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Abstract—In this paper, we consider a remote inference system, 
where a neural network is used to infer a time-varying target (e.g., 
robot movement), based on features (e.g., video clips) that are 
progressively received from a sensing node (e.g., a camera). Each 
feature is a temporal sequence of sensory data. The inference error 
is determined by (i) the timeliness and (ii) the sequence length of 
the feature, where we use Age of Information (AoI) as a metric for 
timeliness. While a longer feature can typically provide better 
inference performance, it often requires more channel resources 
for sending the feature. To minimize the time-averaged inference 
error, we study a learning and communication codesign problem 
that jointly optimizes feature length selection and transmission 
scheduling. When there is a single sensorpredictor pair and a 
single channel, we develop low-complexity optimal co-designs for 
both the cases of time-invariant and timevariant feature length. 
When there are multiple sensor-predictor pairs and multiple 
channels, the co-design problem becomes a restless multi-arm 
multi-action bandit problem that is PSPACEhard. For this setting, 
we design a low-complexity algorithm to solve the problem. Trace-
driven evaluations demonstrate the potential of these co-designs to 
reduce inference error by up to 10000 times. 

Index Terms—Remote inference, transmission scheduling, age 
of information, restless multi-armed bandit. 

I. INTRODUCTION 

HE ADVANCEMENT of communication technologies 

and artificial intelligence has engendered the demand 

for 
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remote inference in various applications, such as 

autonomous vehicles, health monitoring, industrial control 

systems, and robotic systems [1], [2], [3], [4]. For instance, 

accurate prediction of the robotic state during remote 

robotic surgery is time-critical. The remote inference 

problem can be tackled by using a neural network that is 

trained to predict a timevarying target (e.g., robot 

movement) based on features (e.g., video clips) sent from a 

remote sensing node (e.g., a camera). Each feature is a 

temporal sequence of the sensory output and the length of 

the temporal sequence is called feature length. 

Due to data processing time, transmission errors, and 

transmission delay, the features delivered to the neural 

predictor may not be fresh, which can significantly affect 

the inference accuracy. To measure the freshness of the 

delivered features, we use the age of information (AoI) 

metric, which was first introduced in [5]. Let U(t) be the 

generation time of the most recently delivered feature 

sequence. Then, AoI is the time difference between the 

generation time U(t) and the current time t, denoted by (t) 

:= t−U(t). Recent studies [6], [7] have shown that the 

inference error is a function of AoI for a given feature 

length, but this function is not necessarily monotonic. 

Moreover, simulation results in [6] suggest that AoI-aware 

remote inference, wherein both the feature and its AoI are 

fed to the neural network, can achieve superior 

performance than AoI-agnostic remote inference that omits 

the provision of AoI to the neural network. Hence, the AoI 

(t) can provide useful information for reducing the 

inference error. 

Additionally, the performance of remote inference 

depends on the sequence length of the feature. Longer 

feature sequences can carry more information about the 

target, resulting in the reduction of inference errors. 

Though a longer feature can provide better training and 

inference performance, it often requires more 

communication resources. For example, a longer feature 

may require a longer transmission time and may end up 

being stale when delivered, thus resulting in worse 

T 
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inference performance. Hence, it is necessary to study a 

learning and communications co-design problem that 

jointly controls the timeliness and the length of the feature 

sequences. The contributions of this paper are summarized 

as follows: 

• In [7], it was demonstrated that the inference error is 

a function of the AoI, whereas the function is not 

necessarily monotonic. The current paper further 

investigates the impact of feature length on inference 

error. Our information-theoretic and experimental 

analysis show that the inference error is a non-

increasing function of the feature length (See Figs. 2(a)-

3(a), and Lemma 1). 

• We propose a novel learning and communications 

codesign framework (see Section II). In this 

framework, we adopted the “selection-from-buffer” 

model proposed in [7], which is more general than the 

popular “generateat-will” model that was proposed in 

[8] and named in [9]. In addition, we consider both 

time-invariant and time-variant feature length. Earlier 

studies, for example [7], [10], did not consider time-

variant feature length. • For a single sensor-predictor 

pair and a single channel, this paper jointly optimizes 

feature length selection and transmission scheduling to 

minimize the timeaveraged inference error. This joint 

optimization is formulated as an infinite time-horizon 

average-cost semiMarkov decision process (SMDP). 

Such problems often lack analytical solutions or 

closed-form expressions. Nevertheless, we are able to 

derive a closed-form expression for an optimal 

scheduling policy in the case of time-invariant feature 

length (Theorem 1). The optimal scheduling time 

strategy is a threshold-based policy. Our threshold-

based scheduling approach differs significantly from 

previous threshold-based policies in, e.g., [7], [11], [12], 

[13], [14], because our threshold function depends on 

both the AoI value and the feature length, while prior 

threshold functions rely solely on the AoI value. In 

addition, our threshold function is not necessarily 

monotonic with AoI. This is a significant difference 

with prior studies [11], [12], [13], [14]. 

• We provide an optimal policy for the case of 

timevariant feature length. Specifically, Theorem 2 

presents the Bellman equation for the average-cost 

SMDP with time-variant feature length. The Bellman 

equation can be solved by applying either relative 

value iteration or policy iteration algorithms [15, Sec. 

11.4.4]. Given the complexity associated with 

converting the average-cost SMDP into a Markov 

Decision Process (MDP) suitable for relative value 

iteration, we opt for the alternative: using the policy 

iteration algorithm to solve our averagecost SMDP. By 

leveraging specific structural properties of the SMDP, 

we can simplify the policy iteration algorithm to reduce 

its computational complexity. The simplified policy 

iteration algorithm is outlined in Algorithm 1 and 

Algorithm 2. 

• Furthermore, we investigate the learning and 

communications co-design problem for multiple 

sensor-predictor pairs and multiple channels. This 

problem is a restless multi-armed, multi-action bandit 

problem that is known to be PSPACE-hard [16]. 

Moreover, proving indexability condition relating to 

Whittle index policy [17] for our problem is 

fundamentally difficult. To this end, we propose a new 

scheduling policy named “Net Gain Maximization” 

that does not need to satisfy the indexability condition 

(Algorithm 4). 

• Numerical evaluations demonstrate that our policies 

for the single source case can achieve up to 10000 times 

performance gain compared to periodic updating and 

zero-wait policy (see Figs. 5-6). Furthermore, our 

proposed multiple source policy outperforms the 

maximum age-first policy (see Fig. 7) and is close to a 

lower bound (see Fig. 8). 

A. Related Works 

The age of information (AoI) has emerged as a popular 

metric for analyzing and optimizing communication 

networks [18], [19], control systems [13], [20], remote 

estimation [12], [21], and remote inference [6], [7]. As 

surveyed in [22], several studies have investigated sampling 

and scheduling policies for minimizing linear and nonlinear 

functions of AoI [7], [9], [11], [13], [14], [18], [19], [23], [24], 

[25], [26], [27], [28], [29]. In most previous works [9], [11], 

[13], [14], [18], [19], [23], [24], [25], [26], [27], [28], [29], 

monotonic AoI penalty functions are considered. However, 

in a recent study [7], it is demonstrated that the monotonic 

assumption is not always true for remote inference. In 

contrast, the inference error is a function of AoI, but the 

function is not necessarily monotonic. The present paper 

further investigates the impact of feature length on the 

inference error and jointly optimizes AoI and feature 

length. 

In recent years, researchers have increasingly employed 

information-theoretic metrics to evaluate information 

freshness [6], [7], [11], [30], [31], [32], [33], [34]. In [11], 

[30], [31], the authors utilized Shannon’s mutual 

information to quantify the amount of information carried 

by received data messages about the current source value, 

and used Shannon’s conditional entropy to measure the 

uncertainty about the current source value after receiving 

these messages. These metrics were demonstrated to be 

monotonic functions of the AoI when the source follows a 
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time-homogeneous Markov chain [11], [31]. Built upon 

these findings, the authors of [34] extended this framework 

to include hidden Markov model. Furthermore, a 

Shannon’s conditional entropy term HShannon(Yt|Xt−(t) = x) 

was used in [32], [33] to quantify information uncertainty. 

