

of objects could be placed, the object type should also be

included in the action. For now, we consider only one object

type for the action.

Reward Function. The reward function for a single trial

is R(s,a) = {1, if success; −dmin otherwise}, where

dmin is the minimum distance between the ball and the goal

along the ball’s trajectory. The reward is 1 for successful

trials to differentiate between true successes and trials where

the ball bounces out of the goal, where dmin = 0 in both

cases. Uncertainty in the real system’s initial state can cause

the outcome to vary significantly across trials from the same

state and action, so the reward is averaged over 6 trials per

action taken in the real world or in a stochastic simulator. We

empirically found 6 trials provides a good trade-off between

minimizing evaluation time and minimizing variance.

B. Mixture of Experts (MoE) Policy Representation

To represent knowledge learned from past experiences,

we learn a stochastic policy parameterized as a probabilistic

mixture of experts (MoE) that maps an input state to a

multi-modal distribution of actions. The MoE consists of K

Gaussian ªexpertº policies {πk}∀k∈{1,...,K} and a ªgatingº

policy ψ that predicts a categorical distribution over the

experts such that

k ∼ Categorical(ψ(k|s,φ)) (1)

a ∼ πk(a|s,θk), (2)

where φ and θk are learned parameters for the neural

networks representing ψ and πk. k is the expert model index

sampled from the categorical distribution predicted by ψ and

a is the action sampled from the Gaussian distribution with

mean µk and covariance Σk represented by θk.

C. Learning a Mixture of Experts Policy from (Simulated)

Experience

We generate a dataset of prior experiences using a simu-

lated marble run environment by randomly sampling actions

on a set of training tasks until 500 successful and unsuccess-

ful actions are found for each task. Each sample is stored in

the dataset D as a state-action-reward tuple (s,a, R(s,a)).
We do not expect the mixture policy trained in simulation to

transfer perfectly to the real world, but it should provide a

good starting point to search for potential solutions.

Expectation Maximization for Mixture of Experts Poli-

cies. We derive a training procedure from the expectation

maximization (EM) algorithm [20]. The EM algorithm esti-

mates the parameters φ and θ = {θk}k∈1:K that maximize

the complete log-likelihood of the selection variables {zk}
and actions a given the state s. The selection variable zk is

1 if the kth expert generates or predicts the action a and 0
otherwise. The E-step calculates the expected log-likelihood,

given as J(φ,θ) below, where w′
k is the probability zk is

one given the state and action.

J(φ,θ) = E
s,a∼D

[

K
∑

k=1

w′
k

(

logπk(a|s,θk)

+ logψk(s,φ)
)

] (3)

w′
k = P (zk = 1|s,a) =

ψk(s,φ
′)πk(a|s,θ

′
k)

∑K
j=1 ψj(s,φ

′)πj(a|s,θ
′
j)

(4)

The superscript ′ indicates wk is computed using the current

parameter estimates and is not involved in the gradient calcu-

lation. In the standard EM algorithm, the M-step analytically

computes parameters which maximize J(φ,θ). There is not

a closed-form solution when ψ and πk are neural networks

with non-linear activations as in this work so we instead use

a generalized EM algorithm, where the M-step performs a

gradient step to move J(φ,θ) closer to the maximum [21].

Advantage-Weighted Regression. Using the mixture log-

likelihood in (3), we apply advantage-weighted regression

(AWR), which weights the log-likelihood with the exponen-

tial advantage exp(A
π(s,a)
η

) [3], [4], [12]. The advantage

Aπ(s,a) = R(s,a) − V π(s) is a measure of improvement

based on how the reward of an action compares to the

average reward observed from a state under the current

policy. When the advantage is negative, the weights approach

zero and filter out poorly performing actions. The resulting

advantage-weighted objective function is

J(φ,θ) = E
s,a∼D

[

K
∑

k=1

w′
k exp

(

Aπ
′

k(s,a)

η

)

(

log πk(a|s,θk) + logψk(s,φ)
)

]

,

(5)

where η is a Lagrange multiplier associated with constraining

the policy to stay close to the behavior policy πβ that

represents the distribution of data seen so far. Dual gradient

descent can be used to estimate η, but this requires estimating

πβ from the data [19]. We treat η as a fixed hyperparameter,

which has been effective in prior work [3], [4]. In marble

run tasks, the final episode reward is observed immediately

after taking each action, so the value function is the average

reward of actions sampled from the current policy at a

specified state. During offline training, we pre-compute the

per-state values as the average reward of actions observed in

the dataset at each state.

