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Abstract

Let K 7(3 ) denote the complete 3-uniform hypergraph on m vertices and 5’7(,,3> the 3-uniform hypergraph
on n+ 1 vertices consisting of all (g) edges incident to a given vertex. Whereas many hypergraph Ramsey
numbers grow either at most polynomially or at least exponentially, we show that the off-diagonal Ramsey

number T(Kis), S,(LS)) exhibits an unusual intermediate growth rate, namely,

2clog2 n < r(Kf’), S1(13)) < 2c’n2/3 logn

for some positive constants ¢ and ¢’. The proof of these bounds brings in a novel Ramsey problem on
grid graphs which may be of independent interest: what is the minimum N such that any 2-edge-coloring
of the Cartesian product Kny[JKn contains either a red rectangle or a blue K7

1 Introduction

A k-uniform hypergraph (henceforth, k-graph) G = (V, E) consists of a vertex set V and an edge set E C ().
In particular, we write K for the complete k-graph with V = [n] and E = (). Ramsey’s theorem states
that for any k-graphs H; and Hs there is a positive integer N such that any k-graph G of order N either
contains H; (as a subgraph) or its complement G contains Hy. The Ramsey number r(Hi, Hs) is the
smallest such N and the main objective of hypergraph Ramsey theory is to determine the size of these
Ramsey numbers. In particular, for fixed £ > 3, the two central problems in the area are to determine
the growth rate of the “diagonal” Ramsey number r(K,(Lk), ,(Lk)) as n — oo and the “off-diagonal” Ramsey
number T(Kr(,lf), KT(Lk)) where m > k is fixed and n — oo.

Seminal work of Erdés—Rado [11] and Erdés-Hajnal (see, e.g., [8]) reduces the estimation of diagonal
Ramsey numbers for £ > 3 to the & = 3 case. For off-diagonal Ramsey numbers, the only case for which

the tower height of the growth rate is not known is r(K,gi)l,K,(zk)L though it was noted in [17] that this
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tower height could be determined by proving that the 4-uniform Ramsey number r(K 5(4),K7(L4)) is double
exponential in a power of n. Moreover, it was shown in [16] that if r(_K}(L?’)7 K 7(13)) grows double exponentially
in a power of n, then the same is also true for r(K5(4),K,(L4)). Hence, the growth rate for all diagonal and
off-diagonal hypergraph Ramsey numbers with k£ > 4 would follow from knowing the growth rate of the
diagonal Ramsey number when k = 3. Because of this pivotal role, we will restrict our attention in the
discussion below to the case k = 3.

Despite considerable progress in this area in recent years, our state of knowledge about the two central
problems mentioned above remains rather dismal. The best known bounds in the diagonal case (see, e.g.,
the survey [9]) are of the form

90 < p(K®) K®)) < 927" (1.1)

for some positive constants ¢ and ¢’, differing by an entire exponential order. For the off-diagonal case, when
s > 4 is fixed, the best known bounds [7] are of the form

genlogn < T(KS(S) K7(13)) < 2c/n5’2logn (1.2)

9

for some positive constants ¢ and ¢, differing by a power of n in the exponent.

As a possible approach to improving the lower bounds in (1.1) and (1.2), Fox and He [13] gave new lower-
bound constructions for the Ramsey numbers r(K,({g), 5253)), where St(S) is the “star 3-graph” on ¢+ 1 vertices
whose edges are all (;) triples containing a given vertex. For n — oo, they showed that T(Kr(f)’), 57(13)) > gen’
for some positive constant ¢, giving a new proof of the lower bound in (1.1), while, for ¢ > 3 fixed, they
showed that T(Kff), St(g)) = 20(nlogn) " giving another proof of the lower bound in (1.2). In particular, when
t = 3, this implies that T(KS’), Kf’) —¢e) = 29(logn) " One surprising feature of these results is that they
give the same bounds that were previously known for clique Ramsey numbers, but with one of the cliques
replaced by the sparser corresponding star.

Fox and He essentially settled the growth rate of r(K,(f), St(?’)) in two cases: when the star is fixed in size
and the clique grows; and when the star and clique grow together. The present paper studies the remaining
regime: when the clique is fixed in size and the star grows. First, a standard application of the Lovasz Local
Lemma yields the following proposition.

Proposition 1.1. There are positive constants ¢ and ¢’ such that

n2 3) ’I'L2
<1 (K® e 53y < ¢
— T( 4 €, 0p ) >c logn

c
log2 n

Our main result is that if we replace K f) —e by K f), then the Ramsey number has an exotic growth
rate intermediate between polynomial and exponential. On the other hand, once we move up to K, ég) the
growth rate stabilizes to exponential.