However, a gap still existed between these information-

theoretic metrics and the performance of real-time 

applications such as remote estimation or remote inference. 

In our recent works [6], [7], [35] and the present paper, we 

have bridged this gap by using a generalized conditional 

entropy associated with a loss function L, called L-

conditional entropy, to measure (or approximate) training 

and inference errors in remote inference, as well as the 

estimation error in remote estimation. For example, when 

the loss function L(y,yˆ) is chosen as a quadratic function 

, the L-conditional entropy HL(Yt|Xt−(t)) = minφ 

E[(Yt − φ(Xt−(t)))2] is exactly the minimum mean squared 

estimation error in remote estimation. This approach 

allows us to analyze how the AoI (t) affects inference and 

estimation errors directly, instead of relying on 

information-theoretic metrics as intermediaries for 

assessing application performance. It is worth noting that 

Shannon’s conditional entropy is a special case of L-

conditional entropy, corresponding to the inference and 

estimation errors for softmax regression and maximum 

likelihood estimation, as discussed in Section II. 

The optimization of linear and non-linear functions of 

AoI for multiple source scheduling can be formulated as a 

restless multi-armed bandit problem [7], [14], [36], [37], 

[38]. Whittle, in his seminal work [17], proposed an index-

based policy to address restless multi-armed bandit 

(RMAB) problems with binary actions. Our multiple 

source scheduling problem is a RMAB problem with 

multiple actions. An extension of the Whittle index policy 

for multiple actions was provided in [39], but it requires to 

satisfy a complicated indexability condition. In [10], the 

authors considered joint feature length selection and 

transmission scheduling, where the penalty function was 

assumed to be non-decreasing in the AoI, the feature length 

is time-invariant, and there is only one communication 

channel. Under these assumptions, [10] established the 

indexability condition and developed a Whittle Index 

policy. Compared to [10], our work could handle both 

monotonic and non-monotonic AoI penalty functions, both 

time-invariant and time-variant feature lengths, and both 

one and multiple communication channels. 

Because of (i) the time-variant feature length and 

nonmonotonic AoI penalty function and (ii) the fact that 

there exist multiple transmission actions, we could not 

utilize the Whittle index theory to establish indexability for 

our multiple source scheduling problem. To address this 

challenge, we propose a new “Net Gain Maximization” 

algorithm (Algorithm 4) for multi-source feature length 

selection and transmission scheduling, which does not 

require indexability. During the revision of this paper, we 

found a related study [33], where the authors introduced a 

similar gain index-based policy for a RMAB problem with 

two actions: to send or not to send. The “Net Gain 

Maximization” algorithm that we propose is more general 

than the gain index-based policy in [33] due to its capacity 

to accommodate more than two actions in the RMAB. 

II. SYSTEM MODEL AND SCHEDULING POLICY 

We consider a remote inference system composed of a 

sensor, a transmitter, and a receiver, as illustrated in Fig. 1. 

The sensor observes a time-varying target Yt ∈ Y and feeds 

its measurement Vt ∈ V to the transmitter. The transmitter 

generates features from the sensory outputs and 

progressively transmits the features to the receiver through 

a communication channel. Within the receiver, a neural 

network infers the time-varying target based on the 

received features. 

A. System Model 

The system is time-slotted and starts to operate at time 

slot t = 0. At every time slot t, the transmitter appends the 

sensory output Vt ∈ V to a buffer that stores the B most 

recent sensory outputs (Vt,Vt−1,...,Vt−B+1); meanwhile, the 

 

Fig. 1. A remote inference system, where Xt
l
−b := (Vt−b,Vt−b−1,...,Vt−b−l+1) is a feature with sequence length l. 
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oldest output Vt−B is removed from the buffer. We assume 

that the buffer is full initially, containing B signal values 

buffer remains consistently full at any time(V0,V1,...,V−B+1) 

at time t = 0. This ensures that thet.1 The transmit- 

Xter progressively generates a featuretl−b := (Vt−b,...,Vt−b−l+1

 ∈ V Xis a temporal sequencet
l−b, where each featureVl is the 

 ) l 

of sensory outputs taken from the buffer such that set of all 

l-tuples that take values from V, 1 ≤ l ≤ B, and 0 ≤ b ≤ B−l. 

For ease of presentation, the temporal sequence length l of 

feature Xtl−b is called feature length and the start- 

ing positionposition. If the channel is idle in time slotb of 

feature Xtl−b in the buffer is calledt, the transmitterfeature 

cation delays and channel errors, the feature is not 

instantlycan submit the feature 
X

t
l−b to the channel. Due to 

communi- 

received. The most recently received feature is denoted as 

Xtl−δ = (Vt−δ,Vt−δ−1,...,Vt−δ−l+1), where the latest obser- 

vationcall δ theVt−δage of information (AoI)in feature Xtl−δ 

is generatedwhich represents the dif-δ time slots ago. We 

ference between the time stamps of the target Yt and the 

latest 

observation Vt−δ in feature Xtl−trained neural networks, 

eachδ. The receiver consists of B associated with a specific 

                                                           
1 This assumption does not introduce any loss of generality. If the buffer 

is no full at time t = 0, it would not affect our results. 

feature length l = 1,2,...,B. The neural network associated 

with feature length l takes 

outputthe AoI δ ∈ generates an 

Z+ and the featurea Xtl−δ A
∈

, where the neuralV
l as inputs 

and 

network is represented by the function φl : Z+ × Vl → A. 

The performance of the neural network is measured by a 

loss function L : Y × A → R, where L(y,a) indicates the 

incurred loss if the output a ∈ A is used for inference when 

Yt = y. The loss function L is determined by the purpose of 

the application. For example, in softmax regression (i.e., 

neural network based maximum likelihood classification), 

the output a = QY is a distribution of Yt and the loss function 

Llog(y,QY) = −log QY(y) is the negative log-likelihood of the 

value Yt = y. In neural network based mean-squared 

Fig. 2. Performance of wireless channel state information prediction: (a) 

Inference error Vs. Feature length and (b) Inference error Vs. AoI. 

estimation, a quadratic loss function L2(y,yˆ) = y − yˆ2
2 is 

used, where the action a = yˆ is an estimate of the target 

value Yt = y and y2 is the Euclidean norm of the vector y. 

B. Inference Error 

We assume that {(Yt,Xt
l),t ∈ Z} is a stationary process for 

every l. Given AoI δ and feature length l, the expected 

inference error is a function of δ and l, given by 

 errinference , (1) 

2 https://github.com/Kamran0153/Channel-State-Information-

Prediction 
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where PYt,Xtl δ is the joint distribution of the label Yt and feal 

during online inference and the function− φl 

represents 

ture Xt−δ any trained neural network that maps from Z+ × Vl 

to A. 

The inference error errinference(δ,l) can be evaluated through 

machine learning experiments. 

In this paper, we conduct two experiments: (i) wireless 

channel state information (CSI) prediction and (ii) actuator 

states prediction in the OpenAI CartPole-v1 task [40]. 

Detailed information regarding the experimental setup for 

both experiments can be found in Appendix A of the 

supplementary material. The code for these experiments is 

available in GitHub repositories.23 

The experimental results, presented in Figs. 2(a)-3(a), 

demonstrate that the inference error decreases with respect 

to feature length. Moreover, Figs. 2(b)-3(b) illustrate that 

the inference error is not necessarily a monotonic function 

of AoI. These findings align with machine learning 

experiments conducted in [6], [7], [35]. Collectively, the 

results from this paper and those in [6], [7], [35] indicate 

that longer feature lengths can enhance inference accuracy 

and fresher features are not always better than stale 

features in remote inference. 

