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Age-Optimal Multi-Flow Status Updating with
Errors: A Sample-Path Approach

Yin Sun and Sastry Kompella

Abstract—In this paper, we study an age of information
minimization problem in continuous-time and discrete-time status
updating systems that involve multiple packet flows, multiple servers,
and transmission errors. Four scheduling policies are proposed. We
develop a unifying sample-path approach and use it to show that,
when the packet generation and arrival times are synchronized across
the flows, the proposed policies are (near) optimal for minimizing any
time-dependent, symmetric, and nondecreasing penalty function of
the ages of the flows over time in a stochastic ordering sense.

Index Terms—Age of information, errors, multiple channels,
multiple flows, sample-path approach, status updating.

I. INTRODUCTION

N many information-update and networked control systems,

such as news updates, stock trading, autonomous driving,
remote surgery, robotics control, and real-time surveillance,
information usually has the greatest value when it is fresh. A
metric for information freshness, called age of information or
simply age, was introduced in [2], [3]. Consider a flow of status
update packets that are sent from a source to a destination
through a channel. Let U(t) be the time stamp (i.e., generation
time) of the newest update that the destination has received
by time t. Age of information, as a function of time ¢, is defined
as A(t) = t-U(t), which is the time elapsed since the newest
update was generated.

In recent years, there have been a lot of research efforts on
(i) Analyzing the distributional quantities of age A(t) for various
network models and (ii) Controlling A(t) to keep the
destination’s information as fresh as possible, e.g., [1]-[44]. If
there is a single flow of status update packets, the last
generated, first served (LGFS) update transmission policy, in
which the last generated packet is served the first, has been
shown to be (nearly) optimal for minimizing the age process
{A(t),t = 0} in a stochastic ordering sense for queueing
networks with multiple servers or multiple hops [14]-[18].
These results hold for arbitrary packet generation times at the
information source (e.g., a sensor) and arbitrary packet arrival
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Fig. 1. System model.

times at the transmitter’s queueing buffer; they also hold for
minimizing any non-decreasing functional ¢({A(¢t),t = 0}) of
the age process {A(t),t = 0}. If packets arrive at the queue in
the order of their generation times, then the LGFS policy
reduces to the last come, first served (LCFS) policy, thus
demonstrating the (near) age-optimality of the LCFS policy.
These studies motivated us to delve deeper into the design of
scheduling policies to minimize age of information in more
complex networks involving multiple flows of status update
packets and transmission errors, where each flow is from one
source node to a destination node. In this scenario, the
transmission scheduler must compare not only packets from
the same flow, but also packets from different flows.
Additionally, the presence of transmission errors adds an
additional layer of complexity to the scheduling problem. As a
result, addressing these challenges becomes crucial in
achieving efficient age minimization in such systems.

In this paper, we investigate age-optimal scheduling in
continuous-time and discrete-time status updating systems
that involve multiple flows, multiple servers, and transmission
errors, as illustrated in Fig. 1. Each server can transmit packets
to their respective destinations, one packet at a time. Different
servers are not allowed to simultaneously transmit packets
from the same flow. We assume that the packet generation
and arrival times are synchronized across the flows. In other
words, when a packet from flow n arrives at the queue at time
Ai, with its generation time denoted as Si (where Si < 4j), one
corresponding packet from each flow simultaneously received
at time A, and all of these packets were generated at the same
time Si. In practice, synchronized packet generations and
arrivals occur when there is a single source and multiple
destinations (e.g., [22]), or in periodic sampling where multiple
sources are synchronized by the same clock, which is common
in monitoring and control systems (e.g., [45], [46]). We develop
a unifying sample-path approach and use it to show that the
proposed scheduling policies can achieve optimal or near-
optimal age performance in a quite strong sense (i.e., in terms

Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

1229-2370/23/$10.00 © 2023 KICS



SUN AND KOMPELLA: AGE-OPTIMAL MULTI-FLOW STATUS UPDATING...

of stochastic ordering of agepenalty stochastic processes). The
contributions of this paper are summarized as follows:

. Let A(f) denote the age vector of multiple flows. We
introduce an age penalty function p:(A(t)) to represent
the level of dissatisfaction for having aged information at
the destinations at time t, where p: can be any
timedependent, symmetric, and non-decreasing function
of the age vector A(t).

. For continuous-time status updating systems with one or
multiple flows, one or multiple servers, and i.i.d.
exponential transmission times, we propose a
preemptive, maximum age first, last generated first
served (P-MAFLGFS) scheduling policy.! If the packet
generation and arrival times are synchronized across the
flows, then for any age penalty function p:defined above,
any number of flows, any number of servers, any
synchronized packet generation and arrival times, and
regardless the presence of transmission errors or not, the
P-MAF-LGFS policy is proven to minimize the continuous-
time age penalty process {p:(A(t)),t = 0} among all causal
policies in a stochastic ordering sense (see Theorem 1 and
Corollary 1). Theorem 1 is more general than [1, Theorem
1], as the latter was established for the special case of
single-server  status updating systems  without
transmission errors. In addition, if packet replication is
allowed, we show that a preemptive, maximum age first,
last generated first served scheduling policy with packet
replications (PMAF-LGFS-R) is age-optimal for minimizing
the age penalty process {p:(A(t)),t = 0} in terms of
stochastic ordering (see Corollary 2).

. For continuous-time status updating systems with one or
multiple flows, one or multiple servers, and i.id.
newbetterthan-used (NBU) transmission times (which
include exponential transmission times as a special case),
ageoptimal multi-flow scheduling is quite difficult to
achieve. In this case, we consider an age lower bound
called the age of served information and propose a non-
preemptive, maximum age of served information first, last
generated first served (NP-MASIF-LGFS) scheduling policy.
The NP-MASIF-LGFS policy is shown to be near
ageoptimal. Specifically, it is within an additive gap from
the optimum for minimizing the expected time-average of
the average age of the flows, where the gap is equal to
the mean transmission time of one packet (see Theorem
2 and Corollary 3). This additive sub-optimality gap is
quite small.

. For discrete-time status updating systems with one or
multiple flows and one or multiple servers, we propose a
discrete time, maximum age first, last generated first
served (DT-MASIF-LGFS) scheduling policy. If the packet
generation and arrival times are synchronized across the
flows, then for any age penalty function p¢, any number of
flows, any number of servers, any synchronized packet
generation and arrival times, and regardless the presence
of transmission errors or not, the DT-MAFLGFS policy is

1 This new P-MAF-LGFS policy is suitable for both single-server and
multiserver systems, whereas the original P-MAF-LGFS policy, as presented in
[1], was specifically tailored for single-server scenarios.
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proven to minimize the discrete-time age penalty process
{p:(A(t),t = 0,T2Ts,--} among all causal policies in a
stochastic ordering sense, where Tsis the fundamental
time unit of the discrete-time systems (see Theorem 3).

Our results can be potentially applied to: (i) Cloud-hosted
Web services where the servers in Fig. 1 represent a pool of
threads (each for a TCP connection) connecting a front-end
proxy node to clients [47], (ii) Industrial robotics and factory
automation systems where multiple sensor-output flows are
sent to a wireless AP and then forwarded to a system monitor
and/or controller [48], and (iii) Multi-access edge computing
(MEC) that can process fresh data (e.g., data for video
analytics, location services, and |oT) locally at the very edge of
the mobile network.

Il.  RELATED WORK

The age of information concept has attracted a significant
surge of research interest; see, e.g., [1]-[43] and a recent
survey [44]. Initially, research efforts were centered on
analyzing and comparing the age performance of different
queueing disciplines, such as first-come, first-served (FCFS) [3],
[5], [9], [11], preemptive and non-preemptive LCFS [4], [20],
and packet management [8], [10]. In [14]-[18], a sample-path
approach was developed to prove that LGFS-type policies are
optimal or near-optimal for minimizing a broad class of age
metrics in multi-server and multi-hop queueing networks with
a single packet flow. When packets arrive in the order of their
generation times, the LGFS policy becomes the well-known
LCFS policy. Hence, the LCFS policy is (near) age-optimal in
these queueing networks.

In recent vyears, researchers have expanded the
aforementioned studies to consider age minimization in multi-
flow discrete-time status updating systems [22]—[25]. In [22],
the authors utilized a sample-path method to establish the
optimality of the maximum age first (MAF) policy in minimizing
the time-averaged sum age of multiple flows. This
investigation focused on discrete-time systems with periodic
arrivals and a single broadcast channel, which is susceptible to
i.i.d. transmission errors. Moreover, in [23], a Markov decision
process (MDP) approach was adopted to prove that the MAF
policy minimizes the time-averaged sum age of multiple flows
in discrete-time systems with Bernoulli arrivals, a single
broadcast channel, and no buffer. In this bufferless setup,
arriving packets are discarded if they cannot be transmitted
immediately in the arriving time slot. In [24], the authors
studied discrete-time systems with multiple flows and multiple
ON/OFF channels, where the state of each channel (ON/OFF)
is known for making scheduling decisions. It was demonstrated
that a max-age matching policy is asymptotically optimal for
minimizing non-decreasing symmetric functions of the age of
the flows as the numbers of flows and channels increase. In
[25], it was shown that the MAF policy minimizes the maximum
age of multiple flows in discretetime systems with periodic
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arrivals and a single broadcast channel susceptible to i.i.d.
transmission errors, where the transmission error probability
may vary across the flows. In [49], a sample-path method was
employed to demonstrate that the round-robin policy
minimizes a service regularity metric called time-since-last-
service in discrete-time systems with multiple flows and
transmission errors. In the definition of time-since-last-service,
a user can receive service even if its queue is empty.
Consequently, time-since-last-service bears similarities to the
age of information concept, albeit these two metrics are
different. The present paper, alongside its conference version
[1], complements the aforementioned studies in several
essential ways: (i) It considers general time-dependent,
symmetric, and non-decreasing age penalty functions p:. (ii)
Both continuous-time and discrete-time systems with multiple
flows, multiple channels (a.k.a. servers), and transmission
errors are investigated. (iii) The paper establishes near
ageoptimal scheduling results in scenarios where achieving
ageoptimality is inherently challenging.

