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Age-Optimal Multi-Flow Status Updating with 
Errors: A Sample-Path Approach 

Yin Sun and Sastry Kompella 
Abstract—In this paper, we study an age of information 

minimization problem in continuous-time and discrete-time status 
updating systems that involve multiple packet flows, multiple servers, 
and transmission errors. Four scheduling policies are proposed. We 
develop a unifying sample-path approach and use it to show that, 
when the packet generation and arrival times are synchronized across 
the flows, the proposed policies are (near) optimal for minimizing any 
time-dependent, symmetric, and nondecreasing penalty function of 
the ages of the flows over time in a stochastic ordering sense. 

Index Terms—Age of information, errors, multiple channels, 
multiple flows, sample-path approach, status updating. 

I. INTRODUCTION 

N many information-update and networked control systems, 

such as news updates, stock trading, autonomous driving, 

remote surgery, robotics control, and real-time surveillance, 

information usually has the greatest value when it is fresh. A 

metric for information freshness, called age of information or 

simply age, was introduced in [2], [3]. Consider a flow of status 

update packets that are sent from a source to a destination 

through a channel. Let U(t) be the time stamp (i.e., generation 

time) of the newest update that the destination has received 

by time t. Age of information, as a function of time t, is defined 

as ∆(t) = t−U(t), which is the time elapsed since the newest 

update was generated. 

In recent years, there have been a lot of research efforts on 

(i) Analyzing the distributional quantities of age ∆(t) for various 

network models and (ii) Controlling ∆(t) to keep the 

destination’s information as fresh as possible, e.g., [1]–[44]. If 

there is a single flow of status update packets, the last 

generated, first served (LGFS) update transmission policy, in 

which the last generated packet is served the first, has been 

shown to be (nearly) optimal for minimizing the age process 

{∆(t),t ≥ 0} in a stochastic ordering sense for queueing 

networks with multiple servers or multiple hops [14]–[18]. 

These results hold for arbitrary packet generation times at the 

information source (e.g., a sensor) and arbitrary packet arrival 
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Fig. 1. System model. 

times at the transmitter’s queueing buffer; they also hold for 

minimizing any non-decreasing functional ϕ({∆(t),t ≥ 0}) of 

the age process {∆(t),t ≥ 0}. If packets arrive at the queue in 

the order of their generation times, then the LGFS policy 

reduces to the last come, first served (LCFS) policy, thus 

demonstrating the (near) age-optimality of the LCFS policy. 

These studies motivated us to delve deeper into the design of 

scheduling policies to minimize age of information in more 

complex networks involving multiple flows of status update 

packets and transmission errors, where each flow is from one 

source node to a destination node. In this scenario, the 

transmission scheduler must compare not only packets from 

the same flow, but also packets from different flows. 

Additionally, the presence of transmission errors adds an 

additional layer of complexity to the scheduling problem. As a 

result, addressing these challenges becomes crucial in 

achieving efficient age minimization in such systems. 

In this paper, we investigate age-optimal scheduling in 

continuous-time and discrete-time status updating systems 

that involve multiple flows, multiple servers, and transmission 

errors, as illustrated in Fig. 1. Each server can transmit packets 

to their respective destinations, one packet at a time. Different 

servers are not allowed to simultaneously transmit packets 

from the same flow. We assume that the packet generation 

and arrival times are synchronized across the flows. In other 

words, when a packet from flow n arrives at the queue at time 

Ai, with its generation time denoted as Si (where Si ≤ Ai), one 

corresponding packet from each flow simultaneously received 

at time Ai, and all of these packets were generated at the same 

time Si. In practice, synchronized packet generations and 

arrivals occur when there is a single source and multiple 

destinations (e.g., [22]), or in periodic sampling where multiple 

sources are synchronized by the same clock, which is common 

in monitoring and control systems (e.g., [45], [46]). We develop 

a unifying sample-path approach and use it to show that the 

proposed scheduling policies can achieve optimal or near-

optimal age performance in a quite strong sense (i.e., in terms 
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of stochastic ordering of agepenalty stochastic processes). The 

contributions of this paper are summarized as follows: 

• Let ∆(t) denote the age vector of multiple flows. We 

introduce an age penalty function pt(∆(t)) to represent 

the level of dissatisfaction for having aged information at 

the destinations at time t, where pt can be any 

timedependent, symmetric, and non-decreasing function 

of the age vector ∆(t). 

• For continuous-time status updating systems with one or 

multiple flows, one or multiple servers, and i.i.d. 

exponential transmission times, we propose a 

preemptive, maximum age first, last generated first 

served (P-MAFLGFS) scheduling policy. 1  If the packet 

generation and arrival times are synchronized across the 

flows, then for any age penalty function pt defined above, 

any number of flows, any number of servers, any 

synchronized packet generation and arrival times, and 

regardless the presence of transmission errors or not, the 

P-MAF-LGFS policy is proven to minimize the continuous-

time age penalty process {pt(∆(t)),t ≥ 0} among all causal 

policies in a stochastic ordering sense (see Theorem 1 and 

Corollary 1). Theorem 1 is more general than [1, Theorem 

1], as the latter was established for the special case of 

single-server status updating systems without 

transmission errors. In addition, if packet replication is 

allowed, we show that a preemptive, maximum age first, 

last generated first served scheduling policy with packet 

replications (PMAF-LGFS-R) is age-optimal for minimizing 

the age penalty process {pt(∆(t)),t ≥ 0} in terms of 

stochastic ordering (see Corollary 2). 

• For continuous-time status updating systems with one or 

multiple flows, one or multiple servers, and i.i.d. 

newbetterthan-used (NBU) transmission times (which 

include exponential transmission times as a special case), 

ageoptimal multi-flow scheduling is quite difficult to 

achieve. In this case, we consider an age lower bound 

called the age of served information and propose a non-

preemptive, maximum age of served information first, last 

generated first served (NP-MASIF-LGFS) scheduling policy. 

The NP-MASIF-LGFS policy is shown to be near 

ageoptimal. Specifically, it is within an additive gap from 

the optimum for minimizing the expected time-average of 

the average age of the flows, where the gap is equal to 

the mean transmission time of one packet (see Theorem 

2 and Corollary 3). This additive sub-optimality gap is 

quite small. 

• For discrete-time status updating systems with one or 

multiple flows and one or multiple servers, we propose a 

discrete time, maximum age first, last generated first 

served (DT-MASIF-LGFS) scheduling policy. If the packet 

generation and arrival times are synchronized across the 

flows, then for any age penalty function pt, any number of 

flows, any number of servers, any synchronized packet 

generation and arrival times, and regardless the presence 

of transmission errors or not, the DT-MAFLGFS policy is 

                                                                 
1  This new P-MAF-LGFS policy is suitable for both single-server and 

multiserver systems, whereas the original P-MAF-LGFS policy, as presented in 
[1], was specifically tailored for single-server scenarios. 

proven to minimize the discrete-time age penalty process 

{pt(∆(t)),t = 0,Ts,2Ts,···} among all causal policies in a 

stochastic ordering sense, where Ts is the fundamental 

time unit of the discrete-time systems (see Theorem 3). 

Our results can be potentially applied to: (i) Cloud-hosted 

Web services where the servers in Fig. 1 represent a pool of 

threads (each for a TCP connection) connecting a front-end 

proxy node to clients [47], (ii) Industrial robotics and factory 

automation systems where multiple sensor-output flows are 

sent to a wireless AP and then forwarded to a system monitor 

and/or controller [48], and (iii) Multi-access edge computing 

(MEC) that can process fresh data (e.g., data for video 

analytics, location services, and IoT) locally at the very edge of 

the mobile network. 

II. RELATED WORK 

The age of information concept has attracted a significant 

surge of research interest; see, e.g., [1]–[43] and a recent 

survey [44]. Initially, research efforts were centered on 

analyzing and comparing the age performance of different 

queueing disciplines, such as first-come, first-served (FCFS) [3], 

[5], [9], [11], preemptive and non-preemptive LCFS [4], [20], 

and packet management [8], [10]. In [14]–[18], a sample-path 

approach was developed to prove that LGFS-type policies are 

optimal or near-optimal for minimizing a broad class of age 

metrics in multi-server and multi-hop queueing networks with 

a single packet flow. When packets arrive in the order of their 

generation times, the LGFS policy becomes the well-known 

LCFS policy. Hence, the LCFS policy is (near) age-optimal in 

these queueing networks. 

