
A LOW-LATENCY FFT-IFFT CASCADE ARCHITECTURE

Keshab K. Parhi, Fellow, IEEE

University of Minnesota at Twin Cities

ABSTRACT

This paper addresses the design of a partly-parallel cascaded
FFT-IFFT architecture that does not require any intermediate
buffer. Folding can be used to design partly-parallel archi-
tectures for FFT and IFFT. While many cascaded FFT-IFFT
architectures can be designed using various folding sets for
the FFT and the IFFT, for a specified folded FFT architec-
ture, there exists a unique folding set to design the IFFT ar-
chitecture that does not require an intermediate buffer. Such a
folding set is designed by processing the output of the FFT as
soon as possible (ASAP) in the folded IFFT. Elimination of
the intermediate buffer reduces latency and saves area. The
proposed approach is also extended to interleaved process-
ing of multi-channel time-series. The proposed FFT-IFFT
cascade architecture saves about N/2 memory elements and
N/4 clock cycles of latency compared to a design with identi-
cal folding sets. For the 2-interleaved FFT-IFFT cascade, the
memory and latency savings are, respectively, N/2 units and
N/2 clock cycles, compared to a design with identical folding
sets.

Index Terms— FFT, IFFT, FFT-IFFT Cascade, Folding,
Multi-channel FFT

1. INTRODUCTION

The fast Fourier transform (FFT) algorithm [1] is an impor-
tant operation in many digital signal processing and machine
learning systems. FFT is used for frequency-domain and
time-frequency representation of signals, and for extracting
features for machine learning classifiers. FFT is used in appli-
cations such as digital communication [2, 3], medical imag-
ing [4, 5], and convolutional neural network (CNN) [6, 7], in
the context of both software and hardware implementations.

FFT hardware architectures can be classified into two cat-
egories: pipelined and parallel architectures [8, 9, 10, 11, 12],
and compact and memory-based FFT architectures [13, 14].
This paper addresses the optimization of the architecture for
FFT-IFFT cascade for partly-parallel architectures. In a typ-
ical long convolution operation, two FFTs are computed, a
pointwise multiplication is carried out, and the IFFT of the
product is computed. If the second signal is constant, then
the second FFT can be precomputed. This is the first paper to
address the architecture for the partly-parallel FFT-IFFT cas-

cade architectures. Partly-parallel, such as 2-parallel and 4-
parallel, architectures can be designed by time-multiplexing
or folding based on folding sets. If the folding sets are not
selected correctly, then an intermediate buffer is needed be-
tween the FFT and IFFT hardware blocks, as shown in Fig. 1
(top). This increases latency and hardware. This paper shows
that by designing a folding set for the IFFT that processes the
FFT outputs as soon as possible (ASAP) can eliminate the in-
termediate buffer requirement, thus reducing latency and area.
This is illustrated in Fig. 1(bottom).

The remainder of the paper is organized as follows. Sec-
tion 2 describes the proposed novel FFT-IFFT cascaded ar-
chitecture design. Section 3 extends the proposed FFT-IFFT
cascade design for processing multi-channel time-series using
an interleaving approach. Section 4 compares the area and la-
tency of the proposed approaches with standard designs.

FFT Input
Reorder IFFT

𝐻

FFT IFFT’

Output
Reorder

𝑥 𝑦

𝑥 𝑦 = 𝑥 ∗ ℎ

Eliminate reordering

Fig. 1. Cascaded FFT-IFFT architecture with and without in-
termediate buffer.

2. CASCADED FFT-IFFT ARCHITECTURE DESIGN

In this section, we present the limitations and overheads asso-
ciated with design of a cascaded FFT-IFFT architecture that
requires an intermediate buffer. Then we introduce a novel
and systematic FFT and IFFT cascaded architecture design
via folding transformation [15, 16] and as soon as schedul-
ing (ASAP) scheduling of the FFT outputs at the input of the
IFFT.

