacob Laurel, Siyuan Brant Qian, Gagandeep Singh, Sasa Misailovic

DATA-AVAILABILITY STATEMENT

In addition to the github repo https://github.com/uiuc-arc/Pasado, our software and documentation
are also available on Zenodo [Laurel et al. 2023b].

REFERENCES

Assalé Adjé, Stéphane Gaubert, and Eric Goubault. 2010. Coupling Policy Iteration with Semi-definite Relaxation to Compute
Accurate Numerical Invariants in Static Analysis. In European Symposium on Programming.

Sai Praveen Bangaru, Jesse Michel, Kevin Mu, Gilbert Bernstein, Tzu-Mao Li, and Jonathan Ragan-Kelley. 2021. Systematically
differentiating parametric discontinuities. ACM Transactions on Graphics (TOG) 40, 4 (2021).

Barry Becker and Ronny Kohavi. 1996. Adult. UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C5XW20.

Claus Bendtsen and Ole Stauning. 1996. FADBAD, a flexible C++ package for automatic differentiation. (1996).

Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages.

Patrick Cousot and Nicolas Halbwachs. 1978. Automatic discovery of linear restraints among variables of a program. In
Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on Principles of programming languages.

Tianyu Du, Shouling Ji, Lujia Shen, Yao Zhang, Jinfeng Li, Jie Shi, Chengfang Fang, Jianwei Yin, Raheem Beyah, and Ting
Wang. 2021. Cert-RNN: Towards Certifying the Robustness of Recurrent Neural Networks.. In CCS.

Oleg Fryazinov, Alexander Pasko, and Peter Comninos. 2010. Fast reliable interrogation of procedurally defined implicit
surfaces using extended revised affine arithmetic. Computers & Graphics 34, 6 (2010).

Khalil Ghorbal, Eric Goubault, and Sylvie Putot. 2009. The zonotope abstract domain taylor1+. In International Conference
on Computer Aided Verification. 627-633.

Andreas Griewank and Andrea Walther. 2008. Evaluating derivatives: principles and techniques of algorithmic differentiation.
SIAM.

Akhil Gupta, Lavanya Marla, Ruoyu Sun, Naman Shukla, and Arinbjérn Kolbeinsson. 2021. Pender: Incorporating shape
constraints via penalized derivatives. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35.

Thibault Helaire et al. 2021. affapy library. (2021).

Paul D Hovland, Boyana Norris, Michelle Mills Strout, Sanjukta Bhowmick, and Jean Utke. 2005. Sensitivity analysis and
design optimization through automatic differentiation. In Journal of Physics: Conference Series.

Jan Hiickelheim and Laurent Hascoét. 2022. Automatic differentiation of parallel loops with formal methods. In Proceedings
of the 51st International Conference on Parallel Processing.

Jan Hiickelheim, Ziqing Luo, Sri Hari Krishna Narayanan, Stephen Siegel, and Paul D Hovland. 2018. Verifying Properties
of Differentiable Programs. In International Static Analysis Symposium. 205-222.

Matt Jordan and Alex Dimakis. 2021. Provable Lipschitz certification for generative models. In International Conference on
Machine Learning. PMLR, 5118-5126.

Matt Jordan and Alexandros G Dimakis. 2020. Exactly computing the local lipschitz constant of relu networks. Advances in
Neural Information Processing Systems (2020).

Hans Kaper and Hans Engler. 2013. Mathematics and climate. SIAM.

Andrej Karpathy et al. 2020. micrograd library. (2020).

John Kitchin. 2018. A differentiable ODE integrator for sensitivity analysis. (2018).

Ching-Yun Ko, Zhaoyang Lyu, Lily Weng, Luca Daniel, Ngai Wong, and Dahua Lin. 2019. POPQORN: Quantifying robustness
of recurrent neural networks. In International Conference on Machine Learning. PMLR, 3468-3477.