In recent years, researchers have expanded the 

aforementioned studies to consider age minimization in multi-

flow discrete-time status updating systems [22]–[25]. In [22], 

the authors utilized a sample-path method to establish the 

optimality of the maximum age first (MAF) policy in minimizing 

the time-averaged sum age of multiple flows. This 

investigation focused on discrete-time systems with periodic 

arrivals and a single broadcast channel, which is susceptible to 

i.i.d. transmission errors. Moreover, in [23], a Markov decision 

process (MDP) approach was adopted to prove that the MAF 

policy minimizes the time-averaged sum age of multiple flows 

in discrete-time systems with Bernoulli arrivals, a single 

broadcast channel, and no buffer. In this bufferless setup, 

arriving packets are discarded if they cannot be transmitted 

immediately in the arriving time slot. In [24], the authors 

studied discrete-time systems with multiple flows and multiple 

ON/OFF channels, where the state of each channel (ON/OFF) 

is known for making scheduling decisions. It was demonstrated 

that a max-age matching policy is asymptotically optimal for 

minimizing non-decreasing symmetric functions of the age of 

the flows as the numbers of flows and channels increase. In 

[25], it was shown that the MAF policy minimizes the maximum 

age of multiple flows in discretetime systems with periodic 
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arrivals and a single broadcast channel susceptible to i.i.d. 

transmission errors, where the transmission error probability 

may vary across the flows. In [49], a sample-path method was 

employed to demonstrate that the round-robin policy 

minimizes a service regularity metric called time-since-last-

service in discrete-time systems with multiple flows and 

transmission errors. In the definition of time-since-last-service, 

a user can receive service even if its queue is empty. 

Consequently, time-since-last-service bears similarities to the 

age of information concept, albeit these two metrics are 

different. The present paper, alongside its conference version 

[1], complements the aforementioned studies in several 

essential ways: (i) It considers general time-dependent, 

symmetric, and non-decreasing age penalty functions pt. (ii) 

Both continuous-time and discrete-time systems with multiple 

flows, multiple channels (a.k.a. servers), and transmission 

errors are investigated. (iii) The paper establishes near 

ageoptimal scheduling results in scenarios where achieving 

ageoptimality is inherently challenging. 

III. SYSTEM MODEL 

A. Notations and Definitions 

We use lower case letters such as x and x, respectively, to 

represent deterministic scalars and vectors. In the vector case, 

a subscript will index the components of a vector, such as xi. 

We use x[i] to denote the ith largest component of vector x. Let 

0 denote a vector with all 0 components. A function f : Rn → R 

is termed symmetric if f(x) = f(x[1],···,x[n]) for all x ∈ Rn. A 

function f : Rn → R is termed separable if there exists functions 

f1,···,fn of one variable such that  for all x 

∈ Rn. The composition of functions f and g is denoted by f ◦ 

g(x) = f(g(x)). For any n-dimensional vectors x and y, the 

elementwise vector ordering xi ≤ yi, i = 1,···,n, is denoted by x 

≤ y. Let A and U denote sets and events. For all random variable 

X and event A, let [X|A] denote a random variable with the 

conditional distribution of X for given A. We will need the 

following definitions: 

Definition 1. Stochastic ordering of random variables [50]: A 

random variable X is said to be stochastically smaller than 

another random variable Y , denoted by X ≤st Y , if 

 Pr(X > t) ≤ Pr(Y > t), ∀ t ∈ R. (1) 

Definition 2. Stochastic ordering of random vectors [50]: A set 

U ⊆ Rn is called upper, if y ∈ U whenever y ≥ x and x ∈ U. Let X 

and Y be two n-dimensional random vectors, X is said to be 

stochastically smaller than Y , denoted by X ≤st Y , if 

 Pr(X ∈ U) ≤ Pr(Y ∈ U) for all upper sets U ⊆ Rn. (2) 

Definition 3. Stochastic ordering of stochastic processes [50]: 

Let {X(t),t ∈ [0,∞)} and {Y (t),t ∈ [0,∞)} be two stochastic 

processes, {X(t),t ∈ [0,∞)} is said to be stochastically smaller 

                                                                 
2 This paper allows Sn,i ≤ An,i, which is more general than the conventional 

assumption Sn,i = An,i adopted in related literature. 

than {Y (t),t ∈ [0,∞)}, denoted by {X(t),t ∈ [0,∞)} ≤st {Y (t),t ∈ 

[0,∞)}, if for all integer n and 0 ≤ t1 < t2 < ··· < tn, it holds that 

(X(t1),X(t2),···,X(tn))≤st (Y (t1),Y (t2),···,Y (tn)). (3) A 

functional is a mapping from functions to real numbers. A 

functional ϕ is termed non-decreasing if ϕ({X(t),t ∈ [0,∞)}) 

≤ ϕ({Y (t),t ∈ [0,∞)}) whenever X(t) ≤ Y (t) for t ∈ [0,∞). 

We remark that {X(t),t ∈ [0,∞)} ≤st {Y (t),t ∈ [0,∞)} if, and 

only if, [50] 

 E[ϕ({X(t),t ∈ [0,∞)})] ≤ E[ϕ({Y (t),t ∈ [0,∞)})] (4) 

holds for all non-decreasing functional ϕ, provided that the 

expectations in (4) exist. 

B. Queueing System Model 

Consider the status updating system illustrated in Fig. 1, 

where N flows of status update packets are sent through a 

queue with an infinite buffer and M servers. Let sn and dn 

denote the source and destination nodes of flow n, 

respectively. It is possible for multiple flows to share either the 

same source node or the same destination node. 

A scheduler assigns packets from the transmitter’s queue to 

servers over time. The queue contains packets from different 

flows, and each packet can be assigned to any available server. 

Each server is capable of transmitting only one packet at a 

time. Different servers are not allowed to simultaneously 

transmit packets from the same flow. The packet transmission 

times are independent and identically distributed (i.i.d.) across 

both servers and packets, with a finite mean 1/µ. The packet 

transmissions are susceptible to i.i.d. errors with an error 

probability q ∈ [0,1), occurring at the end of the packet 

transmission time intervals. The scheduler is made aware of 

transmission errors once they occur. In the event of such a 

error, the packet is promptly returned to the queue, where it 

awaits the next transmission opportunity. if q = 0, then there 

is no transmission errors. 

The system starts to operate at time t = 0. The ith packet of 

flow n is generated at the source node sn at time Sn,i, arrives at 

the queue at time An,i, and is delivered to the destination dn at 

time Dn,i such that 0 ≤ Sn,1 ≤ Sn,2 ≤ ··· and Sn,i ≤ An,i ≤ Dn,i.2 We 

consider the following class of synchronized packet generation 

and arrival processes: 

Definition 4. Synchronized packet generations and arrivals: The 

packet generation and arrival processes are said to be 

synchronized across the N flows, if there exist two sequences 

{S1,S2,···} and {A1,A2,···} such that for all i = 1,2,···, and n = 

1,···,N 

 Sn,i = Si, An,i = Ai. (5) 

We note that the sequences {S1,S2,···} and {A1,A2,···} in (5) 

are arbitrary. Hence, out-of-order arrivals, e.g., Si < Si+1 but Ai > 

Ai+1, are allowed. In the special case that the system has a 

single flow (N = 1), the packet generation times Sn,1 and arrival 

times An,1 of this flow are arbitrarily given without any 
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constraint. Age-optimal scheduling in this special case has 

been previously studied in [14]–[17]. 

Let π represent a scheduling policy that determines how to 

assign packets from the queue to servers over time. Let Π 

denote the set of all causal scheduling policies in which the 

scheduling decisions are made based on the history and 

current states of the system. A scheduling policy is said to be 

preemptive if a busy server can stop the transmission of the 

current packet and start sending another packet at any time; 

the preempted packet is stored back to the queue, waiting to 

be sent at a later time. A scheduling policy is said to be non-

preemptive if each server must complete the transmission of 

the current packet before initiating the service of another 

packet. A scheduling policy is said to be work-conserving if all 

servers remain busy whenever the queue contains packets 

waiting to be processed. We use Πnp to denote the set of 

nonpreemptive and causal scheduling policies, where Πnp ⊂ Π. 

Let 

 I = {Si,Ai, i = 1,2,···}, (6) 

denote the synchronized packet generation and arrival times 

of the flows. We assume that the packet generation/arrival 

times I, the packet transmission times, and the transmission 

errors are governed by three mutually independent stochastic 

processes, none of which are influenced by the scheduling 

policy. 

