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Abstract—In this study, we investigate a context-aware status 
updating system consisting of multiple sensor-estimator pairs. A 
centralized monitor pulls status updates from multiple sensors that 
are monitoring several safety-critical situations (e.g., carbon 
monoxide density in forest fire detection, machine safety in industrial 
automation, and road safety). Based on the received sensor updates, 
multiple estimators determine the current safety-critical situations. 
Due to transmission errors and limited communication resources, the 
sensor updates may not be timely, resulting in the possibility of 
misunderstanding the current situation. In particular, if a dangerous 
situation is misinterpreted as safe, the safety risk is high. In this paper, 
we introduce a novel framework that quantifies the penalty due to 
the unawareness of a potentially dangerous situation. This situation-
unaware penalty function depends on two key factors: the Age of 
Information (AoI) and the observed signal value. For optimal 
estimators, we provide an information-theoretic bound of the penalty 
function that evaluates the fundamental performance limit of the 
system. To minimize the penalty, we study a pull-based multi-sensor, 
multi-channel transmission scheduling problem. Our analysis reveals 
that for optimal estimators, it is always beneficial to keep the 
channels busy. Due to communication resource constraints, the 
scheduling problem can be modelled as a Restless Multiarmed Bandit 
(RMAB) problem. By utilizing relaxation and Lagrangian 
decomposition of the RMAB, we provide a lowcomplexity scheduling 
algorithm which is asymptotically optimal. Our results hold for both 
reliable and unreliable channels. Numerical evidence shows that our 
scheduling policy can achieve up to 100 times performance gain over 
periodic updating and up to 10 times over randomized policy. 

Index Terms—safety, age of information, Markov decision process, 
estimation 

I. INTRODUCTION 

A broad range of safety-critical systems is ubiquitous across 
the world. For instance, in industrial automation, it is essential 
to continuously monitor the safety of various machines [1]. In 
patient health monitoring, precise tracking of the glucose level 
or the heart rate is imperative to swiftly implement 
precautionary measures when they are required [2]. In 
disaster monitoring, it is important to promptly monitor any 
consistent changes in temperature or humidity, as they could 
indicate a possible disaster [3]. In these safety-critical 
situations, the monitoring system needs timely access and 
accurately interpret 
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the states of remote systems. Any misunderstanding of the 
system state can lead to severe consequences. 

In practice, multiple sensors are required to track various 
safety-critical situations. One challenge to continuously 
monitor these sensor measurements in real-time is the limited 
capacity of the communication medium. Moreover, some 
sensors may have more crucial content than others and hence 
need more attention. In this context, we adopt a pull-based 
system where a centralized monitor selects sensors and 
requests information when required. This selective retrieval of 
information ensures that the system receives essential 
information promptly while minimizing unnecessary resource 
consumption. 

In this paper, we consider a discrete-time pull-based status 
updating system consisting of multiple sensors monitoring the 
status of different safety-critical situations. At every time slot, 
the selected sensors transmit their updates to a receiver 
through multiple unreliable channels. In the receiver, multiple 
estimators utilize the sensor updates to determine the current 
status of the safety-critical situations. Due to transmission 
errors, the sensor updates may not be fresh. One performance 
metric that characterizes data freshness is the age of 
information (AoI) [4]. Let U(t) be the generation time of the 
freshest observation delivered to the receiver by time t. The 
AoI, as a function of t, is defined as ∆(t) = t − U(t) which 
exhibits a linear growth with time t and drops down to a 
smaller value whenever a fresher observation is delivered. In 
many real-time applications, it is important to consider AoI for 
making the scheduling decision. However, the time difference 
represented by AoI can only capture the timeliness of the 
information but it cannot capture its significance. This is 
particularly relevant in safety-critical situations where 
misunderstanding about the situation can lead to significant 
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performance loss. Hence, relying solely on AoI-based decision-
making is not perfect. If we consider signal observation along 
with AoI in decision-making, then the incurred performance 
loss can be significantly improved. One key observation in this 
study is that any misinterpretation of a dangerous situation 
yields a higher loss compared to the misinterpretation of a safe 
situation. Based on the above-mentioned insights, we 
introduce a framework for quantifying the cost of a dangerous 
situation that characterizes the performance loss caused by 
situational unawareness. 