IIl.  SysTEM MODEL
A. Notations and Definitions

We use lower case letters such as x and x, respectively, to
represent deterministic scalars and vectors. In the vector case,
a subscript will index the components of a vector, such as xi.
We use x[; to denote the ith largest component of vector x. Let
0 denote a vector with all 0 components. A function f: R"— R
is termed symmetric if f(x) = f{x(1),*+xm) for all x € R A
function f: R"— R is termed separable if there exists functions
fi,+++,fn of one variable such that for all x
€ R". The composition of functions fand g is denoted by f -
g(x) = flg(x)). For any n-dimensional vectors x and y, the
elementwise vector ordering xi< y;, i = 1,--+,n, is denoted by x
<y.Let Aand U denote sets and events. For all random variable
X and event A, let [X]A] denote a random variable with the
conditional distribution of X for given A. We will need the
following definitions:

Definition 1. Stochastic ordering of random variables [50]: A
random variable X is said to be stochastically smaller than
another random variable Y, denoted by X <« Y, if

Pr(X>t)<Pr(Y>t),VteR (1)

Definition 2. Stochastic ordering of random vectors [50]: A set
U <€ Rnis called upper, if y € U whenever y 2 xand x € U. Let X
and Y be two n-dimensional random vectors, X is said to be
stochastically smaller than Y, denoted by X <« Y, if

Pr(X € U) < Pr(Y € U) for all upper sets U € R~ (2)

Definition 3. Stochastic ordering of stochastic processes [50]:
Let {X(t),t € [0,00)} and {Y (¢),t € [0,90)} be two stochastic
processes, {X(t),t € [0,00)} is said to be stochastically smaller

2This paper allows S, < Ani, which is more general than the conventional
assumption Syi= Aniadopted in related literature.

than {Y (t),t € [0,00)}, denoted by {X(t),t € [0,0)} <st{Y (£),t €
[0,00)}, if for all integer nand 0 < t1 < t2< +++ < ty, it holds that

(X(t1),X(t2), - X(tn))sst (Y (£1), Y (£2),++ Y (tn))- (3) A
functional is a mapping from functions to real numbers. A
functional ¢ is termed non-decreasing if ¢({X(t),t € [0,0)})
< ¢p({Y (t),t € [0,0)}) whenever X(t) < Y (¢) for t € [0,00).
We remark that {X(¢t),t € [0,00)} <t {Y (£),t € [0,0)} if, and
only if, [50]

E[p({X(t),t € [0,00)})] < E[¢({Y (£),t € [0,0)}]] (4)

holds for all non-decreasing functional ¢, provided that the
expectations in (4) exist.

B. Queueing System Model

Consider the status updating system illustrated in Fig. 1,
where N flows of status update packets are sent through a
queue with an infinite buffer and M servers. Let sn and dx
denote the source and destination nodes of flow n,
respectively. It is possible for multiple flows to share either the
same source node or the same destination node.

A scheduler assigns packets from the transmitter’s queue to
servers over time. The queue contains packets from different
flows, and each packet can be assigned to any available server.
Each server is capable of transmitting only one packet at a
time. Different servers are not allowed to simultaneously
transmit packets from the same flow. The packet transmission
times are independent and identically distributed (i.i.d.) across
both servers and packets, with a finite mean 1/u. The packet
transmissions are susceptible to iid. errors with an error
probability g € [0,1), occurring at the end of the packet
transmission time intervals. The scheduler is made aware of
transmission errors once they occur. In the event of such a
error, the packet is promptly returned to the queue, where it
awaits the next transmission opportunity. if g = 0, then there
is no transmission errors.

The system starts to operate at time t = 0. The ith packet of
flow n is generated at the source node s, at time Sy, arrives at
the queue at time An,, and is delivered to the destination dnat
time Dn,isuch that 0 < Sn1< Sn2< -~ and Sni < Ani < Dni? We
consider the following class of synchronized packet generation
and arrival processes:

Definition 4. Synchronized packet generations and arrivals: The
packet generation and arrival processes are said to be
synchronized across the N flows, if there exist two sequences
{51,52,+'} and {A1,Az--} such that for all i = 1,2,~, and n =
1,--N

Sni=Si, Ani=Ai (5)

We note that the sequences {51,52,:+} and {41,42,-+:} in (5)
are arbitrary. Hence, out-of-order arrivals, e.g., Si < Si+1 but A; >
Ai+1, are allowed. In the special case that the system has a
single flow (N = 1), the packet generation times Sy,1and arrival
times An1 of this flow are arbitrarily given without any
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constraint. Age-optimal scheduling in this special case has
been previously studied in [14]-[17].

Let  represent a scheduling policy that determines how to
assign packets from the queue to servers over time. Let II
denote the set of all causal scheduling policies in which the
scheduling decisions are made based on the history and
current states of the system. A scheduling policy is said to be
preemptive if a busy server can stop the transmission of the
current packet and start sending another packet at any time;
the preempted packet is stored back to the queue, waiting to
be sent at a later time. A scheduling policy is said to be non-
preemptive if each server must complete the transmission of
the current packet before initiating the service of another
packet. A scheduling policy is said to be work-conserving if all
servers remain busy whenever the queue contains packets
waiting to be processed. We use Il to denote the set of
nonpreemptive and causal scheduling policies, where I, C II.
Let

[={S;A;i=12)}, (6)

denote the synchronized packet generation and arrival times
of the flows. We assume that the packet generation/arrival
times I, the packet transmission times, and the transmission
errors are governed by three mutually independent stochastic
processes, none of which are influenced by the scheduling

policy.

C. Age Metrics

Among the packets that have been delivered to the
destination d» of flow n by time ¢, the freshest packet was
generated at time

Un(t) = max{Sni: Dni<t}.  (7)i

Age of information, or simply age, for flow n is defined as [2],

(3]

An(t) =t = Un(t) = t - max{Sni: Dni< t}, (8) i

which is the time difference between the current time t and
the generation time Un(t) of the freshest packet currently
available at destination dx. Because Sy, < Dn,i, one can get Ax(t)
>0 forall flow nand time t. Let A(t) = (A1(t),**+,An(t)) € [0,00)N
be the age vector of the N flows at time t.

We introduce an age penalty function p(A) = p°A to
represent the level of dissatisfaction for having aged
information at the N destinations, where p : [0,00)N = R can be
any non-decreasing function of the N-dimensional age vector
A. Some examples of the age penalty function are:

1. The average age of the N flows is

2. The maximum age of the N flows is

pmax(A) = max An.

”:1,"~,N

(10)

3. The mean square age of the N flows is
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4. The I-norm of the age vector of the N flows is

(11)

(12)
5. The sum of per-flow age penalty functions is
Npsum—penalty(A) =X

g(4n), (13)

n=1

where g : [0,90) — R is a non-decreasing function.
Practical applications of non-decreasing age functions can
be found in [32], [33], [34], [36], [44].

In this paper, we consider a class of symmetric and
nondecreasing age penalty functions, i.e.,

Psym ={p : [0,00)¥ - R is symmetric and non-decreasing}.

This is a fairly large class of age penalty functions, where the
function p can be discontinuous, non-convex, or non-
separable. It is easy to see

{pavg,pmax,pms,pl—norm,psum—penalty} [ Psym. (14)

In this paper, we consider both continuous-time and
discrete-time status updating systems. In the continuous-time
setting, time t € [0,00) can take any positive value and the
packet transmission times are iid. continuous random
variables. On the other hand, in the discrete-time setting, time
is quantized into multiples of a fundamental time unit Ts, i.e., t
€ {0,T52Ts---}, and each packet’s transmission time is fixed
and equal to Ts. Consequently, the variables
SniAni,Dnit,Un(t),An(t) are all multiples of Ts. In realistic
discrete-time systems, service preemption is not allowed.

Let An=(t) denote the age of flow n achieved by scheduling
policy w and Ax(t) = (Avx(t),*,An=(t)). In the continuous-time
case, we assume that the initial age Az(0-) at time t = 0-
remains the same for all scheduling policies ™ € I, where t =
0-is the moment right before t = 0. In the discrete-time case,
we assume that the initial age A-(0) at time t = 0 remains the
same for all scheduling policies € II.