Theorem 1.2. There are positive constants ¢ and ¢’ such that
2clog2n < ,’,(Ki3) 5(3)) < 20’712/3 logn
< ,9y) < .
Moreover, for each s > 5, there are positive constants cs and ¢, such that 2™ < 7“(](}53)7 5’7(13)) < ocin

The intermediate growth rate of r(K f’), Sy(lg)) is in striking contrast with the “polynomial-to-exponential
transition” conjecture of Erdds and Hajnal [10], whose exact statement is technical but roughly states
that all off-diagonal hypergraph Ramsey numbers against cliques are either at most polynomial or at least
exponential. This conjecture was proved to be true infinitely often when k = 3 by Conlon, Fox and



Sudakov [7] and was then settled in the affirmative for all k¥ > 4 by Mubayi and Razborov [15]. As a
corollary of Theorem 1.2, we see that no such transition can occur for hypergraph Ramsey numbers against
stars.

Since our results for r(K f’) - 6,555”) and (K, ég),Sy(Lg)) when s > 5 are straightforward applications
of known methods, we will focus our attention in the remainder of the introduction on how we estimate
r(K f’), Sr(LS)). The key idea is to reduce to a novel Ramsey problem involving grids, somewhat reminiscent
of the grid case of the famous cube lemma (see, e.g., [6]) developed by Shelah [18] in his proof of primitive-
recursive bounds for Hales—Jewett and van der Waerden numbers. To say more, we need some further
definitions.

Let the m xn grid graph G, x, be the Cartesian product K,,0K,, i.e., the graph whose vertex set is the
rectangular grid [m] x [n] and whose edges are all pairs of distinct vertices sharing exactly one coordinate. If
m>a>1andn >0b>1, then an a X b subgrid in G, «, is an induced copy of G,xp. In particular, we call a
2 x 2 subgrid, i.e., a set of four vertices (z,y), (z,vy’), (', y'), (z',y) with the four axis-parallel edges between
them, a rectangle. We will be interested in the Ramsey number gr(Gaya, K,), which is the smallest N such
that in any 2-edge coloring of Gy« v there is either a monochromatic red rectangle or a monochromatic blue
K,,. For such Ramsey numbers, we show the following.

Theorem 1.3. There are positive constants ¢ and ¢’ such that
2clog2n < gr(szz,Kn) < 2c’n2/3 logn

In passing, we remark that the best known lower bound for the grid case of Shelah’s cube lemma, due to
Conlon, Fox, Lee and Sudakov [6], is of the form 2¢(°8 *?/VIglogT fo1 some positive constant ¢, curiously
similar to the lower bound in Theorem 1.3, though there r refers to the number of colors. However, despite
the similarities, we were not able to find any nontrivial connection between the two problems.

The connection between r(K. ZE?’),LS’,({?)) and gr(Gaxe, K;,) is that the latter is equivalent to a natural
bipartite variant of the former. Let B®)(a,b) denote the complete bipartite 3-graph on [a + b] whose edges
are all triples intersecting both [a] and [a 4 1,a + b]. Observe that the 3-graph B®)(a,b) and the grid graph
Gaxp have the same number a(g) + b(g) of edges and we can give an explicit correspondence between their
edge sets by sending horizontal edges (x,y) ~ (z',y) in the grid to triples {x,2’,a + y} € E(B®)(a,b)) and
vertical edges (x,y) ~ (z,9') to triples {z,a +y,a +y'} € E(B®)(a,b)). Tt is easy to check that rectangles
in the square grid Gyxn correspond to copies of K f) in the corresponding bipartite 3-graph B(?’)(N ,N),
while n-cliques in Gy« n correspond to copies of S® in B® (N, N). Thus, gr(Gax2, K,) is exactly equal to
the smallest N such that any 2-edge-coloring of B®) (N, N) contains either a red Kf) or a blue 5’7(13).

As B®)(N,N) C Ké‘;’\;, it follows immediately that T(Kf), S,(LS)) < 2gr(Gax2, Ky,), so the upper bound in
Theorem 1.3 implies that in Theorem 1.2. We do not know of a direct implication between the lower bounds,
but we will be able to glue together copies of our lower-bound construction for gr(Gaxs, K, ) to manufacture
one for r(Kig),S’y(LS)) of comparable size. This suggests, and we strongly believe, that T(Kis),S,(LB)) and
gr(Gaxe, K,,) are of roughly the same order.

The final result that we mention here is a generalization of Theorem 1.3 to larger grids.

Theorem 1.4. There is a positive constant ¢ and, for all fixed a > b > 2, a positive constant ¢’ = ¢!, such
that
2clog2n < gr(G . K ) < 26/7117(217,1)71 log n
= a Y n) = .
The lower bound is an obvious corollary of the lower bound in Theorem 1.3, while the upper bound
involves some extra effort, in particular drawing on recent work of the authors on set-coloring Ramsey



numbers [5]. One interesting corollary of this result is that there are positive constants ¢ and ¢’ such that
2010g2n < T‘(Kég) —e S(S)) < 2c'n2/3 logn
= i n — *

The lower bound here simply follows from the fact that r(Ké?’) - 6,57(13)) > r(Kig),Sy(?)). For the upper
bound, note that, just as gr(Gaxe, K;,) is equivalent to a bipartite variant of T(Kf), S,(f)), we also have that
gr(Gsxa, K,,) is equivalent to a bipartite variant of r(KE()S) —e, S,({g’)), so that T(K§3) —e, S,(LS)) < 2¢r(Gsx2, Ky),
yielding the required upper bound. Together with the fact that T(Kég’),&(f)) = 29(")  this gives a more
complete picture of the transition window.