The goal of this paper is to find the optimal scheduling policy 
to select sensors and to request observations while improving 
the system performance. The contributions of this paper are 
as follows: 

• We introduce a novel framework for estimating the 
current status of a safety-critical system. In this 
framework, we adopt a general loss function L(y,yˆ) that 
quantifies the incurred loss in wrongly estimating the 
actual safety level y as yˆ. The loss L(dangerous, safe) is 
higher than L(safe, dangerous). This distinction can not 
be captured by the traditional loss functions such as 0-1 
loss, quadratic loss, and logarithmic loss. By adopting 
appropriate loss functions L, our framework can be 
applied to health, safety, and security monitoring. 

• To measure the performance of safety-critical systems, 
we propose a penalty function that represents the 
expected loss L given the AoI and the latest observation 
(see Section III-C). We also provide an 
informationtheoretic lower bound of the penalty 
function by using L-conditional entropy [5]–[7]. This 
bound represents the fundamental performance limit of 
a safety-critical system. The entropy-based freshness 
metric in our study can significantly contribute to real-
time applications such as estimation, inference, and 
perception. Earlier metrics such as Age of Incorrect 
Information (AoII) [8], Age of Synchronization (AoS) [9], 
Urgency of Information (UoI) [10], Version AoI [11], AoI at 
Query (QAoI) [12], Value of Information (VoI) [13], and 
Uncertainty of Information (UoI) [14] did not quantify the 
fundamental performance limit of real-time applications. 
Moreover, most of the prior studies [8]–[12] exhibit a 
monotonic relationship with AoI, whereas some recent 
studies show that the performance of real-time 
applications may degrade nonmonotonically with AoI [7], 
[14], [15]. Our penalty function also allows the non-
monotonic behavior with respect to AoI. 

• We consider a multi-sensor, multi-channel pull-based 
status updating problem. Our findings demonstrate that 
when utilizing one-time slot transmission time and 
optimal estimators, it is always beneficial to keep the 
channels busy (see Theorem 1). However, channel 
resource limitations prevent all sensors from transmitting 
information continuously. To address this issue, we 
formulate the multi-sensor, multi-channel transmission 

scheduling problem as a Restless Multi-armed Bandit 
(RMAB). We utilize relaxation and Lagrangian method to 
decompose the original problem into multiple separated 
Markov Decision Processes (MDPs). We solve each MDP 
by dynamic programming [16]. By utilizing the solution to 
the MDPs, we provide a low-complexity scheduling policy 
which is asymptotically optimal. Our results work for both 
reliable and unreliable channels. 

• Numerical results illustrate that our multi-sensor, 
multichannel scheduling policy achieves up to 100 times 
performance gain over periodic updating policy and up to 
10 times over randomized policy which randomly select 
sensors depending on the number of available channels. 

II. RELATED WORK 

There exists a large number of studies on minimizing linear 
and nonlinear AoI functions [17]–[22]. One limitation of AoI is 
that it only captures the timeliness of the information while 
neglecting the actual influence of the conveyed information. 
In order to address this, several performance metrics were 
introduced in conjunction with AoI [8]–[12], [14], [23]. Age of 
Incorrect Information (AoII) was introduced in [8] that is 
represented by a function of the age and the estimation error. 
In [9], Age of Synchronization (AoS) was considered along with 
AoI to measure the freshness of a local cache. In [10], the 
authors proposed Urgency of Information (UoI) that captures 
the context-dependence of the status information along with 
AoI. Version AoI was introduced in [11] that represents how 
many versions are out-of-date at the receiver, compared to 
the transmitter. An AoI at Query (QAoI) metric was introduced 
in [12] to capture the freshness only when required in a pull-
based communication system. In addition, several research 
papers studied information-theoretic measures to evaluate 
the impact of information freshness along with information 
content [13], [14], [17], [24], [25]. In [13], [17], [24], [25], the 
authors employed Shannon’s mutual information to quantify 
the information carried by received data messages regarding 
the current signal value at the source and used Shannon’s 
conditional entropy to measure the uncertainty about the 
current signal value. Based on the studies of [13], [17], [24], 
[25], the authors in [14] termed Uncertainty of Information 
(UoI) by using the Shannon’s entropy. However, there exists a 
disparity between these information-theoretic metrics and the 
performance of real-time applications such as remote 
estimation and inference. In [7], [15], [26], a generalized 
conditional entropy associated with a loss function L, or L-
conditional entropy HL(Yt|Xt−∆(t)) was utilized to address this 
disparity, where Yt is the true state of the source and Xt−∆(t) is 
the observed value. Building upon the insights of [7], [15], [26], 
we utilized L-conditional entropy HL(Yt|Xt−∆(t) = x,∆(t) = δ) 
given both the AoI δ and the observed value x to measure the 
impact of the AoI and the information content in remote 
estimation and inference. 