Niklas Kochdumper, Christian Schilling, Matthias Althoff, and Stanley Bak. 2022. Open-and closed-loop neural network
verification using polynomial zonotopes. arXiv preprint arXiv:2207.02715 (2022).

Jacob Laurel, Siyuan Brant Qian, Gagandeep Singh, and Sasa Misailovic. 2023a. Appendix for Synthesizing Precise Static
Analyzers for Automatic Differentiation. (2023). https://js11994.github.io/papers/OOPSLA2023_appendix.pdf

Jacob Laurel, Siyuan Brant Qian, Gagandeep Singh, and Sasa Misailovic. 2023b. Artifact for Synthesizing Precise Static
Analyzers for Automatic Differentiation. (2023). https://doi.org/10.5281/zenodo.8332723

Jacob Laurel, Rem Yang, Gagandeep Singh, and Sasa Misailovic. 2022a. A Dual Number Abstraction for Static Analysis of
Clarke Jacobians. Proceedings of the ACM on Programming Languages POPL (2022), 1-30.

Jacob Laurel, Rem Yang, Shubham Ugare, Robert Nagel, Gagandeep Singh, and Sasa Misailovic. 2022b. A general construction
for abstract interpretation of higher-order automatic differentiation. Proceedings of the ACM on Programming Languages
6, OOPSLA2 (2022), 1007-1035.

Samuel Lerman, Charles Venuto, Henry Kautz, and Chenliang Xu. 2021. Explaining Local, Global, And Higher-Order
Interactions In Deep Learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 1224-1233.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

https://github.com/uiuc-arc/Pasado
https://jsl1994.github.io/papers/ OOPSLA2023_appendix.pdf
https://doi.org/10.5281/zenodo.8332723

Synthesizing Precise Static Analyzers for Automatic Differentiation 291:29

Yingbo Ma, Vaibhav Dixit, Michael J Innes, Xingjian Guo, and Chris Rackauckas. 2021. A comparison of automatic
differentiation and continuous sensitivity analysis for derivatives of differential equation solutions. In 2021 IEEE High
Performance Extreme Computing Conference (HPEC). IEEE, 1-9.

Azamat Mametjanov, Boyana Norris, Xiaoyan Zeng, Beth Drewniak, Jean Utke, Mihai Anitescu, and Paul Hovland. 2012.
Applying automatic differentiation to the Community Land Model. In Recent Advances in Algorithmic Differentiation.

Antoine Miné. 2004. Relational abstract domains for the detection of floating-point run-time errors. In European Symposium
on Programming. 3-17.

Ashitabh Misra, Jacob Laurel, and Sasa Misailovic. 2023. ViX: Analysis-driven Compiler for Efficient Low-Precision
Variational Inference. In Design, Automation & Test in Europe Conference & Exhibition (DATE).

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin,
Natalia Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems 32 (2019).

Brandon Paulsen and Chao Wang. 2022a. Example Guided Synthesis of Linear Approximations for Neural Network
Verification. In International Conference on Computer Aided Verification.

Brandon Paulsen and Chao Wang. 2022b. LinSyn: Synthesizing Tight Linear Bounds for Arbitrary Neural Network Activation
Functions. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. 357-376.
Harrison Rosenberg, Brian Tang, Kassem Fawaz, and Somesh Jha. 2023. Fairness properties of face recognition and

obfuscation systems. In 32nd USENIX Security Symposium (USENILX Security 23).

Wonryong Ryou, Jiayu Chen, Mislav Balunovic, Gagandeep Singh, Andrei Dan, and Martin Vechev. 2021. Scalable polyhedral
verification of recurrent neural networks. In International Conference on Computer Aided Verification. 225-248.

Andrea Saltelli, Marco Ratto, Stefano Tarantola, and Francesca Campolongo. 2005. Sensitivity analysis for chemical models.
Chemical reviews 105, 7 (2005), 2811-2828.

