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Abstract—In this paper, we consider a remote inference system,
where a neural network is used to infer a time-varying target (e.g.,
robot movement), based on features (e.g., video clips) that are
progressively received from a sensing node (e.g., a camera). Each
feature is a temporal sequence of sensory data. The inference error
is determined by (i) the timeliness and (ii) the sequence length of
the feature, where we use Age of Information (Aol) as a metric for
timeliness. While a longer feature can typically provide better
inference performance, it often requires more channel resources
for sending the feature. To minimize the time-averaged inference
error, we study a learning and communication codesign problem
that jointly optimizes feature length selection and transmission
scheduling. When there is a single sensorpredictor pair and a
single channel, we develop low-complexity optimal co-designs for
both the cases of time-invariant and timevariant feature length.
When there are multiple sensor-predictor pairs and multiple
channels, the co-design problem becomes a restless multi-arm
multi-action bandit problem that is PSPACEhard. For this setting,
we design a low-complexity algorithm to solve the problem. Trace-
driven evaluations demonstrate the potential of these co-designs to
reduce inference error by up to 10000 times.

Index Terms—Remote inference, transmission scheduling, age
of information, restless multi-armed bandit.

I. INTRODUCTION

"] 'THE ADVANCEMENT of communication technologies
and artificial intelligence has engendered the demand
for
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remote inference in various applications, such as
autonomous vehicles, health monitoring, industrial control
systems, and robotic systems [1], [2], [3], [4]. For instance,
accurate prediction of the robotic state during remote
robotic surgery is time-critical. The remote inference
problem can be tackled by using a neural network that is
trained to predict a timevarying target (e.g., robot
movement) based on features (e.g., video clips) sent from a
remote sensing node (e.g., a camera). Each feature is a
temporal sequence of the sensory output and the length of
the temporal sequence is called feature length.

Due to data processing time, transmission errors, and
transmission delay, the features delivered to the neural
predictor may not be fresh, which can significantly affect
the inference accuracy. To measure the freshness of the
delivered features, we use the age of information (Aol)
metric, which was first introduced in [5]. Let U(z) be the
generation time of the most recently delivered feature
sequence. Then, Aol is the time difference between the
generation time U(z) and the current time #, denoted by (7)
:= t+-U(t). Recent studies [6], [7] have shown that the
inference error is a function of Aol for a given feature
length, but this function is not necessarily monotonic.
Moreover, simulation results in [6] suggest that Aol-aware
remote inference, wherein both the feature and its Aol are
fed to the neural network, can achieve superior
performance than Aol-agnostic remote inference that omits
the provision of Aol to the neural network. Hence, the Aol
() can provide useful information for reducing the
inference error.

Additionally, the performance of remote inference
depends on the sequence length of the feature. Longer
feature sequences can carry more information about the
target, resulting in the reduction of inference errors.
Though a longer feature can provide better training and
inference performance, it often requires more
communication resources. For example, a longer feature
may require a longer transmission time and may end up
being stale when delivered, thus resulting in worse
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inference performance. Hence, it is necessary to study a
learning and communications co-design problem that
jointly controls the timeliness and the length of the feature
sequences. The contributions of this paper are summarized
as follows:
« In [7], it was demonstrated that the inference error is
a function of the Aol, whereas the function is not
necessarily monotonic. The current paper further
investigates the impact of feature length on inference
error. Our information-theoretic and experimental
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leveraging specific structural properties of the SMDP,
we can simplify the policy iteration algorithm to reduce
its computational complexity. The simplified policy
iteration algorithm is outlined in Algorithm 1 and

Algorithm 2.
« Furthermore, we investigate the learning and
communications co-design problem for multiple

sensor-predictor pairs and multiple channels. This
problem is a restless multi-armed, multi-action bandit
problem that is known to be PSPACE-hard [16].

2641-8770 ¢ 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

analysis show that the inference error is a non-
increasing function of the feature length (See Figs. 2(a)-
3(a), and Lemma 1).

« We propose a novel learning and communications
codesign framework (see Section II). In this
framework, we adopted the “selection-from-buffer”
model proposed in [7], which is more general than the
popular “generateat-will” model that was proposed in
[8] and named in [9]. In addition, we consider both
time-invariant and time-variant feature length. Earlier
studies, for example [7], [10], did not consider time-
variant feature length. - For a single sensor-predictor
pair and a single channel, this paper jointly optimizes
feature length selection and transmission scheduling to
minimize the timeaveraged inference error. This joint
optimization is formulated as an infinite time-horizon
average-cost semiMarkov decision process (SMDP).
Such problems often lack analytical solutions or
closed-form expressions. Nevertheless, we are able to
derive a closed-form expression for an optimal
scheduling policy in the case of time-invariant feature
length (Theorem 1). The optimal scheduling time
strategy is a threshold-based policy. Our threshold-
based scheduling approach differs significantly from
previous threshold-based policies in, e.g., [7], [11], [12],
[13], [14], because our threshold function depends on
both the Aol value and the feature length, while prior
threshold functions rely solely on the Aol value. In
addition, our threshold function is not necessarily
monotonic with Aol. This is a significant difference
with prior studies [11], [12], [13], [14].

« We provide an optimal policy for the case of
timevariant feature length. Specifically, Theorem 2
presents the Bellman equation for the average-cost
SMDP with time-variant feature length. The Bellman
equation can be solved by applying either relative
value iteration or policy iteration algorithms [15, Sec.
11.4.4]. Given the complexity associated with
converting the average-cost SMDP into a Markov
Decision Process (MDP) suitable for relative value
iteration, we opt for the alternative: using the policy
iteration algorithm to solve our averagecost SMDP. By

Moreover, proving indexability condition relating to
Whittle index policy [17] for our problem is
fundamentally difficult. To this end, we propose a new
scheduling policy named “Net Gain Maximization”
that does not need to satisfy the indexability condition
(Algorithm 4).

« Numerical evaluations demonstrate that our policies
for the single source case can achieve up to 10000 times
performance gain compared to periodic updating and
zero-wait policy (see Figs. 5-6). Furthermore, our
proposed multiple source policy outperforms the
maximum age-first policy (see Fig. 7) and is close to a
lower bound (see Fig. 8).

A. Related Works

The age of information (Aol) has emerged as a popular
metric for analyzing and optimizing communication
networks [18], [19], control systems [13], [20], remote
estimation [12], [21], and remote inference [6], [7]. As
surveyed in [22], several studies have investigated sampling
and scheduling policies for minimizing linear and nonlinear
functions of Aol [7], [9], [11], [13], [14], [18], [19], [23], [24],
[25], [26], [27], [28], [29]. In most previous works [9], [11],
(131, [14], [18], [19], [23], [24], [25], [26], [27], [28], [29],
monotonic Aol penalty functions are considered. However,
in a recent study [7], it is demonstrated that the monotonic
assumption is not always true for remote inference. In
contrast, the inference error is a function of Aol, but the
function is not necessarily monotonic. The present paper
further investigates the impact of feature length on the
inference error and jointly optimizes Aol and feature
length.