In addition, there exists numerous papers on AoI-based 
sampling and scheduling [7], [17], [19], [26]–[32]. In [17], 
sampling policies for optimizing non-linear AoI functions were 
studied. A joint sampling and scheduling problem to minimize 
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monotonic AoI functions was considered in [19]. A Whittle 
index-based scheduling algorithm to minimize AoI for 
stochastic arrivals was considered in [28]. In [14], the authors 
proposed a Whittle index-based scheduling policy to minimize 
the UoI modeled as Shanon entropy. Optimal scheduling 
policies for both single and multi-source systems were studied 
and a Whittle index policy was proposed for multi-source cases 
in [7]. A Whittle index policy for both signal-aware and 
signalagnostic scheduling was reported in [29]. A remote 
estimation system with multiple IoT sensors monitoring 
multiple Wiener processes was studied and a Max-k policy was 
proposed in [33]. Besides Whittle index-based policies that 
require an indexability condition, non-indexable scheduling 
policies were also studied in [26], [30]–[32], [34]. In this paper, 
because of the complicated nature of state transition along 
with erasure channels, we do not provide indexability. 
However, we provide 

 

Fig. 1: A multi-sensor, multi-channel vehicle safety monitoring 
system. 

a “Net-gain Maximization Policy” developed in [26], [34]. In 
addition, by utilizing information-theoretic approach, we show 
that it is always beneficial to keep the channels busy for 
optimal estimators. Our scheduling policy is designed for 
pullbased communication model where the scheduling 
decision is based on AoI and observed signal and the 
developed policy is asymptotically optimal. 

III. MODEL, METRIC, AND FORMULATION 

A. System Model 

Let us consider the status updating system depicted in 
Figure 1, where N sensors transmit crucial status updates 
through M unreliable wireless channels to a common receiver. 
Each sensor n monitors a Markov signal Xn,t representing the 
status of a safety-critical system. For instance, Xn,t might 
represent the position of a vehicle on the road, or the joint 
angles of a robotic arm within a factory environment. A 
hazardous situation arises when the vehicle veers off the road 
or the robotic arm approaches a nearby object. We use Yn,t to 
quantify the level of danger for the safety-critical system, 
which is a function of the system status Xn,t. In practice, Yn,t can 

be used to represent whether the vehicle is encroaching upon 
the road shoulder or the spatial distance between the robotic 
arm and the object. The receiver estimates the danger level 
signals Yn,t to ensure awareness of the hazards in the safety-
critical systems. 

We consider a pull-based updating mechanism [35] where 
the receiver requests status updates from the sensors 
whenever it is unsure about the situation. In response to the 
pull request, each sensor n generates and submits a time-
stamped updating message (Xn,t,t) to one wireless channel. We 
assume that it takes one-time slot for the transmission of a 
message update to the receiver. Due to wireless channel 
fading, the transmission of the status updates becomes 
unreliable. Let pn be the probability of a successful 
transmission from sensor n, irrespective of the selected 
wireless channel. 

Due to transmission errors, the information received by the 

receiver will be stale and is represented by Xn,t−∆n(t) that is 

generated ∆n(t) times ago. The time different ∆n(t) is usually 

called age of information (AoI) [4], which represents the 

staleness of the status of the n safety-critical system available 

at the receiver. At each time slot t, the AoI evolution of the n-

th system is given by 

( 

∆n(t + 1) = ∆n(t) + 1, with probability 1 − pn, (1) 1, with 

probability pn. 

B. Loss Model for Situational Awareness 

Based on the latest available information, the n-th estimator 

outputs a = ϕn(∆n(t),Xn,t−∆n(t)) ∈ A, where ϕ : N × X → A is a 

function of AoI ∆n(t) ∈ N and the received 

observation Xn,t−∆n(t) ∈ X. The danger associated with the 
safety-critical system is characterized by a loss function L : Y × 
A → R, where L(y,a) is the incurred loss if Yn,t = y is the actual 
safety level of the surrounding environment and a is estimated 
output of the safety level. Essentially, L(·,·) serves as a metric 
to assess the cost of potential danger within a safety-critical 
system. To better understand the behavior of the loss L, we 
provide the following example that illustrate the impact of 
wrong estimation of the system state on L. 

