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Abstract—In this study, we investigate a context-aware status
updating system consisting of multiple sensor-estimator pairs. A
centralized monitor pulls status updates from multiple sensors that
are monitoring several safety-critical situations (e.g., carbon
monoxide density in forest fire detection, machine safety in industrial
automation, and road safety). Based on the received sensor updates,
multiple estimators determine the current safety-critical situations.
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sensor updates may not be timely, resulting in the possibility of
misunderstanding the current situation. In particular, if a dangerous
situation is misinterpreted as safe, the safety risk is high. In this paper,
we introduce a novel framework that quantifies the penalty due to
the unawareness of a potentially dangerous situation. This situation-
unaware penalty function depends on two key factors: the Age of
Information (Aol) and the observed signal value. For optimal
estimators, we provide an information-theoretic bound of the penalty
function that evaluates the fundamental performance limit of the
system. To minimize the penalty, we study a pull-based multi-sensor,
multi-channel transmission scheduling problem. Our analysis reveals
that for optimal estimators, it is always beneficial to keep the
channels busy. Due to communication resource constraints, the
scheduling problem can be modelled as a Restless Multiarmed Bandit
(RMAB) problem. By utilizing relaxation and Lagrangian
decomposition of the RMAB, we provide a lowcomplexity scheduling
algorithm which is asymptotically optimal. Our results hold for both
reliable and unreliable channels. Numerical evidence shows that our
scheduling policy can achieve up to 100 times performance gain over
periodic updating and up to 10 times over randomized policy.

Index Terms—safety, age of information, Markov decision process,
estimation

|. INTRODUCTION

A broad range of safety-critical systems is ubiquitous across
the world. For instance, in industrial automation, it is essential
to continuously monitor the safety of various machines [1]. In
patient health monitoring, precise tracking of the glucose level
or the heart rate is imperative to swiftly implement
precautionary measures when they are required [2]. In
disaster monitoring, it is important to promptly monitor any
consistent changes in temperature or humidity, as they could
indicate a possible disaster [3]. In these safety-critical
situations, the monitoring system needs timely access and
accurately interpret
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the states of remote systems. Any misunderstanding of the
system state can lead to severe consequences.

In practice, multiple sensors are required to track various
safety-critical situations. One challenge to continuously
monitor these sensor measurements in real-time is the limited
capacity of the communication medium. Moreover, some
sensors may have more crucial content than others and hence
need more attention. In this context, we adopt a pull-based
system where a centralized monitor selects sensors and
requests information when required. This selective retrieval of
information ensures that the system receives essential
information promptly while minimizing unnecessary resource
consumption.

In this paper, we consider a discrete-time pull-based status
updating system consisting of multiple sensors monitoring the
status of different safety-critical situations. At every time slot,
the selected sensors transmit their updates to a receiver
through multiple unreliable channels. In the receiver, multiple
estimators utilize the sensor updates to determine the current
status of the safety-critical situations. Due to transmission
errors, the sensor updates may not be fresh. One performance
metric that characterizes data freshness is the age of
information (Aol) [4]. Let U(t) be the generation time of the
freshest observation delivered to the receiver by time t. The
Aol, as a function of ¢, is defined as A(t) = t — U(t) which
exhibits a linear growth with time t and drops down to a
smaller value whenever a fresher observation is delivered. In
many real-time applications, it is important to consider Aol for
making the scheduling decision. However, the time difference
represented by Aol can only capture the timeliness of the
information but it cannot capture its significance. This is
particularly relevant in safety-critical situations where
misunderstanding about the situation can lead to significant

Authorized licensed use limited to: Auburn University. Downloaded on March 19,2024 at 20:40:10 UTC from IEEE Xplore. Restrictions apply.
194



MILCOM 2023 - Workshop on Quality, Age, and Value of Information (QuAVol) for Tactical Networks

performance loss. Hence, relying solely on Aol-based decision-
making is not perfect. If we consider signal observation along
with Aol in decision-making, then the incurred performance
loss can be significantly improved. One key observation in this
study is that any misinterpretation of a dangerous situation
yields a higher loss compared to the misinterpretation of a safe
situation. Based on the above-mentioned insights, we
introduce a framework for quantifying the cost of a dangerous
situation that characterizes the performance loss caused by
situational unawareness.