D. Online Learning

The mixture policy trained offline in simulation represents

prior knowledge about what strategies might work well in

different contexts. When new environments or task configu-

rations are encountered, the offline policy is a starting point

from which to perform an online search for robust solutions

in the current context. Expert policies represent promising

regions of the action space to explore. The gating network

directs the search towards the most promising regions.

7245

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 19,2024 at 23:21:49 UTC from IEEE Xplore. Restrictions apply.

Decomposing the Objective Function with Hard Policy

Updates. As a supervised learning algorithm, advantage-

weighted regression is easily adapted to online learning

by incorporating online samples into policy updates. The

objective function defined in (5) requires indiscriminately

optimizing all sub-policies over batches sampled across the

entire dataset with each update step, where samples are

weighted according to responsibilities w′
k. This soft policy

update shares information between policies and is important

during early stages of training to learn a better division of

the state space. We empirically observe that after pre-training

the above soft updates become less effective during online

learning. We assume this is because a locally optimal division

of the state space is learned during pre-training.

To compensate for the declining effectiveness of soft up-

dates, we perform hard policy updates during online learning

by updating expert policies independently using only data

associated with each policy. Performing policy updates using

only the most relevant samples helps sub-policies quickly

specialize to the current task. The individual update rules

can be derived by setting w′
k to 0 or 1 in (5), where 1

is assigned to the component with the highest probability

P (zk = 1|s,a). We decompose (5) into separate objective

functions for the gating policy and each expert policy. The

objective function for policy k is

J(θk) = E
s,a∼Dk

[

exp

(

Aπ
′

k(s,a)

η

)

log πk(a|s,θk)
]

, (6)

where Dk is a subset of the dataset generated by or associated

with the kth policy. We also decompose the advantage

function. The advantage function for the kth policy is defined

as Aπ
′

k(s,a) = Rωk
(s,a)−E

a∼π′

k
[Rωk

(s,a)]. Similarly, the

gating policy’s objective function is

J(ψ) = E
s,k∼D

[

exp

(

Aψ
′

(s, k)

η

)

logψk(s,φ)
]

, (7)

and its advantage function is Aψ
′

(s, k) =
E
a∼π′

k
[Rωk

(s,a)] − Ek∼ψ′ [E
a∼π′

k
[Rωk

(s,a)]]. The gating

policy’s advantage function provides an estimate of how

actions from expert k compare to other experts. A similar

advantage function is defined in hierarchical reinforcement

learning as the advantage over options for determining

option termination criteria [16].

Learning an Approximate Reward Function. During

online learning, the advantage is estimated using learned

reward functions. Learning a single function to approximate

a multi-modal, discontinuous reward function is difficult, so

different learned reward functions are associated with each

expert policy. Each approximate reward function Rωk
(s,a)

is trained using only data generated by the associated expert.

During offline training of the policy, the best divisions of

the state-action space are not yet known, so we estimate

the advantage directly from sampled rewards to avoid bias.

After the mixture policy is trained offline, we perform a hard

assignment of samples to the most likely policy indicated

by responsibilities w′
k and Rωk

(s,a) is pre-trained over

the corresponding subset of data, Dk, by minimizing the

mean-squared-error (MSE) between predicted and observed

rewards. An equal number of positive and negative samples is

used in each update for both pre-training the reward functions

and during online learning. Samples are considered positive

if at least half the trials for the action are successful (i.e.

success rate ≥ 0.5). During online learning, each reward

function is updated using both online and offline samples

from the corresponding policy.