Throughout the paper, for the sake of clarity of presentation, we systematically omit floor and ceiling
signs whenever they are not essential. Moreover, unless otherwise specified, all logarithms are base 2.

2 Basic bounds

In this short section, we prove Proposition 1.1 and the second part of Theorem 1.2. We will use the Lovasz
Local Lemma in the following standard form (see, e.g., [2, Lemma 5.1.1]).

Lemma 2.1 (Lovdsz Local Lemma). Let Aj, Ag,..., A, be events in an arbitrary probability space. A
directed graph D = (V, E) on the set of vertices V.= [n] is called a dependency digraph for the events
Aq, ... A, if for each i, 1 < i < n, the event A; is mutually independent of all the events {A; : (i,j) ¢ E}.
Suppose that D = (V, E) is a dependency digraph for the above events and suppose there are real numbers
T1,...,Tn such that 0 < x; <1 and Pr[4;] < ;i [[; yep(l — ;) for all1 < i < n. Then PriAi_, A;] >
[T, (1 — z;). In particular, with positive probability no event A; holds.

The proof of Proposition 1.1 is now a direct application of Lemma 2.1 to a suitable random 3-graph.

Proof of Proposition 1.1. The upper bound follows from the fact that r(Kf’) —e, S,({O’)) <r(Ks,K,)+1, by
specializing to the link of a single vertex, and then applying the bound r (K3, K,) = O( n? ) due to Ajtai,

logn

Komlé6s and Szemerédi [1].

For the lower bound, we will use Lemma 2.1, assuming throughout that n is sufficiently large. Consider
a random hypergraph I' = G®)(N,p) on N = 10~3n?(logn)~? vertices (which we identify with [N] for
convenience) with p = 4(logn)/n. We would like to show that, with positive probability, I" contains no
K f) — ¢ and its complement T' contains no S5. Let S be the collection of all N (N 3 1) copies of K f) —e
on [N] and, for s € S, let As be the event that s CT'. Let T be the collection of all N(Ngl) copies of S
on [N] and, for t € T, let B, be the event that ¢t C T'. The probabilities of these events are Pr[4,] = p? and
Pr(B] = (1-p)).

Let D be the digraph whose vertex set is SUT and whose edges are pairs (i, j) € (SUT)? which intersect
in at least one edge. Thus, D is a dependency digraph for the events {A;}ses U{Bt}ter. Each vertex in S is
adjacent to at most 9N other vertices in S and at most |T'| vertices in T', while each vertex in T is adjacent
to at most (3)3N < 2n%N vertices in S and at most |T'| vertices in T. Let z = 3p* be the local lemma
weight for all the A, events and y = 1/|T| be the local lemma weight for all the B, events. With this choice
of parameters and using that n is sufficiently large and |T| = N(Ngl) < N(eN/n)", we have

21— 2)"M(1 -y > p?,

y(1—2)* N1 — )T > (1-p) ),

so the conditions of Lemma 2.1 are satisfied. Thus, with positive probability none of the events A, or B,
hold and we obtain T(Kf) —e, S,(f)) > N, as desired. O



The close connection between r(Kf’) —e, ST(LS)) and r(K3, K,,) suggests that T(Kf) —e, ST(LS)) = @(%).
It seems likely that a proof of this may be possible through a careful analysis of the (K £3) — e)-free process
(see, e.g., [4] for results of this type in a similar context). However, we have chosen not to pursue this here.

We now prove the bounds on r(K§3), Sy({g)) for s > 5 stated in Theorem 1.2.

Proof of Theorem 1.2 for s > 5. The upper bound follows from [13, Theorem 1.4], which says that
r(K®,85Y) < (25)

for all s,n > 3. The lower bound construction is as follows. Let Ky be a complete graph on N vertices,
labelled v1,...,vN, and let ¢ be a 3-coloring of the edges of K which independently colors each edge by a
uniform random element of Z/3Z. If K](\?) is a complete 3-graph on the same vertex set, define a 2-coloring
x of the edges of KJ(\‘;’) where x(vi,vj,vg) is red if ¢(v;,v;) + @(vi,vx) + é(v;,v5) = 1 (mod 3) and blue
otherwise.

Suppose, for the sake of contradiction, that a red K5(3) appears in the coloring x at vertices uq, ..., us. If
we sum up ¢(u;, uj) + o(ui, ur) + d(uj, ug) across all (g) = 10 triples of these vertices, the sum is 1 (mod 3),
since each triple sums to 1 (mod 3). On the other hand, each summand ¢(u;, u;) appears three times in this
sum, so the total sum of all these triples must be 0 (mod 3). This is a contradiction, so no such coloring
can have a red KE()S).