In recent years, researchers have increasingly employed
information-theoretic metrics to evaluate information
freshness [6], [7], [11], [30], [31], [32], [33], [34]. In [11],
[30], [31], the authors utilized Shannon’s mutual
information to quantify the amount of information carried
by received data messages about the current source value,
and used Shannon’s conditional entropy to measure the
uncertainty about the current source value after receiving
these messages. These metrics were demonstrated to be
monotonic functions of the Aol when the source follows a
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time-homogeneous Markov chain [11], [31]. Built upon
these findings, the authors of [34] extended this framework
to include hidden Markov model. Furthermore, a
Shannon’s conditional entropy term Hshannon(¥:| Xi-(n = X)
was used in [32], [33] to quantify information uncertainty.
However, a gap still existed between these information-
theoretic metrics and the performance of real-time
applications such as remote estimation or remote inference.
In our recent works [6], [7], [35] and the present paper, we
have bridged this gap by using a generalized conditional
entropy associated with a loss function L, called L-
conditional entropy, to measure (or approximate) training
and inference errors in remote inference, as well as the
estimation error in remote estimation. For example, when
the loss function L(y,y") is chosen as a quadratic function

-, the L-conditional entropy Hi(Y:|Xr(y) = ming
E[(¥r - &(X(n))?] is exactly the minimum mean squared
estimation error in remote estimation. This approach
allows us to analyze how the Aol (7) affects inference and
estimation errors directly, instead of relying on
information-theoretic metrics as intermediaries for
assessing application performance. It is worth noting that
Shannon’s conditional entropy is a special case of L-
conditional entropy, corresponding to the inference and
estimation errors for softmax regression and maximum
likelihood estimation, as discussed in Section II.

channel. Under these assumptions, [10] established the
indexability condition and developed a Whittle Index
policy. Compared to [10], our work could handle both
monotonic and non-monotonic Aol penalty functions, both
time-invariant and time-variant feature lengths, and both
one and multiple communication channels.

Because of (i) the time-variant feature length and
nonmonotonic Aol penalty function and (ii) the fact that
there exist multiple transmission actions, we could not
utilize the Whittle index theory to establish indexability for
our multiple source scheduling problem. To address this
challenge, we propose a new “Net Gain Maximization”
algorithm (Algorithm 4) for multi-source feature length
selection and transmission scheduling, which does not
require indexability. During the revision of this paper, we
found a related study [33], where the authors introduced a
similar gain index-based policy for a RMAB problem with
two actions: to send or not to send. The “Net Gain
Maximization” algorithm that we propose is more general
than the gain index-based policy in [33] due to its capacity
to accommodate more than two actions in the RMAB.

II. SYSTEM MODEL AND SCHEDULING POLICY
We consider a remote inference system composed of a
sensor, a transmitter, and a receiver, as illustrated in Fig. 1.
The sensor observes a time-varying target Y; €Y and feeds

Fig. 1.

The optimization of linear and non-linear functions of
Aol for multiple source scheduling can be formulated as a
restless multi-armed bandit problem [7], [14], [36], [37],
[38]. Whittle, in his seminal work [17], proposed an index-
based policy to address restless multi-armed bandit
(RMAB) problems with binary actions. Our multiple
source scheduling problem is a RMAB problem with
multiple actions. An extension of the Whittle index policy
for multiple actions was provided in [39], but it requires to
satisfy a complicated indexability condition. In [10], the
authors considered joint feature length selection and
transmission scheduling, where the penalty function was
assumed to be non-decreasing in the Aol, the feature length
is time-invariant, and there is only one communication

A remote inference system, where th—b := (Vi=b,V-b-1,...,V-b-1+1) is a feature with sequence length /.

its measurement V; €V to the transmitter. The transmitter
generates features from the sensory outputs and
progressively transmits the features to the receiver through
a communication channel. Within the receiver, a neural
network infers the time-varying target based on the
received features.

A. System Model

The system is time-slotted and starts to operate at time
slot 7 = 0. At every time slot ¢, the transmitter appends the
sensory output }V: €V to a buffer that stores the B most

recent sensory outputs (V3 Vi1,...,Vi-B+1); meanwhile, the
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oldest output V:-B is removed from the buffer. We assume

that the buffer is full initially, containing B signal values

buffer remains consistently full at any time(}?,V,...,V-B+)
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feature length / = 1,2,...,B. The neural network associated

with feature length / takes

_ outputthe Aol 6 €

generates an

at time 7 = 0. This ensures that thez.i The transmit-

Xter progressively generates a featuresd-b := (Ve-b,..., Vi-b-1+1
€V Xis a temporal sequence/-b, where each featureViis the

) 1

of sensory outputs taken from the buffer such that set of all
I-tuples that take values from V,1</<B,and 0 < b < B-1l.
For ease of presentation, the temporal sequence length / of

feature Xv-» is called feature length and the start-

ing positionposition. If the channel is idle in time slotb of
feature Xu-» in the buffer is calleds, the transmitterfeature

cation delays and channel errors, the feature is not

instantlycan submit the feature X/—b to the channel. Due to

communi-

received. The most recently received feature is denoted as
Xt-6 = (Vi-8,Vi-6-1,..., Vi-6-1+1), where the latest obser-

vationcall 6 theVr-sage of information (Aol)in feature Xu-s
is generatedwhich represents the dif-6 time slots ago. We

ference between the time stamps of the target Y:and the
latest

observation V+s in feature Xsu-trained neural networks,

eachs. The receiver consists of B associated with a specific

! This assumption does not introduce any loss of generality. If the buffer

is no full at time 7 = 0, it would not affect our results.

Z+and the featurea

€ .
X"-5 A~ where the neuralV’as inputs

and

network is represented by the function ¢:: Z*x V! > A,

The performance of the neural network is measured by a
loss function L : Y x A > R, where L(y,a) indicates the
incurred loss if the output a € A is used for inference when
Y:=y. The loss function L is determined by the purpose of
the application. For example, in softmax regression (i.e.,
neural network based maximum likelihood classification),
the output a = Qyis a distribution of ¥Y:and the loss function
Liog(y,Qv) = -log Qy(y) is the negative log-likelihood of the

value Y:=y. In neural network based mean-squared

Fig. 2. Performance of wireless channel state information prediction: (a)
Inference error Vs. Feature length and (b) Inference error Vs. Aol.

estimation, a quadratic loss function La(y,y") =y - y" %2 is
used, where the action a = y” is an estimate of the target

value Y:=y and y2 is the Euclidean norm of the vector y.

B. Inference Error
We assume that {(¥:,X/),z € Z} is a stationary process for
every I. Given Aol & and feature length /, the expected

inference error is a function of 6 and /, given by

2 https://github.com/Kamran0153/Channel-State-Information-
Prediction
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where Py.xusis the joint distribution of the label Y;and feas
during online inference and the function- ¢/
represents

ture Xr-s any trained neural network that maps from Z+x Vi

to A.

The inference error errinference(5,/) can be evaluated through
machine learning experiments.

In this paper, we conduct two experiments: (i) wireless
channel state information (CSI) prediction and (ii) actuator
states prediction in the OpenAl CartPole-vl task [40].
Detailed information regarding the experimental setup for
both experiments can be found in Appendix A of the
supplementary material. The code for these experiments is
available in GitHub repositories.”