Example Consider a road safety monitoring system that 

detects instances when any car veers off the road. The sensors 

need to operate with high sensitivity to accurately 

communicate the measured variables in real-time. Let Yn,t = 

{danger, safe} denote the safety measure of a car based on its 

position, speed, etc. If y = danger and a = safe, then the loss 

L(danger, safe) would be significantly high. This is because if 

the car is not within the safe region and the monitoring system 

wrongly estimates it, there could be a serious damage. 

However, if y = safe but a = danger, then the loss L(safe, 
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danger) would have less impact. This is because even though 

the estimation is wrong, the car is still within the safe region, 

hence, it does not impact much. 

The well-known loss functions such as 0-1 loss, quadratic 
loss, and logarithmic loss cannot address safety issues based 
on situational awareness within critical systems. The loss 
function L in (2) is more general than the existing loss 
functions. By designing this unified loss function L that 
incorporates the knowledge of the surrounding situation along 
with age, we can effectively capture and tackle safety-critical 
issues. 

C. Information-theoretic Metric for Situational Awareness 

The performance of the safety-critical system for sensor n at 
time slot t is defined by the expected loss for a given state 
(∆n(t) = δ, Xn,t−∆n(t) = x) which can be expressed as the following 
penalty function: 

qn(δ,x) = E[L(Yn,t,ϕn(∆n(t),Xn,t−∆n(t))| 

∆n(t) = δ,Xn,t−∆n(t) = x], (2) where ϕn(·,·) is 

any function that maps from N × X to A. Now, consider the 

following optimization problem: 

 . (3) 

Let  be the optimal estimator that 

solves the optimal estimation problem in (3). By substituting 

this optimal estimator into (2), we get qn(δ,x) = 

E[L(Yn,t,ϕ∗n(∆n(t),Xn,t−∆n(t))| 

∆n(t) = δ,Xn,t−∆n(t) = x], (4) which is a 

lower bound of E[L(Yn,t,a)|∆n(t) = δ,Xn,t−∆n(t) = x] for any a ∈ A. 

This penalty function in (4) is closely related to the concept of 

generalized entropy [5], [6] or specifically, the L-entropy [7] of 

a random variable Yn,t given by 

 HL(Yn,t) = minE[L(Yn,t,a)]. (5) 
a∈A 

Furthermore, L-conditional entropy of Yn,t given ∆n(t) = δ and 

Xn,t−∆n(t) = x can be defined as [5]–[7] 

HL(Yn,t|∆n(t) = δ,Xn,t−∆n(t) = x) =minE[L(Yn,t,a)|∆n(t) 

= δ,Xn,t−∆n(t) = x], a∈A 

=E[L(Yn,t,ϕ∗n(∆n(t),Xn,t−∆n(t)))|∆n(t)=δ,Xn,t−∆n(t)=x]. 

(6) 

From (4) and (6), it is evident that qn(δ,x) = HL(Yn,t|∆n(t) = 

δ,Xn,t−∆n(t) = x). (7) 

For the optimal estimator  is indeed 
Lconditional entropy which is an information-theoretic lower 
bound of qn(δ,x). It represents the fundamental performance 
limit that characterizes the performance degradation due to 
the lack of the knowledge of the situation. The proposed 
metrics in prior works, i.e, AoII, VoI, AoS, QAoI cannot explain 
this information theoretic bound. In addition, for any general 
estimator output a ∈ A, qn(δ,x) can be represented as the 
Lconditional cross-entropy. Due to space limitation, the 
details are relegated to our future submission. 