C. Feature Length Selection and Transmission Scheduling 

Policy 

Because (i) fresh feature is not always better than stale 

feature and (ii) longer feature can improve inference error, 

we adopted “selection-from-buffer” model, which is 

recently proposed in [7]. In contrast to the “generate-at-

will” model [8], [9], where the transmitter can only select 

the most recent sensory output Vt, the “selection-from-

buffer” model offers greater flexibility by allowing the 

transmitter to pick multiple sensory outputs (which can be 

stale or fresh). In 
Fig. 3. Performance of actuator state prediction in the OpenAI 

CartPole-v1 task under mechanical response delay: (a) Inference error 

Vs. Feature length and (b) Inference error Vs. AoI. 

other words, “selection-from-buffer” model allows the 

transmitter to choose feature position b and feature length 

l under the constraints 1 ≤ l ≤ B − 1 and 0 ≤ b ≤ B − l. Feature 

length selection represents a trade-off between learning and 

communications: A longer feature can provide better 

learning performance (see Figs. 2-3), whereas it requires 

more channel resources (e.g., more time slots or more 

                                                           
3 https://github.com/Kamran0153/Impact-of-Data-Freshness-in-

Learning 

frequency resources) for sending the feature. This 

motivated us to study a learningcommunication co-design 

problem that jointly optimizes the feature length, feature 

position, and transmission scheduling. 

The feature length and feature position may vary across 

the features sent over time. Feature transmissions over the 

channel are non-preemptive: the channel must finish 

sending the current feature, before becoming available to 

transmit 

the next feature. Suppose that the(VSi−bi,VSi−bi−1,...,VSi−bi−li+1) 

is submitted to the channeli-th feature XS
li

i−bi = 

at time slot t = Si, where li is its feature length and bi is its 

feature position such that 1 ≤ li ≤ B and 0 ≤ bi ≤ B − li. 

It takes Ti(li) ≥ 1 time slots to send the i-th feature over the 

channel. The i-th feature is delivered to the receiver at time 

slot Di = Si +Ti(li), where Si < Di ≤ Si+1. The feature 

transmission time Ti(li) depends on the feature length li. Due 

to time-varying channel conditions, we assume that, given 

feature length li = l, the Ti(l)’s are i.i.d. random variables, 

with a finite mean 1 ≤ E[Ti(l)] < ∞. Once a feature is 

delivered, an acknowledgment (ACK) is sent back to the 

transmitter, notifying that the channel has become idle. 

li(t) 

In time slot t, the i(t)-th feature XS
i(t)−bi(t) is the most 

recently received feature, wherei(t) i(t) = maxi{Di ≤ t}. The 

l 

receiver feeds the feature XSi(t)−bi(t) to the neural network to 

infer Yt. We define age of information (AoI) (t) is defined as 

the difference between the time-stamp of the freshest 

sensory 

l
i(t) 

output VSi(t)−bi(t) in feature XSi(t)−bi(t) and the current time t, 

i.e., 

 (t) := t − max{Si − bi : Di ≤ t}. (2) 

i 

Because Di < Di+1, it holds that 

 (t) = t − Si + bi, if Di ≤ t < Di+1. (3) 

The initial state of the system is assumed to be S0 = 0,l0 = 1,b0 

= 0,D0 = T0(l0), and (0) is a finite constant. 
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Let π = ((S1,b1,l1),(S2,b2,l2),...) represent a scheduling policy 

and  denote the set of all the causal scheduling policies that 

satisfy the following conditions: (i) the scheduling time Si, 

the feature position bi, and the feature length li are decided 

based on the current and the historical information 

available at the transmitter such that 1 ≤ li ≤ B and 0 ≤ bi ≤ B 

− li and (ii) the scheduler has access to the inference error 

function errinference(·) and the distribution of Ti(l) for each l = 

1,2,...,B. We use inv ⊂  to denote the set of causal scheduling 

policies with time-invariant feature length, defined as 

B 

inv : l, (4) l=1 where l :

. 

III. PRELIMINARIES: IMPACTS OF FEATURE LENGTH AND 

AOI ON INFERENCE ERROR 

In this section, we adopt an information-theoretic 

approach that was developed recently in [7] to show the 

impact of feature length l and AoI δ on the inference error 

errinference(δ,l). 

A. Information-Theoretic Metrics for Training and 

Inference Errors 

Training error errtraining(δ,l) is expressed as a function of 

δ and l, given by 

 errtraining , (5) 

where φl a trained neural network used in˜ (1) and PY˜0
˜

,X
˜l

−l 

δ inis the joint distribution of the target 
Y

0 and the feature 

X 
δ 

the training dataset. The training error errtraining(δ,l) is 

lower− bounded by 

 HL

, (6) 

where is the set of all functions that map from Z+ × Vl to A. 

Because the trained neural network φl in (5) satisfies φl ∈ , 

HL(Y˜0|X˜−l 
δ
) 

≤ errtraining(δ,l). The lower bound in (6) has an 

informationtheoretical interpretation [7], [41], [42], [43]: It 

is a general- 

ized conditional entropy of a random variableassociated to 

the loss function L. For notational simplicity, weY˜0 given 

X˜−l 
δ 

call HL(Y|X) an L-conditional entropy of a random variable 

Y given X. The L-entropy of a random variable Y is defined 

as [41], [42] 

 HL(Y) . (7) 

The optimal solutions to (7) may not be unique. Let aPY 

denote an optimal solution to (7), which is called a Bayes 

action [41]. Similarly, the L-conditional entropy of Y given 

X = x is defined as [6], [7], [41], [42] 

 HL(Y|X x[L(Y,a)] (8) 

and the L-conditional entropy of Y given X is given by [6], 

[7], [41], [42] 

 HL(Y|X)  x). (9) 

The inference error errinference(δ,l) can be approximated 

as the following L-conditional cross entropy 

HL  

 x∈X lt−δ(x)EY∼PYt|Xtl−δ=x Y,aPY˜0|X˜− δ=x , 

(10) 

defined aswhere the L-conditional cross entropy 

HL(PY|X;PY˜|X˜ |PX) is 

[7] 

HLPY|X;PY˜|X˜ |PX 

= Y|X=x Y,aPY˜|X˜=x. (11) x∈X 

If training algorithm considers sets of large and wide neural 

networks such that aP l x and φl(δ,x) for all 

Y˜0|X˜
−

δ= 

δ ∈ Z+ and x ∈ Xl are close to each other, then the difference 

between the inference error errinference(δ,l) and thesmallL-

[7]conditional cross entropy HL(PYt|Xtl−Lδ;-conditional 

crossPY˜0|X˜−l δ|PXtl−δ) is 

. Compared to errinference(δ,l), the entropy 

HL(PYt|Xtl−δ;PY˜0|X˜−l δ|PXtl−δ) are mathematically more 

convenient to analyze, as we will see next. 
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B. Information-Theoretic Monotonicity Analysis 

The following lemma interprets the monotonicity of the 

L-conditional entropy HL(Y
˜

0|X
˜ l δ) and the L-conditional 

cross − 

entropy HL(PYt|Xtl−δ;PY˜0|X˜−l δ|PXtl−δ) with respect to the 

feature length l. 

Lemma 1: The following assertions are true: 

(a) Givenl, i.e., for all 1δ ≥ 0, HL≤(Y˜l10|≤X˜−llδ2) is a non-

increasing function of 

 HL . (12) 

(b) Given β ≥ 0, if for all l = 1,2,..., and x ∈ Vl 

l Xt δ PYt|Xt
l−δ=x(y

) 
− 

P
Y˜0|X

˜
−l 

δ=x 

x∈X − y∈Y 

2 

β , (13) 

then for all 1 ≤ l1 ≤ l2 

 HL P t

δ; 0 tl2 

 2δ| t2 

|X
˜

− X −δ  Y |X − Y˜ 

 ≤ HL P l1 ; 0 1δ| t1 + O(β).

 (14) 

 Yt|Xt−δ Y˜ |X
˜

− X −δ 

Proof: Lemma 1 can be proven by using the data 

processing inequality for L-conditional entropy [43, Lemma 

12.1] and a local information geometric analysis. See 

Appendix B of the supplementary material for the details. 