The experimental results, presented in Figs. 2(a)-3(a),
demonstrate that the inference error decreases with respect
to feature length. Moreover, Figs. 2(b)-3(b) illustrate that
the inference error is not necessarily a monotonic function
of Aol. These findings align with machine learning
experiments conducted in [6], [7], [35]. Collectively, the
results from this paper and those in [6], [7], [35] indicate
that longer feature lengths can enhance inference accuracy
and fresher features are not always better than stale
features in remote inference.

C. Feature Length Selection and Transmission Scheduling
Policy

Because (i) fresh feature is not always better than stale
feature and (ii) longer feature can improve inference error,
we adopted “selection-from-buffer” model, which is
recently proposed in [7]. In contrast to the “generate-at-
will” model [8], [9], where the transmitter can only select
the most recent sensory output V3 the “selection-from-
buffer” model offers greater flexibility by allowing the
transmitter to pick multiple sensory outputs (which can be

stale or fresh). In

Fig. 3. Performance of actuator state prediction in the OpenAl
CartPole-v1 task under mechanical response delay: (a) Inference error
Vs. Feature length and (b) Inference error Vs. Aol.

other words, “selection-from-buffer” model allows the
transmitter to choose feature position b and feature length
[ under the constraints 1 </<B-1and 0 <b < B -I. Feature
length selection represents a trade-off between learning and
communications: A longer feature can provide better
learning performance (see Figs. 2-3), whereas it requires
more channel resources (e.g., more time slots or more

3 https://github.com/Kamran0153/Impact-of-Data-Freshness-in-
Learning

frequency resources) for sending the feature. This
motivated us to study a learningcommunication co-design
problem that jointly optimizes the feature length, feature
position, and transmission scheduling.

The feature length and feature position may vary across
the features sent over time. Feature transmissions over the
channel are non-preemptive: the channel must finish
sending the current feature, before becoming available to
transmit

the next feature. Suppose that the(Vsi-b;, Vsi-bi-1,..., Vsi-bi-li+1)
is submitted to the channeli-th feature Xs"i-pi =

at time slot 7 = S;, where /;is its feature length and b; is its
feature position such that 1 </i<Band 0 <bi< B -

It takes Ti(l) = 1 time slots to send the i-th feature over the
channel. The i-th feature is delivered to the receiver at time
slot D; = Si +Ti(li), where Si < Di < Si+1. The feature
transmission time 7i(/;) depends on the feature length /.. Due
to time-varying channel conditions, we assume that, given
feature length /; = [, the Ti{l)’s are i.i.d. random variables,
with a finite mean 1 < E[7{(/)] < o=. Once a feature is
delivered, an acknowledgment (ACK) is sent back to the

transmitter, notifying that the channel has become idle.
li(t)
In time slot #, the i(f)-th feature Xs'W-%® is the most

recently received feature, whereiy i(f) = maxi{pi < t}. The
!
receiver feeds the feature Xsin-bir to the neural network to

infer Y« We define age of information (Aol) (t) is defined as
the difference between the time-stamp of the freshest
sensory

i@
output VSi-biyin feature Xsiw-biy and the current time ¢,

ie.,
(¢) :=¢ - max{Si- bi: Di<t}. 2)

l

Because D;< Di+1, it holds that
(£) =t - Si+ bi, if Di<t < Di+1. A3

The initial state of the system is assumed to be So=0,lo=1,bo

=0,Do = To(lv), and (0) is a finite constant.
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Let rt=((S1,b1,1),(52,b2,12),...) represent a scheduling policy
and denote the set of all the causal scheduling policies that
satisfy the following conditions: (i) the scheduling time S;,
the feature position b;, and the feature length /; are decided
based on the current and the historical information
available at the transmitter such that 1 </;<Band 0 < b;<B
- liand (ii) the scheduler has access to the inference error
function errinference(-) and the distribution of 7i(/) for each / =
1,2,...,B. We use inv C to denote the set of causal scheduling

policies with time-invariant feature length, defined as

B

inv :-1, (4) 1=1 where ;:

II1. PRELIMINARIES: IMPACTS OF FEATURE LENGTH AND
Aol ON INFERENCE ERROR

In this section, we adopt an information-theoretic
approach that was developed recently in [7] to show the
impact of feature length / and Aol 6 on the inference error
€I Tinference(8,1).

A. Information-Theoretic Metrics for Training and
Inference Errors

Training error erriaining(6,/) is expressed as a function of
6 and /, given by

where ¢a trained neural network used in~ (1) and Py o x '

sinis the joint distribution of the target Yo and the feature

X
8

the training dataset. The training error erriraining(5,/) is
lower-bounded by
H.

where is the set of all functions that map from Z*x V' to A.

Because the trained neural network ¢:in (5) satisfies ¢ €,
Hi (Y0 |X”—’a) < @ITtraining(6,/). The lower bound in (6) has an

informationtheoretical interpretation [7], [41], [42], [43]: It

is a general-
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ized conditional entropy of a random variableassociated to
the loss function L. For notational simplicity, we Y 0 given
X s

call Hr(Y|X) an L-conditional entropy of a random variable

Y given X. The L-entropy of a random variable Y is defined

as [41], [42]
I?L(Y)IIIIIIIIIIIIIIIII. @)

The optimal solutions to (7) may not be unique. Let apy
denote an optimal solution to (7), which is called a Bayes
action [41]. Similarly, the L-conditional entropy of Y given
X =x is defined as [6], [7], [41], [42]

PR NI

and the L-conditional entropy of Y given X is given by [6],
[71, [41], [42]

wo .,

The inference error errinference(8,/) can be approximated
as the following L-conditional cross entropy

+
-xEX1r-5(x)EY~PY:|X:1—5=.Y,¢1PY‘0|X‘.6=x ,

(10)
defined aswhere the L-conditional cross entropy
HL(Py|x;Py"|x~ | PX) is
(71
HLPy\x;Py | x| PXx
N R ... o«

If training algorithm considers sets of large and wide neural
networks such that ap:xand ¢:(6,x) for all

Y 0|X 6=

5 €Z+and x € X' are close to each other, then the difference
between the inference error errinference(5,/) and thesmallL-

[7]conditional cross entropy HL(Py:|x«-Ls;-conditional

crossPy 0| X -is| PXu-s) is

Compared to errinference(5,/), the entropy

HL(PY:|Xu-5;PY0|X"-1 s|PXu-s) are mathematically more

convenient to analyze, as we will see next.
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B. Information-Theoretic Monotonicity Analysis
The following lemma interprets the monotonicity of the

L-conditional entropy HL(Y 0|X ’s) and the L-conditional
Cross -

entropy H"(Py:|Xua-5;Py 0| x| Pxu-s) with respect to the

feature length /.
Lemma 1: The following assertions are true:

(a) Givenl, i.e., for all 16 > 0, H (Y 10| <X"-'Is;) is a non-
increasing function of

m

(b) GivenB>0,ifforall/=1,2,..., and x € V'

P ~
-)astX,'-s:x(y) -7 Yo|X femx
.XEX —yEY

< 2

12)

B, 13)

then foralll1 <hL<h

P
0
X-8
<HL P n; o sl n + O(B).
(14)
YilXes YV |X - X-5

Proof: Lemma 1 can be proven by using the data
processing inequality for L-conditional entropy [43, Lemma
12.1] and a local information geometric analysis. See
Appendix B of the supplementary material for the details.

|
Lemma 1(a) demonstrates that for a given Aol value 6,

the L-conditional entropy Hr(Y 0|X 's) decreases as the

feature length / increases. This is due to the fact that- a
longer feature provides more information, consequently
leading to a lower L-conditional entropy. Additionally, as
indicated in Lemma 1(b), when the conditional
distributions in training and inference data are close to each
other (i.e., when (3 in (13) is close to 0), the L-conditional
Cross HL(PYt|Xu-5;PY 01Xt s|Pxu-sl.  This
information-theoretic) is close to a non-increasing function
of the feature length

entropy

analysis clarifies the experimental results depicted in Fig.
2(a) and Fig. 3(a), where the inference error diminishes
with the increasing feature length.