Next, we show that for N = (3/2)"/? and n > 5, the probability of a blue s appearing in x is less

)

than 1. Indeed, consider any given copy of 57(13) in KJ(\? , with central vertex u and clique wy,...,w, in

the link of w. In order for every edge in this copy of S,(LB) to be blue, every color ¢(w;,w;) must satisfy
d(wi, w;) + d(u, w;) + o(u, w;) # 1 (mod 3). Each such event is independent with probability 2/3, so we
obtain that the probability this particular copy of 5% is blue in X is exactly (2/3)(3) As there are N(Ngl)
copies of 57(13) in KI(\‘;’), we see that the expected number of blue 57(13) is

N<N7; 1) - (2/3)) < N(eN/n)™(2/3)"@D/2 = (3e/2n)" < 1.

Hence, there is such a coloring with no blue Sr(LB). O

3 The lower bound

The key ingredient for our lower bound on 7 (K. f), ST([?)) is the following lemma, which states that it is possible
to construct a random subgraph of the grid where each row and column looks like a sparse Erdos—Rényi
random graph, but they are coupled in such a way that there are no rectangles and their edge unions are
sparse.

Lemma 3.1. There exists a positive constant ¢ such that, for all n sufficiently large and N = gclog? ™, there
is a random subgraph H C G« n with the following properties:

1) For every row r,, H[r,] ~ G(N,n=3/%), i.e., the marginal distribution of the induced subgraph H|r
y Yy Yy
is G(N,n=3/%). Similarly, for every column c,, H|c,] ~ G(N,n=3/%).

(2) There are no rectangles, i.e., no x, ', y,y" with (x,y) ~ (z,y") ~ (', y) ~ (¢',y) ~ (z,y), in H.

(8) The edge union of all the row graphs H|r,] lies in a G(N,n~Y/8). Similarly, the edge union of all the
column. graphs H|cy| lies in a G(N,n=1/8).



Note that properties (1) and (2) of the random graph H are already enough to prove the lower bound in
Theorem 1.3, since if we let H determine the set of red edges in Gy« and its complement the blue edges,
then (2) shows that there are no red rectangles and (1) implies that w.h.p. there are no blue K,,. We will
use the additional property (3) to prove the lower bound on (K f), S,(LS)) in Theorem 1.2.

Proof of Lemma 3.1. We give a construction for H which starts by choosing the column graphs in such a
way that every pair of columns is edge-disjoint on some large vertex subset. This then allows us to place
many edges between these columns without creating a rectangle.

Setting up. Let N = 2¢1°8° " We start by picking a family of subsets {U;}i<r of [N] with T = n'/2(log n)*°
such that each element y lies in d(y) sets, where d(y) € [ (logn)'?, 2(logn)'%], and every pair of elements
lies in at most %logn subsets. Such a family exists by the probabilistic method. To see this, pick the sets

U; independently such that each j € [N] lies in U; independently with probability n=1/2

. The expected
value of d(y) is (logn)!°. The multiplicative Chernoff bound for a binomial random variable X implies that
Pr(|X — EX| > 1EX) < 2exp(—EX). Together with a union bound over the N elements y, this yields
that the probability there exists y with d(y) & [2(logn)!?, 2 (logn)!?] is less than N -2exp(—75(logn)'?) < 1
for n large. The probability that distinct elements 1,y are both in a given U; is n™!, so the probability they
are both in at least ilogn of the U; is at most

T%logn . (n—l)ilogn < 2—%log2n

for n large enough. Hence, for c sufficiently small, the probability that there exists a pair of vertices y, 1’
that lies in at least %logn sets is at most (];[)2*% log”n % Therefore, the required family {U; };<7 exists.

Next we show that there is a collection of bipartitions P; LI Q; = [N], one for each 1 < ¢ < T, of the set
of columns satisfying the following two properties:

(a) Every pair of columns z, 2’ lies on opposite sides of (3 + o(1))T" bipartitions.

(b) For every horizontal edge (x,y) ~ (2',y), the number of ¢ for which y € U; and x,2’ lie on opposite
sides of the bipartition P; U Q; is ©((logn)?).

To see that properties (a) and (b) can be satisfied simultaneously, we show that for a random choice of the
bipartitions P; U Q; = [N], both properties hold with high probability. Indeed, if D, .- is the set of all i for
which z, 2" lie on opposite sides of the bipartition P; U Q;, then |D, .| ~ Bin(T,1/2) for all choices of = and
z'. By the Chernoff bound,

Pr[|[Bin(T,1/2) — T/2| > £T] < %),

so, even after a union bound over all (g) = 008" n) choices of z and z’, we have that w.h.p. |Dy o/ =
(1/2 4 o(1))T for all x,a’. That is, property (a) holds w.h.p. To check that property (b) also holds w.h.p.,
note that another application of the Chernoff bound shows that if D ,+(y) is the set of all i € D, , satisfying
the additional condition that y € U;, then |D, ./ (y)| ~ Bin(d(y), 1/2) must be tightly concentrated around
d(y)/2 = O((logn)1?), even after taking a union bound over all choices of 2,2’ and y. We may therefore fix
a partition P; U Q; for each ¢ € [T] such that the collection of such partitions satisfies (a) and (b).