The results in this paper remain true even if the age penalty
function pcvaries over time t. For example, it is allowed that p:
= pagfor 0 <t <100 and p:= pmaxfor 100 < ¢ < 200. In the
continuous-time case, we use {p: ° Ax(t),t € [0,00)} to
represent the age-penalty stochastic process formed by the
time-dependent penalty function p: of the age vector Ax(t)
under scheduling policy m. In the discrete-time case, the
agepenalty stochastic process is denoted by {p: ° Ax(t),t =
0,Ts2Ts,*++}.

IV.  MULTI-FLOW STATUS UPDATE SCHEDULING: THE
CONTINUOUS-TIME CASE

In this section, we investigate multi-flow scheduling in
continuous-time status updating systems. We first consider a
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system setting with multiple servers and exponential
transmission times, where an age-optimal scheduling result is
established. Next, we study a more general system setting with
multiple servers and NBU transmission times. In the second
setting, age optimality is inherently difficult to achieve and we
present a near age-optimal scheduling result.

A. Multiple Flows, Multiple Servers, Exponential Service Times

To address the multi-flow scheduling problem, we consider
a flow selection discipline called MAF [6], [22], [23], in which
the flow with the maximum age is served first, with ties broken
arbitrarily.

For multi-flow single-server systems, a scheduling policy is
defined by combining the Preemptive, MAF, and LGFS service
disciplines as follows:

Definition 5. P-MAF-LGFS policy: This is a work-conserving
scheduling policy for multiple-server, continuous-time systems
with synchronized packet generations and arrivals. It operates
as follows:

1. If the queue is not empty, a server is assigned to process
the most recently generated packet from the flow with
the maximum age, with ties broken arbitrarily.

2. The next server is assigned to process the most recently
generated packet from the flow with the second
maximum age, with ties broken arbitrarily.

3. This process continues until either (i) The most recently
generated packet of every flow is under service or has
been delivered, or (ii) All servers are busy.

4. If the most recently generated packet of every flow is
under service or has been delivered, the remaining
servers can be arbitrarily assigned to send the remaining
packets in the queue, until the queue becomes empty.

5. When fresher packets arrive, the scheduler can preempt
the packets that are currently under service and assign
the new packets to servers following Steps 1-4 above. The
preempted packets are then returned to the queue,
where they await their turn to be transmitted at a later
time.

The following observation provides useful insights into the
operations of the P-MAF-LGFS policy: Due to synchronized
packet generations and arrivals, when the most recently
generated packet of flow n is successfully delivered in the P-
MAFLGFS policy, flow n must have the minimum age among
the N flows. Conversely, if flow n does not have the minimum
age among all the flows, its most recently generated packet
must be undelivered. Hence, in the P-MAF-LGFS policy, the
most recently generated packet from a flow that does not have
the minimum age is always available to be scheduled.

The above P-MAF-LGFS policy is suitable for use in both
single-server and multiple-server systems. It extends the
original single-server P-MAF-LGFS policy introduced in [1] to
encompass the more general multi-server scenario.

The age optimality of the P-MAF-LGFS policy is established
in Theorem 1 and Corollary 1 below.

Theorem 1. (Continuous-time, multiple flows, multiple servers,
exponential transmission times with transmission errors) In

continuous-time status updating systems, if (i) The
transmission errors are i.i.d. with an error probability g € [0,1),
(i) The packet generation and arrival times are synchronized
across the N flows, and (iii) The packet transmission times are
exponentially distributed and i.i.d. across packets, then it holds
that for all I, all pt € Psym, and all w € 11

[{pt ° Ap-mar-Lars(t),t € [0,00)}I]

Sst[{pe ° Ax(t),t € [0,00)}1], (15)

or equivalently, for all I, all pt € Psym, and all non-decreasing
functional ¢

E[p({p: ° Ap-mar-ers(t),t € [0,00)})|1] = minE[¢p({p¢
° A”(t)lt € [0,00)})'1], (16) mell

provided that the expectations in (16) exist.
Proof. See Appendix A. O

According to Theorem 1, for any age penalty function in Psym,
any number of flows N, any number of servers M, any
synchronized packet generation and arrival times in I, and
regardless the presence of i.i.d. transmission errors or not, the
P-MAF-LGFS policy minimizes the stochastic process [{p: °
Ar(t),t € [0,00)}|I] among all causal policies in terms of
stochastic ordering. Theorem 1 is more general than [1,
Theorem 1], as the latter was established for the special case
of single-server systems without transmission errors.

By considering a mixture over the different realizations of I,
it can be readily deduced from Theorem 1 that

Corollary 1. Under the conditions of Theorem 1, it holds that
for all pt€ Psymand all m € I

{pt © Ap-maricrs(t),t € [0,00)}<sst{pe ° Ax(t),t € [0,00)},
(17)

or equivalently, for all pt € Psym and all non-decreasing
functional ¢

E[@d({pt © Ar-mar-Lers(t),t € [0,00)})] = minE[p({p:
o Ax(t),t €[0,00)})], (18)ren

provided that the expectations in (18) exist.

Corollary 1 states that the P-MAF-LGFS policy minimizes the
stochastic process {p: ° Ax(t),t € [0,0)} in a stochastic
ordering sense, outperforming all other causal policies.

1) Status update scheduling with packet replications: As
discussed in Section 1lI-B, our study has been centered on a
scenario where different servers are not allowed to
simultaneously transmit packets from the same flow. In this
context, we have demonstrated the age-optimality of the P-
MAFLGFS policy in Theorem 1. However, in situations where
multiple servers can transmit packets from the same flow, and
packet replication is permitted, it becomes possible to create
multiple copies of the same packet and transmit these copies
concurrently across multiple servers. The packet is considered
delivered once any one of these copies is successfully
delivered; at that point, the other copies are canceled to
release the servers. If the packet service times follow an i.i.d.
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exponential distribution with a service rate of u, the N servers
can be equivalently viewed as a single, faster server with
exponential service times and a higher service rate of Npu.
Additionally, this fast server exhibits i.i.d. transmission errors
with an error probability q. Our study also addresses this
scenario.

Definition 6. P-MAF-LGFS-R: In this policy, the last generated
packet from the flow with the maximum age is served the first
among all packets of all flows, with ties broken arbitrarily. This
packet is replicated into N copies, which are transmitted
concurrently over the N servers. The packet is considered
delivered once any one of these N copies is successfully
delivered; at that point, the other copies are canceled to
release the servers.

By applying Theorem 1 to this particular scenario with a
single, faster server, we derive the following corollary.

Corollary 2. Under the conditions of Theorem 1, if packet
replication is allowed, then it holds that for all I, all pc € Psym,
andallr €1l

[{pt ° Ap-mar-Lars-R(t),t € [0,00)}|1]

Sst[{pe ° An(t),t € [0,00)}|I], (19)

or equivalently, for all I, all pt € Psym, and all non-decreasing
functional ¢

E[@p({pt ° Ap-mar-Lers-r(t),t € [0,00)})|1] = minE[¢p({p:
o Aq(t),t € [0,0)})|I], (20) zen

provided that the expectations in (20) exist.

B. Multiple Flows, Multiple Servers, NBU Service Times

Next, we consider a more general system setting with
multiple servers and a class of NBU transmission time
distributions that include exponential distribution as a special
case.

Definition 7. NBU distributions: Consider a non-negative
random variable X with complementary cumulative
distribution function (CCDF) F (x) = Pr[X > x]. Then, X is said to
be NBU if forall T =0

F(t+8 sF(DF(b) (21)

Examples of NBU distributions include deterministic
distribution, exponential distribution, shifted exponential
distribution, geometric distribution, gamma distribution, and
negative binomial distribution.

In the scheduling literature, optimal scheduling results were
successfully established for delay minimization in singleserver
queueing systems, e.g., [51], [52], but it can become inherently
difficult in the multi-server cases. In particular, minimizing the
average delay in deterministic scheduling problems with more
than one servers is NP-hard [53]. Similarly, delay-optimal
stochastic scheduling in multi-class, multiserver queueing
systems is deemed to be quite difficult [54]-[56]. The key
challenge in multi-class, multi-server scheduling is that one
cannot combine the capacities of all the servers to jointly
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process the most important packet. Due to the same reason,
age-optimal scheduling in multi-flow, multiserver systems is

quite challenging. In the sequel,
we consider a relaxed time 80al to
seek for near age- . optimal
scheduling of "

source Sn

An,i

ueue

q Vn,i

server

Dn,i

destination d»

Fig. 2. Anillustration of Sy, Ani, Vi, and Dy,

multiple information flows, where our proposed scheduling
policy is shown to be within a small additive gap from the
optimum age performance.