C. Age Metrics 

Among the packets that have been delivered to the 

destination dn of flow n by time t, the freshest packet was 

generated at time 

Un(t) = max{Sn,i : Dn,i ≤ t}. (7) i 

Age of information, or simply age, for flow n is defined as [2], 

[3] 

∆n(t) = t − Un(t) = t − max{Sn,i : Dn,i ≤ t}, (8) i 

which is the time difference between the current time t and 

the generation time Un(t) of the freshest packet currently 

available at destination dn. Because Sn,i ≤ Dn,i, one can get ∆n(t) 

≥ 0 for all flow n and time t. Let ∆(t) = (∆1(t),···,∆N(t)) ∈ [0,∞)N 

be the age vector of the N flows at time t. 

We introduce an age penalty function p(∆) = p◦∆ to 

represent the level of dissatisfaction for having aged 

information at the N destinations, where p : [0,∞)N → R can be 

any non-decreasing function of the N-dimensional age vector 

∆. Some examples of the age penalty function are: 

1. The average age of the N flows is 

 . (9) 

2. The maximum age of the N flows is  

pmax(∆) = max ∆n. 
n=1,···,N 

3. The mean square age of the N flows is 

(10) 

 . (11) 

4. The l-norm of the age vector of the N flows is 

 . (12) 

5. The sum of per-flow age penalty functions is 

N psum-penalty(∆) = X 

g(∆n), (13) 

n=1 

where g : [0,∞) → R is a non-decreasing function. 

Practical applications of non-decreasing age functions can 

be found in [32], [33], [34], [36], [44]. 

In this paper, we consider a class of symmetric and 

nondecreasing age penalty functions, i.e., 

Psym ={p : [0,∞)N → R is symmetric and non-decreasing}. 

This is a fairly large class of age penalty functions, where the 

function p can be discontinuous, non-convex, or non-

separable. It is easy to see 

 {pavg,pmax,pms,pl-norm,psum-penalty} ⊂ Psym. (14) 

In this paper, we consider both continuous-time and 

discrete-time status updating systems. In the continuous-time 

setting, time t ∈ [0,∞) can take any positive value and the 

packet transmission times are i.i.d. continuous random 

variables. On the other hand, in the discrete-time setting, time 

is quantized into multiples of a fundamental time unit Ts, i.e., t 

∈ {0,Ts,2Ts,···}, and each packet’s transmission time is fixed 

and equal to Ts. Consequently, the variables 

Sn,i,An,i,Dn,i,t,Un(t),∆n(t) are all multiples of Ts. In realistic 

discrete-time systems, service preemption is not allowed. 

Let ∆n,π(t) denote the age of flow n achieved by scheduling 

policy π and ∆π(t) = (∆1,π(t),···,∆N,π(t)). In the continuous-time 

case, we assume that the initial age ∆π(0−) at time t = 0− 

remains the same for all scheduling policies π ∈ Π, where t = 

0− is the moment right before t = 0. In the discrete-time case, 

we assume that the initial age ∆π(0) at time t = 0 remains the 

same for all scheduling policies π ∈ Π. 

The results in this paper remain true even if the age penalty 

function pt varies over time t. For example, it is allowed that pt 

= pavg for 0 ≤ t ≤ 100 and pt = pmax for 100 < t ≤ 200. In the 

continuous-time case, we use {pt ◦ ∆π(t),t ∈ [0,∞)} to 

represent the age-penalty stochastic process formed by the 

time-dependent penalty function pt of the age vector ∆π(t) 

under scheduling policy π. In the discrete-time case, the 

agepenalty stochastic process is denoted by {pt ◦ ∆π(t),t = 

0,Ts,2Ts,···}. 

IV. MULTI-FLOW STATUS UPDATE SCHEDULING: THE 

CONTINUOUS-TIME CASE 

In this section, we investigate multi-flow scheduling in 

continuous-time status updating systems. We first consider a 
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system setting with multiple servers and exponential 

transmission times, where an age-optimal scheduling result is 

established. Next, we study a more general system setting with 

multiple servers and NBU transmission times. In the second 

setting, age optimality is inherently difficult to achieve and we 

present a near age-optimal scheduling result. 

A. Multiple Flows, Multiple Servers, Exponential Service Times 

To address the multi-flow scheduling problem, we consider 

a flow selection discipline called MAF [6], [22], [23], in which 

the flow with the maximum age is served first, with ties broken 

arbitrarily. 

For multi-flow single-server systems, a scheduling policy is 

defined by combining the Preemptive, MAF, and LGFS service 

disciplines as follows: 

Definition 5. P-MAF-LGFS policy: This is a work-conserving 

scheduling policy for multiple-server, continuous-time systems 

with synchronized packet generations and arrivals. It operates 

as follows: 

1. If the queue is not empty, a server is assigned to process 

the most recently generated packet from the flow with 

the maximum age, with ties broken arbitrarily. 

2. The next server is assigned to process the most recently 

generated packet from the flow with the second 

maximum age, with ties broken arbitrarily. 

3. This process continues until either (i) The most recently 

generated packet of every flow is under service or has 

been delivered, or (ii) All servers are busy. 

4. If the most recently generated packet of every flow is 

under service or has been delivered, the remaining 

servers can be arbitrarily assigned to send the remaining 

packets in the queue, until the queue becomes empty. 

5. When fresher packets arrive, the scheduler can preempt 

the packets that are currently under service and assign 

the new packets to servers following Steps 1-4 above. The 

preempted packets are then returned to the queue, 

where they await their turn to be transmitted at a later 

time. 

The following observation provides useful insights into the 

operations of the P-MAF-LGFS policy: Due to synchronized 

packet generations and arrivals, when the most recently 

generated packet of flow n is successfully delivered in the P-

MAFLGFS policy, flow n must have the minimum age among 

the N flows. Conversely, if flow n does not have the minimum 

age among all the flows, its most recently generated packet 

must be undelivered. Hence, in the P-MAF-LGFS policy, the 

most recently generated packet from a flow that does not have 

the minimum age is always available to be scheduled. 

The above P-MAF-LGFS policy is suitable for use in both 

single-server and multiple-server systems. It extends the 

original single-server P-MAF-LGFS policy introduced in [1] to 

encompass the more general multi-server scenario. 

The age optimality of the P-MAF-LGFS policy is established 

in Theorem 1 and Corollary 1 below. 

Theorem 1. (Continuous-time, multiple flows, multiple servers, 

exponential transmission times with transmission errors) In 

continuous-time status updating systems, if (i) The 

transmission errors are i.i.d. with an error probability q ∈ [0,1), 

(ii) The packet generation and arrival times are synchronized 

across the N flows, and (iii) The packet transmission times are 

exponentially distributed and i.i.d. across packets, then it holds 

that for all I, all pt ∈ Psym, and all π ∈ Π 

[{pt ◦ ∆P-MAF-LGFS(t),t ∈ [0,∞)}|I] 

 ≤st [{pt ◦ ∆π(t),t ∈ [0,∞)}|I], (15) 

or equivalently, for all I, all pt ∈ Psym, and all non-decreasing 

functional ϕ 

E[ϕ({pt ◦ ∆P-MAF-LGFS(t),t ∈ [0,∞)})|I] = minE[ϕ({pt 

◦ ∆π(t),t ∈ [0,∞)})|I], (16) π∈Π 

provided that the expectations in (16) exist. 

Proof. See Appendix A.  

According to Theorem 1, for any age penalty function in Psym, 

any number of flows N, any number of servers M, any 

synchronized packet generation and arrival times in I, and 

regardless the presence of i.i.d. transmission errors or not, the 

P-MAF-LGFS policy minimizes the stochastic process [{pt ◦ 

∆π(t),t ∈ [0,∞)}|I] among all causal policies in terms of 

stochastic ordering. Theorem 1 is more general than [1, 

Theorem 1], as the latter was established for the special case 

of single-server systems without transmission errors. 

By considering a mixture over the different realizations of I, 

it can be readily deduced from Theorem 1 that 

Corollary 1. Under the conditions of Theorem 1, it holds that 

for all pt ∈ Psym and all π ∈ Π 

{pt ◦ ∆P-MAF-LGFS(t),t ∈ [0,∞)}≤st {pt ◦ ∆π(t),t ∈ [0,∞)}, 

(17) 

or equivalently, for all pt ∈ Psym and all non-decreasing 

functional ϕ 

E[ϕ({pt ◦ ∆P-MAF-LGFS(t),t ∈ [0,∞)})] = minE[ϕ({pt 

◦ ∆π(t),t ∈ [0,∞)})], (18) π∈Π 

provided that the expectations in (18) exist. 