To force property (3), we sample two random graphs R ~ G(N,n~'/®) and C ~ G(N,n~'/8) in advance;
we will make sure that the rows of H only take edges from R and the columns of H only take edges from C.
Finally, for each i € [T], let A; = G(|U;|,1/2) be a random graph on vertex set U; and let B; = A; be the
edge-complement of A;.



We emphasize here that for each i € [T], the sets U; and the pairs (P;, Q;) are now fixed. Our goal is
to define a probability space (a random subgraph H C Gy« n) and, thus, all probabilistic statements that
follow are with respect to the product space ([]4;) x R x C.

The columns. We first decide the columns of H. Let ¢, be the column indexed x in Gyxn. We define H,
to be the (random) graph with vertex set ¢, = [N] such that (y,y’) is an edge of H, if and only if, for every
U; containing both y and 3/, either « € P; and (y,y’) € E(4;) or z € Q; and (y,vy') € E(B;). In words, on
each column we stipulate that within each of the subsets U;, the induced subgraph H,[U,] is a subgraph of
one of the two complementary random graphs A; or B;, according to which part of the partition P; LI Q; the
z-coordinate falls into.

Let E,(y,y’) be the event that a given edge (y,y’) appears in the random graph H,. By definition,
E.(y,y") occurs if and ouly if for every U; containing both y and y’, either x € P; and (y,y’) € E(4;) or
x € Q; and (y,y’) € E(B;). We have

Pr((z € P A (y,y) € E(A:) \/(x € Qi A (y,9/) € E(By)] = 1/2.

There are at most ilog n choices of ¢ for which U; contains both y and 4’ and these events are independent
over i. Thus, Pr[E.(y,y')] > 2-ilogn — p=1/4  We observe further that E.(y,y") depends only on the
randomness of the single edge (y,y’) in the A; and B;, so, for a fixed x, these events are mutually independent
as (y,y') varies through the possible edges of H,. Thus, we may choose a random subgraph H) C H, with
distribution exactly G(N,n~/8). Finally, we take H|c,]| = H.NR, which is a random graph with distribution
exactly G(N,n~3/%), proving properties (1) and (3) for the columns.

The rows. Next, we define the horizontal edges of H by picking the edges between each pair of columns
independently. For each pair of columns ¢, ¢/, recall that D, ,+ is the set of all ¢ € [N] for which z, 2’ fall on
opposite sides of the partition P;LIQ;. By our choice of the bipartitions, we know that |D, .| = (1/2+0(1))T.
For each pair z,2’, pick a uniform random i, ,» € D, .. Now, in each row y, let H, be the random graph
whose edges are exactly those pairs (z,2’) for which U;_ , 3 y. A given edge (z,2') appears in H,, if and only
if the random index i, , is chosen to be one of the d(y) € [4(logn)', 2(logn)!°] indices i € D, , for which
y € U;, while i, is uniform out of [Dy o| = (3 +0(1))T = (3 4+ o(1))n'/?(log n)'° choices. Thus, each edge
appears in H, with probability @(n’l/ 2). Furthermore, for fixed y these events are mutually independent
over all choices of possible (z,z"), since the random indices i, ,+ are chosen independently. We may therefore
find a random subgraph H, C H, with distribution exactly G(N, n~°/%). Finally, we take H[r,] = H,NC,
which is again a random graph with distribution exactly G(N,n~3/%), proving properties (1) and (3) for the

TOWS.

Property (2). Suppose that there is a rectangle in H, say (z,v), (z,vy'), (¢',y), (z/,y"). By the way we
picked the horizontal edges, this means that, for ¢ = i, 7, we have y,y’ € U; and x, 2’ fall on opposite sides
of the bipartition P; U Q;. If, say, x € P; and 2’ € Q;, then we see that H|[c,][U;] C A; and Hlc,|[U;] C B;
are disjoint graphs on the set U;, so at most one of the two vertical edges (z,y) ~ (z,y') and (2/,y) ~ (2',y")
can lie in H. Hence, there are no rectangles in H, as desired. O

Now that Lemma 3.1 is proved, we layer log N copies of this bipartite construction on top of each other
to obtain the lower bound on 7’(Ki3)7 57(13)) in Theorem 1.2, namely, r(Kf’), ST(L3)) > 2¢108” 1 fo1 some ¢ > 0.

Proof of the lower bound on T(Kf),ST(LS)). For N as in Lemma 3.1, draw ¢t = log N independent samples
Hiy,...,H; from the distribution H. Identify the vertices of K](\‘?) with [N] := {0,...,N — 1} (we use this
convention so that each vertex has at most ¢ bits when written in binary).