The goal of this paper is to find the optimal scheduling policy
to select sensors and to request observations while improving
the system performance. The contributions of this paper are
as follows:

« We introduce a novel framework for estimating the
current status of a safety-critical system. In this
framework, we adopt a general loss function L(y,y") that
quantifies the incurred loss in wrongly estimating the
actual safety level y as y". The loss L(dangerous, safe) is
higher than L(safe, dangerous). This distinction can not
be captured by the traditional loss functions such as 0-1
loss, quadratic loss, and logarithmic loss. By adopting
appropriate loss functions L, our framework can be
applied to health, safety, and security monitoring.

« To measure the performance of safety-critical systems,
we propose a penalty function that represents the
expected loss L given the Aol and the latest observation
(see  Section IlI-C). We also provide an
informationtheoretic lower bound of the penalty
function by using L-conditional entropy [5]-[7]. This
bound represents the fundamental performance limit of
a safety-critical system. The entropy-based freshness
metric in our study can significantly contribute to real-
time applications such as estimation, inference, and
perception. Earlier metrics such as Age of Incorrect
Information (Aoll) [8], Age of Synchronization (AoS) [9],
Urgency of Information (Uol) [10], Version Aol [11], Aol at
Query (QAol) [12], Value of Information (Vol) [13], and
Uncertainty of Information (Uol) [14] did not quantify the
fundamental performance limit of real-time applications.
Moreover, most of the prior studies [8]—-[12] exhibit a
monotonic relationship with Aol, whereas some recent
studies show that the performance of real-time
applications may degrade nonmonotonically with Aol [7],
[14], [15]. Our penalty function also allows the non-
monotonic behavior with respect to Aol.

« We consider a multi-sensor, multi-channel pull-based
status updating problem. Our findings demonstrate that
when utilizing one-time slot transmission time and
optimal estimators, it is always beneficial to keep the
channels busy (see Theorem 1). However, channel
resource limitations prevent all sensors from transmitting
information continuously. To address this issue, we
formulate the multi-sensor, multi-channel transmission

scheduling problem as a Restless Multi-armed Bandit
(RMAB). We utilize relaxation and Lagrangian method to
decompose the original problem into multiple separated
Markov Decision Processes (MDPs). We solve each MDP
by dynamic programming [16]. By utilizing the solution to
the MDPs, we provide a low-complexity scheduling policy
which is asymptotically optimal. Our results work for both
reliable and unreliable channels.

« Numerical results illustrate that our multi-sensor,
multichannel scheduling policy achieves up to 100 times
performance gain over periodic updating policy and up to
10 times over randomized policy which randomly select
sensors depending on the number of available channels.

Il. RELATED WORK

There exists a large number of studies on minimizing linear
and nonlinear Aol functions [17]-[22]. One limitation of Aol is
that it only captures the timeliness of the information while
neglecting the actual influence of the conveyed information.
In order to address this, several performance metrics were
introduced in conjunction with Aol [8]-[12], [14], [23]. Age of
Incorrect Information (Aoll) was introduced in [8] that is
represented by a function of the age and the estimation error.
In [9], Age of Synchronization (AoS) was considered along with
Aol to measure the freshness of a local cache. In [10], the
authors proposed Urgency of Information (Uol) that captures
the context-dependence of the status information along with
Aol. Version Aol was introduced in [11] that represents how
many versions are out-of-date at the receiver, compared to
the transmitter. An Aol at Query (QAol) metric was introduced
in [12] to capture the freshness only when required in a pull-
based communication system. In addition, several research
papers studied information-theoretic measures to evaluate
the impact of information freshness along with information
content [13], [14], [17], [24], [25]. In [13], [17], [24], [25], the
authors employed Shannon’s mutual information to quantify
the information carried by received data messages regarding
the current signal value at the source and used Shannon’s
conditional entropy to measure the uncertainty about the
current signal value. Based on the studies of [13], [17], [24],
[25], the authors in [14] termed Uncertainty of Information
(Uol) by using the Shannon’s entropy. However, there exists a
disparity between these information-theoretic metrics and the
performance of real-time applications such as remote
estimation and inference. In [7], [15], [26], a generalized
conditional entropy associated with a loss function L, or L-
conditional entropy HL(Y¢|X:-a)) was utilized to address this
disparity, where Y:is the true state of the source and Xe-a(y is
the observed value. Building upon the insights of [7], [15], [26],
we utilized L-conditional entropy HL(Ye|Xe-a) = XA(t) = 6)
given both the Aol § and the observed value x to measure the
impact of the Aol and the information content in remote
estimation and inference.