To establish near age optimality, we introduce another age
metric named age of served information, denoted as Zn(t),
which is a lower bound for age of information An(t):

Let Viibe the time that the ith packet of flow n starts its
service by a server, i.e., the service starting time of the ith
packet of flow n. It holds that Sy, < Ani< Vi< Dn,, as illustrated
in Fig. 2. Age of served information for flow n is defined as

En(t) = t - max{Sni: Vnist}, (22)i

which is the time difference between the current time t and
the generation time of the freshest packet that has started
service by time t. Let E(t) = (E1(t),*--, =Zn(t)) be the age of
served information vector at time t. Age of served information
Zn(t) reflects the staleness of the packets that has begun
service, whereas An(t) represents the staleness of the packets
that has been successfully delivered to their destination. As
depicted in Fig. 3, it is evident that Zs(t) < An(t). In non-
preemptive policies, the discrepancy between Z,(t) and An(t)
solely arises from the iid. packet transmission times.
Consequently, the age of served information Zs(t) closely
approximates the age An(t).

We propose a new flow selection discipline called maximum
age of served information first (MASIF), in which the flow with
the maximum age of served information is served first, with ties
broken arbitrarily. Using this discipline, we define another
scheduling policy:

Definition 8. NP-MASIF-LGFS policy: This is a nonpreemptive,
work-conserving scheduling policy for multiserver systems. It
operates as follows:

1. When the queue is not empty and there are idle servers,
an idle server is assigned to process the most recently
generated packet from the flow with the maximum age of
served information, with ties broken arbitrarily.

2. After a packet from flow n is assigned to an idle server,
the server transitions into a busy state and will complete
the transmission of the current packet from flow n before
serving any other packet. The age of served information
Zn(t) of flow n decreases. As a result, flow n may no longer
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retain the maximum age of served information, allowing
the remaining idle servers to be allocated to process other
flows. The next idle server is assigned to

Sn,i Vi Sn,i+1Dp,i Vni+1 Dpi+1 time

Fig. 3. The age of served information Z,(t) as a lower bound of age Ax(t).

process the most recently generated packet from the flow
with the maximum age of served information, with ties
broken arbitrarily.

3. This procedure continues until either all servers are busy
or the queue becomes empty.

Next, we will establish the near-age optimality of the
NPMASIF-LGFS policy. The following theorem shows that the
age of served information obtained by the NP-MASIF-LGFS
policy serves as a lower bound (in terms of stochastic ordering)
for the age of all other non-preemptive and causal policies.

Theorem 2. (Continuous-time, multiple flows, multiple servers,
NBU transmission times with no errors) In continuous-time
status updating systems, if (i) There is no transmission errors
(i.e., g = 0), (ii) The packet generation and arrival times are
synchronized across the N flows, and (iii) The packet
transmission times are NBU and i.i.d. across both servers and
packets, then it holds that for all I, all p¢ € Psym, and all 7 € ITsp°

[{pt ° Enp-masir-Lars(t),t € [0,00)}|1]

Sst[{pe ° An(t),t € [0,00)}]1], (23)

or equivalently, for all I, all pt € Psym, and all non-decreasing
functional ¢

E[p({pt ° Enp-masiF-LeFs(t),t € [0,00)})|I] < min
E[p({p: * An(t),t € [0,00)})|I] mem,,

< E[@p({pr ° Anp-masir-ters(t),t € [0,00)})|1], (24) provided
that the expectations in (24) exist.

Proof idea. In the NP-MASIF-LGFS policy, if a packet from flow
n* begins service, it implies that flow n* possesses the
maximum age of served information before the service starts.
If the packet generation and arrival times are synchronized
across the flows, flow n* also exhibits the minimum age of
served information after the service starts. The proof of
Theorem 2 relies on this property and a sample-path argument
that is developed for NBU service time distributions. See
Appendix B for the details. ]

3 Recall that [T is the set of non-preemptive and causal scheduling
policies.

Considering the close approximation between the age of
served information Enp-masir-Lers(t) and the age of information
Anp-masir-Lers(t) in (24), we can conclude that the NPMASIF-LGFS
policy is near age-optimal. Furthermore, in the case of the
average age metric as defined in (9) (i.e., p¢= pavg for all t), we
can derive the following corollary:

Corollary 3. Under the conditions of Theorem 2, it holds that

I

MASIF-LGFS _

TEnp

where

is the expected time-average of the average age of the N flows,
and 1/u is the mean packet transmission time.

Proof. The proof of Corollary 3 is the same as that of Theorem
12 in [15] and hence is omitted here. [

By Corollary 3, the average age of the NP-MASIF-LGFS policy
is within an additive gap from the optimum, where the gap 1/u
is invariant of the packet arrival and generation times I, the
number of flows N, and the number of servers M.

Similar to Corollary 1, by taking a mixture over the different
realizations of I, one can remove the condition I from (23),
(24), (25), and (26).

The sampling-path argument utilized in the proof of
Theorem 2 can effectively handle multiple flows, multiple
servers, and i.i.d. NBU transmission time distributions. This is
achieved by establishing a coupling between the start time of
packet transmissions in the NP-MASIF-LGFS policy and the
completion time of packet transmissions in any other work-
conserving policy from I1np. However, extending this sampling-
path argument to encompass the scenario of i.i.d. transmission
errors poses additional challenges that are currently difficult to
overcome.

V.  MULTI-FLOW STATUS UPDATE SCHEDULING: THE
DISCRETE-TIME CASE

In this section, we investigate age-optimal scheduling in
discrete-time status updating systems, where the variables
SniAn,i, Dnit,Un(t),An(t) are all multiples of the period Ts, the
transmission time of each packet is fixed as Ts, and the packet
submissions are subject to i.i.d. errors with an error probability
q € [0,1). Service preemption is not allowed in discrete-time
systems.

For multiple-server, discrete-time systems, a scheduling
policy is defined by combining the MAF and LGFS service
disciplines as follows:
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Definition 9. DT-MAF-LGFS policy: This is a workconserving
scheduling policy for multiple-server, discrete-time systems
with synchronized packet generations and arrivals. It operates
as follows:

1. When time tis a multiple of period Ts, if the queue is not
empty, an idle server is assigned to process the most
recently generated packet from the flow with the
maximum age, with ties broken arbitrarily.

—6—RAND-FCFS

=¥ MAF-FCFS
—w—P-RAND-LGFS

—— P-MAF-LGFS (optimal)

Fig. 4. Expected time-average of the maximum age of 3 flows in a system with
a single server and i.i.d. exponential transmission times.

2. The next idle server is assigned to process the most
recently generated packet from the flow with the second
maximum age, with ties broken arbitrarily.

3. This process continues until either (i) The most recently
generated packet of each flow is under service or has
been delivered, or (ii) All servers are busy.

4. If the most recently generated packet of each flow is
under service or has been delivered, and there are
additional idle servers, then these servers can be
arbitrarily assigned to send the remaining packets in the
queue, until the queue becomes empty.

One can observe that the DT-MAF-LGFS policy for discrete-
time systems is similar to the P-MAF-LGFS policy designed for
continuous-time systems.

The age optimality of the DT-MAF-LGFS policy is obtained in
the following theorem.

Theorem 3. (Discrete-time, multiple flows, multiple servers,
constant transmission times with transmission errors) In
discrete-time status updating systemes, if (i) The transmission
errors are i.i.d. with an error probability g € [0,1), (ii) The
packet generation and arrival times are synchronized across
the N flows, and (iii) The packet transmission times are fixed as
Ts, then it holds that for all [, all pt € Psym, and all w € IInp

[{pt = Aot-mar-ters(t),t = 0,Ts2Ts, - }|1]
<st [{Pt ° A”(t)It = O:TS:ZTSI'"}“]I (27)

or equivalently, for all I, all pt € Psym, and all non-decreasing
functional ¢

E[¢d({pt ° Aor-mar-ters(t),t = 0,T52Ts---}|1]
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provided that the expectations in (28) exist.

Proof. See Appendix C. ]

According to Theorem 3, the DT-MAF-LGFS policy minimizes
the stochastic process [{pt °© Ax(t),t = 0,T52Ts---)}|I] in terms
of stochastic ordering within discrete-time status updating
systems. This optimality result

—e—RAND-FCFS

——NP-MAF-LGFS
—-=-NP-MASIF-LGFS (near-optimal)
- = Lower bound of the optimum

Fig. 5. Expected time-average of the average age of 50 flows in a system with
3 servers and i.i.d. NBU service times.

holds for any age penalty function in Psym, any number of flows
N, any number of servers M, any synchronized packet
generation and arrival times in I, and regardless the existence
of i.i.d. transmission errors.

Theorem 3 generalizes [22, Theorem 1], by allowing for
multiple servers and a broader range of age penalty functions.
Similar to Corollary 1, one can remove the condition I from (27)
and (28).

VI. NUMERICAL RESULTS

In this section, we evaluate the age performance of several
multi-flow scheduling policies. These scheduling policies are
defined by combining the flow selection disciplines {MAF,
MASIF, RAND} and the packet selection disciplines {FCFS,
LGFS}, where RAND represents randomly choosing a flow
among the flows with un-served packets. The packet
generation times Sifollow a Poisson process with rate A, and
the time difference (4i—Si) between packet generation and
arrival is equal to either 0 or 4/A with equal probability. The
mean transmission time of each serverissetas E[X] =1/u=1.
Hence, the traffic intensity is p = AN/M, where N is the number
of flows and M is the number of servers.