2.1. Traditional FFT/IFFT Cascade Architecture

Consider the flow-graph for a 16-point FFT shown in Fig.
2(a). In a 2-parallel design, two samples are processed in
parallel and N samples are processed in N/2 clock cycles.
Furthermore, the N/2 butterflies in every stage are mapped

(folded) to one hardware butterfly. This corresponds to a fold-
ing factor of N/2. Folding sets are not unique, but two types
of folding sets are commonly used. In one design, the butter-
flies are scheduled in consecutive cycles from top to bottom
as illustrated in Fig. 2(a) where the clock cycles are marked
in red. In another design, the even nodes are scheduled first
followed by odd nodes (not described in this paper).

Consider the folding sets for a 16-point FFT for a folding
factor of 8 corresponding to the flow-graph in Fig. 2(a):

A = {A4, A5, A6, A7, A0, A1, A2, A3}
B = {B0, B1, B2, B3, B4, B5, B6, B7}
C = {C6, C7, C0, C1, C2, C3, C4, C5}
D = {D5, D6, D7, D0, D1, D2, D3, D4} .

(1)

In a 2-parallel design, the input x8 is available in clock
cycke 4, and the butterfly A0 can be processed as soon as
clock cycle 4. Every folding set is associated with a distinct
PE from A to D. Each element within the set represents the
time partition at which the operation is scheduled, given by
the clock cycle modulo the folding factor. The timings of
these computations establish a direct relation with the folding
set. Based on the timings of the butterfly operations, the FFT
architecture is depicted in the upper block of Fig. 3. Specifi-
cally, the delay-switch-delay (DSD) unit is used for the input
and output data-flow control of each butterfly block (BF).

A naı̈ve approach to implementing the IFFT algorithm is
to reuse the same scheduling used for the FFT architecture.
Such a folding set is expressed as:

A = {A2, A3, A4, A5, A6, A7, A0, A1}
B = {B6, B7, B0, B1, B2, B3, B4, B5}
C = {C4, C5, C6, C7, C0, C1, C2, C3}
D = {D3, D4, D5, D6, D7, D0, D1, D2} .

(2)

The corresponding schedule for the IFFT dataflow graph
is illustrated in Fig. 2(b). The hardware IFFT architecture is
shown in the middle of Fig. 3 where the reorder circuit block
REOC3 corresponds to an intermediate buffer. The REOC3
buffer comprises two register sets coupled with four multi-
plexers (MUXs) for data-flow management, and guarantees
that the IFFT architecture’s input data sequence is aligned
correctly. The FFT-IFFT cascade using the top and middle
blocks of Fig. 3 suffers from two drawbacks. First, the inter-
mediate buffer increases area and latency. Second, the outputs
of the combined FFT-IFFT cascade using the top and middle
blocks are out of order and need to be reordered. These two
drawbacks can be overcome by using an ASAP schedule for
the IFFT such that the outputs from the FFT can be processed
immediately in the IFFT architecture.

2.2. FFT-IFFT cascade using ASAP Scheduling

In the proposed systematic approach, the primary design ob-
jective lies in eliminating the need for the reordering opera-

tion after point-wise multiplication. Consequently, the FFT
architecture’s output sequence indices must align with the in-
put sequence indices of the IFFT. ASAP scheduling of the
FFT outputs requires a specific folding set that is different
from that used for the FFT. The IFFT folding set using ASAP
scheduling is described by:

A = {A5, A3, A7, A0, A4, A2, A6, A1}
B = {B1, B5, B3, B7, B0, B4, B2, B6}
C = {C2, C6, C1, C5, C3, C7, C0, C4}
D = {D3, D7, D0, D4, D2, D6, D1, D5} .

(3)

In this folding set, the even nodes are scheduled first and the
odd nodes are scheduled next; this corresponds to bit-reversed
ordering of the nodes.