Zhouxing Shi, Yihan Wang, Huan Zhang, Zico Kolter, and Cho-Jui Hsieh. 2022. Efficiently Computing Local Lipschitz
Constants of Neural Networks via Bound Propagation. In Advances in Neural Information Processing Systems.

Zhouxing Shi, Huan Zhang, Kai-Wei Chang, Minlie Huang, and Cho-Jui Hsieh. 2020. Robustness Verification for Transformers.
In ICLR.

Gagandeep Singh, Rupanshu Ganvir, Markus Piischel, and Martin Vechev. 2019a. Beyond the single neuron convex barrier
for neural network certification. Advances in Neural Information Processing Systems 32 (2019).

Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Piischel, and Martin T Vechev. 2018. Fast and Effective Robustness
Certification. NeurIPS 1, 4 (2018), 6.

Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev. 2019b. An abstract domain for certifying neural
networks. Proceedings of the ACM on Programming Languages 3, POPL (2019), 1-30.

Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev. 2019c. Boosting robustness certification of neural
networks. In International conference on learning representations.

Gagandeep Singh, Markus Piischel, and Martin Vechev. 2017. Fast polyhedra abstract domain. In Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages.

Aishwarya Sivaraman, Golnoosh Farnadi, Todd Millstein, and Guy Van den Broeck. 2020. Counterexample-guided learning
of monotonic neural networks. Neural Information Processing Systems (2020).

Jorge Stolfi and Luiz Henrique De Figueiredo. 1997. Self-validated numerical methods and applications. In Monograph for
21st Brazilian Mathematics Colloquium, IMPA, Rio de Janeiro. Citeseer, Vol. 5. Citeseer.

James Paul Turner. 2020. Analysing and Bounding Numerical Error in Spiking Neural Network Simulations. Ph. D. Dissertation.
University of Sussex.

Vassilis Vassiliadis, Jan Riehme, Jens Deussen, Konstantinos Parasyris, Christos D Antonopoulos, Nikolaos Bellas, Spyros
Lalis, and Uwe Naumann. 2016. Towards automatic significance analysis for approximate computing. In 2016 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO). IEEE.

James Walsh. 2015. Climate modeling in differential equations. The UMAP Journal 36, 4 (2015), 325-363.

Yu Wang, Qitong Gao, and Miroslav Pajic. 2022. Learning Monotone Dynamics by Neural Networks. In 2022 American
Control Conference (ACC). IEEE, 1485-1490.

Yuting Yang, Connelly Barnes, Andrew Adams, and Adam Finkelstein. 2022. A §: autodiff for discontinuous programs-applied
to shaders. ACM Transactions on Graphics (TOG) 41, 4 (2022).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

291:30 Jacob Laurel, Siyuan Brant Qian, Gagandeep Singh, Sasa Misailovic

A APPENDIX
A.1 Proof of Lemma A.1
We first prove the following helpful lemma:

LEMMA A.1. Let f(x) : R™ — R be twice differentiable x € R™. If Hessian(f, x) is indeterminant
then so is Hessian(—f, x)

Proor. If Hessian(f, x) is indeterminant then it has both positive and negative eigenvalues. The
eigenvalues of Hessian(—f, x) will just be —1 times each eigenvalue of Hessian(f, x), hence there
will still be both positive and negative eigenvalues meaning Hessian(—f, x) is indeterminant. O

A.2 Full Chain Rule Proof for Intervals

The correctness of the interval bounds also follows nearly identically as the proof for zonotopes,
albeit there is a single edge case whenever 3x* € [L,uyx] : f”(x*) = 0 and f'(x*) = 0 as the
Hessian test would be inconclusive (since its determinant would be 0), but unlike with zonotopes,
we cannot ensure that the gradient at x* is non-zero (as we did by enforcing A # 0) since there
could be x* such that both f’"(x*) = f””(x*) = 0. If the function f is such that there is never any
shared root of both f” and f”’, the proof is complete as this will never happen (this is the case for
exp, log, o, tanh) but for functions like x* or x> it is possibility. However any such x* will be a root
of f”(x) - y for any value of y, hence we can call the same verified root solver with A =0,y = [,
to obtain the x* . Further, f'(x*) = f/(x*) = 0 implies f’(x*) - y = 0 for all y, hence checking at
(x*,1y) is sufficient, and this point is already included in the points we evaluate.