In addition, there exists numerous papers on Aol-based
sampling and scheduling [7], [17], [19], [26]-[32]. In [17],
sampling policies for optimizing non-linear Aol functions were
studied. A joint sampling and scheduling problem to minimize
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monotonic Aol functions was considered in [19]. A Whittle
index-based scheduling algorithm to minimize Aol for
stochastic arrivals was considered in [28]. In [14], the authors
proposed a Whittle index-based scheduling policy to minimize
the Uol modeled as Shanon entropy. Optimal scheduling
policies for both single and multi-source systems were studied
and a Whittle index policy was proposed for multi-source cases
in [7]. A Whittle index policy for both signal-aware and
signalagnostic scheduling was reported in [29]. A remote
estimation system with multiple IoT sensors monitoring
multiple Wiener processes was studied and a Max-k policy was
proposed in [33]. Besides Whittle index-based policies that
require an indexability condition, non-indexable scheduling
policies were also studied in [26], [30]—[32], [34]. In this paper,
because of the complicated nature of state transition along
with erasure channels, we do not provide indexability.
However, we provide

Fig. 1: A multi-sensor, multi-channel vehicle safety monitoring
system.

a “Net-gain Maximization Policy” developed in [26], [34]. In
addition, by utilizing information-theoretic approach, we show
that it is always beneficial to keep the channels busy for
optimal estimators. Our scheduling policy is designed for
pullbased communication model where the scheduling
decision is based on Aol and observed signal and the
developed policy is asymptotically optimal.

I1l. MODEL, METRIC, AND FORMULATION

A. System Model

Let us consider the status updating system depicted in
Figure 1, where N sensors transmit crucial status updates
through M unreliable wireless channels to a common receiver.
Each sensor n monitors a Markov signal Xu:representing the
status of a safety-critical system. For instance, Xi: might
represent the position of a vehicle on the road, or the joint
angles of a robotic arm within a factory environment. A
hazardous situation arises when the vehicle veers off the road
or the robotic arm approaches a nearby object. We use Yy to
quantify the level of danger for the safety-critical system,
which is a function of the system status Xu:. In practice, Ystcan

be used to represent whether the vehicle is encroaching upon
the road shoulder or the spatial distance between the robotic
arm and the object. The receiver estimates the danger level
signals Yntto ensure awareness of the hazards in the safety-
critical systems.

We consider a pull-based updating mechanism [35] where
the receiver requests status updates from the sensors
whenever it is unsure about the situation. In response to the
pull request, each sensor n generates and submits a time-
stamped updating message (Xust) to one wireless channel. We
assume that it takes one-time slot for the transmission of a
message update to the receiver. Due to wireless channel
fading, the transmission of the status updates becomes
unreliable. Let pn be the probability of a successful
transmission from sensor n, irrespective of the selected
wireless channel.

Due to transmission errors, the information received by the

receiver will be stale and is represented by Xu:-a.g that is
generated An(t) times ago. The time different An(¢) is usually
called age of information (Aol) [4], which represents the
staleness of the status of the n safety-critical system available
at the receiver. At each time slot ¢, the Aol evolution of the n-
th system is given by

(
An(t + 1) = An(t) + 1, with probability 1 - pn, (1) 1, with

probability pn.