By leveraging this optimized folding set and seamlessly
integrating it within the IFFT’s pipelined and parallel archi-
tecture, we can effectively eliminate the REOC reordering
unit. The proposed FFT-IFFT cascade consists of the top and
bottom parts of Fig. 3. As elucidated in Fig. 3 (presented
within the green box at the bottom), the required hardware
resources are identical to those of the FFT architecture. Fur-
thermore, the output sequence inherently adheres to a natural
order.

3. INTERLEAVED FFT-IFFT CASCADE
ARCHITECTURE

The proposed architecture can be extended to a multi-channel
framework to design an interleaved FFT and IFFT cascaded
architecture. This is realized by adopting the interleaving
method [15], a technique that has found previous applica-
tions in numerous domains of digital signal processing and
beyond [17, 18, 19].

We utilize the folding set delineated in [19] for the FFT
architecture design to begin with our optimization. An ex-
ample representation of the 16-point FFT computation and its
associated folding set is elaborated below:

A =
{
A′

0, A
′
1, A

′
2, A

′
3, A

′
4, A

′
5, A

′
6, A

′
7,

A0, A1, A2, A3, A4, A5, A6, A7

}
B =

{
B4, B5, B6, B7, B

′
0, B

′
1, B

′
2, B

′
3,

B′
4, B

′
5, B

′
6, B

′
7, B0, B1, B2, B3

}
C =

{
C2, C3, C4, C5, C6, C7, C

′
0, C

′
1,

C ′
2, C

′
3, C

′
4, C

′
5, C

′
6, C

′
7, C0, C1

}
D =

{
D1, D2, D3, D4, D5, D6, D7, D

′
0,

D′
1, D

′
2, D

′
3, D

′
4, D

′
5, D

′
6, D

′
7, D0

}
.

(4)

In contrast to Eq. (1), the uniqueness of this folding set
is revealed in its composition: it contains two distinct data
sequences with an interleaving factor of two. Notably, these

𝑥!
𝑥"
𝑥#
𝑥$
𝑥%
𝑥#!
𝑥&
𝑥##
𝑥'
𝑥#%
𝑥(
𝑥#&
𝑥)
𝑥#'
𝑥*
𝑥#(

𝐴!

𝐴"

𝐴#

𝐴$

𝐴%

𝐴&

𝐴'

𝐴(

𝐵!

𝐵"

𝐵#

𝐵$

𝐵%

𝐵&

𝐵'

𝐵(

𝐷!

𝐷"

𝐷#

𝐷$

𝐷%

𝐷&

𝐷'

𝐷(

𝐶!

𝐶"

𝐶#

𝐶$

𝐶%

𝐶&

𝐶'

𝐶(

𝑋!
𝑋"

𝑋#
𝑋$

𝑋%
𝑋#!

𝑋&
𝑋##

𝑋'
𝑋#%

𝑋(
𝑋#&

𝑋)
𝑋#'

𝑋*
𝑋#(

11

12

13

14

15

16

17

6

9

12

4

5

7

8

9

10

11

8

10

11

13

14

15

10 11

12

13

14

15

16

17

18

(a) Data-flow graph and schedule for the FFT

𝐴!

𝐴"

𝐴#

𝐴$

𝐴%

𝐴&

𝐴'

𝐴(

𝐵!

𝐵"

𝐵#

𝐵$

𝐵%

𝐵&

𝐵'

𝐵(

𝐷!

𝐷"

𝐷#

𝐷$

𝐷%

𝐷&

𝐷'

𝐷(

𝐶!

𝐶"

𝐶#

𝐶$

𝐶%

𝐶&

𝐶'

𝐶(

𝑌!
𝑌"

𝑌#
𝑌$%

𝑌%
𝑌$!