Fig. 4 illustrates the expected time-average of the maximum
age pmax(A(t)) of 3 flows in a system with a single server and
i.i.d. exponential transmission times. One can see that the P-
MAF-LGFS policy has the best age performance and its age is
quite small even for p > 1, in which case the queue is actually
unstable. On the other hand, both the RAND and FCFS
disciplines have much higher age. Note that there is no need
for preemptions under the FCFS discipline. Fig. 5 plots the
expected time-average of the average age paw(A(t)) of 50
flows in a system with 3 servers and i.i.d. NBU transmission
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times. In particular, the transmission time X follows the
following shifted exponential distribution:

i ... .-

D], ifif xx <= 311,; (29)

One can observe that the NP-MASIF-LGFS policy is better than
the other policies, and is quite close to the age lower bound
where the gap from the lower bound is no more than the mean
transmission time E[X] = 1. One interesting observation is that
the NP-MASIF-LGFS policy is better than the NPMAF-LGFS
policy for NBU transmission times. The reason behind this is as
follows: When multiple servers are idle, the NP-MAF-LGFS
policy will assign these servers to process multiple packets
from the flow with the maximum age (say flow n). This reduces
the age of flow n, but at a cost of postponing the service of the
flows with the second and third maximum ages. On the other
hand, in the NP-MASIF-LGFS policy, once a packet from the
flow with the maximum age of served information (say flow m)
is assigned to a server, the age of served information of flow m
drops greatly, and the next server will be assigned to process
the flow with the second maximum age of served information.
As shown in [57], [58], using multiple parallel servers to
process different flows is beneficial for NBU service times.

VII.  CONCLUSION

We have proposed causal scheduling policies and developed
a unifying sample-path approach to prove that these
scheduling policies are (near) optimal for minimizing age of
information in continuous-time and discrete-time status
updating systems with multiple flows, multiple servers, and
transmission errors.

ACKNOWLEDGEMENT

We appreciate Elif Uysal’'s support throughout this
endeavor. Additionally, we thank the anonymous reviewers for
their valuable comments.

REFERENCES

[1] Y. Sun, E. Uysal-Biyikoglu, and S. Kompella, “Age-optimal updates of
multiple information flows,” in Proc. IEEE INFOCOM WKSHPS, Apr. 2018.

[2] X. Song and J. W. S. Liu, “Performance of multiversion concurrency
control algorithms in maintaining temporal consistency,” in Proc.
CMPSAC, Oct. 1990.

[3]1 S. K. Kaul, R. D. Yates, and M. Gruteser, “Real-time status: How often
should one update?” in Proc. IEEE INFOCOM, Mar. 2012.

[4] S.K.Kaul, R.D.Yates, and M. Gruteser, “Status updates through queues,”
in Proc. CISS, Mar. 2012.

[5] R.D.Yates andS. K. Kaul, “Real-time status updating: Multiple sources,”
in Proc. IEEE ISIT, Jul. 2012.

[6] B. Li, A. Eryilmaz, and R. Srikant, “On the universality of age-based
scheduling in wireless networks,” in Proc. IEEE INFOCOM, Apr. 2015.

[71 M. Costa, M. Codreanu, and A. Ephremides, “Age of information with
packet management,” in Proc. IEEE ISIT, Jun. 2014.

[8] M. Costa, M. Codreanu, and A. Ephremides, “On the age of information
in status update systems with packet management,” IEEE Trans. Inf.
Theory, vol. 62, no. 4, pp. 1897-1910, Apr. 2016.

[0l

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]
(32]

(33]

(34]

C. Kam, S. Kompella, G. D. Nguyen, and A. Ephremides, “Effect of
message transmission path diversity on status age,” IEEE Trans. Inf.
Theory, vol. 62, no. 3, pp. 1360-1374, Mar. 2016.

N. Pappas, J. Gunnarsson, L. Kratz, M. Kountouris, and V. Angelakis, “Age
of information of multiple sources with queue management,” in Proc.
IEEE ICC, Jun. 2015.

L. Huang and E. Modiano, “Optimizing age-of-information in a multiclass
queueing system,” in Proc. IEEE ISIT, Jun. 2015.

Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff,
“Update or wait: How to keep your data fresh,” in Proc. IEEE INFOCOM,
Apr. 2016.

Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff,
“Update or wait: How to keep your data fresh,” IEEE Trans. Inf. Theory,
vol. 63, no. 11, pp. 7492-7508, Nov. 2017.

A. M. Bedewy, Y. Sun, and N. B. Shroff, “Optimizing data freshness,
throughput, and delay in multi-server information-update systems,” in
Proc. IEEE ISIT, Jul. 2016.

A. M. Bedewy, Y. Sun, and N. B. Shroff, “Minimizing the age of
information through queues,” IEEE Trans. Inf. Theory, vol. 65, no. 8, pp.
5215-5232, Aug. 2019.

A. M. Bedewy, Y. Sun, and N. B. Shroff, “Age-optimal information updates
in multihop networks,” in Proc. IEEE ISIT, Jun. 2017.

A. M. Bedewy, Y. Sun, and N. B. Shroff, “The age of information in
multihop networks,” IEEE/ACM Trans. Netw., vol. 27, no. 3, pp. 1248—
1257, Jun. 2019.

Y. Sun, |. Kadota, R. Talak, and E. Modiano, Age of information: A new
metric for information freshness. Morgan & Claypool, 2019.

A. Kosta, N. Pappas, and V. Angelakis, “Age of information: Metric of
timeliness,” Foundations and Trends in Networking, vol. 12, no. 3, pp.
162-259, 2017.

R. D. Yates and S. K. Kaul, “The age of information: Real-time status
updating by multiple sources,” IEEE Trans. Inf. Theory, vol. 65, no. 3, pp.
1807-1827, Mar. 2019.

A. Maatouk, Y. Sun, A. Ephremides, and M. Assaad, “Timely updates with
priorities: Lexicographic age optimality,” IEEE Trans. Commun., vol. 70,
no. 5, pp. 3020-3033, May 2022.

I. Kadota, E. Uysal-Biyikoglu, R. Singh, and E. Modiano, “Minimizing age
of information in broadcast wireless networks,” in Proc. Allerton, Sep.
2016.

Y.-P. Hsu, E. Modiano, and L. Duan, “Scheduling algorithms for
minimizing age of information in wireless broadcast networks with
random arrivals,” IEEE Trans. Mob. Comput., vol. 19, no. 12, pp. 2903—
2915, Dec. 2020.

V. Tripathi and S. Moharir, “Age of information in multi-source systems,”
in Proc. IEEE GLOBECOM, Dec. 2017.

A. Srivastava, A. Sinha, and K. Jagannathan, “On minimizing the
maximum age-of-information for wireless erasure channels,” in Proc.
IEEE/IFIP WIOPT, Jun. 2019.

Q. He, D. Yuan, and A. Ephremides, “Optimal link scheduling for age
minimization in wireless systems,” IEEE Trans. Inf. Theory, vol. 64, no. 7,
pp. 5381-5394, Jul. 2018.

A. Arafa, J. Yang, S. Ulukus, and H. V. Poor, “Age-minimal transmission
for energy harvesting sensors with finite batteries: Online policies,” IEEE
Trans. Inf. Theory, vol. 66, no. 1, pp. 534-556, Jan. 2020.

Y. Sun, Y. Polyanskiy, and E. Uysal, “Sampling of the Wiener process for
remote estimation over a channel with random delay,” IEEE Trans. Inf.
Theory, vol. 66, no. 2, pp. 1118-1135, Feb. 2020.

A. Maatouk, S. Kriouile, M. Assaad, and A. Ephremides, “The age of
incorrect information: A new performance metric for status updates,”
IEEE/ACM Trans. Netw., vol. 28, no. 5, pp. 2215-2228, Oct. 2020.

C. Kam, S. Kompella, G. D. Nguyen, J. E. Wieselthier, and A. Ephremides,
“Towards an effective age of information: Remote estimation of a
Markov source,” in Proc. IEEE INFOCOM WKSHPS, Apr. 2018.

Y. Sun and B. Cyr, “Information aging through queues: A mutual
information perspective,” in IEEE SPAWC, Jun. 2018.

Y. Sun and B. Cyr, “Sampling for data freshness optimization: Nonlinear
age functions,” J. Commun. Netw., vol. 21, no. 3, pp. 204-219, Jun. 2019.
M. K. C. Shisher, H. Qin, L. Yang, F. Yan, and Y. Sun, “The age of correlated
features in supervised learning based forecasting,” in Proc.

IEEE INFOCOM WKSHPS, May 2021.

M. K. C. Shisher and Y. Sun, “How does data freshness affect real-time
supervised learning?” in Proc. ACM MobiHoc, Oct. 2022.



SUN AND KOMPELLA: AGE-OPTIMAL MULTI-FLOW STATUS UPDATING...

(35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]

(43]

(44]

(45]

[46]

(47]

(48]

(49]

(51]

(52]

(53]

(54]

[55]

(56]

(57]

(58]

(59]

(60]

(61]

M. K. C. Shisher, Y. Sun, and |.-H. Hou, “Timely communications for
remote inference,” 2023, in preparation.

M. K. C. Shisher, B. Ji, I.-H. Hou, and Y. Sun, “Learning and
communications co-design for remote inference systems: Feature length
selection and transmission scheduling,” 2023, arXiv:2308.10094.