 

Lemma 1(a) demonstrates that for a given AoI value δ, 

the L-conditional entropy HL(Y˜0|X
˜ l 

δ) decreases as the 

feature length l increases. This is due to the fact that− a 

longer feature provides more information, consequently 

leading to a lower L-conditional entropy. Additionally, as 

indicated in Lemma 1(b), when the conditional 

distributions in training and inference data are close to each 

other (i.e., when β in (13) is close to 0), the L-conditional 

cross entropy HL(PYt|Xtl−δ;PY˜0|X˜−l δ|PXtl−δl. This 

information-theoretic) is close to a non-increasing function 

of the feature length 

analysis clarifies the experimental results depicted in Fig. 

2(a) and Fig. 3(a), where the inference error diminishes 

with the increasing feature length. 

 The monotonicity of the L-conditional cross entropy 

HL(PYt|Xtl−δ;PY˜0|X˜−l δ|PXtl−δ) with respect to the AoI δ are 

explained in [7, Th. 3] and in [35]. This result is restated in 

Lemma 2 below for the sake of completeness. 

Definition 1 ( -Markov Chain [7], [35]): Given ≥ 0, a 

sequence of three random variables Y,X, and Z is said to be 

  an
 -Markov chain, denoted as Y ↔ X ↔ 
Z, if 

Ilog(Y;Z|X) PY|X,Z||PY|X

 

where 

(y) 

 Dlog(PY||QY) =  Y

  (16) 

QY(y) 
y∈Y 

is KL-divergence and Ilog(Y;Z|X) is Shannon conditional 

mutual information. 

 -Markov chain for all μ,ν ≥↔ 0 andl (13)↔ Xt
l−μ−ν is 

an Lemma 2 [7], [35]: If Yt Xt−μ holds, then for all 0 ≤ δ1 ≤ δ2 

HL PYt|Xtl  

≤ HL PYt|Xtl

 

 Lemma 2 implies that the monotonic behavior of 

HL(PYt|Xtl−δ;PY˜0|X˜−l δ|PXtl−δ) with respect to AoI δ is 

characterized by two key parameters: in the -

Markov chain model and the parameter β. When is small, 

the sequence of target and feature random variables 

approximates a Markov 

chain. 

Consequently,decreasing with respectHL(PYtto|Xtl

−δAoI;PY˜0
|
δX

˜
−l δprovided|PXtl−δ) becomes non-that β is 

close to 0. Conversely, ifis significantly large, then 

HL(PYt|Xtl−δ;PY˜0|X˜−l δ|PXtl−δ) can be far from a monotonic 

function of δ. This findings provide an explanation for the 

≤ 
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patterns observed in the experimental results shown in 

Figs. 2(b) to 3(b). Shannon’s interpretation of Markov 

sources in his seminal work [44] indicates that as the 

sequence length l grows larger, the tuple (Yt,Xtl−μ,Xtl−μ−ν) 

tends to resemble a Markov chain more closely. Hence, 

according to Lemma 2, the inference error approaches to a 

non-decreasing function of AoI δ as feature length l 

increases. As illustrated in Figs. 2(b)-3(b), the inference 

error converges to a nondecreasing function of AoI δ as 

feature length l increases. 

IV. LEARNING AND COMMUNICATIONS CO-DESIGN: 

SINGLE SOURCE CASE 

Let d(t) denote the feature length of the most recently 

received feature in time slot t. The time-averaged expected 

inference error under policy π = ((S1,b1,l1),(S2,b2,l2),...) is 

expressed as 

  errinference , (18) 

where p¯π is denoted as the time-averaged inference error, 

and errinference((t),d(t)) is the expected inference error at time 

t corresponding to the system state ((t),d(t)). In this section, 

we solve two problems. The first one is to find an optimal 

policy that minimizes the time-averaged expected inference 

error among all the causal policies in inv that consider 

timeinvariant feature length. Another problem is to find an 

optimal policy that minimizes the time-averaged expected 

inference error among all the causal policies in . 

A. Time-Invariant Feature Length 

We first find an optimal policy that minimizes the 

timeaveraged inference error among all causal policies with 

timeinvariant feature length in inv defined in (4): 

 errinference  

where p¯inv is the optimum value of (19). The problem (19) 

is an infinite time-horizon average-cost semi-Markov 

decision process (SMDP). Such problems are often 

challenging to solve analytically or with closed-form 

solutions. The perslot cost function errinference((t),d(t)) in (19) 

depends on two variables: the AoI (t) and the feature length 

d(t). Prior studies [9], [11], [12], [13], [14], [18], [19], [21], 

[45] have considered linear and non-linear monotonic AoI 

functions. Due to the fact that (i) the cost function in (19) 

depends on two variables and (ii) is not necessarily 

monotonic with respect to AoI, finding an optimal solution 

is challenging and the existing scheduling policies cannot be 

directly applied to solve (19). Therefore, it is necessary to 

develop a new scheduling policy that can address the 

complexities of (19). 

Surprisingly, we get a closed-form solution of (19). To 

present the solution, we define a function γl(δ,d) as 

τ 1 l =

  errinference . 

τ∈{1,2,...} 
τ 

j=0 

(20) 

Theorem 1: If Ti(l)’s are i.i.d. with a finite mean E[Ti(l)] 

for each l = 1,2,...,B, then there exists an optimal solution 

 inv to (19) that 

satisfies: 

(a) The optimal feature 

position in π∗ is time-invariant, i.e., 

b∗1b∗. The optimal feature length l∗ and the optimal 

feature position b∗ in π∗ are given by 

   βb,l, (21) 

1≤l≤B,0≤b≤B−l 

where βb,l is the unique root of equation 

errinference  

 , (22) 

Di  b, the 
sequence (S1(βb,l),S2(βb,l),...) is determined by 

Si , 

(23) 

and the function γl(·) is defined in (20). 

(b) The optimal scheduling time 
S

i
∗+1 in π∗ is determined by 

S , 

(24) 

where  b∗ is the AoI at time t. The 
optimal objective value p¯inv of (19) is 

 βb,l. (25) 

B−l 

We prove Theorem 1 in two steps: (i) We find B policies, 

each of which is optimal among the set of policies l where l 

= 1,2,...,B. After that (ii) we select the policy that results in 

the minimum average inference error among the B policies. 

See Appendix C of the supplementary material for details. 
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Theorem 1 implies that the optimal scheduling policy has 

a nice structure. According to Theorem 1(a), the feature 

position b∗i is constant for all i-th features, i.e., b∗

. 

The optimal feature length l∗ and the optimal feature 

position b∗ are pre-computed by solving (21) and then used 

in real-time. The parameter βb,l in (21) is the unique root of 

(22), which is solved by using low-complexity algorithms, 

e.g., bisection search, newtons method, and fixed point 

iteration [12]. Theorem 1(b) implies that the optimal 

schedul- 

is transmitted in time-sloting time Si∗+1 follows a threshold 

policy. Specifically, a featuret if the following two 

conditions are 

satisfied: (i) The channel is idle in time-slot t and (ii) the 

value  exceeds the optimal objective value p¯inv 

of (19). The optimal objective value p¯inv is obtained from 

(25). Our threshold-based scheduling policy has a 

significant distinction from previous threshold-based 

policies studied in the literature, such as [11], [12], [13], 

[21]. In these prior works, the threshold function used to 

determine the scheduling time is based solely on the AoI 

value and is non-decreasing with respect to AoI. However, 

in our proposed strategy, (i) the threshold function γl(·) 

depends on both the AoI value and the feature length and 

(ii) the threshold function γl(·) can be non-monotonic with 

respect to AoI. 

1) Monotonic AoI Cost function: Consider a special case 

where the inference error errinference(δ,l) is a non-decreasing 

function of δ for every feature length l. A simplified solution 

can be derived for this specific case of (19). In this scenario, 

the optimal feature position is b∗ = 0, and the threshold 

function γl(·) defined in (20) becomes: 

 γl(δ,d) errinference . (26) 

In this special case of monotonic AoI cost function, (24) can 

be rewritten as a threshold policy of the AoI (t) in the form 

of (t) ≥ w(l∗,p¯inv), where w(l,β) is defined as: 

w errinference

 
However, when errinference(δ,l) is not monotonic with respect 

to AoI δ, (24) cannot be reformulated as a threshold policy 

of the AoI (t). This is a key difference with earlier studies 

[11], [13], [14]. 