Corollary 1 states that the P-MAF-LGFS policy minimizes the 

stochastic process {pt ◦∆π(t),t ∈ [0,∞)} in a stochastic 

ordering sense, outperforming all other causal policies. 

1) Status update scheduling with packet replications: As 

discussed in Section III-B, our study has been centered on a 

scenario where different servers are not allowed to 

simultaneously transmit packets from the same flow. In this 

context, we have demonstrated the age-optimality of the P-

MAFLGFS policy in Theorem 1. However, in situations where 

multiple servers can transmit packets from the same flow, and 

packet replication is permitted, it becomes possible to create 

multiple copies of the same packet and transmit these copies 

concurrently across multiple servers. The packet is considered 

delivered once any one of these copies is successfully 

delivered; at that point, the other copies are canceled to 

release the servers. If the packet service times follow an i.i.d. 
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exponential distribution with a service rate of µ, the N servers 

can be equivalently viewed as a single, faster server with 

exponential service times and a higher service rate of Nµ. 

Additionally, this fast server exhibits i.i.d. transmission errors 

with an error probability q. Our study also addresses this 

scenario. 

Definition 6. P-MAF-LGFS-R: In this policy, the last generated 

packet from the flow with the maximum age is served the first 

among all packets of all flows, with ties broken arbitrarily. This 

packet is replicated into N copies, which are transmitted 

concurrently over the N servers. The packet is considered 

delivered once any one of these N copies is successfully 

delivered; at that point, the other copies are canceled to 

release the servers. 

By applying Theorem 1 to this particular scenario with a 

single, faster server, we derive the following corollary. 

Corollary 2. Under the conditions of Theorem 1, if packet 

replication is allowed, then it holds that for all I, all pt ∈ Psym, 

and all π ∈ Π 

[{pt ◦ ∆P-MAF-LGFS-R(t),t ∈ [0,∞)}|I] 

 ≤st [{pt ◦ ∆π(t),t ∈ [0,∞)}|I], (19) 

or equivalently, for all I, all pt ∈ Psym, and all non-decreasing 

functional ϕ 

E[ϕ({pt ◦ ∆P-MAF-LGFS-R(t),t ∈ [0,∞)})|I] = minE[ϕ({pt 

◦ ∆π(t),t ∈ [0,∞)})|I], (20) π∈Π 

provided that the expectations in (20) exist. 

B. Multiple Flows, Multiple Servers, NBU Service Times 

Next, we consider a more general system setting with 

multiple servers and a class of NBU transmission time 

distributions that include exponential distribution as a special 

case. 

Definition 7. NBU distributions: Consider a non-negative 

random variable X with complementary cumulative 

distribution function (CCDF) F¯(x) = Pr[X > x]. Then, X is said to 

be NBU if for all t,τ ≥ 0 

 F¯(τ + t) ≤ F¯(τ)F¯(t). (21) 

Examples of NBU distributions include deterministic 

distribution, exponential distribution, shifted exponential 

distribution, geometric distribution, gamma distribution, and 

negative binomial distribution. 

In the scheduling literature, optimal scheduling results were 

successfully established for delay minimization in singleserver 

queueing systems, e.g., [51], [52], but it can become inherently 

difficult in the multi-server cases. In particular, minimizing the 

average delay in deterministic scheduling problems with more 

than one servers is NP-hard [53]. Similarly, delay-optimal 

stochastic scheduling in multi-class, multiserver queueing 

systems is deemed to be quite difficult [54]–[56]. The key 

challenge in multi-class, multi-server scheduling is that one 

cannot combine the capacities of all the servers to jointly 

process the most important packet. Due to the same reason, 

age-optimal scheduling in multi-flow, multiserver systems is 

quite challenging. In the sequel, 

we consider a relaxed goal to 

seek for near age- optimal 

scheduling of 

source sn 

queue 

server 

destination dn 

Fig. 2. An illustration of Sn,i, An,i, Vn,i, and Dn,i. 

multiple information flows, where our proposed scheduling 

policy is shown to be within a small additive gap from the 

optimum age performance. 

To establish near age optimality, we introduce another age 

metric named age of served information, denoted as Ξn(t), 

which is a lower bound for age of information ∆n(t): 

Let Vn,i be the time that the ith packet of flow n starts its 

service by a server, i.e., the service starting time of the ith 

packet of flow n. It holds that Sn,i ≤ An,i ≤ Vn,i ≤ Dn,i, as illustrated 

in Fig. 2. Age of served information for flow n is defined as 

Ξn(t) = t − max{Sn,i : Vn,i ≤ t}, (22) i 

which is the time difference between the current time t and 

the generation time of the freshest packet that has started 

service by time t. Let Ξ(t) = (Ξ1(t),···,ΞN(t)) be the age of 

served information vector at time t. Age of served information 

Ξn(t) reflects the staleness of the packets that has begun 

service, whereas ∆n(t) represents the staleness of the packets 

that has been successfully delivered to their destination. As 

depicted in Fig. 3, it is evident that Ξn(t) ≤ ∆n(t). In non-

preemptive policies, the discrepancy between Ξn(t) and ∆n(t) 

solely arises from the i.i.d. packet transmission times. 

Consequently, the age of served information Ξn(t) closely 

approximates the age ∆n(t). 

We propose a new flow selection discipline called maximum 

age of served information first (MASIF), in which the flow with 

the maximum age of served information is served first, with ties 

broken arbitrarily. Using this discipline, we define another 

scheduling policy: 

Definition 8. NP-MASIF-LGFS policy: This is a nonpreemptive, 

work-conserving scheduling policy for multiserver systems. It 

operates as follows: 

1. When the queue is not empty and there are idle servers, 

an idle server is assigned to process the most recently 

generated packet from the flow with the maximum age of 

served information, with ties broken arbitrarily. 

2. After a packet from flow n is assigned to an idle server, 

the server transitions into a busy state and will complete 

the transmission of the current packet from flow n before 

serving any other packet. The age of served information 

Ξn(t) of flow n decreases. As a result, flow n may no longer 

S n,i 

A n,i 

V n,i 

D n,i 

time 
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retain the maximum age of served information, allowing 

the remaining idle servers to be allocated to process other 

flows. The next idle server is assigned to 

 

Sn,i Vn,i Sn,i+1Dn,i Vn,i+1 Dn,i+1 time 

Fig. 3. The age of served information Ξn(t) as a lower bound of age ∆n(t). 

process the most recently generated packet from the flow 

with the maximum age of served information, with ties 

broken arbitrarily. 

3. This procedure continues until either all servers are busy 

or the queue becomes empty. 

Next, we will establish the near-age optimality of the 

NPMASIF-LGFS policy. The following theorem shows that the 

age of served information obtained by the NP-MASIF-LGFS 

policy serves as a lower bound (in terms of stochastic ordering) 

for the age of all other non-preemptive and causal policies. 

Theorem 2. (Continuous-time, multiple flows, multiple servers, 

NBU transmission times with no errors) In continuous-time 

status updating systems, if (i) There is no transmission errors 

(i.e., q = 0), (ii) The packet generation and arrival times are 

synchronized across the N flows, and (iii) The packet 

transmission times are NBU and i.i.d. across both servers and 

packets, then it holds that for all I, all pt ∈ Psym, and all π ∈ Πnp
3 

[{pt ◦ ΞNP-MASIF-LGFS(t),t ∈ [0,∞)}|I] 

 ≤st [{pt ◦ ∆π(t),t ∈ [0,∞)}|I], (23) 

or equivalently, for all I, all pt ∈ Psym, and all non-decreasing 

functional ϕ 

E[ϕ({pt ◦ ΞNP-MASIF-LGFS(t),t ∈ [0,∞)})|I] ≤ min 

E[ϕ({pt ◦ ∆π(t),t ∈ [0,∞)})|I] π∈Πnp 

≤ E[ϕ({pt ◦ ∆NP-MASIF-LGFS(t),t ∈ [0,∞)})|I], (24) provided 

that the expectations in (24) exist. 

Proof idea. In the NP-MASIF-LGFS policy, if a packet from flow 

n∗ begins service, it implies that flow n∗ possesses the 

maximum age of served information before the service starts. 

If the packet generation and arrival times are synchronized 

across the flows, flow n∗ also exhibits the minimum age of 

served information after the service starts. The proof of 

Theorem 2 relies on this property and a sample-path argument 

that is developed for NBU service time distributions. See 

Appendix B for the details.  