Each Hy, 1 < ¢ < t, gives rise to a two-edge-coloring x, of a bipartite subgraph of K](\:,s) as follows.
Let £(i1,i2,43) denote the maximum binary bit on which three distinct i1,1i9,i3 € [N] do not agree. Let
I'y denote the spanning subgraph of KI(\‘?) consisting of all edges with £(iy,1i2,i3) = £. For clarity, we write
the vertices of an edge in 'y as {x,y,y'} if x is the vertex which is 0 on bit ¢ and y,y’ are the vertices
which are 1, calling these “vertical edges”, and as {z,z’,y} if 2,2’ are 0 on bit £ and y is 1, calling these
“horizontal edges”. Let x, denote the coloring of T'y for which vertical edges {z,y,y’'} € T’y are colored red
if and only if (z,y) ~ (z,y’) is an edge of H; and horizontal edges {x,2’,y} € T'y are colored red if and only
if (x,y) ~ (¢, y) is an edge of Hy.

We first claim that the colorings y, contain no red copies of K f’). Indeed, since I'y is bipartite, a copy
of Kf) in T’y must lie on four vertices {z,’,y,y’} where x,2’ are 0 on bit £ and y,y" are 1 on bit ¢. This
induced subhypergraph is red if and only if the four edges {x,vy,v'}, {2/, y,9'}, {z,2',y} and {z,2’,y'} are
all red in x¢. This in turn means that the four edges (z,y) ~ (x,y'), (z/,y) ~ (2',v¢), (z,y) ~ (2’,y) and
(z,y) ~ (2,y') are edges of Hy, forming a rectangle in H and contradicting property (2) of Lemma 3.1.
Thus, no red K, f’) appears in any of the colorings yy.

Write Ny(v) for the set of all w € [N] which disagree with v on bit ¢ but agree on all higher bits and
write Lg(v) for the link of v in I'y restricted to Ng(v). By the definition of I'y, Ls(v) is a complete graph.
Moreover, the coloring x, induces a coloring on L,(v) for each v, which, by property (1) of Lemma 3.1, has
red edges distributed as in G(N,n=3/4).

)

We now build a coloring x of K](\:,3 out of the colorings x, as follows. Note that I'y,...,I; form an

edge partition of KJ(\:,)’). As a starting point, we let x’(e) = xe(e) for that ¢ such that e € T'y. However,

this coloring Y’ may now contain some red copies of K f’)

, so we modify it as follows. For each red K f’)
in x’, say with vertices {iy, 42,143,454}, mark the triple of vertices {i1,42,43} that has the smallest value £ of
£(i1,12,13). To see that this triple is unique, suppose it were not and €(i1,42,i3) = £(i1,42,44) = ¢. But
then all four vertices agree on all higher bits than ¢, so the f-values of all four 3-tuples are at most ¢ by

definition. Thus, all four 3-tuples among {i1,i2,43,44} lie in T'y, giving a red Kf')

in the coloring x, of I'y,
which is a contradiction. We also observe that if {iy,42,45} is marked by a red clique on {i,141,12,73}, then
0(iyi1,12) = L(i,41,13) = €(3,12,43) = £ for some ¢’ > £. That is, the other three edges in this red clique all
belong to the same yy/, so we may say that the edge {i1,1i2,i3} is marked by level ¢’ (note that a single edge
can be marked by multiple levels). The coloring x is now defined as follows: the red edges of x are exactly
the unmarked red edges of x’.

We claim that x is a coloring of KJ(\‘?) that contains no red K f’) and, with positive probability, no S,(L?;).
Since every K, f’) which is red under x’ contains a marked triple, x indeed has no red K £3).
bound the probability of finding a blue ST(L?;).

Fix a vertex u € V(KI(\:;’)) and suppose a blue Sfj) appears in x with u as the central vertex. The sets

It remains to

Ni(u),..., N¢(u) form a partition of V(K](\z,)’)), so at least one of these contains at least n of the vertices of
our K. Thus, for some ¢, there must be vy,...,v, € Np(u) forming a blue 57({3) with u as the central vertex.

By the union bound, it will suffice to show that the probability of such an occurrence is smaller than N~

Let ¢ be the coloring of the copy of K, formed by the vertices of this copy of S,(L?’) other than w, with
colors given by ¢(v;,v;) = x(u,v;,v;). By construction, the red edges in ¢ correspond to red edges in Ly (u)
in Y, that are unmarked. We first bound the number of marked edges. For each ¢/ > ¢, let M, be the graph
on {v1,...,v,} whose edges are pairs {v;,v;} for which {u,v;,v;}, if it were red, would be marked by level
¢, as defined previously. In other words, v; ~ v; in My if and only if there exists a fourth vertex w for which
{w,u,v;}, {w,u,v;} and {w, v;,v;} are all red in x,.

We claim that for each level ¢ > £, the graph M, is contained inside a copy of G(n,n~'/®). Indeed,
because of property (3) of Lemma 3.1 and the definition of x4, there exists a random graph M, ~ G(n, n=1/%)



such that if {w,v;,v;} is red for any w, then {v;,v;} is an edge of Mj,. In particular, if {v;,v;} is an edge
of My, then {w,v;,v;} is red in x, for some w and thus {v;,v;} is an edge of M/, as well. That is, M is a
spanning subgraph of Mj,, which has distribution G(n, n=1/%).