𝑌&
𝑌$#

𝑌$
𝑌'

𝑌(
𝑌$)

𝑌)
𝑌$$

𝑌*
𝑌$(

𝑦!
𝑦"
𝑦#
𝑦$%
𝑦%
𝑦$!
𝑦&
𝑦$#
𝑦$
𝑦'
𝑦(
𝑦$)
𝑦)
𝑦$$
𝑦*
𝑦$(

14

15

16

17

18

19

20

21

18

19

20

21

22

23

24

25

20

21

22

23

24

25

26

27

21

22

23

24

25

26

27

28

La
te
nc
y
lim

iti
ng
 in
pu

ts
(b) Data-flow graph and schedule for the traditional
IFFT architecture.

𝐴!

𝐴"

𝐴#

𝐴$

𝐴%

𝐴&

𝐴'

𝐴(

𝐵!

𝐵"

𝐵#

𝐵$

𝐵%

𝐵&

𝐵'

𝐵(

𝐷!

𝐷"

𝐷#

𝐷$

𝐷%

𝐷&

𝐷'

𝐷(

𝐶!

𝐶"

𝐶#

𝐶$

𝐶%

𝐶&

𝐶'

𝐶(

11

15

13

17

12

16

14

18

12

16

14

18

13

17

15

19

14

18

16

20

15

19

17

21

18

22

20

24

19

23

21

25

N
o
la
te
nc
y
lim

iti
ng
 in
pu

ts

𝑦!
𝑦"
𝑦#
𝑦$%
𝑦%
𝑦$!
𝑦&
𝑦$#
𝑦$
𝑦'
𝑦(
𝑦$)
𝑦)
𝑦$$
𝑦*
𝑦$(

𝑌!
𝑌"

𝑌#
𝑌$%

𝑌%
𝑌$!

𝑌&
𝑌$#

𝑌$
𝑌'

𝑌(
𝑌$)

𝑌)
𝑌$$

𝑌*
𝑌$(

(c) Data-flow graph and schedule for the optimized
IFFT architecture.

Fig. 2. Data-flow graphs for FFT and IFFT with scheduling. Clock cyles are marked in red.

B
F

A

B
F

B

4

D
S
D

𝑥!

𝑥!"#

𝑋!

𝑋!"$

4

D
S
D

2

D
S
D

1

D
S
D

Preprocessing 2-Parallel DIF FFT Architecture

REOC 3

3D
1
01

0

3D 1
0

1
0

B
F

C

B
F

D

B
F

A

B
F

B

𝑦!

𝑦!"$

4

D
S
D

2

D
S
D

1

D
S
D

Naïve 2-Parallel DIF IFFT Architecture

B
F

C

B
F

D

B
F

A

B
F

B

𝑦!

𝑦!"$

1

D
S
D

2

D
S
D

4

D
S
D

Novel 2-Parallel IFFT Architecture

B
F

C

B
F

D

𝐻

Output in
natural order

Output in !
"
bit

reversed order

𝑦%𝑦&𝑦'𝑦(𝑦#𝑦)𝑦*𝑦+

𝑦$𝑦#'𝑦#%𝑦#&𝑦,𝑦#*𝑦##𝑦#)

𝑦%𝑦#𝑦'𝑦*𝑦&𝑦)𝑦(𝑦+

𝑦$𝑦,𝑦#%𝑦##𝑦#'𝑦#*𝑦#&𝑦#)

Eliminates
Reordering

Fig. 3. Cascaded 16-Point FFT-IFFT architectures. Top-
Middle cascade represents a traditional design. Top-bottom
cascade represents the proposed design.

sequences denote the X-channel and the Y-channel, respec-
tively. Another feature of this folding set is its inherent effi-
ciency, ensuring a 100% resource utilization across the FFT
architecture. The PEs conduct computations for both data se-
quences in a time-multiplexed and interleaved fashion. This
operation is depicted in Fig. 4(a), wherein the X-channel and
Y-channel execution timings are discernibly represented in
colors of red and blue, respectively.