                                                                 
3 Recall that Πnp is the set of non-preemptive and causal scheduling 

policies. 

Considering the close approximation between the age of 

served information ΞNP-MASIF-LGFS(t) and the age of information 

∆NP-MASIF-LGFS(t) in (24), we can conclude that the NPMASIF-LGFS 

policy is near age-optimal. Furthermore, in the case of the 

average age metric as defined in (9) (i.e., pt = pavg for all t), we 

can derive the following corollary: 

Corollary 3. Under the conditions of Theorem 2, it holds that 

for all I min [∆¯ π|I]≤[∆¯ NP-

MASIF-LGFS  

π∈Πnp 

where 

 

is the expected time-average of the average age of the N flows, 

and 1/µ is the mean packet transmission time. 

Proof. The proof of Corollary 3 is the same as that of Theorem 

12 in [15] and hence is omitted here.  

By Corollary 3, the average age of the NP-MASIF-LGFS policy 

is within an additive gap from the optimum, where the gap 1/µ 

is invariant of the packet arrival and generation times I, the 

number of flows N, and the number of servers M. 

Similar to Corollary 1, by taking a mixture over the different 

realizations of I, one can remove the condition I from (23), 

(24), (25), and (26). 

The sampling-path argument utilized in the proof of 

Theorem 2 can effectively handle multiple flows, multiple 

servers, and i.i.d. NBU transmission time distributions. This is 

achieved by establishing a coupling between the start time of 

packet transmissions in the NP-MASIF-LGFS policy and the 

completion time of packet transmissions in any other work-

conserving policy from Πnp. However, extending this sampling-

path argument to encompass the scenario of i.i.d. transmission 

errors poses additional challenges that are currently difficult to 

overcome. 

V. MULTI-FLOW STATUS UPDATE SCHEDULING: THE 

DISCRETE-TIME CASE 

In this section, we investigate age-optimal scheduling in 

discrete-time status updating systems, where the variables 

Sn,i,An,i,Dn,i,t,Un(t),∆n(t) are all multiples of the period Ts, the 

transmission time of each packet is fixed as Ts, and the packet 

submissions are subject to i.i.d. errors with an error probability 

q ∈ [0,1). Service preemption is not allowed in discrete-time 

systems. 

For multiple-server, discrete-time systems, a scheduling 

policy is defined by combining the MAF and LGFS service 

disciplines as follows: 
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Definition 9. DT-MAF-LGFS policy: This is a workconserving 

scheduling policy for multiple-server, discrete-time systems 

with synchronized packet generations and arrivals. It operates 

as follows: 

1. When time t is a multiple of period Ts, if the queue is not 

empty, an idle server is assigned to process the most 

recently generated packet from the flow with the 

maximum age, with ties broken arbitrarily. 

 

Fig. 4. Expected time-average of the maximum age of 3 flows in a system with 

a single server and i.i.d. exponential transmission times. 

2. The next idle server is assigned to process the most 

recently generated packet from the flow with the second 

maximum age, with ties broken arbitrarily. 

3. This process continues until either (i) The most recently 

generated packet of each flow is under service or has 

been delivered, or (ii) All servers are busy. 

4. If the most recently generated packet of each flow is 

under service or has been delivered, and there are 

additional idle servers, then these servers can be 

arbitrarily assigned to send the remaining packets in the 

queue, until the queue becomes empty. 

One can observe that the DT-MAF-LGFS policy for discrete-

time systems is similar to the P-MAF-LGFS policy designed for 

continuous-time systems. 

The age optimality of the DT-MAF-LGFS policy is obtained in 

the following theorem. 

Theorem 3. (Discrete-time, multiple flows, multiple servers, 

constant transmission times with transmission errors) In 

discrete-time status updating systems, if (i) The transmission 

errors are i.i.d. with an error probability q ∈ [0,1), (ii) The 

packet generation and arrival times are synchronized across 

the N flows, and (iii) The packet transmission times are fixed as 

Ts, then it holds that for all I, all pt ∈ Psym, and all π ∈ Πnp 

[{pt ◦ ∆DT-MAF-LGFS(t),t = 0,Ts,2Ts,···}|I] 

 ≤st [{pt ◦ ∆π(t),t = 0,Ts,2Ts,···}|I], (27) 

or equivalently, for all I, all pt ∈ Psym, and all non-decreasing 

functional ϕ 

E[ϕ({pt ◦ ∆DT-MAF-LGFS(t),t = 0,Ts,2Ts,···})|I] 

 

provided that the expectations in (28) exist. 

Proof. See Appendix C.  

According to Theorem 3, the DT-MAF-LGFS policy minimizes 

the stochastic process [{pt ◦ ∆π(t),t = 0,Ts,2Ts,···)}|I] in terms 

of stochastic ordering within discrete-time status updating 

systems. This optimality result 

 

Fig. 5. Expected time-average of the average age of 50 flows in a system with 
3 servers and i.i.d. NBU service times. 

holds for any age penalty function in Psym, any number of flows 

N, any number of servers M, any synchronized packet 

generation and arrival times in I, and regardless the existence 

of i.i.d. transmission errors. 

Theorem 3 generalizes [22, Theorem 1], by allowing for 

multiple servers and a broader range of age penalty functions. 

Similar to Corollary 1, one can remove the condition I from (27) 

and (28). 

VI. NUMERICAL RESULTS 

In this section, we evaluate the age performance of several 

multi-flow scheduling policies. These scheduling policies are 

defined by combining the flow selection disciplines {MAF, 

MASIF, RAND} and the packet selection disciplines {FCFS, 

LGFS}, where RAND represents randomly choosing a flow 

among the flows with un-served packets. The packet 

generation times Si follow a Poisson process with rate λ, and 

the time difference (Ai−Si) between packet generation and 

arrival is equal to either 0 or 4/λ with equal probability. The 

mean transmission time of each server is set as E[X] = 1/µ = 1. 

Hence, the traffic intensity is ρ = λN/M, where N is the number 

of flows and M is the number of servers. 

Fig. 4 illustrates the expected time-average of the maximum 

age pmax(∆(t)) of 3 flows in a system with a single server and 

i.i.d. exponential transmission times. One can see that the P-

MAF-LGFS policy has the best age performance and its age is 

quite small even for ρ > 1, in which case the queue is actually 

unstable. On the other hand, both the RAND and FCFS 

disciplines have much higher age. Note that there is no need 

for preemptions under the FCFS discipline. Fig. 5 plots the 

expected time-average of the average age pavg(∆(t)) of 50 

flows in a system with 3 servers and i.i.d. NBU transmission 
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times. In particular, the transmission time X follows the 

following shifted exponential distribution: 

 Pr[X > x] = exp[1, −3(x − 

1)], ifif xx <≥ 311.; (29) 

One can observe that the NP-MASIF-LGFS policy is better than 

the other policies, and is quite close to the age lower bound 

where the gap from the lower bound is no more than the mean 

transmission time E[X] = 1. One interesting observation is that 

the NP-MASIF-LGFS policy is better than the NPMAF-LGFS 

policy for NBU transmission times. The reason behind this is as 

follows: When multiple servers are idle, the NP-MAF-LGFS 

policy will assign these servers to process multiple packets 

from the flow with the maximum age (say flow n). This reduces 

the age of flow n, but at a cost of postponing the service of the 

flows with the second and third maximum ages. On the other 

hand, in the NP-MASIF-LGFS policy, once a packet from the 

flow with the maximum age of served information (say flow m) 

is assigned to a server, the age of served information of flow m 

drops greatly, and the next server will be assigned to process 

the flow with the second maximum age of served information. 

As shown in [57], [58], using multiple parallel servers to 

process different flows is beneficial for NBU service times. 

VII. CONCLUSION 

We have proposed causal scheduling policies and developed 

a unifying sample-path approach to prove that these 

scheduling policies are (near) optimal for minimizing age of 

information in continuous-time and discrete-time status 

updating systems with multiple flows, multiple servers, and 

transmission errors. 
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APPENDIX A PROOF OF THEOREM 1 

Let the age vector ∆π(t) represent the system state of policy 

π at time t and {∆π(t),t ∈ [0,∞)} be the state process of policy 

π. For notational simplicity, let policy P represent the P-MAF-

LGFS policy, which is a work-conserving policy. We first 

establish two lemmas that are useful to prove Theorem 1. 