The monotonicity of the L-conditional cross entropy

HL(PYt|Xu-5;PY"0|x"-1 5| PXu-s) with respect to the Aol & are
explained in [7, Th. 3] and in [35]. This result is restated in
Lemma 2 below for the sake of completeness.

Definition 1 ( -Markov Chain [7], [35]): Given 2> 0, a

sequence of three random variables Y, X, and Z is said to be

an
-Markov chain, denoted as ¥ <> X &
Z, if

hog(Y;Z| X) _PY|X,Z| | Py|x

where

)
Diog(Py| | Qy) = - Y

(16)

ov(y)

yeY

is KL-divergence and lig(Y;Z|X) is Shannon conditional
mutual information.

-Markov chain for all u,v>¢<> 0and’(13)&>  Xr-u-vis

an Lemma 2 [7], [35]: If Yt Xr-u holds, then for all 0 <81< 62

HL PYtIXt_

<HL Pye| xu

Lemma 2 implies that the monotonic behavior of

HL(PY:|Xt-5;PY 0| X -1 s|PXxu-s) with respect to Aol & is
characterized by two key parameters: in the -
Markov chain model and the parameter f. When is small,
the sequence of target and feature random variables
approximates a Markov

chain.

Consequently,decreasing withrespectH: (Pyto|xu

-5 Ao[;Pro'gX'-mpmvided | Pxu-5) becomes non-that is

close to 0. Conversely, ifis significantly large, then

HL(PYt|Xt-5;PY"0| X1 5| PXu-5) can be far from a monotonic
function of 6. This findings provide an explanation for the
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patterns observed in the experimental results shown in
Figs. 2(b) to 3(b). Shannon’s interpretation of Markov
sources in his seminal work [44] indicates that as the
sequence length / grows larger, the tuple (Y;,Xu-p,Xd-p-v)
tends to resemble a Markov chain more closely. Hence,
according to Lemma 2, the inference error approaches to a
non-decreasing function of Aol 6 as feature length /
increases. As illustrated in Figs. 2(b)-3(b), the inference
error converges to a nondecreasing function of Aol 6 as
feature length / increases.

IV. LEARNING AND COMMUNICATIONS CO-DESIGN:
SINGLE SOURCE CASE

Let d(f) denote the feature length of the most recently
received feature in time slot z. The time-averaged expected
inference error under policy 1 = ((S1,b1,h),(52,b2,5),...) is

expressed as

‘ errinferenc-l (1 8)

where pris denoted as the time-averaged inference error,
and errinference((2),d(?)) is the expected inference error at time
t corresponding to the system state ((¢),d(z)). In this section,
we solve two problems. The first one is to find an optimal
policy that minimizes the time-averaged expected inference
error among all the causal policies in inv that consider
timeinvariant feature length. Another problem is to find an
optimal policy that minimizes the time-averaged expected
inference error among all the causal policies in .

A. Time-Invariant Feature Length

We first find an optimal policy that minimizes the
timeaveraged inference error among all causal policies with
timeinvariant feature length in inv defined in (4):

where p~inv is the optimum value of (19). The problem (19)
is an infinite time-horizon average-cost semi-Markov
decision process (SMDP). Such problems are often
challenging to solve analytically or with closed-form
solutions. The perslot cost function errinference((7),d(?)) in (19)
depends on two variables: the Aol (¢) and the feature length
d(t). Prior studies [9], [11], [12], [13], [14], [18], [19], [21],
[45] have considered linear and non-linear monotonic Aol
functions. Due to the fact that (i) the cost function in (19)
depends on two variables and (ii) is not necessarily
monotonic with respect to Aol, finding an optimal solution
is challenging and the existing scheduling policies cannot be
directly applied to solve (19). Therefore, it is necessary to
develop a new scheduling policy that can address the
complexities of (19).
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Surprisingly, we get a closed-form solution of (19). To
present the solution, we define a function yi(6,d) as

T 11 =

— errinference

T
t€l,2,..} j=0
(20)

Theorem 1: If Ti(l)’s are i.i.d. with a finite mean E[T(/)]
for each / = 1,2,...,B, then there exists an optimal solution

I . 0 (19) that

satisfies:

e

position in i« is time-invariant, i.e.,

The optimal feature
b+«1b«. The optimal feature length /- and the optimal

feature position b+ in 1+ are given by

il .

1</<B,0<b<B-Il

(e2y)

where Bs,is the unique root of equation

-el‘l‘inferenc.

I

D;
sequence (S1(Bs.),52(Bs,),...) is determined by

b, the

S
(23)

and the function y/(-) is defined in (20).

(b) The optimal scheduling time Si*+1 in 1« is determined by

_,

(24)
where I /. is the Aol at time £. The

optimal objective value p~inv of (19) is

B-1

We prove Theorem 1 in two steps: (i) We find B policies,
each of which is optimal among the set of policies ; where /
=1,2,...,B. After that (ii) we select the policy that results in
the minimum average inference error among the B policies.
See Appendix C of the supplementary material for details.
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Theorem 1 implies that the optimal scheduling policy has
a nice structure. According to Theorem 1(a), the feature
position b+ is constant for all i-th features, i.e., b«
|
The optimal feature length /« and the optimal feature
position b+ are pre-computed by solving (21) and then used
in real-time. The parameter B5,in (21) is the unique root of
(22), which is solved by using low-complexity algorithms,
e.g., bisection search, newtons method, and fixed point
iteration [12]. Theorem 1(b) implies that the optimal
schedul-

is transmitted in time-sloting time Si«+1 follows a threshold
policy. Specifically, a featuresr if the following two
conditions are

satisfied: (i) The channel is idle in time-slot 7 and (ii) the
value [N cxcceds the optimal objective value p~inv
of (19). The optimal objective value pinv is obtained from
(25). Our threshold-based scheduling policy has a
significant distinction from previous threshold-based
policies studied in the literature, such as [11], [12], [13],
[21]. In these prior works, the threshold function used to
determine the scheduling time is based solely on the Aol
value and is non-decreasing with respect to Aol. However,
in our proposed strategy, (i) the threshold function yi(-)
depends on both the Aol value and the feature length and
(ii) the threshold function yi(-) can be non-monotonic with
respect to Aol.