A naı̈ve approach to implementing the IFFT algorithm
is to straightforwardly employ the FFT architecture, encom-

passing the subsequent folding set:

A =
{
A′

6, A
′
7, A0, A1, A2, A3, A4, A5,

A6, A7, A
′
0, A

′
1, A

′
2, A

′
3, A

′
4, A

′
5

}
B =

{
B′

2, B
′
3, B

′
4, B

′
5, B

′
6, B

′
7, B0, B1,

B2, B3, B4, B5, B6, B7, B
′
0, B

′
1

}
C =

{
C ′

0, C
′
1, C

′
2, C

′
3, C

′
4, C

′
5, C

′
6, C

′
7,

C0, C1, C2, C3, C4, C5, C6, C7

}
D =

{
D7, D

′
0, D

′
1, D

′
2, D

′
3, D

′
4, D

′
5, D

′
6,

D′
7, D0, D1, D2, D3, D4, D5, D6

}
.

(5)

This approach is shown in Fig. 4(b) for the data-flow
graph and Fig. 5 (emphasized with a red box) for the architec-
ture, respectively. Notably, while this might appear straight-
forward, it introduces several inefficiencies in the process.
One of the drawbacks is the latency-limiting input, which
mandates the use of a REOC unit. Additionally, the architec-
ture consumes two more DSD units engaged in the tasks of
de-interleaving and re-interleaving before and after the point-
wise multiplication.

Hence, an elaborate exploration into the systematic de-
sign for the interleaved FFT and IFFT architecture becomes
imperative to remove these unnecessary components for re-
ordering. Specifically, the input sequences for both the X-
channel and Y-channel in the IFFT are aligned with the out-
put sequences of the FFT architecture. To achieve this, the
optimized folding set is presented as follows:

A =
{
A4, A2, A6, A1, A5, A3, A7, A

′
0,

A′
4, A

′
2, A

′
6, A

′
1, A

′
5, A

′
3, A

′
7, A0

}
B =

{
B0, B4, B2, B6, B1, B5, B3, B7,

B′
0, B

′
4, B

′
2, B

′
6, B

′
1, B

′
5, B

′
3, B

′
7

}
C =

{
C ′

3, C
′
7, C0, C4, C2, C6, C1, C5,

C3, C7, C
′
0, C

′
4, C

′
2, C

′
6, C

′
1, C

′
5

}
D =

{
D′

2, D
′
6, D

′
1, D

′
5, D

′
3, D

′
7, D0, D2,

D4, D6, D1, D5, D3, D7, D
′
0, D

′
4

}
.

(6)

𝑥!
𝑥"
𝑥#
𝑥$
𝑥%
𝑥#!
𝑥&
𝑥##
𝑥'
𝑥#%
𝑥(
𝑥#&
𝑥)
𝑥#'
𝑥*
𝑥#(

𝐴!

𝐴"

𝐴#

𝐴$

𝐴%

𝐴&

𝐴'

𝐴(

𝐵!

𝐵"

𝐵#

𝐵$

𝐵%

𝐵&

𝐵'

𝐵(

𝐷!

𝐷"

𝐷#

𝐷$

𝐷%

𝐷&

𝐷'

𝐷(

𝐶!

𝐶"

𝐶#

𝐶$

𝐶%

𝐶&

𝐶'

𝐶(

𝑋!
𝑋"

𝑋#
𝑋$

𝑋%
𝑋#!

𝑋&
𝑋##

𝑋'
𝑋#%

𝑋(
𝑋#&

𝑋)
𝑋#'

𝑋*
𝑋#(

08,16

09,17

10,18

11,19

12,20

13,21

14,22

15,23

12,20

13,21

14,22

15,23

16,24

17,25

18,26

19,27

14,22

15,23

16,24

17,25

18,26

19,27

20,28

21,29

15,23

16,24

17,25

18,26

19,27

20,28

21,29

22,30

X-channel, Y-channel

(a) Data-flow graph and schedule for an interleaved
FFT.

𝐴!

𝐴"

𝐴#

𝐴$

𝐴%

𝐴&

𝐴'

𝐴(

𝐵!