B. Loss Model for Situational Awareness

Based on the latest available information, the n-th estimator
outputs a = @n(An(t),Xnt-an)) € A, where ¢ : N x X > Ais a
function of Aol Ax(t) € N and the received

observation Xut-any € X. The danger associated with the
safety-critical system is characterized by a loss function L : Y x
A - R, where L(y,a) is the incurred loss if Yn:=y is the actual
safety level of the surrounding environment and a is estimated
output of the safety level. Essentially, L(-,+) serves as a metric
to assess the cost of potential danger within a safety-critical
system. To better understand the behavior of the loss L, we
provide the following example that illustrate the impact of
wrong estimation of the system state on L.

Example Consider a road safety monitoring system that
detects instances when any car veers off the road. The sensors
need to operate with high sensitivity to accurately
communicate the measured variables in real-time. Let Yn: =
{danger, safe} denote the safety measure of a car based on its
position, speed, etc. If y = danger and a = safe, then the loss
L(danger, safe) would be significantly high. This is because if
the car is not within the safe region and the monitoring system
wrongly estimates it, there could be a serious damage.
However, if y = safe but a = danger, then the loss L(safe,
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danger) would have less impact. This is because even though
the estimation is wrong, the car is still within the safe region,
hence, it does not impact much.

The well-known loss functions such as 0-1 loss, quadratic
loss, and logarithmic loss cannot address safety issues based
on situational awareness within critical systems. The loss
function L in (2) is more general than the existing loss
functions. By designing this unified loss function L that
incorporates the knowledge of the surrounding situation along
with age, we can effectively capture and tackle safety-critical
issues.

C. Information-theoretic Metric for Situational Awareness

The performance of the safety-critical system for sensor n at
time slot t is defined by the expected loss for a given state
(An(t) = 6, Xne-an(v = x) which can be expressed as the following
penalty function:

qn(6,x) = E[L(Yn,t,(l)n(An(t),Xn,t—An(t))|
An(t) = 6,Xnt-an(8) = X], (2) where ¢u(+,+) is
any function that maps from N x X to A. Now, consider the

following optimization problem:

(a) Gridworld

HL(Ynt|An(t) = 6,Xnt-0n(t) = X) =minE[L(Ynsa)|An(t)
= 6,Xn,t-0n(0) = X], acA

=E[L(Ynt@+n(An(t),Xnt-0n(8))) | An(t)=8,Xn t-an()=X].
(6)

From (4) and (6), it is evident that qn(6,x) = HL(Ynt|An(t) =
6, Xnt-tn(0) = X). (7)

For the optimal estimator _ is indeed

Lconditional entropy which is an information-theoretic lower
bound of gn(8,x). It represents the fundamental performance
limit that characterizes the performance degradation due to
the lack of the knowledge of the situation. The proposed
metrics in prior works, i.e, Aoll, Vol, AoS, QAol cannot explain
this information theoretic bound. In addition, for any general
estimator output a € A, qu(6,x) can be represented as the
Lconditional cross-entropy. Due to space limitation, the
details are relegated to our future submission.

D. Non-monotonic Information Aging

Our analysis reveals that gs(8,x) can be a non-monotonic
function of the age, particularly when the knowledge of the
surrounding situation is taken into consideration which is
illustrated in Figure 2(b). To do this experiment, we consider a
safety-critical system where N robots are moving in a

(3)
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|
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—I(#) +"-5.)&* 5 10 15 20 25 30 35 40
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(b) Penalty vs Aol

Fig. 2: (a) Gridworld environment and (b) Penalty (g»(6,x)) vs Aol (8) for four different given observation.