J. Pan, A. M. Bedewy, Y. Sun, and N. B. Shroff, “Age-optimal scheduling
over hybrid channels,” IEEE Trans. Mob. Comput., 2022, in press.

J. Pan, A. M. Bedewy, Y. Sun, and N. B. Shroff, “Optimal sampling for data
freshness: Unreliable transmissions with random two-way delay,”
IEEE/ACM Trans. Netw., vol. 31, no. 1, pp. 408-420, 2022.

A. M. Bedewy, Y. Sun, R. Singh, and N. B. Shroff, “Low-power status
updates via sleep-wake scheduling,” IEEE/ACM Trans. Netw., vol. 29, no.
5, pp. 2129-2141, Oct. 2021.

T. Z. Ornee and Y. Sun, “Sampling and remote estimation for the
Ornstein-Uhlenbeck process through queues: Age of information and
beyond,” IEEE/ACM Trans. Netw., vol. 29, no. 5, pp. 1962—-1975, Oct.
2021.

A. M. Bedewy, Y. Sun, S. Kompella, and N. B. Shroff, “Optimal sampling
and scheduling for timely status updates in multi-source networks,” IEEE
Trans. Inf. Theory, vol. 67, no. 6, pp. 4019-4034, Jun. 2021.

H. Tang, Y. Sun, and L. Tassiulas, “Sampling of the Wiener process for
remote estimation over a channel with unknown delay statistics,” in
Proc. ACM MobiHoc, Oct. 2022.

T.Z. Ornee and Y. Sun, “A Whittle index policy for the remote estimation
of multiple continuous Gauss-Markov processes over parallel channels,”
in Proc. ACM MobiHoc, Oct. 2023.

R. D. Yates, et al., “Age of information: An introduction and survey,” IEEE
J. Sel. Areas Commun., vol. 39, no. 5, pp. 1183-1210, May 2021.

A. G. Phadke, B. Pickett, M. Adamiak, and et. al., “Synchronized sampling
and phasor measurements for relaying and control,” IEEE Trans. Power
Delivery, vol. 9, no. 1, pp. 442-452, Jan. 1994.

F. Sivrikaya and B. Yener, “Time synchronization in sensor networks: A
survey,” IEEE Netw., vol. 18, no. 4, pp. 45-50, Jul. 2004.

A. Fox, S.D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier, “Cluster-
based scalable network services,” SIGOPS Oper. Syst. Rev., vol. 31, no. 5,
pp. 78-91, Oct. 1997.

V. C. Gungor and G. P. Hancke, “Industrial wireless sensor networks:
Challenges, design principles, and technical approaches,” IEEE Trans.
Industrial Electronics, vol. 56, no. 10, pp. 4258-4265, Oct. 2009.

R. Li, A. Eryilmaz, and B. Li, “Throughput-optimal wireless scheduling with
regulated inter-service times,” in Proc. IEEE INFOCOM, Jul. 2013. [50] M.
Shaked and J. G. Shanthikumar, Stochastic orders. Springer, 2007.

L. Schrage, “A proof of the optimality of the shortest remaining
processing time discipline,” Operations Research, vol. 16, pp. 687-690,
Jun. 1968.

J. R. Jackson, “Scheduling a production line to minimize maximum
tardiness,” management Science Research Report, University of
California, Los Angeles, CA, 1955.

S. Leonardi and D. Raz, “Approximating total flow time on parallel
machines,” in ACM STOC, May 1997.

G. Weiss, “Turnpike optimality of Smith’s rule in parallel machines
stochastic scheduling,” Math. Oper. Res., vol. 17, no. 2, pp. 255-270, May
1992.

G. Weiss, “On almost optimal priority rules for preemptive scheduling of
stochastic jobs on parallel machines,” Advances in Applied Probability,
vol. 27, no. 3, pp. 821-839, Jul. 1995.

M. Dacre, K. Glazebrook, and J. Nino Mora, “The achievable region ap-~
proach to the optimal control of stochastic systems,” J. Royal Statistical
Society: Series B (Statistical Methodology), vol. 61, no. 4, pp. 747-791,
1999.

Y. Sun, C. E. Koksal, and N. B. Shroff, “On delay-optimal scheduling in
queueing systems with replications,” 2016, arXiv:1603.07322.

Y. Sun, C. E. Koksal, and N. B. Shroff, “Near delay-optimal scheduling of
batch jobs in multi-server systems,” 2017,[Online]. Available:
http://webhome.auburn.edu/%7eyzs0078/parallel-servers.pdf

L. Kleinrock, Queueing systems. John Wiley and Sons, 1975, vol. 1:
Theory.

J. Nino-Mora, “Conservation laws and related applications,” in Wiley
Encyclopedia of Operations Research and Management Science. John
Wiley & Sons, Inc., 2010.

J. C. Gittins, K. Glazebrook, and R. Weber, Multi-armed bandit allocation
indices, 2nd ed. Wiley, Chichester, NY, 2011.

579

APPENDIX A PROOF OF THEOREM 1

Let the age vector Ar(t) represent the system state of policy
m at time t and {Ax(t),t € [0,0)} be the state process of policy
1. For notational simplicity, let policy P represent the P-MAF-
LGFS policy, which is a work-conserving policy. We first
establish two lemmas that are useful to prove Theorem 1.
Using the memoryless property of exponential distribution, we
can obtain the following coupling lemma:

Lemma 1. (Coupling Lemma) In continuous-time status
updating systems, consider policy P and any work-conserving
policy m € I1. For any given I, if (i) The transmission errors are
i.i.d. with an error probability g € [0,1) and (ii) The packet
transmission times are exponentially distributed and i.i.d.
across packets, then there exist policy P1and policy m1in the
same probability space which satisfy the same scheduling
disciplines with policy P and policy 7, respectively, such that

1. the state process {Ap:(t),t € [0,00)} of policy P1 has the
same distribution as the state process {Ap(t),t € [0,00)} of
policy P,

2. the state process {Amn(t),t € [0,90)} of policy m1 has the
same distribution as the state process {Ax(t),t € [0,00)} of
policy m,

3. if a packet from the flow with age Aji,ri(t) is successfully
delivered at time t in policy Pi, then almost surely, a
packet from the flow with age Apm(t) is successfully
delivered at time t in policy m1; and vice versa.

Proof. Notice that (i) All policies have identical packet
generation and arrival times I, (ii) The packet transmission
times are i.i.d. memoryless, and (iii) Policy P and policy  are
both  work-conserving. In  addition, the  packet
generation/arrival times I, the packet transmission times, and
the transmission failures are governed by three mutually
independent stochastic processes, none of which are
influenced by the scheduling policy. Because of these facts,
service preemption does not affect the distribution of packet
delivery times. Following the inductive construction argument
used in the proof of Theorem 6.B.3 in [50], one can construct
the packet transmission success and failure events one by one
in policy P1 and policy m1 to prove this lemma. In particular,
since the transmission errors are ii.d. and they are not
influenced by the scheduling policy, it is feasible to couple the
packet transmission success and failure events in policy P1and
policy m1in such a way that a packet from the flow with age
Appi(t) is successfully delivered at time t in policy P1if, and
only if, a packet from the flow with age Apim(t) is successfully
delivered at time t in policy m1. The details are omitted. [

We will compare policy P1and policy 1 0n a sample path by
using the following Lemma:

Lemma 2. (Inductive comparison) Suppose that a packet is
delivered at time tin policy P1and a packet is delivered at the
same time t in policy m1. The system state of policy P1is Ap:
before the packet delivery, which becomes -after the
packet delivery. The system state of policy m1is A before the
packet delivery, which becomes - after the packet delivery.
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Under the conditions of Lemma 1, if (i) The packet generation
and arrival times are synchronized across the N flows and (ii)

Alippi< Afim, = 1,-++,N, (30)

- (31)

Proof. For synchronized packet generations and arrivals, let
W(t) = maxi{Si: Ai < t} be the generation time of the freshest
packet of each flow that has arrived at the queue by time t. At
time t, because no packet that has arrived at the queue was
generated later than W(t), we can obtain

- (32)

Because (i) Policy P1follows the same scheduling discipline
with the P-MAF-LGFS policy and (ii) The packet generation and
arrival times are synchronized across the N flows, the delivered
packet at time t in policy P1 must be the freshest packet
generated at time W(t). Hence, in policy Pi, the flow
associated with the delivered packet must have the minimum
age after the delivery, given by

Combining (32) and (33), yields

Moreover, suppose that the packet delivered at time t in
policy P1is from the flow with age value Afj,ribefore the packet
delivery. This indicates

According to Lemma 1, the packet delivered at time t in policy
m1 is from the flow with age value A[j,=: before the packet
delivery. Hence,

then

(33)

(34)

(35)
(36)

I @)
ey
1
Combining (30), (35), and (37), yields
Ay pi= AliLpi < Afiymi = A'fiymy, 1= 1,2, = 1.