𝐵"

𝐵#

𝐵$

𝐵%

𝐵&

𝐵'

𝐵(

𝐷!

𝐷"

𝐷#

𝐷$

𝐷%

𝐷&

𝐷'

𝐷(

𝐶!

𝐶"

𝐶#

𝐶$

𝐶%

𝐶&

𝐶'

𝐶(

18,26

19,27

20,28

21,29

22,30

23,31

24,32

25,33

22,30

23,31

24,32

25,33

26,34

27,35

28,36

29,37

24,32

25,33

26,34

27,35

28,36

29,37

30,38

31,39

25,33

26,34

27,35

28,36

29,37

30,38

31,39

32,40

X-channel, Y-channel

𝑌!
𝑌"

𝑌#
𝑌$%

𝑌%
𝑌$!

𝑌&
𝑌$#

𝑌$
𝑌'

𝑌(
𝑌$)

𝑌)
𝑌$$

𝑌*
𝑌$(

𝑦!
𝑦"
𝑦#
𝑦$%
𝑦%
𝑦$!
𝑦&
𝑦$#
𝑦$
𝑦'
𝑦(
𝑦$)
𝑦)
𝑦$$
𝑦*
𝑦$(

(b) Data-flow graph and schedule for a traditional
interleaved IFFT.

𝐴!

𝐴"

𝐴#

𝐴$

𝐴%

𝐴&

𝐴'

𝐴(

𝐵!

𝐵"

𝐵#

𝐵$

𝐵%

𝐵&

𝐵'

𝐵(

𝐷!

𝐷"

𝐷#

𝐷$

𝐷%

𝐷&

𝐷'

𝐷(

𝐶!

𝐶"

𝐶#

𝐶$

𝐶%

𝐶&

𝐶'

𝐶(

15,23

19,27

17,25

21,29

16,24

20,28

18,26

22,30

16,24

20,28

18,26

22,30

17,25

21,29

19,27

23,31

18,26

22,30

20,28

24,32

19,27

23,31

21,29

25,33

22,30

26,34

24,32

28,36

23,31

27,35

25,33

29,37

X-channel, Y-channel

𝑌!
𝑌"

𝑌#
𝑌$%

𝑌%
𝑌$!

𝑌&
𝑌$#

𝑌$
𝑌'

𝑌(
𝑌$)

𝑌)
𝑌$$

𝑌*
𝑌$(

𝑦!
𝑦"
𝑦#
𝑦$%
𝑦%
𝑦$!
𝑦&
𝑦$#
𝑦$
𝑦'
𝑦(
𝑦$)
𝑦)
𝑦$$
𝑦*
𝑦$(

(c) Data-flow graph and schedule for an optimized
interleaved IFFT.

Fig. 4. Data-flow graphs and schedules for Interleaved FFT and IFFT.

Table 1. Performance Analysis and comparison of the proposed designs and the prior works (for N = 1024)
Design # BF # Memory Elem. Latency # MUXs Throughput

FFT+IFFT [9] log2 N (10) 3N − 6 (3066) 1.5N − 3 (1533) 4 log2 N + 2 (42) 2
Proposed I log2 N (10) 2.5N − 4 (2556) 1.25N − 2 (1278) 4 log2 N − 2 (38) 2

FFT+IFFT [19] log2 N (10) 4.5N − 6 (4602) 2N − 3 (2045) 4 log2 N + 4 (44) 2
Proposed II log2 N (10) 4N − 4 (4092) 1.5N − 2 (2046) 4 log2 N (40) 2