2) Connection With Restart-in-State Problem: Consider 

another special case in which all features take 1 time-slot 

for transmission. For this special case, the threshold 

function γl(·) defined in (20) becomes 

 
 errinference

 
=0 

This special case of (19) is a restart-in-state problem [46, 

Ch. 2.6.4]. This is because whenever a feature with the 

optimal feature length l∗ and from the optimal feature 

position b∗ is transmitted, AoI value restarts from b∗ + 1 in 

the next time slot. For this restart-in-state problem, the 

optimal sending time follows a threshold policy [46, Ch. 

2.6.4]. Specifically, a feature is transmitted if 

 h , (29) 

where the relative value function h(δ,l∗) of the restart-in-

state problem is given by 

h errinference  

 . (30) 

By using (30), we can show that (29) is equivalent to 

 . (31) 

where the function γl(δ,d) is defined in (28). This connection 

between the restart-in-state problem and AoI minimization 

was unknown before. The original problem considers more 

general Ti(l), which can be considered as a restart-in-

random state problem. This is because whenever i-th 

feature with optimal feature length l∗ and from optimal 

feature position b∗ is transmitted, AoI restarts from a 

random value b∗+Ti(l∗) after Ti(l∗) time slots. 

B. Time-Variant Feature Length 

Now, we find an optimal scheduling policy that minimizes 

time-averaged inference error among all causal policies in : 

 errinference  

where errinference  is the inference error at time slot 

t and p¯opt is the optimum value of (32). Because inv ⊂ , 

 p¯opt ≤ ¯pinv, (33) 

where p¯inv is the optimum value of (19). Like (19), problem 

(32) can also be expressed as an infinite time-horizon 

average-cost SMDP. Note that (32) is more complex SMDP 

than (19) because the feature length in (32) is allowed to 

vary over time. 

The optimal policy can be determined by using a dynamic 

programming method associated with the average cost 
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SMDP [15], [47]. There exists a function h(·) such that for 

all δ ∈ Z+ and 0 ≤ d ≤ B, the optimal objective value p¯opt of 

(32) satisfies the following Bellman equation: h(δ,d) 

errinference 

 Z k=0 

b∈ :0≤b≤B−l 

 + E[h(T1(l) + b,l)]. (34) 

Let (Z∗(δ,d),l∗(δ,d),b∗(δ,d)) be the optimal solution to the 

Bellman equation (34). There exists an optimal solution 

  to (32), deter- 

mined by 

l  +1 i i i , i , (35) b

, (36) 

S  +1 i i i i i i , i , 

(37) where Z  is the optimal waiting time 

for sending the (i+1)-th feature after the i-th feature is 

delivered. To get the optimal policy π∗, we need to solve (34). 

Solving (34) is complex as it requires joint optimization of 

three variables. Moreover, an optimal solution obtained by 

the dynamic programming method provides no insight. We 

are able to simplify (34) in Theorem 2 by analyzing the 

structure of the optimal solution. 

Theorem 2: The following assertions are true: 

(a) If Ti(l)’s are i.i.d. with a finite mean E[Ti(l)] for each l = 

1,2,...,B, then there exists a function h(·) such that for all 

δ ∈ Z+ and 0 ≤ d ≤ B, the optimal objective value p¯opt of 

(32) satisfies the following Bellman equation: 

herrinference(δ + k,d)− ¯popt 

⎤  

⎦  

 , (38) 

where h(·) is called the relative value function and the 

function Zl(δ,d) is given by 

 Zl , (39) 

and the function γl(δ,d) is defined in (20). 

(b) In addition, there exists an optimal solution π∗ = 

  to (32) that is deter- 

mined by 

 li∗  

 1≤l≤B 
⎪⎪
⎩ k=0 

⎤  

 errinference ⎥  

 + min E[h(T1(l) + b,l), (40) 

0≤bb∈≤ZB−l 

b 
+1 

 S , (42) 

where is the AoI at time t and Di = 

Si
∗ + Ti(li∗) is the i-th feature delivery time. 

Theorem 2(a) simplifies the Bellman equation (34) to 

(38). Unlike (34), which involves joint optimization of three 

variables, (38) is an integer optimization problem. This 

simplification is possible because, for a given feature length 

l, the original equation (34) can be separated into two 

separated optimization problems. The first problem 

involves finding the optimal stopping time, denoted by 

Zl(δ,d) defined in (39), and the second problem is to 

determine the feature position b that minimizes E[h(T1(l) + 

b,l)]. By breaking down the original equation in this way, 

we can solve the problem more efficiently. Detailed proof of 

Theorem 2 can be found in Appendix D of the 

supplementary material. 

Furthermore, Theorem 2(a) provides additional insights 

into the solution of (34). Theorem 2(a) implies that the 

optimal stopping time Z∗(δ,d) in (34) follows a threshold 

policy. Specifically, if l∗(δ,d) = l, then Z∗(δ,d) equals Zl(δ,d), 

which is defined in (39). Here, Zl(δ,d) is the minimum 

positive integer value τ for which γl(δ + τ,d) defined in (20) 

exceeds the optimal objective value p¯opt. 
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Theorem 2(b) provides an optimal solution π∗ ∈  to (32). 

According to Theorem 2(b), by using precomputed p¯opt and 

the relative value function h(·), we can obtain the optimal 

feature 

After obtaininglength li∗+1 fromli∗(40)+1, the optimal feature 

positionusing an exhaustive search algorithm.b∗i+1 can 

provided inbe determined from(42) follows a threshold 

policy. Specifically, the(41). The optimal scheduling time 

Si∗+1 

(i+1)-th feature is transmitted in time-slot t if two conditions 

are satisfied: (i) the previous feature is delivered by time t, 

and 

(ii) the functionexceeds the optimal 

objective 
+ 

value p¯opt of (32). 

1) Policy Iteration Algorithm for Computing p¯opt and h(·): 

To effectively implement the optimal solution π∗ ∈  for (32), 

as outlined in Theorem 2, it is necessary to precompute the 

optimal objective value p¯opt and the relative value function 

h(·) that satisfies the Bellman equation (38). The 

computation of p¯opt and h(·) can be achieved by employing 

policy iteration algorithm or relative value iteration 

algorithm for SMDPs, as detailed in [15, Sec. 11.4.4]. To 

apply the relative value iteration algorithm, we need to 

transform the SMDP into an equivalent MDP. However, 

this transformation process can be challenging to execute. 

Therefore, in this paper, we opt to utilize the policy iteration 

algorithm specifically tailored for SMDPs [15, Sec. 11.4.4]. 

Algorithm 2 provides a policy iteration algorithm for 

obtaining p¯opt and h(·), which is composed of two steps: (i) 

policy evaluation and (ii) policy improvement. 

Policy Evaluation: Let hπ and p¯π be the relative value 

function and the average inference error under policy π. Let 

lπ(δ,d), bπ(δ,d), and Zπ(δ,d) represent feature length, feature 

position, and waiting time for sending the (i + 1)-th feature 

under policy π when (Di) = δ and d(Di) = d. Given lπ(δ,d), 

bπ(δ,d), and Zπ(δ,d) for all (δ,d), we can Algorithm 1 Policy 

Evaluation Algorithm 

1: Input: Zπ(δ,d), lπ(δ,d), and bπ(δ,d) for all (δ,d). 

2: Initialize hπ(δ,d) arbitrarily for all (δ,d), except for one 

fixed state (δ,d) with hπ(δ,d) = 0. 

3: Initialize a small positive number α1 as a threshold. 

4: repeat 

5: θ1 ← 0. 