1) Monotonic Aol Cost function: Consider a special case
where the inference error errinference(6,/) is a non-decreasing
function of & for every feature length /. A simplified solution
can be derived for this specific case of (19). In this scenario,
the optimal feature position is »* = 0, and the threshold
function y/(-) defined in (20) becomes:

vi(6,d) .erl‘inferenc-. (26)

In this special case of monotonic Aol cost function, (24) can
be rewritten as a threshold policy of the Aol () in the form
of (#) =2 w(l+,p~inv), where w(/,B) is defined as:

_errinference

However, when errinference(5,) is not monotonic with respect
to Aol 6, (24) cannot be reformulated as a threshold policy
of the Aol (7). This is a key difference with earlier studies
[11], [13], [14].

2) Connection With Restart-in-State Problem: Consider

another special case in which all features take 1 time-slot

for transmission. For this special case, the threshold

function yi(-) defined in (20) becomes

errinference

This special case of (19) is a restart-in-state problem [46,
Ch. 2.6.4]. This is because whenever a feature with the
optimal feature length /< and from the optimal feature
position b+ is transmitted, Aol value restarts from 5" + 1 in
the next time slot. For this restart-in-state problem, the
optimal sending time follows a threshold policy [46, Ch.
2.6.4]. Specifically, a feature is transmitted if

| 29)

where the relative value function %(6,/x) of the restart-in-
state problem is given by

-errmferenc-

(30)

=0

By using (30), we can show that (29) is equivalent to

31

where the function yi(6,d) is defined in (28). This connection
between the restart-in-state problem and Aol minimization
was unknown before. The original problem considers more
general Ti(l), which can be considered as a restart-in-
random state problem. This is because whenever i-th
feature with optimal feature length /« and from optimal
feature position b+ is transmitted, Aol restarts from a
random value b*+Ti(l+) after Ti(l+) time slots.

B. Time-Variant Feature Length

Now, we find an optimal scheduling policy that minimizes
time-averaged inference error among all causal policies in :

where errinterenc M is the inference error at time slot
t and p optis the optimum value of (32). Because inv C,

D opt < Pinv, 33)
where pTinv is the optimum value of (19). Like (19), problem
(32) can also be expressed as an infinite time-horizon
average-cost SMDP. Note that (32) is more complex SMDP
than (19) because the feature length in (32) is allowed to
vary over time.

The optimal policy can be determined by using a dynamic
programming method associated with the average cost
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SMDP [15], [47]. There exists a function /(:) such that for
all 6 €Z+and 0 < d < B, the optimal objective value popr of
(32) satisfies the following Bellman equation: /(5,d)

errinference
z k=0
be :0<h<B-1
+E[A(T1(]) + b,1)]. (34)

Let (Z«(6,d),I+(6,d),b+(5,d)) be the optimal solution to the
Bellman equation (34). There exists an optimal solution

I < (32), deter-

mined by

(I . ., ) b
I ;)

(37) where /I i (. optimal waiting time

for sending the (i+1)-th feature after the i-th feature is
delivered. To get the optimal policy ri+, we need to solve (34).
Solving (34) is complex as it requires joint optimization of
three variables. Moreover, an optimal solution obtained by
the dynamic programming method provides no insight. We
are able to simplify (34) in Theorem 2 by analyzing the
structure of the optimal solution.
Theorem 2: The following assertions are true:

(a) If Ti(l)’s are i.i.d. with a finite mean E[7(/)] for each [ =

1,2,...,B, then there exists a function /(-) such that for all
6 €Z+and 0 < d < B, the optimal objective value p~opr of

(32) satisfies the following Bellman equation:

_ rermmrs o b

|

, (38)
where A(-) is called the relative value function and the

function Z/(6,d) is given by

A

and the function y/(5,d) is defined in (20).

(b) In addition, there exists an optimal solution 1" =

I (o (32) that is deter-

mined by

1<l<B k=0

€I'Tinference

+ min E[A(T1(l) + b,1), 40)
0<bbe<ZB-l

b

+1

J .
where _is the Aol at time 7 and Di=

Si* + Ti(li+) is the i-th feature delivery time.

Theorem 2(a) simplifies the Bellman equation (34) to
(38). Unlike (34), which involves joint optimization of three
variables, (38) is an integer optimization problem. This
simplification is possible because, for a given feature length
I, the original equation (34) can be separated into two
separated optimization problems. The first problem
involves finding the optimal stopping time, denoted by
Zi(6,d) defined in (39), and the second problem is to
determine the feature position b that minimizes E[A(T1(/) +
b,l)]. By breaking down the original equation in this way,
we can solve the problem more efficiently. Detailed proof of
Theorem 2 can be found in Appendix D of the
supplementary material.

Furthermore, Theorem 2(a) provides additional insights

into the solution of (34). Theorem 2(a) implies that the
optimal stopping time Z«(6,d) in (34) follows a threshold
policy. Specifically, if /+(8,d) = I, then Z+(5,d) equals Zi(5,d),
which is defined in (39). Here, Z/(6,d) is the minimum
positive integer value t for which y/(6 + t,d) defined in (20)

exceeds the optimal objective value p~opr.
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Theorem 2(b) provides an optimal solution " € to (32).
According to Theorem 2(b), by using precomputed p~opr and
the relative value function 4(-), we can obtain the optimal

feature

After obtaininglength /i«+1 froml/i<(40)+1, the optimal feature

positionusing an exhaustive search algorithm.b«i+1 can

provided inbe determined from(42) follows a threshold

policy. Specifically, the(41). The optimal scheduling time

Six+1

(i+1)-th feature is transmitted in time-slot 7 if two conditions

are satisfied: (i) the previous feature is delivered by time 7,

and
(ii) the - functionexceeds the optimal
objective B

+

value p~opt of (32).

1) Policy Iteration Algorithm for Computing p opt and h(-):
To effectively implement the optimal solution ri* € for (32),
as outlined in Theorem 2, it is necessary to precompute the
optimal objective value p opr and the relative value function
h(-) that the Bellman equation (38). The

computation of p~opr and A(-) can be achieved by employing

satisfies

policy iteration algorithm or relative value iteration
algorithm for SMDPs, as detailed in [15, Sec. 11.4.4]. To
apply the relative value iteration algorithm, we need to
transform the SMDP into an equivalent MDP. However,
this transformation process can be challenging to execute.
Therefore, in this paper, we opt to utilize the policy iteration
algorithm specifically tailored for SMDPs [15, Sec. 11.4.4].
Algorithm 2 provides a policy iteration algorithm for
obtaining p opr and h(-), which is composed of two steps: (i)

policy evaluation and (ii) policy improvement.

Policy Evaluation: Let hr and pn be the relative value
function and the average inference error under policy . Let
I+(8,d), bn(5,d), and Zx(5,d) represent feature length, feature
position, and waiting time for sending the (i + 1)-th feature
under policy it when (D;) = & and d(D;) = d. Given Ix(8,d),
bn(6,d), and Zx(6,d) for all (6,d), we can Algorithm 1 Policy

Evaluation Algorithm

1: Input: Z=(8,d), Ix(5,d), and br(5,d) for all (8,d).
2: Initialize /r(6,d) arbitrarily for all (6,d), except for one
fixed state (6,d) with hx(6,d) = 0.

3: Initialize a small positive number a; as a threshold.

4: repeat
5: 01< 0.
6: Determine ”r using (43).
7: for each state (6,d) do

o

(I(8,d))].

9: h (G,d) E% - errinference(6 + k,d) - -pr()]

+ [An(T1(In(6,d)) + n(8,d),Ix(5,d))].