Whether an edge is marked by a particular level is independent for each level, so the edge union of the
graphs My with ¢/ > £ is contained inside the edge union of the independent random graphs Mj,, which is in
turn contained inside a single random graph M with distribution G(n,tn~'/8). Let E be the event that M
has at least %(g) edges. That is, E is the event that the edge count of M, distributed like Bin((g), tn=1/8),
is at least % (%). By the Chernoff bound, Pr[E] < 2-9(n%),

An edge (v;,v;) is red in ¢ if it does not appear in M and the edge {u,v;,v;} is red in xj. The latter

3/4

occurs with probability n=/% by property (1) of Lemma 3.1. Thus,

Pr(g(v;, v;) red|(v;,v;) & B(M)] > n= /",

Given any particular choice of M, all such events are mutually independent, so the probability that ¢ is
monochromatic blue is at most

Pr[E] + Pr[¢ is monochromatic blue|E] < 279" 4 (1 - n’3/4) #(3) < 2’“(”5/4),

which suffices to union bound over all N**! choices of u,v1, ..., v,, as desired. This completes the proof. O

4 The upper bound

In this section, we first prove the upper bound in Theorem 1.3, which states that

r.2/3

gI‘(GQXQ, Kn) S 20 n logn (41)

for some positive constant ¢’. As observed in the introduction, T(KﬁB),S£L3)) < 2gr(Gaxa, Ky), so this
immediately implies the upper bound in Theorem 1.2 as well.
The main technical tool used is the following Ramsey-type result of Erdés and Szemerédi.

Lemma 4.1 (Erdds—Szemerédi [12]). There exists a positive constant co such that if the edges of the complete
graph Ky are colored in r colors, then there exists a clique of order n = coﬁ log N and a color i that does
not appear on any edge in that clique.

We are now ready to prove (4.1).

Proof of (4.1). Let ¢ = max(2,1/cq), where ¢y is the constant in Lemma 4.1. Let N = g¢/n*?logn e
would like to show that in any 2-edge-coloring of Gy« n, there is either a red rectangle or a blue K,,. Letting
r = n'/3, we will in fact prove the stronger statement that the same result holds for the rectangular grid
G nx, where the height is chosen to be the Ramsey number M = r(K,., K,,) <n" < N.

Fix a 2-edge-coloring of Gyxp- Each column is a 2-edge-colored Kj;, so, by the definition of M,
each column contains either a red K, or a blue K,. In the latter case we are already done, so we may
assume that every column of the grid contains a red K. Associate with each column x the y-coordinates
y(x) = (y1,. .., yr) of the vertices of some red K, in that column. Since y(z) can take at most M" possible
values, there exist N’ = N/M" columns with the same value § = ¢(z). Since M < n”, we have M" < n =
on®/Plogn A f > 2, we have N’ > v/N.

Restrict to the N’ x r subgrid where the rows are the r rows indexed by the coordinates of 7 and the
columns are the N’ columns x with ¢(z) = ¢. In this subgrid, every column is a monochromatic red K,. If



any pair of columns has at least two red edges between them, then we have a red rectangle and we are done.
Thus, we may assume that there is an edge-coloring h : E(Kpy+) — [r] of the complete graph on [N’] such
that the horizontal edge (z,y) ~ (2/,y) is blue whenever y # h(z,z’).

By Lemma 4.1, there is a clique of order

3nt/? 1
o " log N' > ¢ i -~logN >n
log r logn 2
and a color y such that y # h(x,2’) for every pair of vertices z,z’ in the clique. If the vertices of the
clique are {z1,...,z,}, then all edges between the vertices {(z1,¥),. .., (n,y)} in the original grid are blue,
forming the desired blue K,. This completes the proof. O

Next, we generalize this upper bound to arbitrary grids. Recall that G, is the a x b grid graph and
er(Gaxp, Kp) is the smallest N such that in any 2-edge-coloring of G nxn there is either a monochromatic
red copy of Ggxp or a monochromatic blue copy of K,,. We next prove the upper bound in Theorem 1.4,
that, for all a > b > 2, there is a positive constant ¢’ = ¢/, such that

so1—(2b—1)—1

gr(Gaxp, Kn) <297 log?, (4.2)

The proof is essentially the result of iterating the argument for Theorem 1.3. However, we will also
require a generalization of Lemma 4.1 from a recent paper of the authors [5]. Define the set-coloring Ramsey
number R(n;r, s) to be the smallest positive integer N such that if every edge of K receives a set of s colors
from a palette of r colors, then there must exist a copy of K,, where a single common color appears on every
edge.

Lemma 4.2 (Corollary of [5, Theorem 1.1]). There is a constant Cy such that the following holds. For any
integersn >3 andr >s>r/2>1,

R(?’l, r, 8) < QCOn(r—s)2r71 log(r/(r—s)).

Combining the above lemma with Turdn’s theorem, we obtain the following result, needed for the iterative
step in our proof of (4.2).

Lemma 4.3. There is a constant C such that the following holds. Suppose r,a,n, N, N’ are positive integers
satisfying v > 2a, n > (r/a)? and N > gCna’r ™" log(r/a) N/ If the vertical edges of G := Gnx, are colored
red and the horizontal edges of G are colored red or blue, then G contains either a blue K,, or a copy of

GnN'xq where all vertices in some column are only incident to red edges.