A.3 Full Product Rule Proof for Intervals

Unlike in the case of the Chain rule where some of the cases depended on ensuring the gradients
were nonzero, which had to be handled differently for zonotopes vs. intervals, the entire technique
for product rule relies only on the Hessian information which will be the same for intervals in
order to compute min(x; - y2) + (xz - y1) and max(x; - y2) + (x2 - y1) since Hessian((x1 - y2) + (x2 -
y1) — (Ax1 + By; + Cx; + Dy, + E)) is the same as Hessian((x; - y2) + (x2 - y1)). Thus for computing
the bounds on the zonotope error symbol and computing the precise interval lower and upper
bounds, it suffices to simply check the 2* corners.

A.4 Full Quotient Rule Proof for Zonotopes

Having proven that the 4D Hessian is indeterminant at every point, this ensures that the optimal
values must occur on the boundaries. We will repeat this idea for the lower dimensional subproblems
and show that when restricted to the 3 dimensional boundaries, they also do not have any interior
extrema, thus the optimal value must occur on their boundaries (the boundary of the boundaries of
the 4-cube).

We now detail the rest of the cases for the quotient rule for the Zonotope case

A.4.1 3D Subproblems.

Proor. Case 1) Fixed y; to either [y, or uy, - we denote the fixed constant value of y, as «,,
hence x, € {ly,,uy,}. In this case the first derivatives are:

9 _Kw
8x1 x§
a1
Ear

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

Synthesizing Precise Static Analyzers for Automatic Differentiation 291:31

9 2X1Ky, — Y1X3

- 3
8x2 X5

If ky, = 0, then a%l # 0 since by requirement A # 0, and x; # 0, thus there is no critical point
)
9x1° 9y1’ %z
If ky, # 0 then because x; # 0, A, B # 0, we can ensure that a—fﬁ # 0 by requiring the condition

since the gradient () cannot be the all-zeros vector.

on A, B that % # ky,. Since for any x; € [Ly,, uy,] this guarantees that %2 —Aand xiz — B cannot
2

both be zero. Thus why we require both % # ly, and % # Uy,.
Case 2) Fixed x; to either I, or u,, - we denote the fixed constant value of x; as ky,. In this case
the first derivatives are:

9 _¥_,
8x1 KT)Z(2
9 _1
ayl Kx,
9 _x_p
Yo KL,

It sufficis to require that % # Kx,, as this guarantees that aiyl # 0, thus the gradient cannot be the
all-zeros vector.
Case 3) Fixed y, to either I, or u,, - we denote the fixed constant value of y; as x,, hence
Ky, € {ly,,uy, }. In this case the first derivatives are:
aJ _ —Y2

2
6x1 x2

0 B 2X1Yg — Ky, X2

8x2 xg
2 ™,
Yy x2?

For this case we will show that any hypothetical root of the above system of equations (which is
what is needed for a critical point) is necessarily a saddle point.

Case 3.1) ky, # 0. If 8%1 = 8%2 = aiyz = 0 then any critical point will be a root of the above
system of equations, furthermore such a root (x7, x;,y;) would be of the form: (=Dx; 2 x5, —Ax, 3,
as that would be needed to ensure that 3%1 = y% = 0. Plugging such a hypothetical root into 3%2 =0
implies that x; must also be a root of

2ADX* — Ky, X5
: %3 - c=0
)
But since x;, must be nonzero, then equivalently it must be a root of:
C K
X;3 _ x;Z _
2AD 2AD
Furthermore the Hessian determinant is —Zmyz;#, however the Hessian has 0 in its upper