10: 01 ¢ max.
11: end for
12: hn & hn.

13: until 61 < au. 14:

return p rand /in(").

evaluate the relative value function /() and the average
inference error pn using Algorithm 1. The relative value
function /(6,d) represents relative value associated with a
reference state. We can set (6,d) as a reference state with

hr(5,d) = 0. By using A o, the average inference

error p nis determined by

-el‘rinferenc-
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where [NIEIGININGNGNG T1(l(6,d))]. We then use an

iterative procedure within Algorithm 1 to determine the
relative value function /x(-).

Policy Improvement: After obtaining hr. and p™n from
Algorithm 1, we apply Theorem 2 to derive an improved
policy m in Algorithm 2. Feature length Ix(5,d), feature

position br(8,d), and waiting time Z=(8,d) under policy mis

determined by

el‘rinference(6 + k,d)J
=0

- E[Z(6,d) + Th(])]p™n

[ N

+ min Elhn(Tl(l) + b,l)J }) , (44)

(45)

Instead of a joint optimization problem (34), Algorithm 2
utilizes separated optimization problems (44)—(46) based on
Theorem 2. If the improved policy nt is equal to the old
policy i, then the policy iteration algorithm converges.
Algorithm 2 Policy Iteration Algorithm

1: Initialize Z«(6,d), Ix(5,d), and b.(6,d) for all (5,d).

2: Initialize a small positive number a2 as threshold.

3: repeat
4: 02 < 0.
5: Obtain /ix(-) and p™n from Algorithm 1.
6: for all (6,d) do
7 Get I | sing (44)-(46).
8: |
R —— |
1(8,d) < | ). (5,q) < P
Zx(5,d) < 7 Icnd
for

535

until 62 < az. return popr & “pr

i ) )
anuan < nnr.

[15, Th. 11.4.6] establishes the finite convergence of the
policy iteration algorithm of an average cost SMDP.

Now, we discuss the time-complexity of Algorithms 1-2.
To manage the infinite set of Aol values in practice, we
introduce an upper bound denoted as Spounda. Whenever &
exceeds Ovound, We set hn(5,d) = hn(Obound,d) for all d. Hence,
each iteration of our policy evaluation step requires one
pass through the approximated state space {1,2,...,6pouna} %
{1,2,...,B}.

Therefore, the time complexity of each iteration is
O(8vounaB), assuming that the required expected values are
precomputed. Considering the bounded set {0,1,...,5b0unda}
instead of Z+, the time complexities of (44), (45), and (46) are
O(B?), O(B), and O(8bouna), respectively, provided that the
expected values in (44)—(46) are precomputed. The overall
complexity of (44)—(46) is O(max{B?B,5bouna}), Which is
more efficient than the joint optimization problem (34). The
latter has a time complexity of O(8bounaB?). In each iteration
of the policy improvement step, the optimization problems
(44)—(46) are solved for all state (6,d) such that & =
1,2,...,6v0una and d = 1,2,...,B. Hence, the total complexity of
each iteration of the policy

0(nlaX{B:;sb0u11d,36bound2 })

improvement step is

V. LEARNING AND COMMUNICATIONS CO-DESIGN:
MULTIPLE SOURCE CASE

A. System Model

Consider a remote inference system consisting of M > 1
source-predictor pairs connected through N > 1 shared
communication channels, as illustrated in Fig. 4. Each
source j has a buffer that stores B; most recent signal
observations at each time slot z. At time slot 7, a centralized
scheduler determines whether to send a feature from source
Jj with feature length /i(r) and feature position bj(r). We
denote /i(z) = 0 if the scheduler decides not to send a feature
from source j at time ¢ If a feature from source j is sent, we
assume it will be delivered to the j-th neural predictor in the
next time slot using /i(f) channel resources. The transmission
model of the multiple source system is significantly different
from that of
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Fig. 4. A multiple source-predictor pairs and multiple channel remote
inference system.

the single source model discussed in Section II-C. In the
latter case, only one channel was considered, while NV
communication channels are available in the former. The
channels could be from multiple frequencies and/or time
resources. For example, if the clock rate in the multiple
access control (MAC) layer is faster than that of the
application layer, then one applicationlayer time-slot could
comprise multiple MAC-layer time-slots. A feature can
utilize multiple channels (i.e., frequency or time resources)
for transmission during a single time slot. However, the
channel resource is limited, so the system must satisfy
M

J=1

7

The system begins operating at time 7 = 0. Let S;; denote
the sending time of the i-th feature from the j-th source.
Since we assume that a feature takes one time-slot to
transmit, the corresponding neural predictor receives the i-
th feature from the j-th source at time Sj;+1. The Aol of the

source j at time slot 7 is defined as

R i ;<5

We denote dj(t) as the feature length of the most recent
received feature from j-th source by time #, given by

I i< o<

B. Scheduling Policy

At time slot ¢, a centralized scheduler determines the
value of the feature length /i(f) and the feature position bj(¢)
for every j-th source. A scheduling policy is denoted by

(48)

49)

niLet=(ndenote the set of all the causal scheduling
policies;)”j=1, where 1;= ((5;(1),5;(1)),(5(2),5;(2)),...).

that determine /;{(¢) and bj(z) based on the current and the
historical information available at the transmitter such that
0 < i{¢) + bj(¢) < B;.

C. Problem Formulation

Our goal is to minimize the time-averaged sum of the
inference errors of the M sources, which is formulated as

- o O

=1 t=0
s.- N, t=012,.., (51)
j=1

where pj(i(¢),dj(t)) is the inference error of source j at time
slot .

The problem (50)—(51) can be cast into an infinitehorizon
average cost restless multi-armed multi-action bandit
problem [17], [39] by viewing each source j as an arm,
where

a scheduler needs to decide multiple actionsevery time ¢ by
observing state (i(£),di(?)).(li(2),bj(t))"=1 at

Finding an optimal solution to the RMAB problem is
PSPACE hard [16]. Whittle, in his seminal work [17],
proposed a heuristic policy for RMAB problem with binary
action. In [39], a modified Whittle index policy is proposed
for the multi-action RMAB problems. Whittle index policy
is known to be asymptotically optimal [48], but the policy
needs to satisfy a complicated indexability condition.
Proving indexability is challenging for our multi-action
RMAB problem because we allow (i) general penalty
function p;(5,/) that is not necessarily monotonic with
respect to Aol 6 and (ii) time-variant feature length. To this
end, we propose a low-complexity algorithm that does not
need to satisfy any indexability condition.

D. Lagrangian Optimization of a Relaxed Problem

Similar to Whittle’s approach [17], we utilize a Lagrange
relaxation of the problem (50)—(51). We first relax the per
time-slot channel constraint (51) as the following time-
average expected channel constraint

(52)
j
The relaxed constraint (52) only needs to be satisfied on
average, whereas (51) is required to hold at every time-slot.
By this, the original problem (50)—(51) becomes
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The relaxed problem (53)—(54) is of interest as the optimal
solution of the problem provides a lower bound to the
original problem (50)—(51).

1) Lagrangian Dual Decomposition of (53)—(54): To solve

(53)—(54), we utilize a Lagrangian dual decomposition
method [17], [49]. At first, we apply Lagrangian multiplier

A 20 to the time-average channel constraint (54) and get the
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The relative value function /;x(-) can be computed using the
relative value iteration algorithm [15], [47].