D. Non-monotonic Information Aging 

Our analysis reveals that qn(δ,x) can be a non-monotonic 
function of the age, particularly when the knowledge of the 
surrounding situation is taken into consideration which is 
illustrated in Figure 2(b). To do this experiment, we consider a 
safety-critical system where N robots are moving in a 

gridworld with 5 rows and 12 columns, demonstrated in Figure 
2(a). The observed state Xn,t of robot n is represented by two 
variables: the position Sn,t of robot n at time t and its moving 
direction an,t at time t and Yn,t = {safe, cautious, dangerous} 
denotes the safety level. In the gridworld in Figure 2(a), the 
states Xn,t in row 1,2, and 3 are safe, row 4 states are cautious, 
and row 5 states are dangerous. Row 3 is close to the boundary 
region between safe and cautious. Let (x,y) denotes the 
position of a robot where x is the row and y is the column. The 
available moving directions an,t for row 2, 3, and 4 are up, 
down, left, and right. For row 1, the up is not available and for 
row 5, the down is not available. If robot n is in the leftmost 
position, then an,t = left means it will stay in the same position, 
similar criteria is applied for the rightmost position. The 
probability of moving from one row to the adjacent row is 0.05 
(up or down) and the probability of staying in the same row is 
0.95 (left or right). The losses considered in Figure 2(b) are: 

 

 (a) Gridworld (b) Penalty vs AoI 

Fig. 2: (a) Gridworld environment and (b) Penalty (qn(δ,x)) vs AoI (δ) for four different given observation. 
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L(cautious, safe) = 50,L(safe, cautious) = 10,L(dangerous, 
safe) = 200,L(safe, dangerous) = 10,L(dangerous, cautious) = 
50, L(cautious, dangerous)= 20, and L(dangerous, dangerous) 
= L(cautious, cautious) = L(safe, safe) = 0. We consider optimal 
estimator of (3) in this experiment. 

From Figure 2(b), we observe that when a robot is in a safe 
region and far from the safe and cautious boundary which is 
represented by the curve for given Xn,t = (1,3), right, the 
penalty is initially close to zero for small AoI values and 
increases gradually with increasing age. This phenomenon tells 
us that we do not need to update frequently when a robot is 
far from the boundary region. However, if the robot moves 
closer to the boundary between safe and cautious that is 
represented by the curve for given Xn,t = (2,3), down, the 
penalty increases very quickly because of the uncertainty of its 
position in the subsequent time slots. With the increase in age, 
this curve approaches to its stationary distribution. In similar 
way, the other curves can be explained. This penalty curves are 
not necessarily monotonic with age. Hence, only considering 
the non-decreasing functions of the age is not sufficient for 
performance analysis of safety-critical systems. The proposed 
metrics in prior works, i.e, AoII, VoI, AoS, QAoI cannot explain 
this non-monotonicity with age. 

E. Scheduling Policy and Problem Formulation 

Let the scheduling policy is denoted by  where 
πn = (µn(0),µn(1),...) determines whether an observation is 
requested from sensor n at every time slot t ∈ N. Let Π denotes 
the set of all causal scheduling policies in which every decision 
is made by using the current and history information available 
at the receiver. Because our system consists of M channels,

 is required to hold for all t. 
We aim to find an optimal scheduling policy that minimizes 

the time-average sum of expected penalty of the N sources 
over an infinite time-horizon T, which is formulated as 

qopt  
N 

 s.t. X µn(t) ≤ M,µn(t) ∈ {0,1},t = 0,1,..., (9) 

where  is the penalty incurred by source 
n at time t which is defined in (2), and qopt is the optimum value 
of (8). 

IV. PENALTY-MINIMIZATION: AN INFORMATION-
THEORETIC VIEW 

In Section III-C, we demonstrate that the penalty function 
qn(δ,x) can be represented as L-conditional entropy. 
Leveraging this insight, we obtain that for optimal estimators, 
always sending updates benefits the system by reducing its 
average penalty of the system. To prove this result, we present 
the following useful lemma which illustrates that more 
information reduces the L-conditional entropy. 

Lemma 1. For random variables X,Y, and Z, it holds that HL(Y 

|Z = z) ≥ HL(Y |X,Z = z), where HL(Y |Z = z) = minE[L(Y,a)|Z = 

z], (10) 

a∈A 

HL(Y |X,Z=z)=X P(X=x|Z=z)HL(Y |X=x,Z=z). 
x∈X 
(11) Then we have the following theorem. 

Theorem 1. If the packet transmission times are one-time slot, 

then for optimal estimators it is always better to keep the 

channels busy. 

Due to space limitation, the proofs of Lemma 1 and 
Theorem 1 are relegated to our future submission. 