B
F

A

B
F

B

8

D
S
D

𝑥𝑘

𝑦𝑘

4

D
S
D

2

D
S
D

1

D
S
D

Channel Interleaving 2-Channel Interleaved FFT

REOC 3

3D
1

0
1

0

3D
1
0

1

0

B
F

C

B
F

D

B
F

A

B
F

B

𝑥𝑘

𝑦𝑘

4

D
S
D

2

D
S
D

1

D
S
D

Naïve 2-Channel Interleaved IFFT

B
F

C

B
F

D

B
F

A

B
F

B

1

D
S
D

2

D
S
D

4

D
S
D

Novel 2-Channel Interleaved IFFT

B
F

C

B
F

D

𝐻

Output in
natural
order

Output in
𝑁

2

bit reversed
order

8

D
S
D

Channel De-Interleaving

𝐻

𝑥𝑘

𝑦𝑘

8

D
S
D

Channel De-Interleaving

Eliminates Reordering

Fig. 5. Cascaded interleaved 16-Point FFT-IFFT architec-
tures. Top-Middle cascade represents a traditional design.
Top-bottom cascade represents the proposed design.

This folding set serves as the basis for deriving the sched-
ule shown in Fig. 4(c) and the architecture shown at the bot-
tom of Fig. 5. The proposed low-latency and low-area ar-
chitecture eliminates the need for additional DSD and REOC
units, as displayed in Fig. 5 (enclosed in a green box).

4. COMPARISON AND PERFORMANCE ANALYSIS

In this section, we compare our proposed designs against
baseline designs from the prior works, particularly those
highlighted in [9] and [19], with same folding order for
FFT and IFFT. Table 1 presents the timing and area perfor-

mance metrics for FFT size N . Within Table 1, the proposed
FFT and IFFT cascaded architecture is represented as “Pro-
posed I”, and it is benchmarked against the design from [9].
Concurrently, another proposed 2-interleaved FFT and IFFT
cascaded design, labeled “Proposed II”, is compared against
the design in [19].

The proposed FFT and IFFT cascaded architecture saves
about N/2 (16.67%) memory elements and N/4 clock cycles
of latency (16.67%) than its baseline design in [9]. For the
interleaved FFT-IFFT cascade, the memory and latency sav-
ings are, respectively, N/2 units (11%) and N/2 clock cycles
(25%), compared to [19]. The percentage savings in brackets
correspond to N=1024.

5. CONCLUSION

This paper presents a novel approach for designing cascaded
FFT-IFFT architectures where the intermediate buffer is elim-
inated. Several cascaded architectures can be designed by us-
ing different folding sets for the FFT; thus, these architectures
are non-unique. The proposed FFT-IFFT cascade approach
has inspired the design of low-latency NTT-iNTT cascade ar-
chitectures for homomorphic encryption [20].

6. ACKNOWLEDGMENT

The author is grateful to Dr. Nanda Unnikrishnan and Dr.
Weihang Tan for their help in preparation of this paper. This
research was supported in part by the National Science Foun-
dation under grant number CCF-2243053.

7. REFERENCES

[1] Alan V. Oppenheim and Ronald W. Schafer, Discrete-
time signal processing, Prentice Hall Press, USA, 3rd
edition, 2009.

[2] Mojtaba Mahdavi, Ove Edfors, Viktor Ówall, and Liang
Liu, “A low latency and area efficient FFT proces-
sor for massive MIMO systems,” in 2017 IEEE Inter-
national Symposium on Circuits and Systems (ISCAS).
IEEE, 2017, pp. 1–4.

[3] Yu-Wei Lin and Chen-Yi Lee, “Design of an FFT/IFFT
processor for MIMO OFDM systems,” IEEE Transac-
tions on Circuits and Systems I: Regular Papers, vol. 54,
no. 4, pp. 807–815, 2007.

[4] Sai Sanjeet, Bibhu Datta Sahoo, and Keshab K Parhi,
“Low-energy real FFT architectures and their applica-
tions to seizure prediction from EEG,” Analog Inte-
grated Circuits and Signal Processing, vol. 114, no. 3,
pp. 287–298, 2023.

[5] Mengni Zhou, Cheng Tian, Rui Cao, Bin Wang, Yan
Niu, Ting Hu, Hao Guo, and Jie Xiang, “Epilep-
tic seizure detection based on EEG signals and CNN,”
Frontiers in neuroinformatics, vol. 12, pp. 95, 2018.