6: Determine 
p

¯π using (43). 

each state (δ,d) do 7: for 

8: π(δ,

 (lπ(δ,d))]. 

9: h (δ,d) E % − errinference(δ + k,d) − ¯pπ)] 

 + [hπ(T1(lπ(δ,d)) + π(δ,d),lπ(δ,d))]. 

10: θ1 ← max. 

11: end for 

12: hπ ← hπ. 

13: until θ1 ≤ α1. 14: 

return p¯π and hπ(·). 

evaluate the relative value function hπ(·) and the average 

inference error p¯π using Algorithm 1. The relative value 

function hπ(δ,d) represents relative value associated with a 

reference state. We can set (δ,d) as a reference state with 

hπ(δ,d) = 0. By using h  0, the average inference 

error p¯π is determined by 

errinference  

, 

(43) 
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where  T1(lπ(δ,d))]. We then use an 

iterative procedure within Algorithm 1 to determine the 

relative value function hπ(·). 

Policy Improvement: After obtaining hπ and p¯π from 

Algorithm 1, we apply Theorem 2 to derive an improved 

policy π in Algorithm 2. Feature length lπ(δ,d), feature 

position bπ(δ,d), and waiting time Zπ(δ,d) under policy π is 

 ⎧ ⎡  l

 + 1 −

 ⎤  

l  errinference(δ + k,d)⎦  

=0 

− E[Zl(δ,d) + T1(l)]p¯π 

 ⎡  ⎤ ⎫ 

 + min E⎣hπ(T1(l) + b,l)⎦⎬⎭, (44) 

0≤b≤B−l 

 b,lb

, 
π 

(45) 

Z  

Instead of a joint optimization problem (34), Algorithm 2 

utilizes separated optimization problems (44)–(46) based on 

Theorem 2. If the improved policy π is equal to the old 

policy π, then the policy iteration algorithm converges. 

Algorithm 2 Policy Iteration Algorithm 

1: Initialize Zπ(δ,d), lπ(δ,d), and bπ(δ,d) for all (δ,d). 

2: Initialize a small positive number α2 as threshold. 

3: repeat 

4: θ2 ← 0. 

5: Obtain hπ(·) and p¯π from Algorithm 1. 

6: for all (δ,d) do 

7: Get l  using (44)-(46). 

8: | 

9: |+|Z . 

lπ(δ,d) ← l bπ(δ,d) ← b  

Zπ(δ,d) ← Z end 

for 

until θ2 ≤ α2. return p¯opt ← ¯pπ 

and h ← hπ. 

[15, Th. 11.4.6] establishes the finite convergence of the 

policy iteration algorithm of an average cost SMDP. 

Now, we discuss the time-complexity of Algorithms 1-2. 

To manage the infinite set of AoI values in practice, we 

introduce an upper bound denoted as δbound. Whenever δ 

exceeds δbound, we set hπ(δ,d) = hπ(δbound,d) for all d. Hence, 

each iteration of our policy evaluation step requires one 

pass through the approximated state space {1,2,...,δbound} × 

{1,2,...,B}. 

Therefore, the time complexity of each iteration is 

O(δboundB), assuming that the required expected values are 

precomputed. Considering the bounded set {0,1,...,δbound} 

instead of Z+, the time complexities of (44), (45), and (46) are 

O(B2), O(B), and O(δbound), respectively, provided that the 

expected values in (44)–(46) are precomputed. The overall 

complexity of (44)–(46) is O(max{B2,B,δbound}), which is 

more efficient than the joint optimization problem (34). The 

latter has a time complexity of O(δboundB2). In each iteration 

of the policy improvement step, the optimization problems 

(44)–(46) are solved for all state (δ,d) such that δ = 

1,2,...,δbound and d = 1,2,...,B. Hence, the total complexity of 

each iteration of the policy improvement step is 

O(max{B3δbound,Bδbound
2 }). 

V. LEARNING AND COMMUNICATIONS CO-DESIGN: 

MULTIPLE SOURCE CASE 

A. System Model 

Consider a remote inference system consisting of M ≥ 1 

source-predictor pairs connected through N ≥ 1 shared 

communication channels, as illustrated in Fig. 4. Each 

source j has a buffer that stores Bj most recent signal 

observations at each time slot t. At time slot t, a centralized 

scheduler determines whether to send a feature from source 

j with feature length lj(t) and feature position bj(t). We 

denote lj(t) = 0 if the scheduler decides not to send a feature 

from source j at time t. If a feature from source j is sent, we 

assume it will be delivered to the j-th neural predictor in the 

next time slot using lj(t) channel resources. The transmission 

model of the multiple source system is significantly different 

from that of 

determined by 

Z (δ,d) T (l) 1 
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Fig. 4. A multiple source-predictor pairs and multiple channel remote 

inference system. 

the single source model discussed in Section II-C. In the 

latter case, only one channel was considered, while N 

communication channels are available in the former. The 

channels could be from multiple frequencies and/or time 

resources. For example, if the clock rate in the multiple 

access control (MAC) layer is faster than that of the 

application layer, then one applicationlayer time-slot could 

comprise multiple MAC-layer time-slots. A feature can 

utilize multiple channels (i.e., frequency or time resources) 

for transmission during a single time slot. However, the 

channel resource is limited, so the system must satisfy 

M 

 . (47) 

j=1 

The system begins operating at time t = 0. Let Sj,i denote 

the sending time of the i-th feature from the j-th source. 

Since we assume that a feature takes one time-slot to 

transmit, the corresponding neural predictor receives the i-

th feature from the j-th source at time Sj,i +1. The AoI of the 

source j at time slot t is defined as 

 j , if Sj,i < t ≤ Sj,i+1. (48) 

We denote dj(t) as the feature length of the most recent 

received feature from j-th source by time t, given by 

 dj , if Sj,i < t ≤ Sj,i+1. (49) 

B. Scheduling Policy 

At time slot t, a centralized scheduler determines the 

value of the feature length lj(t) and the feature position bj(t) 

for every j-th source. A scheduling policy is denoted by 

πLet=(πdenote the set of all the causal scheduling 

policiesj)M
j=1, where πj = ((lj(1),bj(1)),(lj(2),bj(2)),...). 

that determine lj(t) and bj(t) based on the current and the 

historical information available at the transmitter such that 

0 ≤ lj(t) + bj(t) ≤ Bj. 

C. Problem Formulation 

Our goal is to minimize the time-averaged sum of the 

inference errors of the M sources, which is formulated as 

 ,

 (50) 

 
 =1 t=0 

 s.  N, t = 0,1,2,..., (51) 

j=1 

where pj(j(t),dj(t)) is the inference error of source j at time 

slot t. 

The problem (50)–(51) can be cast into an infinitehorizon 

average cost restless multi-armed multi-action bandit 

problem [17], [39] by viewing each source j as an arm, 

where 

a scheduler needs to decide multiple actionsevery time t by 

observing state (j(t),dj(t)).(lj(t),bj(t))j
M=1 at 

Finding an optimal solution to the RMAB problem is 

PSPACE hard [16]. Whittle, in his seminal work [17], 

proposed a heuristic policy for RMAB problem with binary 

action. In [39], a modified Whittle index policy is proposed 

for the multi-action RMAB problems. Whittle index policy 

is known to be asymptotically optimal [48], but the policy 

needs to satisfy a complicated indexability condition. 

Proving indexability is challenging for our multi-action 

RMAB problem because we allow (i) general penalty 

function pj(δ,l) that is not necessarily monotonic with 

respect to AoI δ and (ii) time-variant feature length. To this 

end, we propose a low-complexity algorithm that does not 

need to satisfy any indexability condition. 

D. Lagrangian Optimization of a Relaxed Problem 

Similar to Whittle’s approach [17], we utilize a Lagrange 

relaxation of the problem (50)–(51). We first relax the per 

time-slot channel constraint (51) as the following time-

average expected channel constraint 

 
 .

 (52) 
j 

The relaxed constraint (52) only needs to be satisfied on 

average, whereas (51) is required to hold at every time-slot. 