Summary of Online Learning Algorithm. We assume

the online learning phase for each new task is initialized

with the same offline policy and dataset. At each iteration

of online learning, an expert policy and action are sampled

from the mixture policy (k ∼ ψ, a ∼ πk). The action is

executed and stored in the dataset as a tuple (s,a, k, R(s,a)).
The learned reward function Rωk

(s,a) associated with the

current expert k is then updated with a batch of training

points (sk,ak, R(sk,ak)) ∼ Dk containing an even mixture

of positive and negative samples. The policy πk is updated

with a batch of training points (sk,ak, R(sk,ak)) ∼ Dk
using (6) and the gating policy ψ is updated using (7) with a

batch of training points (s,a, k, R(s,a)) ∼ D sampled over

the entire dataset. The batches used for the policy and reward

function updates are composed of a balanced ratio of online-

to-offline samples, providing more aggressive updates than

uniform sampling. The ratio is initially set to 0 and linearly

increased to 1 over N steps, where each batch contains only

online samples by the N th step. For the expert policy and

reward function updates, we increase the ratio to 1 over 25

steps. For the gating network, we increase the ratio more

slowly over 100 steps to preserve exploration and reduce the

risk of premature convergence to a sub-optimal strategy.

Additional Implementation Details. The sub-policies, gat-

ing network, and reward function are all represented as multi-

layer perceptions (MLP) with 2 hidden layers, where each

layer has 256 units and is followed by ReLU activations.

For the sub-policies, the output layer splits into two heads

for the mean and covariance. To estimate the covariance, the

network outputs Cholesky factors A such that Σ = AAT ,

where A is lower triangular and the diagonals of A are

Aii ← exp(Aii)+ ϵ. The Gumbel-Softmax activation, which

provides a differentiable approximation of samples drawn

from a categorical distribution [22], is applied to the output

layer of the gating network. All networks are optimized using

the Adam optimizer.

V. EVALUATION

A. Simulation Setup

The simulated marble run environment is built in Box2D

(box2d.org) using 2D models of the real marble run tracks

extracted from RGB images. The physical parameters (co-

efficient of restitution, friction, and gravity are optimized to

match data from the real system. The ball’s initial position

and velocity are assumed fixed but do vary in the real world

because the ball’s diameter does not match the diameter of

the launching tube and its velocity is not explicitly controlled.

Noise is added to the ball’s initial state to reflect this

7246

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 19,2024 at 23:21:49 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] K. R. Allen, K. A. Smith, and J. B. Tenenbaum, ªRapid trial-and-error
learning with simulation supports flexible tool use and physical
reasoning,º Proceedings of the National Academy of Sciences,
vol. 117, no. 47, pp. 29 302±29 310, 2020. [Online]. Available:
https://www.pnas.org/content/117/47/29302

[2] A. Bakhtin, L. van der Maaten, J. Johnson, L. Gustafson, and R. Gir-
shick, ªPhyre: A new benchmark for physical reasoning,º in Advances

in Neural Information Processing Systems, vol. 32, 2019.
[3] X. B. Peng, A. Kumar, G. Zhang, and S. Levine, ªAdvantage-weighted

regression: Simple and scalable off-policy reinforcement learning,º
arXiv preprint arXiv:1910.00177, 2019.

[4] A. Nair, M. Dalal, A. Gupta, and S. Levine, ªAccelerating
online reinforcement learning with offline datasets,º CoRR, vol.
abs/2006.09359, 2020. [Online]. Available: https://arxiv.org/abs/2006.
09359

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. A. Riedmiller, A. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ªHuman-level control through
deep reinforcement learning,º Nature, vol. 518, pp. 529±533, 2015.

[6] K. Fragkiadaki, P. Agrawal, S. Levine, and J. Malik, ªLearning visual
predictive models of physics for playing billiards,º in ICLR, 2016.