Because problem (8)-(9) has a channel resource constraint, 
all of the sensors cannot submit their updates at every time 
slot when N > M. Therefore, we have to design an efficient 
scheduling policy that minimizes the time-average sum of the 
expected penalty of the N sources ensuring that constraint (9) 
is satisfied. We provide the details in the next section. 

V. RESTLESS MULTI-ARMED BANDIT FORMULATION 

Problem (8)-(9) is an RMAB problem where each source n is 
an arm and (∆n(t),Xn,t−∆n(t)) is the state of each arm n. To find 
an optimal solution to the RMAB problem is PSPACE hard [36]. 
A Whittle index policy is known to be asymptotically optimal 
for many RMAB problems [37]. However, it needs to satisfy a 
complicated condition called indexability. Due to the 
complicated nature of the state transitions and non-
monotonic age-penalty functions along with erasure channels, 
it is difficult to establish indexability for our Algorithm 1 Net-
gain Maximization Policy 

1: At time t = 0: 

2: Input λ∗ which is the optimal solution to (14). 

3: Input αn,λ∗(δ,x) in (19) for every source n. 

4: For all time t = 0,1,..., 

5: Update (∆n(t),Xn,t−∆n(t)) for all source n. 

6: Update current “gain” αn,λ∗(∆n(t),Xn,t−∆n(t)) for all source n. 

7: Choose at most M sensors with highest positive “gain”. 

 

problem. Therefore, in this work, we provide a low-complexity 
algorithm that does not need to satisfy indexability. Next, we 
demonstrate that the developed policy is asymptotically 
optimal. 
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A. Relaxation and Lagrangian Decomposition 

Following the standard relaxation and Lagrangian 
decomposition procedure for RMAB [38], the original problem 
in (8)-(9) is relaxed as 

qopt  

 s.t.  (13) 

where the relaxed constraint (13) only needs to be satisfied on 
average, whereas (9) is required to hold at any time t. To solve 
the relaxed problem (12)-(13), we take a dual cost λ ≥ 0 (also 
knows as Lagrange multiplier) for the relaxed constraint. The 
dual problem is given by 

 supq¯(λ), (14) 
λ≥0 

where 

(15) 

The term  in (15) does not depend on 
policy π and hence can be removed. For a given λ, problem 
(15) can be decomposed into N separated sub-problems and 
each sub-problem associated with source n is formulated as 

(16) 

where q¯n(λ) is the optimum value of (16), πn = 

(µn(1),µn(2),...) denotes a sub-scheduling policy for source n, 
and Πn is the set of all causal sub-scheduling policies of source 
n. 

VI. OPTIMAL POLICY VIA DYNAMIC PROGRAMMING 

Given transmission cost λ, the per-arm problem (16) is an 
average-cost infinite horizon MDP with state (∆n(t),Xn,t−∆n(t)). 
We solve (16) by using dynamic programming [16]. The 
Bellman optimality equation for the MDP in (16) is 

 , (17) 

where hn,λ(δ,x) is the relative-value function of the 
averagecost MDP and Qn,λ(δ,x,µ) is the relative action-value 
function defined as 

Qn,λ(δ,x,µ) = 

 

qn(δ,x) − q¯n(λ) + hn,λ(δ + 1,x), ifµ = 0, qn(δ,x) − q¯n(λ) + 

(1 − pn)hn,λ(δ + 1,x) (18) 

+pnE[hn,λ(1,Xn,t−1)|Xn,t−δ = x] + λ,otherwise. 

The relative-value function hn,λ(δ,x) can be computed by using 

relative value iteration algorithm for average-cost MDP [16]. 

Following [26], [34], define the “gain” αn,λ(δ,x) for choosing the 

action µn,λ(t) as αn,λ(δ,x) = Qn,λ(δ,x,0) − Qn,λ(δ,x,1). (19) 

Substituting (18) into (19), we get 

 

By utilizing the “gain” αn,λ(δ,x) in (20), we obtain the optimal 

decision to the relaxed problem (12)-(13) at time t for every 

sensor n as µn(t) = argmaxαn,λ(t)(∆n(t),Xn,t−∆n(t),µ), (21) µ∈{0,1} 

where the dual cost is iteratively updated using the dual 
subgradient ascent method with step size β > 0 [39]: 

 