Using the memoryless property of exponential distribution, we 

can obtain the following coupling lemma: 

Lemma 1. (Coupling Lemma) In continuous-time status 

updating systems, consider policy P and any work-conserving 

policy π ∈ Π. For any given I, if (i) The transmission errors are 

i.i.d. with an error probability q ∈ [0,1) and (ii) The packet 

transmission times are exponentially distributed and i.i.d. 

across packets, then there exist policy P1 and policy π1 in the 

same probability space which satisfy the same scheduling 

disciplines with policy P and policy π, respectively, such that 

1. the state process {∆P1(t),t ∈ [0,∞)} of policy P1 has the 

same distribution as the state process {∆P(t),t ∈ [0,∞)} of 

policy P, 

2. the state process {∆π1(t),t ∈ [0,∞)} of policy π1 has the 

same distribution as the state process {∆π(t),t ∈ [0,∞)} of 

policy π, 

3. if a packet from the flow with age ∆[i],P1(t) is successfully 

delivered at time t in policy P1, then almost surely, a 

packet from the flow with age ∆[i],π1(t) is successfully 

delivered at time t in policy π1; and vice versa. 

Proof. Notice that (i) All policies have identical packet 

generation and arrival times I, (ii) The packet transmission 

times are i.i.d. memoryless, and (iii) Policy P and policy π are 

both work-conserving. In addition, the packet 

generation/arrival times I, the packet transmission times, and 

the transmission failures are governed by three mutually 

independent stochastic processes, none of which are 

influenced by the scheduling policy. Because of these facts, 

service preemption does not affect the distribution of packet 

delivery times. Following the inductive construction argument 

used in the proof of Theorem 6.B.3 in [50], one can construct 

the packet transmission success and failure events one by one 

in policy P1 and policy π1 to prove this lemma. In particular, 

since the transmission errors are i.i.d. and they are not 

influenced by the scheduling policy, it is feasible to couple the 

packet transmission success and failure events in policy P1 and 

policy π1 in such a way that a packet from the flow with age 

∆[i],P1(t) is successfully delivered at time t in policy P1 if, and 

only if, a packet from the flow with age ∆[i],π1(t) is successfully 

delivered at time t in policy π1. The details are omitted.  

We will compare policy P1 and policy π1 on a sample path by 

using the following Lemma: 

Lemma 2. (Inductive comparison) Suppose that a packet is 

delivered at time t in policy P1 and a packet is delivered at the 

same time t in policy π1. The system state of policy P1 is ∆P1 

before the packet delivery, which becomes after the 

packet delivery. The system state of policy π1 is ∆π1 before the 

packet delivery, which becomes  after the packet delivery. 
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Under the conditions of Lemma 1, if (i) The packet generation 

and arrival times are synchronized across the N flows and (ii) 

then 

∆[i],P1 ≤ ∆[i],π1, i = 1,···,N, (30) 

  (31) 

Proof. For synchronized packet generations and arrivals, let 

W(t) = maxi{Si : Ai ≤ t} be the generation time of the freshest 

packet of each flow that has arrived at the queue by time t. At 

time t, because no packet that has arrived at the queue was 

generated later than W(t), we can obtain 

  (32) 

Because (i) Policy P1 follows the same scheduling discipline 

with the P-MAF-LGFS policy and (ii) The packet generation and 

arrival times are synchronized across the N flows, the delivered 

packet at time t in policy P1 must be the freshest packet 

generated at time W(t). Hence, in policy P1, the flow 

associated with the delivered packet must have the minimum 

age after the delivery, given by 

 . (33) 

Combining (32) and (33), yields 

 . (34) 

Moreover, suppose that the packet delivered at time t in 

policy P1 is from the flow with age value ∆[j],P1 before the packet 

delivery. This indicates 

  (35) 

 . (36) 

According to Lemma 1, the packet delivered at time t in policy 

π1 is from the flow with age value ∆[j],π1 before the packet 

delivery. Hence, 

, (37) 

. (38) 
1 

Combining (30), (35), and (37), yields 

∆′[i],P1 = ∆[i],P1 ≤ ∆[i],π1 = ∆′[i],π1, i = 1,2,···,j − 1. 

(39) 

Moreover, combining (30), (36), and (38), yields 

∆′[i],P1 = ∆[i+1],P1 ≤ ∆[i+1],π1 ≤ ∆′[i],π1, 

 i = j,2,···,N − 1. (40) 

Finally, (31) follows from (34), (39), and (40). This completes 

the proof.  

Now we are ready to prove Theorem 1. 

Proof of Theorem 1. Consider any work-conserving policy π ∈ 

Π. By Lemma 1, there exist policy P1 and policy π1 satisfying the 

same scheduling disciplines with policy P and policy π, 

respectively, and the packet delivery times in policy P1 and 

policy π1 are synchronized almost surely. For any given sample 

path of policy P1 and policy π1, ∆P1(0−) = ∆π1(0−) at time t = 0−. 

We consider two cases: 

Case 1: When there is no packet delivery, the age of each 

flow grows linearly with a slope 1. 

Case 2: When a packet is successfully delivered, the 

evolution of the system state is governed by Lemma 2. 

By induction over time, we obtain 

 ∆[i],P1(t) ≤ ∆[i],π1(t), i = 1,···,N, t ≥ 0. (41) 

For any symmetric and non-decreasing function pt, it holds 

from (41) that for all sample paths and all t ≥ 0 pt ◦ ∆P1(t) 

= pt(∆1,P1(t),···,∆N,P1(t)) 

= pt(∆[1],P1(t),···,∆[N],P1(t)) 

≤ pt(∆[1],π1(t),···,∆[N],π1(t)) 

= pt(∆1,π1(t),···,∆N,π1(t)) 

 = pt ◦ ∆π1(t). (42) 

By Lemma 1, the state process {∆P1(t),t ∈ [0,∞)} of policy P1 

has the same distribution with the state process {∆P(t),t ∈ 

[0,∞)} of policy P; the state process {∆π1(t),t ∈ [0,∞)} of policy 

π1 has the same distribution with the state process {∆π(t),t ∈ 

[0,∞)} of policy π. Hence, {pt ◦ ∆P1(t),t ∈ [0,∞)} has the same 

distribution with {pt ◦ ∆P(t),t ∈ [0,∞)}; {pt ◦ ∆π1(t),t ∈ [0,∞)} 

has the same distribution with {pt ◦ ∆π(t),t ∈ [0,∞)}. By 

substituting this and (42) into Theorem 6.B.30 of [50], we can 

obtain that (15) holds for all work-conserving policy π ∈ Π. 

For non-work-conserving policies π, because the service 

times are exponentially distributed (i.e., memoryless) and i.i.d. 

across servers and time, server idling only postpones the 

delivery times of the packets. One can construct a coupling to 

show that for any non-work-conserving policy π, there exists a 

work-conserving policy π′ whose age process is smaller than 

that of policy π in stochastic ordering; the details are omitted. 

As a result, (15) holds for all policies π ∈ Π. Finally, the 

equivalence between (15) and (16) follows from 

(4). This completes the proof.  

APPENDIX B PROOF OF THEOREM 2 

Let (∆π(t),Ξπ(t)) represent the system state of policy π at 

time t and {(∆π(t),Ξπ(t)),t ∈ [0,∞)} be the state process of 

policy π. For notational simplicity, let policy P represent the 

NP-MASIF-LGFS policy, which is a non-preemptive, 

workconserving policy. 

For single-server systems, the following work conservation 

law plays an important role in the scheduling literature (see, 

e.g., [59]–[61]): At any time, the expected total amount of time 

for completing the packets in the queue is invariant across 

different work-conserving policies. However, the work 

conservation law does not hold in multi-server systems: It 

often happens that some servers are busy while the rest 

servers are idle, which leads to inefficient utilization of the idle 

servers and sub-optimal scheduling performance. In the 

sequel, we use a weak work-efficiency ordering [57], [58] to 

compare different non-preemptive policies for multi-server 

systems. 
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Definition 10. Weak work-efficiency ordering [57], [58]: For any 

given I and a sample path realization of two nonpreemptive 

policies π1,π2 ∈ Πnp, policy π1 is said to be weakly more work-

efficient than policy π2, if the following assertion is true: For 

each packet j executed in policy π2, if 

1. in policy π2, a packet j starts service at time τ and 

completes service at time ν (τ ≤ ν), 

2. in policy π1, the queue is not empty during [τ,ν], then in 

policy π1, there always exists one corresponding packet j′ 

that starts service during [τ,ν]. It is worth noting that the 

weak work-efficiency ordering does not require to specify 

which servers are used to process packets j and j′. 