[7] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei,
C. Lawrence Zitnick, and R. Girshick, ªClevr: A diagnostic dataset
for compositional language and elementary visual reasoning,º in
Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), July 2017.
[8] R. Girdhar and D. Ramanan, ªCATER: A diagnostic dataset

for compositional actions and temporal reasoning,º CoRR, vol.
abs/1910.04744, 2019. [Online]. Available: http://arxiv.org/abs/1910.
04744

[9] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine,
ªLearning to poke by poking: Experiential learning of intuitive
physics,º CoRR, vol. abs/1606.07419, 2016. [Online]. Available:
http://arxiv.org/abs/1606.07419

[10] A. Ajay, M. Bauza, J. Wu, N. Fazeli, J. B. Tenenbaum, A. Rodriguez,
and L. P. Kaelbling, ªCombining Physical Simulators and Object-
Based Networks for Control,º in IEEE International Conference on

Robotics and Automation (ICRA), 2019.
[11] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser, ªToss-

ingbot: Learning to throw arbitrary objects with residual physics,º in
Proceedings of Robotics: Science and Systems (RSS), 2019.

[12] G. Neumann and J. Peters, ªFitted q-iteration by advantage weighted
regression,º in Advances in Neural Information Processing Systems,
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, Eds., vol. 21.
Curran Associates, Inc., 2009.

[13] J. Peters, K. Mulling, and Y. Altun, ªRelative entropy policy search,º
in Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.

[14] A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos, N. Heess,
and M. Riedmiller, ªMaximum a posteriori policy optimisation,º
in International Conference on Learning Representations, 2018.
[Online]. Available: https://openreview.net/forum?id=S1ANxQW0b

[15] R. S. Sutton, D. Precup, and S. Singh, ªBetween mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning,º
Artificial intelligence, vol. 112, no. 1-2, pp. 181±211, 1999.

[16] P.-L. Bacon, J. Harb, and D. Precup, ªThe option-critic architecture,º in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31,
no. 1, 2017.

[17] S. E. Yuksel, J. N. Wilson, and P. D. Gader, ªTwenty years of mixture
of experts,º IEEE Transactions on Neural Networks and Learning

Systems, vol. 23, no. 8, pp. 1177±1193, 2012.
[18] C. Daniel, G. Neumann, O. Kroemer, and J. Peters, ªHierarchical

relative entropy policy search,º Journal of Machine Learning

Research, vol. 17, no. 93, pp. 1±50, 2016. [Online]. Available:
http://jmlr.org/papers/v17/15-188.html

[19] M. Wulfmeier, A. Abdolmaleki, R. Hafner, J. T. Springenberg,
M. Neunert, T. Hertweck, T. Lampe, N. Y. Siegel, N. Heess, and M. A.
Riedmiller, ªCompositional transfer in hierarchical reinforcement
learning,º in Robotics Science and Systems, 2020. [Online]. Available:
https://roboticsconference.org/2020/program/papers/54.html

[20] S.-K. Ng and G. McLachlan, ªUsing the em algorithm to train
neural networks: misconceptions and a new algorithm for multiclass
classification,º IEEE Transactions on Neural Networks, vol. 15, no. 3,
pp. 738±749, 2004.

[21] R. M. Neal and G. E. Hinton, ªA view of the em algorithm that justifies
incremental, sparse, and other variants,º in Learning in Graphical

Models, 1998.
[22] E. Jang, S. Gu, and B. Poole, ªCategorical reparameterization

with gumbel-softmax,º in International Conference on Learning

Representations (ICLR), 2016. [Online]. Available: https://arxiv.org/
abs/1611.01144

[23] R. Agarwal, M. Schwarzer, P. S. Castro, A. Courville, and M. G.
Bellemare, ªDeep reinforcement learning at the edge of the statistical
precipice,º Advances in Neural Information Processing Systems, 2021.

7249

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 19,2024 at 23:21:49 UTC from IEEE Xplore. Restrictions apply.