(39)

Moreover, combining (30), (36), and (38), yields

A'[ipr = Afi+11,P < Afi+1],m < A,
i=j2,,N-1 (40)

Finally, (31) follows from (34), (39), and (40). This completes
the proof. ]

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Consider any work-conserving policy m €
[1. By Lemma 1, there exist policy P1and policy m1satisfying the
same scheduling disciplines with policy P and policy m,
respectively, and the packet delivery times in policy P1 and
policy 1 are synchronized almost surely. For any given sample
path of policy P1and policy 1, Api(0-) = A (0-) at time t = 0-.
We consider two cases:

Case 1: When there is no packet delivery, the age of each
flow grows linearly with a slope 1.

Case 2: When a packet is successfully delivered, the
evolution of the system state is governed by Lemma 2.

By induction over time, we obtain

Ampi(t) € Agm(t), i=1,-+,N, t = 0. (41)

For any symmetric and non-decreasing function p, it holds
from (41) that for all sample pathsand all t =0 pt ° Api(t)
= pe(A1pi(t), -, An,pi(t))
= pe(Arn1p(8), -+, A pa(2))
< pe(Araym(t), -+ Aym(t))
= pt(Avmi(t), -, ANmi(E))

=pe * Am(0). (42)

By Lemma 1, the state process {Ap:(£),t € [0,00)} of policy P1
has the same distribution with the state process {Ap(t),t €
[0,00)} of policy P; the state process {Am(t),t € [0,00)} of policy
m1 has the same distribution with the state process {Ax(t),t €
[0,00)} of policy . Hence, {p: ° Api(t),t € [0,00)} has the same
distribution with {p: ° Ap(t),t € [0,00)}; {pt ° Am(£),t € [0,0)}
has the same distribution with {p: ° Ax(t),t € [0,0)}. By
substituting this and (42) into Theorem 6.B.30 of [50], we can
obtain that (15) holds for all work-conserving policy 7 € II.

For non-work-conserving policies 7, because the service
times are exponentially distributed (i.e., memoryless) and i.i.d.
across servers and time, server idling only postpones the
delivery times of the packets. One can construct a coupling to
show that for any non-work-conserving policy m, there exists a
work-conserving policy ™ whose age process is smaller than
that of policy m in stochastic ordering; the details are omitted.
As a result, (15) holds for all policies m € II. Finally, the
equivalence between (15) and (16) follows from

(4). This completes the proof. O

APPENDIX B PROOF OF THEOREM 2

Let (Ax(t),Ex(t)) represent the system state of policy m at
time t and {(Ax(t),Ex(t)),t € [0,00)} be the state process of
policy m. For notational simplicity, let policy P represent the
NP-MASIF-LGFS  policy, which is a non-preemptive,
workconserving policy.

For single-server systems, the following work conservation
law plays an important role in the scheduling literature (see,
e.g., [59]-[61]): At any time, the expected total amount of time
for completing the packets in the queue is invariant across
different work-conserving policies. However, the work
conservation law does not hold in multi-server systems: It
often happens that some servers are busy while the rest
servers are idle, which leads to inefficient utilization of the idle
servers and sub-optimal scheduling performance. In the
sequel, we use a weak work-efficiency ordering [57], [58] to
compare different non-preemptive policies for multi-server
systems.
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Definition 10. Weak work-efficiency ordering [57], [58]: For any
given I and a sample path realization of two nonpreemptive
policies 11,12 € Ilnp, policy m1is said to be weakly more work-
efficient than policy m, if the following assertion is true: For
each packet j executed in policy m2, if

1. in policy m2, a packet j starts service at time 7 and
completes service at time v (T < v),

2. in policy m1, the queue is not empty during [z,v], then in
policy 71, there always exists one corresponding packet j
that starts service during [z,v]. It is worth noting that the
weak work-efficiency ordering does not require to specify
which servers are used to process packets jand j.

[ ] time

Policy @,

Policy @
t

Fig. 6. An illustration of the weak work-efficiency ordering, where the service
duration of a packet is indicated by a rectangle, without specifying which
servers are used to process the packets. Suppose that policy 1 is weakly more
work-efficient than policy 2. If (i) A packet j starts service at time T and
completes service at time v in policy 7z, and (ii) The queue is not empty during
[T, v] in policy 11, then in policy 71 there exists one corresponding packet j'that
starts service at some time t during [z,v].

An illustration of the weak work-efficiency ordering is
provided in Fig. 6. The weak work-efficiency ordering
formalizes the following useful intuition for comparing two
nonpreemptive policies r1and m2: If one packet j is delivered at
time v in policy 2, then there exists one corresponding packet
J'that has started its transmission shortly before time v in policy
11, as long as the queue is not empty. The weak work-efficiency
ordering was originally introduced for nearoptimal delay
minimization in multi-server systems [57], [58]. In this paper,
we use it for near-optimal age minimization in multi-server
systems.

The following coupling lemma was established in [58] by
using the property of NBU distributions:

Lemma 3. (Coupling Lemma) [58, Lemma 2] In continuoustime
status updating systems, consider two non-preemptive
policies P, € Ilsp. For any given I, if (i) Policy P is work-
conserving, and (ii) The packet service times are NBU,
independent across the servers, and i.i.d. across the packets
assigned to the same server, then there exist policy P1 and
policy m1in the same probability space which satisfy the same
scheduling disciplines with policy P and policy m, respectively,
such that

1. The state process {(Ari(t),Zri(t)),t € [0,00)} of policy P1
has the same distribution as the state process
{(Ar(t),Er(t)),t € [0,00)} of policy P,

2. The state process {(An(t),Emn(t)),t € [0,00)} of policy m1
has the same distribution as the state process
{(A=(t),Ex(t)),t € [0,0)} of policy m,

3. Policy P1is weakly more work-efficient than policy 1 with
probability one.

The proof of Lemma 3 is provided in [58].
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We will compare the age of service information of policy P1
and the age of policy m10n a sample path by using the following
lemma:

Lemma 4. (Inductive comparison) Suppose that a packet starts
service at time t in policy P1and a packet completes service
(i.e., delivered to the destination) at the same time t in policy
1. The system state of policy P1is (Apy,Ep:) before the service
starts, which becomes (A'p,E'p1) after the service starts. The
system state of policy m1 is (Am,Em) before the service
completes, which becomes _ after the service
completes. If the packet generation and arrival times are
synchronized across the N flows and
ZP1< Afi)m, i =1,-++,N,

Proof. For synchronized packet generations and arrivals, let
W(t) = max{Si: Ai < t} be the generation time of the freshest
packet of each flow that has arrived at the queue by time t. At
time t, because no packet that has arrived at the queue was
generated later than W(t), we can obtain

(43)
then
(44)

(45)
(46)

Because policy P1 follows the same scheduling discipline
with the NP-MASIF-LGFS policy, each packet starts service in
policy P1 must be from the flow with the maximum age of
served information Z[1p (denoted as flow n*), and the
delivered packet must be the freshest packet that was
generated at time W(t). In other words, the age of served
information of flow n*is reduced from the maximum age of
served information Z1,p to the minimum age of served

information , and the ages of served
information of the other (N - 1) flows remain unchanged.
Hence,

Ei,P1= Bli+1P, = 1,+,N =1, (47)

N pi=t - W(t). (48)

In policy 1, the delivered packet can be any packet from any
flow. For all possible cases of policy m1, it must hold that

By combining (43), (47), and (49), we have

In addition, combining (46) and (48), yields

By this, (44) is proven. O

(49)

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Recall that policy P is non-preemptive and
work-conserving. Consider any non-preemptive policy € I1np.
By Lemma 3, there exist policy P1and policy m1 satisfying the
same scheduling disciplines with policy P and policy m,
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respectively, and policy P1is weakly more workefficient than
policy m1 with probability one.

Next, we construct another policy. in the same probability
space with policy P1and policy 1: Because policy P1is weakly
more work-efficient than policy w1 with probability one, if

1. In policy m1, a packet j starts service at time t and
completes service at time v (T <v),
2. In policy P1, the queue is not empty during [t,v], then in

policy Pi1, there exists one corresponding packet j that
starts service during [t,v]. Let t € [1,v] be the service
starting time of packet j in policy P1, then in policy m1',
packet j is

Policy @! j |

Policy

v

Policy p; §&\\m
t

Fig. 7. An illustration of the construction of policy., where the queue is not
empty during [t,v] in policy P1. The service completion time t of packet j in

policy. is smaller than the service completion time v of packet j in policy m,
and is equal to the service starting time t of packet j'in policy Ps.

constructed to start service at time T and complete service at
time ¢, as illustrated in Fig. 7. On the other hand, if

1. In policy m1, a packet j starts service at time t and
completes service at time v (T <v),
2. In policy P1, the queue is empty during [t,v], then in policy
, packet j is constructed to start service at time T and
complete service at time v. The initial age of policy. is
chosen to be the same as that of other policies. Hence,

The policy 1  constructed above satisfies the following two
useful properties:

Property (i): The service completion time of each packet in
poIicy. is equal to or earlier than that in policy . Hence,

holds with probably one.