 

Fig. 6. An illustration of the weak work-efficiency ordering, where the service 

duration of a packet is indicated by a rectangle, without specifying which 

servers are used to process the packets. Suppose that policy π1 is weakly more 

work-efficient than policy π2. If (i) A packet j starts service at time τ and 

completes service at time ν in policy π2, and (ii) The queue is not empty during 

[τ,ν] in policy π1, then in policy π1 there exists one corresponding packet j′ that 

starts service at some time t during [τ,ν]. 

An illustration of the weak work-efficiency ordering is 

provided in Fig. 6. The weak work-efficiency ordering 

formalizes the following useful intuition for comparing two 

nonpreemptive policies π1 and π2: If one packet j is delivered at 

time ν in policy π2, then there exists one corresponding packet 

j′ that has started its transmission shortly before time ν in policy 

π1, as long as the queue is not empty. The weak work-efficiency 

ordering was originally introduced for nearoptimal delay 

minimization in multi-server systems [57], [58]. In this paper, 

we use it for near-optimal age minimization in multi-server 

systems. 

The following coupling lemma was established in [58] by 

using the property of NBU distributions: 

Lemma 3. (Coupling Lemma) [58, Lemma 2] In continuoustime 

status updating systems, consider two non-preemptive 

policies P,π ∈ Πnp. For any given I, if (i) Policy P is work-

conserving, and (ii) The packet service times are NBU, 

independent across the servers, and i.i.d. across the packets 

assigned to the same server, then there exist policy P1 and 

policy π1 in the same probability space which satisfy the same 

scheduling disciplines with policy P and policy π, respectively, 

such that 

1. The state process {(∆P1(t),ΞP1(t)),t ∈ [0,∞)} of policy P1 

has the same distribution as the state process 

{(∆P(t),ΞP(t)),t ∈ [0,∞)} of policy P, 

2. The state process {(∆π1(t),Ξπ1(t)),t ∈ [0,∞)} of policy π1 

has the same distribution as the state process 

{(∆π(t),Ξπ(t)),t ∈ [0,∞)} of policy π, 

3. Policy P1 is weakly more work-efficient than policy π1 with 

probability one. 

The proof of Lemma 3 is provided in [58]. 

We will compare the age of service information of policy P1 

and the age of policy π1 on a sample path by using the following 

lemma: 

Lemma 4. (Inductive comparison) Suppose that a packet starts 

service at time t in policy P1 and a packet completes service 

(i.e., delivered to the destination) at the same time t in policy 

π1. The system state of policy P1 is (∆P1,ΞP1) before the service 

starts, which becomes (∆′P1,Ξ′P1) after the service starts. The 

system state of policy π1 is (∆π1,Ξπ1) before the service 

completes, which becomes  after the service 

completes. If the packet generation and arrival times are 

synchronized across the N flows and 

Ξ[i],P1 ≤ ∆[i],π1, i = 1,···,N, 

then 

(43) 

  (44) 

Proof. For synchronized packet generations and arrivals, let 

W(t) = max{Si : Ai ≤ t} be the generation time of the freshest 

packet of each flow that has arrived at the queue by time t. At 

time t, because no packet that has arrived at the queue was 

generated later than W(t), we can obtain 

  (45) 

  (46) 

Because policy P1 follows the same scheduling discipline 

with the NP-MASIF-LGFS policy, each packet starts service in 

policy P1 must be from the flow with the maximum age of 

served information Ξ[1],P1 (denoted as flow n∗), and the 

delivered packet must be the freshest packet that was 

generated at time W(t). In other words, the age of served 

information of flow n∗ is reduced from the maximum age of 

served information Ξ[1],P1 to the minimum age of served 

information , and the ages of served 

information of the other (N − 1) flows remain unchanged. 

Hence, 

 Ξ′[i],P1 = Ξ[i+1],P1, i = 1,···,N − 1, (47) 

 Ξ′[N],P1 = t − W(t). (48) 

In policy π1, the delivered packet can be any packet from any 

flow. For all possible cases of policy π1, it must hold that 

 . (49) 

By combining (43), (47), and (49), we have 

. 

In addition, combining (46) and (48), yields 

. 

By this, (44) is proven.  

Now we are ready to prove Theorem 2. 

Proof of Theorem 2. Recall that policy P is non-preemptive and 

work-conserving. Consider any non-preemptive policy π ∈ Πnp. 

By Lemma 3, there exist policy P1 and policy π1 satisfying the 

same scheduling disciplines with policy P and policy π, 

Policy

  
  time   

⌧ ⌧ t 

Policy

  
  j 0 

j ⌧ 2 

⌧ 1 
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respectively, and policy P1 is weakly more workefficient than 

policy π1 with probability one. 

Next, we construct another policy  in the same probability 

space with policy P1 and policy π1: Because policy P1 is weakly 

more work-efficient than policy π1 with probability one, if 

1. In policy π1, a packet j starts service at time τ and 

completes service at time ν (τ ≤ ν), 

2. In policy P1, the queue is not empty during [τ,ν], then in 

policy P1, there exists one corresponding packet j′ that 

starts service during [τ,ν]. Let t ∈ [τ,ν] be the service 

starting time of packet j′ in policy P1, then in policy π1′ , 

packet j is 

 

Fig. 7. An illustration of the construction of policy , where the queue is not 

empty during [τ,ν] in policy P1. The service completion time t of packet j in 

policy  is smaller than the service completion time ν of packet j in policy π, 

and is equal to the service starting time t of packet j′ in policy P1. 

constructed to start service at time τ and complete service at 

time t, as illustrated in Fig. 7. On the other hand, if 

1. In policy π1, a packet j starts service at time τ and 

completes service at time ν (τ ≤ ν), 

2. In policy P1, the queue is empty during [τ,ν], then in policy

, packet j is constructed to start service at time τ and 

complete service at time ν. The initial age of policy  is 

chosen to be the same as that of other policies. Hence, 

. 

The policy π1′ constructed above satisfies the following two 

useful properties: 

Property (i): The service completion time of each packet in 

policy  is equal to or earlier than that in policy π. Hence, 

  (50) 

holds with probably one. 

Property (ii): If the queue is not empty at time t in policy P1 

and a packet completes service at time t in policy , then a 

packet starts service at the same time t in policy P1. 

Next, we use Property (ii) to show that, almost surely, 

 . (51) 

At time t = 0−, because ΞP (0−) ≤ ∆P (0−) and 

, we can obtain

 . 

This further implies that 

  (52) 

For any time t > 0, there could be three cases: 

Case 1: If the queue is empty at time t in policy P1, then (51) 

holds naturally at time t because all packets have started 

services in policy P1 (otherwise, the queue is not empty). 

Case 2: If the queue is not empty at time t in policy P1 and a 

packet completes service at time t in policy , according to 

Property (ii), a packet starts service at time t in policy P1. 

Hence, the evolution of the system state before and after time 

t is governed by Lemma 4. 

Case 3: If the queue is not empty at time t in policy P1 and 

no packet completes service at time t in policy , there may 

exist some packet that starts service at time t in policy P1. 

Therefore, the age of each flow in policy π1′ grows linearly with 

a slope 1 at time t; the age of served information of each flow 

in policy P1 may either grow linearly with a slope 1 or drop to a 

lower value. By comparison, the age of served information of 

each flow in policy P1 grows at a speed no faster than the age 

of each flow in policy . 

By induction over time and considering the above three 

cases, (51) is proven. 

Furthermore, for any symmetric and non-decreasing 

function pt, it holds from (50) and (51) that for all sample paths 

and all t ≥ 0 pt ◦ ΞP1(t) 

= pt(Ξ1,P1(t),···,ΞN,P1(t)) 

= pt(Ξ[1],P1(t),···,Ξ[N],P1(t)) 

≤ pt(∆[1],π1′ (t),···,∆[N],π1′ (t)) 

= pt(∆1,π1′ (t),···,∆N,π1′ (t)) 

= pt ◦ ∆π1′ (t) 

 pt ≤ ◦∆π1(t). (53) 

By Lemma 3, the state process {(∆P1(t),ΞP1(t)),t ∈ [0,∞)} of 

policy P1 has the same distribution with the state process 

{(∆P(t),ΞP(t)),t ∈ [0,∞)} of policy P; the state process 

{(∆π1(t),Ξπ1(t)),t ∈ [0,∞)} of policy π1 has the same 

distribution with the state process {(∆π(t),Ξπ(t)),t ∈ [0,∞)} of 

policy π. Hence, {pt ◦ ΞP1(t),t ∈ [0,∞)} has the same 

distribution with {pt ◦ ΞP(t),t ∈ [0,∞)}; {pt ◦ ∆π1(t),t ∈ [0,∞)} 

has the same distribution with {pt ◦ ∆π(t),t ∈ [0,∞)}. By 

substituting this and (53) into Theorem 6.B.30 of [50], we can 

obtain that (23) holds for all policy π ∈ Πnp. According to (4), 

the first inequality in (24) is equivalent to (23). The second 

inequality in (24) holds naturally. This completes the proof.