By this, the original problem (50)–(51) becomes 
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, (53) s.

 . (54) 

The relaxed problem (53)–(54) is of interest as the optimal 

solution of the problem provides a lower bound to the 

original problem (50)–(51). 

1) Lagrangian Dual Decomposition of (53)–(54): To solve 

(53)–(54), we utilize a Lagrangian dual decomposition 

method [17], [49]. At first, we apply Lagrangian multiplier 

λ ≥ 0 to the time-average channel constraint (54) and get the 

following 

Lagrangian dual function q  − λN. 

The problem (55) can be decomposed into M sub-problems. 

The sub-problem associated with the j-th source is defined 

as: 

, 

(56) 

where j is the set of all causal scheduling policies πj. The sub-

problem (56) is an infinite horizon average cost MDP, 

where a scheduler decides action (lj(t),bj(t)) by observing 

state (j(t),dj(t)). The Lagrange multiplier λ in (56) can be 

interpreted as a transmission cost: whenever lj(t) = l, the 

source j has to pay cost of λl for using l channel resources. 

The optimal solution to (56) can be obtained by solving 

the following Bellman equation: 

 hj,λ  Qj,λ((δ,d),(l,b)), (57) 
0≤l+b≤Bj 

where hj,λ(·) represents the relative value function of the 

MDP (56), and the function Qj,λ(·,·) is defined as follows 

Qj,λ((δ,d),(l,b)) := − ¯ + + +

 = δ, δ , if l 0, pj(δ,d) pj(λ)

 hj,λ(b 1,l) λl, otherwise. 

(58) 

The relative value function hj,λ(·) can be computed using the 

relative value iteration algorithm [15], [47]. 

Let πj∗,λ = ((lj∗,λ(1),b∗j,λ(1)),(lj∗,λ(2),b∗j,λ(2)),...) be an optimal 

solution to (56), which is derived by using (57) and (58). The 

optimal feature length lj∗,λ(t) is determined by 

lj∗,λ(t)hj,λhj,λ 
Bj 

 × l, (59) 

where the function bˆj,λ(l) is given by 

 bˆj,λ(l)  1,l), (60) 

The optimal feature position in  is 

 b

 ,λ . (61) 

2) Lagrange Dual Problem: Next, we determine the 

optimal dual cost λ∗ that solves the following Lagrange dual 

problem: 

maxq(λ), (62) λ≥0 

where q(λ) is the Lagrangian dual function defined in (55). 

To get λ∗, we apply the stochastic sub-gradient ascent 

method [49], 

which 

iteratively 

updates λ(k) as follows β⎛ ⎞ ⎫ 

M 

 λ(k  , (63) 

where k is the iteration index, β > 0 determines the step size 

β
k , and lj,λ(k)(k) is the feature length of source j at the k-th 

iteration. Detailed optimization technique is provided in 

Algorithm 3. 

E. Net Gain Maximization Policy 

After getting optimal dual cost λ∗, we can use 

policy for the relaxed problem (53)–(54). But it 

is infeasible to implement the policy for the original 

problem (50)–(51) because it may violate the scheduling 

constraint (51). Motivated by Whittle’s approach [17], we 

aim to select actions Algorithm 3 Dual Algorithm to Solve 

(62) 

⎧ 
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1: Input: Step size β > 0 and dual cost λ(1) = 0. 2: 

Initialize j(0), dj(0), lj(0), and bj(0) for all j. 

3: Initialize a small positive number θ as threshold. 

4: repeat 

5: for each source j do if lj(k − 

1) > 0 then 

j(k) ← 1 + bj(k − 1), dj(k) ← lj(k − 1). 

else 

j(k) ← j(k − 1) + 1, dj(k) ← dj(k − 1). 

end if 

Compute lj,λ(k)(k) using (59). 

Compute bj,λ(k)(k) using (61). 

end for 

Update λ(k + 1) using (63). until 

|| ≤ θ. return 

with higher priority, while satisfying the scheduling 

constraint (51) at every time slot. Towards this end, we 

introduce “Net Gain”, denoted as αj,λ(δ,d,l), to measure the 

advantage of selecting feature length l, which is given by 

αj,λ(δ,d,l) 

: ,bˆj,λ ,bˆj,λ  

where the function Qj,λ is defined in (58) and the function 

bˆj,λ is defined in (60). Substituting (58) into (64), we get 

αj,λ(δ,d,l)  

For a given λ, the net gain αj,λ(δ,d,l) has an economic 

interpretation. Given the state (δ,d) of source j, the net gain 

αj,λ(δ,d,l) measures the maximum reduction in the loss by 

selecting source j with feature length l, as opposed to not 

selecting source j at all. If αj,λ(δ,d,l) is negative for all l = 

1,2,...,Bj, then it better not to select source j. If αj,λ(j(t),dj(t),lj) 

> αk,λ(k(t),dk(t),lk), then the feature length lj for source j is 

prioritized over the feature length lk for source k. Under the 

constraint (51), we select feature lengths that maximize 

“Net Gain”: 
M 

 , (66) 

0≤(tl)j∈(tZ)≤,∀Bj

 j=1 lj 

M 

 s. . (67) 

j=1 

The “Net Gain Maximization” problem (66) with constraint 

(67) is a bounded Knapsack problem. By using (66)–(67), 

we propose a new algorithm for the problem (50)–(51) in 

Algorithm 4. 

Algorithm 4 starts from t = 0. At time t = 0, the algorithm 

takes the dual variable (transmission cost) λ∗ from 

Algorithm 3 which is run offline before t = 0. The “Net 

Gain” αj,λ∗(δ,d,l) is precomputed for every source j, every 

feature length l, and every state (δ,d) such that Algorithm 4 

Net Gain Maximization Policy 

1: Input: Optimal dual variable λ∗ obtained in Algorithm 

3. 

2: Compute αj,λ∗(δ,d,l) using (65) for all j,δ,d,l. 

3: for each time t ≥ 0 do 

4: Update j(t) and dj(t) using (48) and (49) for all source j. 

(lj(t))M
j=1 by solving 5: Compute 

problem (66)–(67). 

6: (bj(t))by using (60). 

7: end for 

 

δ ∈ Z+, l,d ∈ {1,2,...,Bj}, where we approximate infinite set of 

AoI values Z+ by using an upper bound δbound. We can set 

αj,λ∗(δ,d,l) = αj,λ∗(δbound,d,l) if δ > δbound. 

From time t ≥ 0, Algorithm 4 solves the knapsack problem 

(66)–(67) at every time slot t. The knapsack problem is 

solved by using a dynamic programming method in 

O(MNB) time [50], where M is the number of sources, N is 

the number of channels, and B is the maximum buffer size 

among all source j. The feature position bj(t) is obtained 

from a look up table that stores the value of function bˆj,λ∗(l) 

for all j and l. 

Unlike the Whittle index policy [17], our policy proposed 

in Algorithm 4 does not need to satisfy any indexability 

condition. There exists some other policies that do not need 

to satisfy indexability condition [36], [38]. The policies in 

[36], [38] are developed based on linear programming 

formulations, our policy does not need to solve any linear 

programming. 

VI. TRACE-DRIVEN EVALUATIONS 

In this section, we demonstrate the performance of our 

scheduling policies. The performance evaluation is 

conducted using an inference error function obtained from 
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a channel state information (CSI) prediction experiment. In 

Fig. 2, one can observe the inference error function of a CSI 

prediction experiment. The discrete-time autocorrelation 

function of the generated fading channel coefficient is 

defined as r(k) = bJ0(2πfdTs|k|), where r(k) represents the 

autocorrelation of the CSI signal process with time lag k, b 

signifies the variance of the process, J0(·) denotes the zeroth-

order Besselc function, Ts is the channel sampling duration, 

fd = vf
c is the maximum Doppler shift, v stands for the velocity 

of the source, fc is the carrier frequency, and c represents 

the speed of light. In this experiment, we employed a 

quadratic loss function. Although we utilize the CSI 

prediction experiment and a quadratic loss function for 

evaluating the performance of our scheduling policies, we 

note that our scheduling policies are not limited to any 

specific experiment, loss function, or predictor. 