Let 1« x = ((5=A(1),b+A(1)), (L= A(2),b%jA(2)),...) be an optimal
solution to (56), which is derived by using (57) and (58). The

optimal feature length /= () is determined by

[ ]
Lix N) hjj A -

Bj

N

(39)
where the function b7j(/) is given by
[V
The optimal feature position in - is
b

following
A (61)

Lagrangian dual function ¢ - \V.

The problem (55) can be decomposed into M sub-problems.
The sub-problem associated with the j-th source is defined
as:

(56)
where jis the set of all causal scheduling policies ;. The sub-
problem (56) is an infinite horizon average cost MDP,
where a scheduler decides action (/j(¢),bi(r)) by observing
state (j(¢),dj(f)). The Lagrange multiplier A in (56) can be
interpreted as a transmission cost: whenever [i(z) = I, the
source j has to pay cost of A/ for using / channel resources.

The optimal solution to (56) can be obtained by solving
the following Bellman equation:

o R . 5.0,:1)

0</+b<B;

(37

where hj)\(-) represents the relative value function of the

MDP (56), and the function Qja(-,) is defined as follows

QIIA((SId)I(lIb)) = - + + +
=5, g , if 0, pi(6,d)pi(\)
hi(b 1,]) A, otherwise.

(58)

2) Lagrange Dual Problem: Next, we determine the
optimal dual cost A+ that solves the following Lagrange dual
problem:

maxg(A), (62) A0

where ¢(A) is the Lagrangian dual function defined in (55).

To get A+, we apply the stochastic sub-gradient ascent

method [49], (
which
iteratively
updates A(k) as follows 3 ]
M
I\ - , (63)

where k is the iteration index, § > 0 determines the step size
P_«, and jxx(k) is the feature length of source j at the k-th

iteration. Detailed optimization technique is provided in
Algorithm 3.

E. Net Gain Maximization Policy

After getting optimal dual cost A+, we can use

policy for the relaxed problem (53)—(54). But it

is infeasible to implement the policy for the original
problem (50)—(51) because it may violate the scheduling

(62)
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1: Input: Step size § > 0 and dual cost A(1) = 0. 2:
Initialize ;(0), dj(0), 0), and b;(0) for all j.

3: Initialize a small positive number 6 as threshold.
4: repeat
5: for each source j do if Ji(k -

1) > 0 then

(k) &1+ bj(k - 1), di(k) & Lilk - 1).
else
ilk) & jlk = 1) + 1, dj(k) < dj{k - 1).
end if
Compute /jzx)(k) using (59).
Compute bjrx)(k) using (61).
end for

Update A(k + 1) using (63). until

|| £6. return

with higher priority, while satisfying the scheduling
constraint (51) at every time slot. Towards this end, we
introduce “Net Gain”, denoted as a;x(5,d,/), to measure the
advantage of selecting feature length /, which is given by
aA(8,d,1)

I B B

where the function Qjyis defined in (58) and the function

b’jxis defined in (60). Substituting (58) into (64), we get

w4

For a given A, the net gain o;\(5,d,/) has an economic
interpretation. Given the state (6,d) of source j, the net gain
a;A(8,d,l) measures the maximum reduction in the loss by
selecting source j with feature length /, as opposed to not
selecting source j at all. If o;x(5,d,/) is negative for all [ =
1,2,...,Bj, then it better not to select source j. If o;x(i(?),d;(t),1)
> aua(k(2),dil(t),lk), then the feature length /i for source j is
prioritized over the feature length Ix for source k. Under the
constraint (51), we select feature lengths that maximize

“Net Gain”:
M

| (66)
0<(tl)jEleZ)<, VB]
J=11i
M

- I ©7)

J=1

The “Net Gain Maximization” problem (66) with constraint
(67) is a bounded Knapsack problem. By using (66)—(67),
we propose a new algorithm for the problem (50)—(51) in
Algorithm 4.

Algorithm 4 starts from ¢ = 0. At time 7 = 0, the algorithm

takes the dual variable (transmission cost) A+ from

Algorithm 3 which is run offline before # = 0. The “Net

Gain” a;)(6,d,!) is precomputed for every source j, every

feature length /, and every state (5,d) such that Algorithm 4

Net Gain Maximization Policy

1: Input: Optimal dual variable A« obtained in Algorithm
3.

2: Compute o;+(6,d,l) using (65) for all j,5,d,1.

3: for each time 7> 0 do

4: Update j(f) and dj(¢) using (48) and (49) for all source j.

5: Compute (Zi())™;=1 by solving
proviem NN (66)-(67).
6: (bj(?))by using (60).

7: end for

6 €Z+,1,d €{1,2,...,Bj}, where we approximate infinite set of
Aol values Z+ by using an upper bound &vouna. We can set
ajA(6,d,l) = aj\(Ebound,d,]) if & > Sbound.

From time 7> 0, Algorithm 4 solves the knapsack problem
(66)—(67) at every time slot 7. The knapsack problem is
solved by using a dynamic programming method in
O(MNB) time [50], where M is the number of sources, NV is
the number of channels, and B is the maximum buffer size
among all source j. The feature position bj(r) is obtained
from a look up table that stores the value of function b7jx.(/)
for all j and /.

Unlike the Whittle index policy [17], our policy proposed
in Algorithm 4 does not need to satisfy any indexability
condition. There exists some other policies that do not need
to satisfy indexability condition [36], [38]. The policies in
[36], [38] are developed based on linear programming
formulations, our policy does not need to solve any linear
programming.

VI. TRACE-DRIVEN EVALUATIONS

In this section, we demonstrate the performance of our
scheduling policies. The performance evaluation is
conducted using an inference error function obtained from
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a channel state information (CSI) prediction experiment. In
Fig. 2, one can observe the inference error function of a CSI
prediction experiment. The discrete-time autocorrelation
function of the generated fading channel coefficient is
defined as r(k) = bJo(2nfuTs|k|), where r(k) represents the
autocorrelation of the CSI signal process with time lag &, b
signifies the variance of the process, Jo(-) denotes the zeroth-
order Bessel. function, 7sis the channel sampling duration,
fa=".is the maximum Doppler shift, v stands for the velocity
of the source, fis the carrier frequency, and c represents
the speed of light. In this experiment, we employed a
quadratic loss function. Although we utilize the CSI
prediction experiment and a quadratic loss function for
evaluating the performance of our scheduling policies, we
note that our scheduling policies are not limited to any
specific experiment, loss function, or predictor.

A. Single Source Scheduling Policies

We evaluate the following four single source scheduling
policies.
1. Generate-at-Will, Zero Wait with Feature Length /: In

this policy, Si+1 = Si + Ti(li), bi = 0, and I; = [ for all i-th
feature transmissions.

2. Optimal Policy with Time-invariant Feature Length
(TIFL): The policy that we propose in Theorem 1.

-&-Periodic Updating, I=1

- Generate-at-Will, Zero Wait, 1=1
ptimal Policy with TIFL

— Optimal Policy with TVFL

Fig. 5. Single Source Case: Time-averaged inference error vs. the scale

parameter o in transmission time 75(/) =al for all i.