  

APPENDIX C PROOF OF THEOREM 3 

Let the age vector ∆π(t) = (∆1,π(t),···,∆N,π(t)) represent the 

system state of policy π at time t and {∆π(t),t = 0,Ts,2Ts,···} be 

the state process of policy π. Recall that ∆[i],π(t) is the ith 

largest component of the age vector ∆π(t). For notational 

simplicity, let policy P represent the DT-MAFLGFS policy, which 

is a non-preemptive, work-conserving policy. We first present 

two lemmas that are useful to prove Theorem 3. 
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Lemma 5. (Coupling Lemma) In discrete-time status updating 

systems, consider policy P and any non-preemptive, 

workconserving policy π ∈ Πnp. For any given I, if (i) The 

transmission errors are i.i.d. with an error probability q ∈ [0,1) 

and (ii) The transmission time of each packet is equal to Ts, 

then there exist policy P1 and policy π1 in the same probability 

space which satisfy the same scheduling disciplines with policy 

P and policy π, respectively, such that 

1. The state process {∆P1(t),t = 0,Ts,2Ts,···} of policy P1 has 

the same distribution as the state process {∆P(t),t = 

0,Ts,2Ts,···} of policy P, 

2. The state process {∆π1(t),t = 0,Ts,2Ts,···} of policy π1 has 

the same distribution as the state process 

{∆π(t),t = 0,Ts,2Ts,···} of policy π, 

3. If a packet from the flow with age ∆[i],P1(t) at time t is 

successfully delivered at time (t+Ts) in policy P1, then 

almost surely, a packet from the flow with age ∆[i],π1(t) at 

time t is successfully delivered at time (t + Ts) in policy π1; 

and vice versa. 

Proof. By employing the inductive construction argument used 

in the proof of Theorem 6.B.3 in [50], one can construct the 

packet transmission success and failure events one by one in 

policy P1 and policy π1 to prove this lemma. In particular, since 

the transmission errors are i.i.d. and they are not influenced by 

the scheduling policy, it is feasible to couple the packet 

transmission success and failure events in policy P1 and policy 

π1 in such a way that a packet from the flow with age ∆[i],P1(t) 

at time t is successfully delivered at time (t+Ts) in policy P1 if, 

and only if, a packet from the flow with age ∆[i],π1(t) at time t 

is successfully delivered at time (t + Ts) in policy π1.  

Notice that policy P1 and policy π1 are two distinct policies, 

so the flow with age ∆[i],P1(t) in policy P1 and the flow with age 

∆[i],π1(t) at time t in policy π1 are likely representing different 

flows. However, policy P1 and policy π1 are coupled in such a 

way that the packet deliveries for these two flows occur 

simultaneously at time (t + Ts). 

We will compare policy P1 and policy π1 on a sample path by 

using the following lemma: 

Lemma 6. (Inductive comparison) Under the conditions of 

Lemma 5, if (i) The packet generation and arrival times are 

synchronized across the N flows and (ii) 

 ∆[i],P1(t) ≤ ∆[i],π1(t), i = 1,···,N, (54) 

then 

 ∆[i],P1(t + Ts) ≤ ∆[i],π1(t + Ts), i = 1,···,N. (55) 

Proof. For synchronized packet generations and arrivals, let 

W(t) = maxi{Si : Ai ≤ t} be the generation time of the freshest 

packet of each flow that has arrived at the queue by time t. 

Because (i) The packet transmission time is Ts and (ii) No packet 

that has arrived at the queue by time t was generated after 

time W(t), we can obtain 

 ∆[i],π1(t + Ts) ≥ t + Ts − W(t), i = 1,···,N. (56) 

Without loss of generality, suppose that there are l 

transmission errors and (N −l) successful packet deliveries at 

time (t+Ts) in policy P1. Because (i) Policy P1 follows the same 

scheduling discipline with the DT-MAF-LGFS policy and (ii) The 

packet generation and arrival times are synchronized across 

the N flows, each delivered packet must be the freshest packet 

generated at time W(t). Hence, the flows associated with 

these delivered packets must have the minimum age at time 

(t+Ts), given by 

 ∆[i],P1(t + Ts) = t + Ts − W(t), i = l + 1,···,N. (57) 

Combining (56) and (57), yields 

∆[i],P1(t + Ts) = t + Ts − W(t) ≤ ∆[i],π1(t + Ts), 

 i = l + 1,···,N. (58) 

Moreover, suppose that the transmission errors at time (t + 

Ts) are from the flows with age values 

(∆[j1],P1(t),∆[j2],P1(t),···,∆[jl],P1(t)) at time t, which are sorted such 

that j1 ≥ j2 ≥ ··· ≥ jl. Because ∆[i],P1(t) is the ith largest 

component of the age vector ∆P1(t), we have 

 ∆[j1],P1(t) ≥ ∆[j2],P1(t) ≥ ··· ≥ ∆[jl],P1(t). (59) 

If flow n is one of the flows that encounter a transmission error 

at time t + Ts in policy P1, then 

 ∆n,P1(t + Ts) = ∆n,P1(t) + Ts. (60) 

From (57), (59), and (60), the components of vector 

∆P1(t + Ts) are ∆[j1],P1(t) + Ts,∆[j2],P1(t) + Ts,···,∆[jl],P1(t) + Ts and 

(N − l) numbers with the same value t + Ts − W(t). Hence, 

 ∆[i],P1(t + Ts) = ∆[ji],P1(t) + Ts, i = 1,···,l. (61) 

According to Lemma 5, there are l transmission errors at 

time (t + Ts) in policy π1, which are from the flows with age 

values (∆[j1],π1(t),∆[j2],π1(t),···,∆[jl],π1(t)) at time t. 

Because j1 ≥ j2 ≥ ··· ≥ jl, we have 

 ∆[j1],π1(t) ≥ ∆[j2],π1(t) ≥ ··· ≥ ∆[jl],π1(t). (62) 

If flow n is one of the flows that encounter a transmission error 

at time t + Ts in policy π1, then 

 ∆n,π1(t + Ts) = ∆n,π1(t) + Ts. (63) 

From (62) and (63), one can observe that ∆[j1],π1(t) + Ts,∆[j2],π1(t) 

+ Ts,···,∆[jl],π1(t) + Ts are l components of vector ∆π1(t + Ts). 

Hence, 

 ∆[i],π1(t + Ts) ≥ ∆[ji],π1(t) + Ts, i = 1,···,l. (64) 

Combining (54), (61), and (64), yields 

∆[i],P1(t + Ts) 

=∆[ji],P1(t) + Ts 

≤∆[ji],π1(t) + Ts 

 ≤∆[i],π1(t + Ts), i = 1,···,l. (65) 
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Finally, (55) follows from (58) and (65). This completes the 

proof.  

Now we prove Theorem 3. 

Proof of Theorem 3. Consider any non-preemptive, 

workconserving policy π ∈ Πnp. By Lemma 5, there exist policy 

P1 and policy π1 satisfying the same scheduling disciplines with 

policy P and policy π, respectively, such that if a packet from 

the flow with age ∆[i],P1(t) at time t is successfully delivered at 

time (t+Ts) in policy P1, then almost surely, a packet from the 

flow with age ∆[i],π1(t) at time t is successfully delivered at time 

(t + Ts) in policy π1; and vice versa. 

For any given sample path of policy P1 and policy π1, the 

initial system state is ∆P1(0) = ∆π1(0) at time t = 0. The 

evolution of the system state is governed by Lemma 6. By 

induction over time, we obtain 

∆[i],P1(t) ≤ ∆[i],π1(t), i = 1,···,N, t = 0,Ts,2Ts,···. 

(66) 

The rest of the proof is quite similar to that of Theorem 1 and 

hence are omitted.  
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