2
left corner, meaning the Hessian is neither positive definite nor negative definite (Sylvester’s
criteria). Thus if the Hessian determinant is non-zero, then the Hessian is necessarily indeterminant
meaning the hypothetical root would be a saddle point. Thus we simply need to show that at

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

291:32 Jacob Laurel, Siyuan Brant Qian, Gagandeep Singh, Sasa Misailovic

such a hypothetical root (-Dx; 2, x,, —Ax; 2), the Hessian determinant is non-zero. The Hessian
determinant is non-zero provided that the numerator (x;y; + k4, x2) # 0, However computing this
numerator at our hypothetical root gives:

(AD(x3)* + Ky, x3)
Which is zero if x; = 0 (which is not possible) or:

3| Ky
AD

*_
Xy =

Thus we just need to ensure that 4] _:gl is not also a root of x;‘3 - %xé‘z - ;fb = 0. We can
ensure this by requiring that
[Ky —3Ky,
AD 2C
Case 3.2) x, = 0. In this case it is still true that any root would be of the form (—Dx’z“z, x;, —Axg‘z),
further because x,, = 0, x; must necessarily be

. C
Xy = ——
2AD
However, as before the Hessian has a 0 in the upper left corner meaning it is not positive definite or

. . . . 2x1Y2 . : C 2 _C C \2
negative definite, furthermore the determinant is — ==, which at the point (=D (5:5)% 5xm5> —Alz5p)7)

2
is non-zero meaning the Hessian is indeterminant

It is worth noting that the Reverse mode version of the quotient rule is an instance of this case.
Case 4) Fixed x; to either L, or u,, - we denote the fixed constant value of x; as ky,. In this case
the first derivatives are:

o 1
WY X
9 _ 2Kx1y23—y1xz _c

axz xZ

0 Ky

dyz x°
If kx, = 0, then aiyz = —-D and D # 0, hence it is impossible for there to be an extrema. If x, # 0,
then it suffices to require that xy, # ;\—?. This is because xiz -B=0= %} — D implies that B? = ;—D.

2 X1

Hence by the contrapositive xiz -B=0= %} — D cannot have been true. O

2

A.4.2 2D Subproblems. Here we show that when solving for the optimal values along the boundary
of the boundary, we can still ensure that there are no interior critical points, and thus all local
extrema must occur on the boundary of the boundary of the boundary.
(2 y)—(x1-y2)
X

(Axy + Byy + Cx; + Dy, + E) becomes linear in both dimensions, and the optimal values will occur
at the corner points and hence there are no interior critical points.

Case 2) Fixed y1, y2 to ky, and k, respectively. The 2D Hessian determinant in this 2D subproblem

Proor. Case 1) Fixed x3, y to ky, and k, respectively. In this case the function

—4x?
is x’iyz which is negative provided k,, # 0. Hence if x,, # 0 any interior point is a saddle. If
2

Ky, = 0 then aixl = —A # 0, hence there are no interior critical points to begin with.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

Synthesizing Precise Static Analyzers for Automatic Differentiation 291:33

Case 3) Fixed y;, x; to xy, and ky, respectively. In this case the 2D Hessian determinant is ;—41

2
which is always strictly negative, hence any potential critical point would necessarily be a saddle
point and thus not a local extrema.

Case 4) Fixed x1, y2 to ky, and ky, respectively. In this case the 2D Hessian determinant is also —

which is always strictly negative, hence any potential critical point would necessarily be a saddle
point and thus not a local extrema.

Case 5) Fixed x1, x; to ky, and Ky, respectively. In this case the function W — (Ax; +

2
By; + Cx3 + Dy, + E) becomes linear in both dimensions, and the optimal values will occur at the
corner points and hence there are no interior critical points. Case 6) Fixed x1, y; to ky, and Ky,
2

-4
xle which is negative provided k,, # 0 hence
2

any interior critical point is necessarily a saddle point. If k., = 0, then W = —D # 0, thus there is

no critical point to begin with. O

respectively. In this case the Hessian determinant is

A.4.3 1D Subproblems.