Let be the optimal estimator that
solves the optimal estimation problem in (3). By substituting
this optimal estimator into (2), we get gn(6x) =

E [L(Yn,t,(l)*n [An(t),Xn,t—An(t)) |

An(t) = 6,Xnt-tn() = X], (4) which is a
lower bound of E[L(Ynta)|An(t) = 6,Xnt-an(p = X] for any a € A.
This penalty function in (4) is closely related to the concept of
generalized entropy [5], [6] or specifically, the L-entropy [7] of
a random variable Yy given by

Hi(Yne) = minE[L(Ynsa)].

a€A

(5)

Furthermore, L-conditional entropy of Yn:given As(t) = 6 and

Xne-an(t) = X can be defined as [5]-[7]

gridworld with 5 rows and 12 columns, demonstrated in Figure
2(a). The observed state X of robot n is represented by two
variables: the position Sy of robot n at time t and its moving
direction an:at time t and Yae = {safe, cautious, dangerous}
denotes the safety level. In the gridworld in Figure 2(a), the
states Xitin row 1,2, and 3 are safe, row 4 states are cautious,
and row 5 states are dangerous. Row 3 is close to the boundary
region between safe and cautious. Let (xy) denotes the
position of a robot where x is the row and y is the column. The
available moving directions an: for row 2, 3, and 4 are up,
down, left, and right. For row 1, the up is not available and for
row 5, the down is not available. If robot n is in the leftmost
position, then a,:= left means it will stay in the same position,
similar criteria is applied for the rightmost position. The
probability of moving from one row to the adjacent row is 0.05
(up or down) and the probability of staying in the same row is
0.95 (left or right). The losses considered in Figure 2(b) are:
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L(cautious, safe) = 50,L(safe, cautious) = 10,L(dangerous,
safe) = 200,L(safe, dangerous) = 10,L(dangerous, cautious) =
50, L(cautious, dangerous)= 20, and L(dangerous, dangerous)
= L(cautious, cautious) = L(safe, safe) = 0. We consider optimal
estimator of (3) in this experiment.

From Figure 2(b), we observe that when a robot is in a safe
region and far from the safe and cautious boundary which is
represented by the curve for given Xn: = (1,3), right, the
penalty is initially close to zero for small Aol values and
increases gradually with increasing age. This phenomenon tells
us that we do not need to update frequently when a robot is
far from the boundary region. However, if the robot moves
closer to the boundary between safe and cautious that is
represented by the curve for given Xn: = (2,3), down, the
penalty increases very quickly because of the uncertainty of its
position in the subsequent time slots. With the increase in age,
this curve approaches to its stationary distribution. In similar
way, the other curves can be explained. This penalty curves are
not necessarily monotonic with age. Hence, only considering
the non-decreasing functions of the age is not sufficient for
performance analysis of safety-critical systems. The proposed
metrics in prior works, i.e, Aoll, Vol, AoS, QAol cannot explain
this non-monotonicity with age.

E. Scheduling Policy and Problem Formulation

Let the scheduling policy is denoted by_ where
mn = (un(0),un(1),...) determines whether an observation is
requested from sensor n at every time slot t € N. Let I1 denotes
the set of all causal scheduling policies in which every decision
is made by using the current and history information available
at the receiver. Because our system consists of M channels,

is required to hold for all ¢.
We aim to find an optimal scheduling policy that minimizes
the time-average sum of expected penalty of the N sources
over an infinite time-horizon T, which is formulated as

qut_

N

st. X ()  Mypa(t) € {0,1),6=0,1,.., (9)

where_ is the penalty incurred by source

n at time t which is defined in (2), and goptis the optimum value
of (8).

IV.  PENALTY-MINIMIZATION: AN  INFORMATION-
THEORETIC VIEW

In Section 1lI-C, we demonstrate that the penalty function
qn(8,x) can be represented as L-conditional entropy.
Leveraging this insight, we obtain that for optimal estimators,
always sending updates benefits the system by reducing its
average penalty of the system. To prove this result, we present
the following useful lemma which illustrates that more
information reduces the L-conditional entropy.

Lemma 1. For random variables XY, and Z, it holds that H.(Y
|Z=2)2 HL(Y |X,Z = z), where HL(Y |Z = z) = minE[L(Y,a)|Z =
z], (10)

a€A

Hu(Y |X,Z=2)=X P(X=x|Z=2) H.(Y | X=x,2=72).
xeX
(11) Then we have the following theorem.

Theorem 1. If the packet transmission times are one-time slot,
then for optimal estimators it is always better to keep the
channels busy.