A. Single Source Scheduling Policies 

We evaluate the following four single source scheduling 

policies. 

1. Generate-at-Will, Zero Wait with Feature Length l: In 

this policy, Si+1 = Si + Ti(li), bi = 0, and li = l for all i-th 

feature transmissions. 

2. Optimal Policy with Time-invariant Feature Length 

(TIFL): The policy that we propose in Theorem 1. 

 

Fig. 5. Single Source Case: Time-averaged inference error vs. the scale 

parameter α in transmission time Ti(l) =αl for all i. 

3. Optimal Policy with Time-variant Feature Length 

(TVFL): The policy that we propose in Theorem 2. 

4. Periodic Updating with Feature Length l: After every 

time slot Tp, the policy submits features with feature 

length l and feature position 0 to a First-Come, First-

Served communication channel. 

We evaluate the performance of the above four single 

source scheduling policies, where the task to infer the 

current CSI of a source by observing features. For 

generating the CSI dataset, we set b0 = 1, Ts = 1ms, v = 15 m/s, 

and fc = 2GHz. 

Additionally, we add white noise to the feature variable 

with a variance of 10−6. 

In the single source case, we consider that the i-th feature 

requires Ti(l) = αl time-slots for transmission, where α 

represents the communication capacity of the channel. For 

example, if the number of bits used for representing a CSI 

symbol is n and the bit rate of the channel is ρ, then α = ρ
n 

. 

Fig. 5 shows the time-averaged inference error under 

different policies against the parameter α, where α > 0. The 

plot is constrained to α = 1 since values of α > 1 is impractical 

due to the possibility of sending CSI using fewer bits. The 

buffer size of the source is B = 10. Among the four 

scheduling policies, the “Optimal Policy with TVFL” yields 

the best performance, while the “Optimal Policy with 

TIFL” outperforms the other two policies. The findings in 

Figure 5 demonstrate that when α ≤ 0.1, the “Optimal Policy 

with TVFL” can achieve a performance improvement of 104 

times compared to the “Periodic Updating, l = 1” with Tp = 

4 and “Generate-at-Will, Zero Wait, l = 1” policies. This 

result is not surprising since “Periodic Updating, l = 1” and 

“Generate-atWill, Zero Wait, l = 1” do not utilize longer 

features, despite all features with l = 1,2,...,10 taking only 1 

time slot when α ≤ 0.1. When α > 0.1, the average inference 

error of the “Periodic Updating” and “Generate-at-Will, 

Zero Wait” policies are at least 10 times worse than that of 

the “Optimal Policy with TVFL.” The reasons are as 

follows: (1) The “Periodic Updating” policy does not 

transmit a feature even when the channel is available, 

leading to an inefficient use of resources. In our simulation, 

this situation is evident as Ti(1) = 1 and Tp = 4. Again, 

“Periodic Updating” may transmit features even when the 

preceding feature has not yet been delivered, resulting in an 

extended waiting time for the queued feature. This 

frequently leads to the receiver receiving a feature with a 

significantly large AoI value, which is not good for accurate 

inference. (2) Conversely, the “Generate-at-Will, Zero-

Wait” 
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Fig. 6. Single Source Case: Time-averaged inference error vs. the buffer 

size B. 

policy isn’t superior because zero-wait is not advantageous, 

and the feature position b = 0 may not be an optimal choice 

since the inference error is non monotonic with respect to 

AoI. 

The policy “Optimal Policy with TIFL” achieves an 

average inference error very close to that of the “Optimal 

Policy with TVFL,” but it is simpler to implement. 

Furthermore, the “Optimal Policy with TIFL” requires 

only one predictor associated with the optimal time-

invariant feature length and does not require switching the 

predictor. 

Fig. 6 plots the time-averaged inference error vs. the 

buffer size B. In this simulation, α = 0.2 is considered. The 

results show that increasing B can improve the 

performance of the “Optimal Policy with TVFL” and 

“Optimal Policy with TIFL” compared to the other policies. 

As B increases, “Optimal Policy with TVFL” and “Optimal 

Policy with TIFL” outperform the others. In contrast, the 

“Periodic Updating” and “Generate-at-Will” policies do 

not utilize the buffer and their performance remains 

unchanged with increasing B. Moreover, we can notice that 

the buffer size B = 5 is enough for this experiment as further 

increase in buffer size does not improve the performance. 

B. Multiple Source Scheduling Policies 

In this section, we evaluate the time-averaged inference 

error of the following three multiple source scheduling 

policies. 

1. Maximum Age First (MAF), Generate-at-will, l = 1: As 

the name suggests, this policy selects the sources with 

maximum AoI value at each time. Specifically, under 

this policy, min{N,M} sources with maximum AoI are 

selected. Moreover, the feature length and the feature 

position of the selected sources are 1 and 0, 

respectively. 

2. Maximum Age First (MAF), Generate-at-will, l = B: 

This policy also selects the sources with maximum AoI 

values at each time, but with feature length l = B. Under 

this policy, min{N
B ,M} sources with maximum AoI are 

selected, where B is the buffer size of all sources, i.e., Bj 

= B for all source j. Moreover, the feature position of 

the selected sources is 0. 

3. Proposed Policy: The policy in Algorithm 4. 

The performance of three multiple source scheduling 

policies is illustrated in Fig. 7, where each source sends its 

observed CSI to the corresponding predictor. In this 

simulation, three types of sources are considered: (i) type 1 

source with a velocity of v1 = 15 m/s and a CSI variance of 

b1 = 0.5, (ii) type 2 sources with a velocity of v2 = 20 m/s and 

a CSI 

 

Fig. 7. Multiple Source Case: Time-averaged inference error vs. the 

number of sources M. 

 

Fig. 8. Multiple Source Case: Time-averaged inference error vs. system 

scale r, where M = 3r and N = 10r. 

variance of b2 = 0.1, and (iii) type 3 sources with a velocity 

of v3 = 25 m/s and a CSI variance of b3 = 1. 

Fig. 7 illustrates the normalized average inference error 

(the total time-averaged inference error divided by the 

number of sources) plotted against the number of sources 

M, with N = 100 and B = 10. We can observe from Fig. 7 that 

when the number of sources is less, the normalized average 

inference error of our proposed policy is 104 times better 

than “MAF, Generate-at-will, l = 1.” However, “MAF, 

Generate-at-will, l = B” is close to the proposed policy. But, 

When number of sources is more than 400, the normalized 

average inference error becomes 4 times lower than that of 

the “MAF, Generateat-will, l = B” policy. As the number of 

sources increases, the normalized average inference error 

obtained by “MAF, Generate-at-will, l = 1” becomes close 

to the normalized average inference error of the proposed 

policy. 

Fig. 8 compares the time-averaged inference error of the 

proposed policy and a lower bound from a relaxed problem. 

The lower bound is achieved by selecting feature length and 

feature position by using (59) and (61), respectively under 
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dual cost λ = λ∗ obtained from Algorithm 3. For this 

evaluation, we have taken step size 10−4/(kr) at each 

iteration k In Algorithm 3. In Fig. 8, we consider N = 10r 

channels and M = 3r sources, where r represents the system 

scale. Observing Fig. 8, it becomes evident that our 

proposed policy converges towards the lower bound as the 

system scale r increases. 

VII. CONCLUSION 

This paper studies a learning and communications co-

design framework that jointly determines feature length 

and transmission scheduling for improving remote 

inference performance. In single sensor-predictor pair 

system, we propose two distinct optimal scheduling policies 

for (i) time-invariant feature length and (ii) time-variant 

feature length. These two scheduling policies lead to 

significant performance improvement compared to 

classical approaches such as periodic updating and 

zerowait policies. Using the Lagrangian decomposition of a 

relaxed formulation, we propose a new algorithm for 

multiple sensorpredictor pairs. Simulation results show 

that the proposed algorithm is better than the maximum 

age-first policy. 
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