Proor. Case 1) Fix every variable to its lower or upper bounds except x;. In this case the function
becomes linear and thus the extrema will occur at either x; = I, or x1 = uy,

Case 2) Fix every variable to its lower or upper bounds except y;. In this case the function still is
linear. and thus the extrema will occur at either y; = I, or y; = uy,

Case 3) Fixed every variable to its lower or upper bounds except x,. In this case the function is not
linear hence we have to solve for critical points, however thankfully this is now only a univariate

_ 2Kx Kyy —Ky; X2

problem. We have to solve for x; € [ly,, uy,] such that % = — C = 0. Hence we must

solve the 3rd degree polynomial Cx; + Ky, x, — 2Ky Ky, = 0. However because ky,, ky,, Ky, €ach
could be the respective lower or upper bounds, this means we must actually solve 8 versions of this
3rd degree (univariate) polynomial. However this can still easily be done analytically, and thus we
would check if each of the 8 equations has a root in [Iy,, uy,]

Case 4) Fix every variable to its lower or upper bounds except y,. In this case the function still is
linear and thus the extrema will occur at either y, = [, or y; = uy, O

A.4.4 0D Subproblems. We just enumerate over all 2¢ corners: (x1, y1, x2, y2) € {Lx,, tx, IX Ly, uy, X
{ZX23 uXZ} X {lyzs uyz}

A.5 Full Quotient Rule Proof for Intervals

We now detail the rest of the cases for the quotient rule for the Interval case

A.5.1 3D Subproblems.

Proor. Case 1) Fixed y, to either [, or u,, - we denote the fixed constant value of y, as «y,,
hence x, € {ly,,uy,}. In this case the first derivatives are:

9 _ Ky
a 1
o x

i _ 2x11<y2 - Y1X2
0% x3

2
Since the range [Ly,, uy,] excludes zero, this ensures that aiyl = xiz is never zero

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

291:34 Jacob Laurel, Siyuan Brant Qian, Gagandeep Singh, Sasa Misailovic

Case 2) Fixed x; to either I, or uy, - we denote the fixed constant value of x; as ky,. In this case
the first derivatives are:

7} _ Y

)

8x1 sz

d 1

ayl Kx,

0 X1
EY

ayz KXZ

Since the range [l,, uy,] excludes zero, this ensures «y, # 0, hence % = L is never zero
X2

Case 3) Fixed y; to either I, or u,, - we denote the fixed constant value of y; as k,, hence
Ky, € {ly,,uy, }. In this case the first derivatives are:

9 _T%
oxy xZ

) _ 2x1Y2 — Ky, X2

6x2 h xg
0 _ —X1
dyz x5
Case 3.1) ky, # 0. Since x; # 0, the onlyway for == 8x1 = aiyz = a_ =0isifx; =y, =0and x,, =0,
hence if k # 0, then it is not possible for 5Z- to be zero.

Case 3.2 ky, = 0. In this case if [L, uy,] and [ly,, uy,] both include 0, then we could have a critical
point that the Hessian test cannot immediately rule out. However the value of the function at this
critical point is always 0, hence it suffices to add a single additional point (0) to the finite list of
points to check

Case 4) Fixed x; to either [, or u,, - we denote the fixed constant value of x; as ky,. In this case
the first derivatives are:

o 1
Yy x
0 2Kx Y2 —Y1X2
oy x3
ad _ Ky
a x?
Since the range [Iy,, uy,] excludes zero, this ensures that aiy’l = x% is never zero. O

A.5.2 2D Subproblems.

Proor. Case 1) Fixed x3, y, to ky, and k, respectively. In this case the function (xzyl)x#

2
becomes linear in both dimensions, and the optimal values (both min and max) will occur at the
corner points and hence there are no interior critical points.