Let λ∗ be the optimal dual cost to problem (14) to which λ(t) 
converges. We provide a low-complexity algorithm for solving 
problem (8)-(9) in Algorithm 1. We utilize the “gain” defined in 
(19) as the priority measurement for choosing action µ. 
Algorithm 1 takes optimal dual cost λ∗ and the precomputed 
gain αn,λ∗(δ,x) associated with λ∗ as input. Then, for all t ≥ 0, the 
state (∆n(t),Xn,t−∆n(t)) and the associated “gain” 
αn,λ∗(∆n(t),Xn,t−∆n(t)) are updated. Finally, Algorithm 1 
maximizes the “Net-gain” (total gain of all sensors) of the 
system at time t. This is done by selecting at most M sensors 
having the highest positive “gain” at time t. The “Net-gain 
Maximization Policy” in Algorithm 1 does not need to satisfy 
the indexability condition. 

VII. ASYMPTOTIC OPTIMALITY 

In this section, we demonstrate that the ”Net-gain 
Maximization Policy” in Algorithm 1 is asymptotically optimal 
in the same asymptotic regime as the Whittle index policy [38]. 
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Fig. 3: Normalized average penalty vs Number of sources (N) where 
Number of channels are M = 10 with success probability 0.95. 

In this scenario, all N arms are generalized to N classes, and 
the number of arms in each class and the number of channels 
M are scaled by γ, while maintaining a constant ratio between 
them. 

Let Znγ(π∗,{δ,x},µ,t) be a fluid-scaling process with 
parameter γ that represents the expected number of class-n 
arms at state (δ,x) that takes action µ at time slot t under 
policy π∗. Consider the following expected long-term average 
cost 

 

The policy π∗ will be asymptotically optimal if  for all 
π ∈ Π. In this sequel, we introduce the following global 
attractor [40]. 

Definition 1. Global attractor. An equilibrium point Znγ,∗/γ 

under policy π∗ is a global attractor for the process 

Znγ(π∗;t)/γ, if, for any initial point Znγ(π∗;0)/γ, the process 

Znγ(π∗;t)/γ converges to Znγ,∗/γ. 

Theorem 2. Under Definition 1, the policy π∗ is asymptotically 

optimal. Therefore, γ
opt , where πopt is the 

optimal policy for the original RMAB problem (8)-(9). 

Due to space limitation, the proof of Theorem 2 is relegated 
to our future submission. 

VIII. NUMERICAL RESULTS 

In this section, we evaluate the performance of the 
following policies: 

• Periodic Updating: The sensors generate updates at every 
time slot and store in a FIFO queue. Whenever a channel 
is available, an update from the queue is sent. 

• Randomized Policy: If M channel resources are available, 
this policy randomly selects at most M sensors. 

• Net-gain Maximization Policy: See Algorithm 1. 

We consider the same experimental setup of Figure 2 where 
5 robots follow a deterministic policy (they follow a fixed 
path). The cost associated with these 5 robots is zero at every 
time slot because given an initial state, the position of these 
robots can be uniquely determined by following the 
deterministic policy. The goal of the other N − 5 robots is to 
move and scan the environment (e.g., Mars Rovers [41]) and 
send updates when requested. We do not consider any 
termination state for these robots, the goal is to keep scanning 
for infinite-time horizon. Our system consists of M = 10 
erasure channels and the success probability is 0.95. 

The performance comparison of the three policies 
mentioned above is provided in Figure 3. The normalized 
average penalty in Figure 3 is obtained by dividing time-
average cost by the number of robots. From the figure, until N 
≤ M, all of the three policies show the same performance. 
Whenever N > M, periodic updating starts getting worse 
because the queue length is getting higher. In our simulation, 
we have used a buffer size of 20 for periodic updating. 
Moreover, the randomized policy randomly selects at most 5 
sensors for sending updates, whereas the net-gain 
maximization policy makes the decision in a smarter way by 
considering the AoI and the state of the surrounding situation. 
The performance gain of the net-gain maximization policy is up 
to 100 times compared to periodic updating and up to 10 times 
compared to the randomized policy. 

IX. CONCLUSION 

We address the importance of situational awareness in 
safety-critical systems. The general loss function L have 
practical importance and appropriate design of L can address 
many safety-critical issues. In future we will study systems 
where multiple sensors can arrive and leave the system at any 
time. Another interesting direction is to consider a finite time 
horizon problem where there is a termination state while 
encountering a danger. 
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