Due to space limitation, the proofs of Lemma 1 and
Theorem 1 are relegated to our future submission.

Because problem (8)-(9) has a channel resource constraint,
all of the sensors cannot submit their updates at every time
slot when N > M. Therefore, we have to design an efficient
scheduling policy that minimizes the time-average sum of the
expected penalty of the N sources ensuring that constraint (9)
is satisfied. We provide the details in the next section.

V. RESTLESS MULTI-ARMED BANDIT FORMULATION

Problem (8)-(9) is an RMAB problem where each source n is
an arm and (An(t),Xnt-an(n) is the state of each arm n. To find
an optimal solution to the RMAB problem is PSPACE hard [36].
A Whittle index policy is known to be asymptotically optimal
for many RMAB problems [37]. However, it needs to satisfy a
complicated condition called indexability. Due to the
complicated nature of the state transitions and non-
monotonic age-penalty functions along with erasure channels,
it 1S difficult to establish indexability Tor our Algorithm I Net-

o Maximization-Pofi

1: Attime t=0:
2: Input A*which is the optimal solution to (14).
3: Input ana-(6,x) in (19) for every source n.
4:Foralltimet=0,1,..,
5: Update (An(t),Xnt-aq(n) for all source n.
6
7

: Update current “gain” ana-(An(t),Xnt-an(n) for all source n.
: Choose at most M sensors with highest positive “gain”.

problem. Therefore, in this work, we provide a low-complexity
algorithm that does not need to satisfy indexability. Next, we
demonstrate that the developed policy is asymptotically
optimal.
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A. Relaxation and Lagrangian Decomposition

Following the standard relaxation and Lagrangian
decomposition procedure for RMAB [38], the original problem
in (8)-(9) is relaxed as

CIopt_
s.t. _ (13)

where the relaxed constraint (13) only needs to be satisfied on
average, whereas (9) is required to hold at any time t. To solve
the relaxed problem (12)-(13), we take a dual cost A = 0 (also
knows as Lagrange multiplier) for the relaxed constraint. The
dual problem is given by

supq (A), (14)
A=0
where
(15)

The term in (15) does not depend on
policy m and hence can be removed. For a given A, problem
(15) can be decomposed into N separated sub-problems and
each sub-problem associated with source n is formulated as

(16)

where g7(A) is the optimum value of (16), mmn
(un(1),un(2),...) denotes a sub-scheduling policy for source n,
and Il is the set of all causal sub-scheduling policies of source
n.

VI. OPTIMAL PoLicy VIA DYNAMIC PROGRAMMING

Given transmission cost A, the per-arm problem (16) is an
average-cost infinite horizon MDP with state (An(t),Xnt-an@)-
We solve (16) by using dynamic programming [16]. The
Bellman optimality equation for the MDP in (16) is

_,

where hna(6,x) is the relative-value function of the
averagecost MDP and Qna(6,x,1) is the relative action-value
function defined as

Qna(oxu) =

(Moripalized Average Pe

ARqn(6,x) = g n(A) + hna(6 + 1,x),ifu =0, gn(6,x) — g n(A) +

(1-p)hna(6+1x) (18)

D4 poE[Ana( L, Xnt-1) | Xn -5 = X] + A, otherwise.
The relative-value function hn(d,x) can be computed by using
relative value iteration algorithm for average-cost MDP [16].
Following [26], [34], define the “gain” ana(J,x) for choosing the
action una(t) as ana(6,x) = Qua(6,x0) - Qna(6,x1). (19)
Substituting (18) into (19), we get

By utilizing the “gain” ana(6,x) in (20), we obtain the optimal
decision to the relaxed problem (12)-(13) at time t for every
sensor n as un(t) = argmaxani(®) (An(t),Xnt-an(e), 1), (21) nefo,1}

where the dual cost is iteratively updated using the dual
subgradient ascent method with step size > 0 [39]:

Let A* be the optimal dual cost to problem (14) to which A(t)
converges. We provide a low-complexity algorithm for solving
problem (8)-(9) in Algorithm 1. We utilize the “gain” defined in
(19) as the priority measurement for choosing action pu.
Algorithm 1 takes optimal dual cost A* and the precomputed
gain an-(6,x) associated with A*as input. Then, for all t 2 0, the
state  (An(t),Xne-anv) and  the  associated  “gain”
ana-(An(t),Xnt-an() are updated. Finally, Algorithm 1
maximizes the “Net-gain” (total gain of all sensors) of the
system at time t. This is done by selecting at most M sensors
having the highest positive “gain” at time t. The “Net-gain
Maximization Policy” in Algorithm 1 does not need to satisfy
the indexability condition.

VII. ASYMPTOTIC OPTIMALITY

In this section, we demonstrate that the ”Net-gain
Maximization Policy” in Algorithm 1 is asymptotically optimal
in the same asymptotic regime as the Whittle index policy [38].

102 ; ' '

~~~Periodic Updating
Randomlzed Pol|cy

10"F

10 15 20 25 30
Number of Sources (N)
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Fig. 3: Normalized average penalty vs Number of sources (N) where
Number of channels are M = 10 with success probability 0.95.

In this scenario, all N arms are generalized to N classes, and
the number of arms in each class and the number of channels
M are scaled by y, while maintaining a constant ratio between
them.

Let Znw(m-{6x},ut) be a fluid-scaling process with
parameter y that represents the expected number of class-n
arms at state (9,x) that takes action u at time slot t under
policy *. Consider the following expected long-term average
cost

The policy m* will be asymptotically optimal i for o
m € II. In this sequel, we introduce the following global
attractor [40].

Definition 1. Global attractor. An equilibrium point Z.»*/y
under policy m*is a global attractor for the process
Zn¥(m;t)/y, if, for any initial point Z.(m*0)/y, the process
ZnY(m;t)/y converges to Zn"*/y.

Theorem 2. Under Definition 1, the policy m*is asymptotically

optimal. Therefore, Yo, Where Tt is the
optimal policy for the original RMAB problem (8)-(9).

Due to space limitation, the proof of Theorem 2 is relegated
to our future submission.

VIII. NUMERICAL RESULTS

In this section, we evaluate the performance of the
following policies:

. Periodic Updating: The sensors generate updates at every
time slot and store in a FIFO queue. Whenever a channel
is available, an update from the queue is sent.

« Randomized Policy: If M channel resources are available,
this policy randomly selects at most M sensors.

« Net-gain Maximization Policy: See Algorithm 1.

We consider the same experimental setup of Figure 2 where

5 robots follow a deterministic policy (they follow a fixed
path). The cost associated with these 5 robots is zero at every
time slot because given an initial state, the position of these
robots can be uniquely determined by following the
deterministic policy. The goal of the other N - 5 robots is to
move and scan the environment (e.g., Mars Rovers [41]) and
send updates when requested. We do not consider any
termination state for these robots, the goal is to keep scanning
for infinite-time horizon. Our system consists of M = 10
erasure channels and the success probability is 0.95.

The performance comparison of the three policies
mentioned above is provided in Figure 3. The normalized
average penalty in Figure 3 is obtained by dividing time-
average cost by the number of robots. From the figure, until N
< M, all of the three policies show the same performance.
Whenever N > M, periodic updating starts getting worse
because the queue length is getting higher. In our simulation,
we have used a buffer size of 20 for periodic updating.
Moreover, the randomized policy randomly selects at most 5
sensors for sending updates, whereas the net-gain
maximization policy makes the decision in a smarter way by
considering the Aol and the state of the surrounding situation.
The performance gain of the net-gain maximization policy is up
to 100 times compared to periodic updating and up to 10 times
compared to the randomized policy.

IX. CONCLUSION

We address the importance of situational awareness in
safety-critical systems. The general loss function L have
practical importance and appropriate design of L can address
many safety-critical issues. In future we will study systems
where multiple sensors can arrive and leave the system at any
time. Another interesting direction is to consider a finite time
horizon problem where there is a termination state while
encountering a danger.
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