3. Optimal Policy with Time-variant Feature Length
(TVFL): The policy that we propose in Theorem 2.

4. Periodic Updating with Feature Length I: After every
time slot 7, the policy submits features with feature
length / and feature position 0 to a First-Come, First-
Served communication channel.

We evaluate the performance of the above four single
source scheduling policies, where the task to infer the
current CSI of a source by observing features. For
generating the CSI dataset, we set ho=1, 7s=1ms, v =15 m/s,
and f.= 2GHz.

Additionally, we add white noise to the feature variable
with a variance of 10-°,
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In the single source case, we consider that the i-th feature
requires Ti(l) = ol time-slots for transmission, where o
represents the communication capacity of the channel. For
example, if the number of bits used for representing a CSI

symbol is # and the bit rate of the channel is p, then a =°_,

Fig. 5 shows the time-averaged inference error under
different policies against the parameter o, where a > 0. The
plot is constrained to o = 1 since values of a > 1 is impractical
due to the possibility of sending CSI using fewer bits. The
buffer size of the source is B = 10. Among the four
scheduling policies, the “Optimal Policy with TVFL” yields
the best performance, while the “Optimal Policy with
TIFL” outperforms the other two policies. The findings in
Figure 5 demonstrate that when a < 0.1, the “Optimal Policy
with TVFL” can achieve a performance improvement of 10*
times compared to the “Periodic Updating, / = 1” with 7, =
4 and “Generate-at-Will, Zero Wait, / = 1” policies. This
result is not surprising since “Periodic Updating, / = 1” and
“Generate-atWill, Zero Wait, / = 1” do not utilize longer
features, despite all features with /=1,2,...,10 taking only 1
time slot when a < 0.1. When a > 0.1, the average inference
error of the “Periodic Updating” and “Generate-at-Will,
Zero Wait” policies are at least 10 times worse than that of
the “Optimal Policy with TVFL.” The reasons are as
follows: (1) The “Periodic Updating” policy does not
transmit a feature even when the channel is available,
leading to an inefficient use of resources. In our simulation,
this situation is evident as 7i(1) = 1 and 7, = 4. Again,
“Periodic Updating” may transmit features even when the
preceding feature has not yet been delivered, resulting in an
extended waiting time for the queued feature. This
frequently leads to the receiver receiving a feature with a
significantly large Aol value, which is not good for accurate
inference. (2) Conversely, the “Generate-at-Will, Zero-
Wait”

-~ Periodic Updating, I=1
- Generate-at-Will, Zero Wait, I=1
—+—QOptimal Policy with TIFL

— Optimal Policy with TVFL
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Fig. 6. Single Source Case: Time-averaged inference error vs. the buffer
size B.

policy isn’t superior because zero-wait is not advantageous,
and the feature position b = 0 may not be an optimal choice
since the inference error is non monotonic with respect to
Aol.

The policy “Optimal Policy with TIFL” achieves an
average inference error very close to that of the “Optimal
Policy with TVFL,” but it is simpler to implement.
Furthermore, the “Optimal Policy with TIFL” requires
only one predictor associated with the optimal time-
invariant feature length and does not require switching the
predictor.

Fig. 6 plots the time-averaged inference error vs. the
buffer size B. In this simulation, a = 0.2 is considered. The
results show that increasing B can improve the
performance of the “Optimal Policy with TVFL” and
“Optimal Policy with TIFL” compared to the other policies.
As B increases, “Optimal Policy with TVFL” and “Optimal
Policy with TIFL” outperform the others. In contrast, the
“Periodic Updating” and “Generate-at-Will” policies do
not utilize the buffer and their performance remains
unchanged with increasing B. Moreover, we can notice that
the buffer size B =5 is enough for this experiment as further
increase in buffer size does not improve the performance.

B. Multiple Source Scheduling Policies

In this section, we evaluate the time-averaged inference
error of the following three multiple source scheduling
policies.

1. Maximum Age First (MAF), Generate-at-will, / = 1: As
the name suggests, this policy selects the sources with
maximum Aol value at each time. Specifically, under
this policy, min{/V,M} sources with maximum Aol are
selected. Moreover, the feature length and the feature
position of the selected sources are 1 and 0,
respectively.

2. Maximum Age First (MAF), Generate-at-will, / = B:
This policy also selects the sources with maximum Aol
values at each time, but with feature length /= B. Under
this policy, min{¥s ,M} sources with maximum Aol are
selected, where B is the buffer size of all sources, i.e., Bj
= B for all source j. Moreover, the feature position of
the selected sources is 0.

3. Proposed Policy: The policy in Algorithm 4.

The performance of three multiple source scheduling
policies is illustrated in Fig. 7, where each source sends its
observed CSI to the corresponding predictor. In this

simulation, three types of sources are considered: (i) type 1
source with a velocity of vi =15 m/s and a CSI variance of
b1=10.5, (ii) type 2 sources with a velocity of v2=20 m/s and
a CSI

©MAF, Generate-at-will, I=1
- - MAF, Generate-at-will, I=B

----Proposed Policy

Fig. 7. Multiple Source Case: Time-averaged inference error vs. the

number of sources M.
- - Proposed Policy
——ower Bound from Relaxed problem

Fig. 8. Multiple Source Case: Time-averaged inference error vs. system
scale r, where M =3rand N =10r.

variance of b2 = 0.1, and (iii) type 3 sources with a velocity
of v3=25 m/s and a CSI variance of b3=1.

Fig. 7 illustrates the normalized average inference error
(the total time-averaged inference error divided by the
number of sources) plotted against the number of sources
M, with N =100 and B =10. We can observe from Fig. 7 that
when the number of sources is less, the normalized average
inference error of our proposed policy is 10* times better
than “MAF, Generate-at-will, / = 1.” However, “MAF,
Generate-at-will, / = B” is close to the proposed policy. But,
When number of sources is more than 400, the normalized
average inference error becomes 4 times lower than that of
the “MAF, Generateat-will, / = B” policy. As the number of
sources increases, the normalized average inference error
obtained by “MAF, Generate-at-will, / = 1” becomes close
to the normalized average inference error of the proposed
policy.

Fig. 8 compares the time-averaged inference error of the
proposed policy and a lower bound from a relaxed problem.
The lower bound is achieved by selecting feature length and
feature position by using (59) and (61), respectively under
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dual cost A = A+ obtained from Algorithm 3. For this
evaluation, we have taken step size 10-*/(kr) at each
iteration &k In Algorithm 3. In Fig. 8, we consider NV = 10r
channels and M = 3r sources, where r represents the system
scale. Observing Fig. 8, it becomes evident that our
proposed policy converges towards the lower bound as the

system scale r increases.

VII. CONCLUSION

This paper studies a learning and communications co-
design framework that jointly determines feature length
and transmission scheduling for improving remote
inference performance. In single sensor-predictor pair
system, we propose two distinct optimal scheduling policies
for (i) time-invariant feature length and (ii) time-variant
feature length. These two scheduling policies lead to
significant performance improvement compared to
classical approaches such as periodic updating and
zerowait policies. Using the Lagrangian decomposition of a
relaxed formulation, we propose a new algorithm for
multiple sensorpredictor pairs. Simulation results show
that the proposed algorithm is better than the maximum
age-first policy.
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