(50)

Property (ii): If the queue is not empty at time tin policy P1
and a packet completes service at time t in poIicy., then a
packet starts service at the same time tin policy P1.

Next, we use Property (ii) to show that, almost surely,

(51)
At time t = 0-, because Zp(0-) < Ap(0-) and
I - - o
This further implies that
I

For any time t > 0, there could be three cases:

Case 1: If the queue is empty at time t in policy Py, then (51)
holds naturally at time t because all packets have started
services in policy P1(otherwise, the queue is not empty).

Case 2: If the queue is not empty at time tin policy P1and a
packet completes service at time t in policy ., according to
Property (ii), a packet starts service at time t in policy Pi.
Hence, the evolution of the system state before and after time
tis governed by Lemma 4.

Case 3: If the queue is not empty at time t in policy P1and
no packet completes service at time t in policy ., there may
exist some packet that starts service at time t in policy P1.
Therefore, the age of each flow in policy 1’ grows linearly with
a slope 1 at time t; the age of served information of each flow
in policy P1 may either grow linearly with a slope 1 or drop to a
lower value. By comparison, the age of served information of
each flow in policy P1grows at a speed no faster than the age
of each flow in poIicy..

By induction over time and considering the above three
cases, (51) is proven.

Furthermore, for any symmetric and non-decreasing

function py, it holds from (50) and (51) that for all sample paths
andallt20p: » Epi(t)

= pe(ELpi(t), -+ ENpi(L))

= p(Equp(8), -+, Epi(8))

< pe(Apaymy (€),+++, Ay (£))

= pe(Avnr (8),++, Annr (t))

=pe ° Anr(t)

ptS ° Arrl(t) (53)

By Lemma 3, the state process {(Ari(t),Eri(t)),t € [0,00)} of
policy P1 has the same distribution with the state process
{(Ar(t),Er(t)),t € [0,0)} of policy P; the state process
{(Ami(t),Em(t)),t € [0,00)} of policy m1 has the same
distribution with the state process {(Ax(t),Zx(t)),t € [0,0)} of
policy m. Hence, {p: ° Epi(t),t € [0,00)} has the same
distribution with {p: ° Ep(t),t € [0,00)}; {pt = Am(t),t € [0,0)}
has the same distribution with {p: ° Ax(t),t € [0,0)}. By
substituting this and (53) into Theorem 6.B.30 of [50], we can
obtain that (23) holds for all policy m € Ilnp. According to (4),
the first inequality in (24) is equivalent to (23). The second
inequality in (24) holds naturally. This completes the proof.

O
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Let the age vector A«(t) = (Arx(t), -, Anx(t)) represent the
system state of policy  at time t and {Ax(t),t = 0,Ts2Ts,+++} be
the state process of policy m. Recall that Af=(t) is the ith
largest component of the age vector Ax(t). For notational
simplicity, let policy P represent the DT-MAFLGFS policy, which
is a non-preemptive, work-conserving policy. We first present
two lemmas that are useful to prove Theorem 3.
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Lemma 5. (Coupling Lemma) In discrete-time status updating
systems, consider policy P and any non-preemptive,
workconserving policy m € Ilnp. For any given 1, if (i) The
transmission errors are i.i.d. with an error probability g € [0,1)
and (i) The transmission time of each packet is equal to T,
then there exist policy P1and policy 1in the same probability
space which satisfy the same scheduling disciplines with policy
P and policy 7, respectively, such that

1. The state process {Api(t),t = 0,T5 2T} of policy P1 has
the same distribution as the state process {Ap(t),t =
0,Ts2Ts,+++} of policy P,

2. The state process {Am(t),t = 0,Ts2Ts---} of policy m1 has
the same distribution as the state process
{Ax(t),t =0,Ts2Ts,++} of policy m,

3. If a packet from the flow with age Apri(t) at time t is
successfully delivered at time (t+Ts) in policy P1, then
almost surely, a packet from the flow with age Aji,=(t) at
time tis successfully delivered at time (t + Ts) in policy m1;
and vice versa.

Proof. By employing the inductive construction argument used
in the proof of Theorem 6.B.3 in [50], one can construct the
packet transmission success and failure events one by one in
policy P1and policy 71 to prove this lemma. In particular, since
the transmission errors are i.i.d. and they are not influenced by
the scheduling policy, it is feasible to couple the packet
transmission success and failure events in policy P1and policy
m1in such a way that a packet from the flow with age Afjpi(t)
at time t is successfully delivered at time (t+T5) in policy P1if,
and only if, a packet from the flow with age Afj=(t) at time ¢t
is successfully delivered at time (¢t + Ts) in policy 1. [

Notice that policy P1and policy 1 are two distinct policies,
so the flow with age Afi,p:(t) in policy P1and the flow with age
Afgm(t) at time ¢t in policy m1 are likely representing different
flows. However, policy P1 and policy m1 are coupled in such a
way that the packet deliveries for these two flows occur
simultaneously at time (¢t + Ts).

We will compare policy P1and policy 1 on a sample path by
using the following lemma:

Lemma 6. (Inductive comparison) Under the conditions of
Lemma 5, if (i) The packet generation and arrival times are
synchronized across the N flows and (ii)

Ampi(t) € Apigm(€), i=1,-++,N, (54)

then

Ampi(t+ Ts) < Ajpm(t+ Ts), i=1,--+,N. (55)

Proof. For synchronized packet generations and arrivals, let
W(t) = maxi{Si: Ai < t} be the generation time of the freshest
packet of each flow that has arrived at the queue by time ¢t.
Because (i) The packet transmission time is Tsand (ii) No packet
that has arrived at the queue by time t was generated after
time W(t), we can obtain

At (E+ Ts) = t+ Ts— W(E), i = 1,-+-,N. (56)

583

Without loss of generality, suppose that there are [
transmission errors and (N -I) successful packet deliveries at
time (t+Ts) in policy P1. Because (i) Policy P1follows the same
scheduling discipline with the DT-MAF-LGFS policy and (ii) The
packet generation and arrival times are synchronized across
the N flows, each delivered packet must be the freshest packet
generated at time W(t). Hence, the flows associated with
these delivered packets must have the minimum age at time
(t+Ts), given by

Appi(t+Ts)=t+ Ts- W(t),i=1+1,--,N. (57)
Combining (56) and (57), yields
A pi(t+ Ts) =t + Ts— W(t) < Alipm(t + Ts),
i=1+1,-N. (58)

Moreover, suppose that the transmission errors at time (¢t +
Ts) are from the flows with age values
(AP (), Azl Pi(E), -+ AP (E)) at time ¢, which are sorted such
that j1 = j2 =2 -+ = ji.. Because Appi(t) is the ith largest
component of the age vector Ap:(t), we have

A[j1],P1(t) 2 AUZ],Pl(t) 2 e 2 A[j1],P1(t). (59)

If flow nis one of the flows that encounter a transmission error
at time t + Tsin policy P1, then

Anpi(t+ Ts) = Anpi(t) + Ts. (60)

(57), (59),

Api(t + Ts) are A pi(t) + Ts Ayl Pi(t) + Ts, Apn.pi(t) + Tsand
(N = 1) numbers with the same value t + Ts— W(t). Hence,

From and (60), the components of vector

A[I],P1(t + Ts) = A[ji],Pl(t) +Tsi=1,--1L (61)

According to Lemma 5, there are I transmission errors at
time (t + Ts) in policy m1, which are from the flows with age
values (Apim(€), Ayl mi(t), -+ A (t)) at time t.

Because j12j22 -+ 2 ji, we have

AUl],ﬂl(t) 2 A[jz],m(t) 2 e 2 AU/],TH(t). (62)

If flow nis one of the flows that encounter a transmission error
at time t + Tsin policy m1, then

An,m(t + Ts) = An,m(t) + Ts. (63)

From (62) and (63), one can observe that Afjum(t) + TsAfjzyn(t)
+ Ty, Apym(t) + Tsare | components of vector Am(t + Ts).
Hence,

Aliym(t + Ts) 2 Ajjgmi(t) + Ts, i = 1,1 (64)

Combining (54), (61), and (64), yields

AfLpi(t + Ts)
=Appi(t) + Ts
SAU,‘],TH(t) +Ts

SA[I],m(t + Ts), i= 1,"',1. (65)
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Finally, (55) follows from (58) and (65). This completes the
proof. [

Now we prove Theorem 3.

Proof of Theorem 3. Consider any non-preemptive,
workconserving policy € I1,p. By Lemma 5, there exist policy
P1and policy 1 satisfying the same scheduling disciplines with
policy P and policy 7, respectively, such that if a packet from
the flow with age Afi,pi(t) at time t is successfully delivered at
time (¢+Ts) in policy P1, then almost surely, a packet from the
flow with age Api=(t) at time tis successfully delivered at time
(t + Ts) in policy m1; and vice versa.

For any given sample path of policy P1and policy m1, the
initial system state is Api(0) = Am(0) at time t = 0. The
evolution of the system state is governed by Lemma 6. By
induction over time, we obtain

Amp(t) € Aimi(t), i=1,+N, t = 0,Ts2Ts, .
(66)
The rest of the proof is quite similar to that of Theorem 1 and
hence are omitted. ]
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