Case 2) Fixed y1, y, to ky;, and k, respectively. The 2D Hessian determinant in this 2D subproblem
2

is — which is negative provided x,, # 0. Hence if k,, # 0 any interior point is a saddle. If
2

ky, = 0 then the function (Jle)xw becomes , hence % ==

Kyl #0.If xy, and xy, = 0, then the function is everywhere 0, whlch will caught when we check
corner points.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

Synthesizing Precise Static Analyzers for Automatic Differentiation 291:35

Case 3) Fixed y;, x; to xy, and ky, respectively. In this case the 2D Hessian determinant is ;—41

2
which is always strictly negative, hence any potential critical point would necessarily be a saddle
point and thus not a local extrema.

Case 4) Fixed x1, y2 to ky, and ky, respectively. In this case the 2D Hessian determinant is also —

which is always strictly negative, hence any potential critical point would necessarily be a saddle
point and thus not a local extrema.
Case 5) Fixed x1, x3 to ky, and k, respectively. In this case the function (xzyl)x# becomes

2
linear in both dimensions, and the optimal values will occur at the corner points and hence there

are no interior critical points.

2
X1

Case 6) Fixed x1, y; to Ky, and k, respectively. In this case the Hessian determinant is -

2
which is negative provided x,, # 0 hence any interior critical point is necessarily a saddle point. If

Ky, = 0, then the function w becomes , hence W = —
Kyl #0.Ifxy, and k, = 0, then the function is everywhere 0, Wthh will caught when we check
corner points. O

A.5.3 1D Subproblems.

Proor. Case 1) Fix every variable to its lower or upper bounds except x;. In this case the function
becomes linear and thus the extrema will occur at either x; = I, or x; = uy,

Case 2) Fix every variable to its lower or upper bounds except y;. In this case the function still is
linear. and thus the extrema will occur at either y; = I, or y; = uy,

Case 3) Fixed every variable to its lower or upper bounds except x,. In this case the function is not
linear hence we have to solve for critical points, however thankfully this is now only a univariate

_ 2Kx Kyy —Kyy X2
= 3

problem. We have to solve for x; € [ly,, uy,] such that ai = 0. Hence we must solve

x2

2Kx; Ky, . 2Kx; Ky,
———*, we must check if e € [L,, ux,],

2Ky, Ky, — Ky, X2 = 0. Hence for each possible root x; =

and if so we will need to evaluate the function

wyl);# at said critical point. We keep in mind

2
that there are really 8 versions of this equation that we must resolve.
Case 4) Fix every variable to its lower or upper bounds except y,. In this case the function still is
linear and thus the extrema will occur at either y, = [, or yz = uy, O

A.5.4 0D Subproblems. We just enumerate over all 2* corners: (x1, y1, X2, Y2) € {ly,, s, }}X{ly,, iy, } X
{le, uxz} X {lyz’ uyz}

Received 2023-04-14; accepted 2023-08-27

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 291. Publication date: October 2023.

	Abstract
	1 Introduction
	2 Example
	3 Preliminaries
	3.1 Automatic Differentiation Implementation
	3.2 Abstract Interpretation

	4 Synthesizing Precise Static Analyzers
	4.1 Chain Rule Synthesized Transformer
	4.2 Product Rule Synthesized Transformer
	4.3 Quotient Rule Synthesized Transformer
	4.4 Soundness
	4.5 Precision
	4.6 Generality

	5 Case Studies
	5.1 Methodology
	5.2 Robust Sensitivity Analysis of Ordinary Differential Equations
	5.3 Black Scholes
	5.4 Lipschitz Robustness of Neural Networks
	5.5 Monotonicity Analysis of an Adult Income Network

	6 Related Work
	7 Conclusion
	References
	A Appendix
	A.1 Proof of Lemma A.1
	A.2 Full Chain Rule Proof for Intervals
	A.3 Full Product Rule Proof for Intervals
	A.4 Full Quotient Rule Proof for Zonotopes
	A.5 Full Quotient Rule Proof for Intervals