[6] Tahmid Abtahi, Colin Shea, Amey Kulkarni, and
Tinoosh Mohsenin, “Accelerating convolutional neu-
ral network with FFT on embedded hardware,” IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 26, no. 9, pp. 1737–1749, 2018.

[7] Caiwen Ding, Siyu Liao, Yanzhi Wang, Zhe Li, Ning
Liu, Youwei Zhuo, Chao Wang, Xuehai Qian, Yu Bai,
Geng Yuan, et al., “Circnn: accelerating and com-
pressing deep neural networks using block-circulant
weight matrices,” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitec-
ture, 2017, pp. 395–408.

[8] Shousheng He and M. Torkelson, “Design and imple-
mentation of a 1024-point pipeline FFT processor,” in
Proceedings of the IEEE 1998 Custom Integrated Cir-
cuits Conference (Cat. No.98CH36143), 1998, pp. 131–
134.

[9] Manohar Ayinala, Michael Brown, and Keshab K Parhi,
“Pipelined parallel FFT architectures via folding trans-
formation,” IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems, vol. 20, no. 6, pp. 1068–1081,
2011.

[10] Mario Garrido, Keshab K Parhi, and Jesús Grajal,
“A pipelined FFT architecture for real-valued signals,”

IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 56, no. 12, pp. 2634–2643, 2009.

[11] Jian Wang, Chunlin Xiong, Kangli Zhang, and Jibo
Wei, “A mixed-decimation MDF architecture for radix-
2k parallel FFT,” IEEE transactions on very large scale
integration (VLSI) systems, vol. 24, no. 1, pp. 67–78,
2015.

[12] Kai-Jiun Yang, Shang-Ho Tsai, and Gene CH Chuang,
“MDC FFT/IFFT processor with variable length for
MIMO-OFDM systems,” IEEE transactions on very
large scale integration (VLSI) systems, vol. 21, no. 4,
pp. 720–731, 2012.

[13] Manohar Ayinala, Yingjie Lao, and Keshab K Parhi,
“An in-place FFT architecture for real-valued signals,”
IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 60, no. 10, pp. 652–656, 2013.

[14] Zhen-Guo Ma, Xiao-Bo Yin, and Feng Yu, “A novel
memory-based FFT architecture for real-valued signals
based on a radix-2 decimation-in-frequency algorithm,”
IEEE Transactions on circuits and systems II: Express
Briefs, vol. 62, no. 9, pp. 876–880, 2015.

[15] Keshab K Parhi, VLSI digital signal processing systems:
design and implementation, John Wiley & Sons, 1999.

[16] Keshab K Parhi, C-Y Wang, and Andrew P Brown,
“Synthesis of control circuits in folded pipelined DSP
architectures,” IEEE Journal of Solid-State Circuits, vol.
27, no. 1, pp. 29–43, 1992.

[17] Keshab K Parhi, “Hierarchical folding and synthesis
of iterative data flow graphs,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 60, no. 9,
pp. 597–601, 2013.

[18] Nanda K Unnikrishnan and Keshab K Parhi, “Inter-
Grad: Energy-efficient training of convolutional neural
networks via interleaved gradient scheduling,” IEEE
Transactions on Circuits and Systems I: Regular Papers,
2023.

[19] Nanda K Unnikrishnan and Keshab K Parhi, “Multi-
channel FFT architectures designed via folding and in-
terleaving,” in 2022 IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, 2022, pp. 142–
146.

[20] Weihang Tan, Sin-Wei Chiu, Antian Wang, Yingjie Lao,
and Keshab K. Parhi, “PaReNTT: Low-latency paral-
lel residue number system and NTT-based long polyno-
mial modular multiplication for homomorphic encryp-
tion,” IEEE Transactions on Information Forensics and
Security, vol. 19, pp. 1646–1659, 2024.