Proof. Suppose that G contains no blue K,. Let T = 20‘3”“2T711‘)g(r/“)7 so that, by Lemma 4.2, T >
R(n;r,r —a). Let C = max{1,3Cp}. We claim that any T x r subgrid of G contains a red Gax,. Indeed,
let G’ be a T x r subgrid of G and define an edge-coloring x on the complete graph K7 whose vertices are
the columns of G’ which colors each edge (x,2’) by the set of all y for which the edge (z,y) ~ (2/,y) is blue.
If there is no copy of a red Gax, in G’, the edge-coloring x assigns at least r — a colors to every edge, so,
by the definition of T', we obtain a monochromatic K, in some color in x. But this implies that we have a
monochromatic blue K, in the original graph G, a contradiction.

Define another auxiliary graph H whose vertices are the columns of G and edges are pairs of columns
containing a red Gax,. Color each edge (x,z") of H by a set of a y-coordinates y1, . . . , Y, such that the induced
subgraph G[{z,z'} x {y1,...,ya}] forms a monochromatic red Gax,. We know that among every T vertices
of H, there is at least one edge. Hence, by Turdn’s theorem, there are at least N2/2(T — 1) — N/2 > N?/T?
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edges in H, at least N2/T? (2) of which receive the same color. Thus, there must be a vertex with at least
N/T? (;) > N/T® > N’ neighbors in a single color. But this corresponds exactly to a copy of Gn'x, with a

column incident to only red edges, completing the proof. O
It remains to iterate the above lemma to obtain (4.2).

Proof of (4.2). To begin, let a = r; <1y < -+ <rpand 1 = N3 < Ny < --- < N, be positive integers
satisfying 2 < r;41/r; < 4/n and

NiJrl — QCnr?r;:l log(rit1/7i) (Nz + 1)

for every 1 < ¢ < b — 1, where C is the constant from Lemma 4.3. Let N = n’e - Ny. We claim that
gr(GbXa, Kn) < N.

Indeed, suppose we are given a red-blue edge-coloring of G« . We may further suppose that there is
no blue K,,. Let H be the induced (complete) subgraph on some single column of G« n, together with the
induced edge-coloring. Since (K, , K,) < n", any set of n" vertices in H contains at least one red K,,. It
follows that the number of pairs (¢, U) where U € (Vn(ff )) and c is a monochromatic red K,, in U is at least

(nffb) On the other hand, each such c¢ lies in at most (;X;j;b) choices of U, so we find that there are at least

N / N — Ty - N / n'’t
nre nt—1ry)  \rp Ty
monochromatic red copies of K,, in H. Moreover, the same conclusion holds for any given column of the

T 71
grid. Hence, by the pigeonhole principle, there are some 7, rows such that a (T;bb) -fraction of the N
columns are monochromatic red in between these rows. Since

we obtain an induced subgrid of dimensions N, x r, with monochromatic red columns. Applying Lemma 4.3,
we find inside this subgrid another subgrid of dimensions (Np_1 + 1) X 7,_1 where one column is complete
in red to the others. Iterating this process b — 1 times and setting the distinguished column aside at each
step, we find a monochromatic Gy, as desired.

In order to obtain (4.2), for 1 < i < b, we choose r; = a - 2271 with 2 = n2"~D™". One can
check that these choices imply 2 < 741/ < /n and Niy; = QOQ(””fllog")Ni forall 1 <i < b—1.
Consequently, N, = 20a(nz”" logn) and, as Tg = a?n/x, we also have N = 204 (na™" logn) Since, by symmetry,
er(Gaxp, Kpn) = gr(Gpxa, Kp), this yields the required bound. O

5 Concluding Remarks

The main problem left open by this paper is what the true bounds are for r(K £3),ST(L3)) and the closely
related function gr(Gaxa, Ky,). In particular, we have the following question.

Problem 5.1. Does there exist ¢ > 0 such that gr(Gaxse, K,) > on‘ 2

We will not hazard a guess on which direction the truth should lie, though it would be much more
interesting were the answer to turn out negative.
Theorem 1.4 gives a sub-exponential bound for grid Ramsey numbers of the form

so1—(2b—1)—1

2r(Gaxp, Kn) <207 logn (5.1)
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when a > b > 2. The dependence of the exponent of n on b, which comes from iterating Lemma 4.2, is
inverse exponential. The authors suggested in [5, Problem 6.1] that stronger bounds than Lemma 4.2 might
be true for the set-coloring Ramsey number R(n;r,s), especially in the regime s ~ r — /r where we are
applying it here. Such improved upper bounds on R(n;r, s) would immediately improve the dependence on
bin (5.1).

Note added. After the first version of this paper appeared on arXiv, Aragao, Collares, Marciano, Martins
and Morris [3] showed that the bound in Lemma 4.2 is tight up to a logarithmic factor when s &~ r — /r,
thereby ruling out any hope of substantially improving (5.1) by the route suggested above.
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