2023 IEEE International Conference on Robotics and Automation (ICRA) | 979-8-3503-2365-8/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICRA48891.2023.10160759

2023 IEEE International Conference on Robotics and Automation (ICRA 2023)

May 29 - June 2, 2023. London, UK

Learning Exploration Strategies to Solve Real-World Marble Runs

Alisa Allaire! and Christopher G. Atkeson!

Abstract— Tasks involving locally unstable or discontinuous
dynamics (such as bifurcations and collisions) remain challeng-
ing in robotics, because small variations in the environment
can have a significant impact on task outcomes. For such tasks,
learning a robust deterministic policy is difficult. We focus
on structuring exploration with multiple stochastic policies
based on a mixture of experts (MoE) policy representation
that can be efficiently adapted. The MoE policy is composed
of stochastic sub-policies that allow exploration of multiple
distinct regions of the action space (or strategies) and a high-
level selection policy to guide exploration towards the most
promising regions. We develop a robot system to evaluate our
approach in a real-world physical problem solving domain.
After training the MoE policy in simulation, online learning
in the real world demonstrates efficient adaptation within just
a few dozen attempts, with a minimal sim2real gap. Our results
confirm that representing multiple strategies promotes efficient
adaptation in new environments and strategies learned under
different dynamics can still provide useful information about
where to look for good strategies.

I. INTRODUCTION

Developing intelligent systems with the efficient and flex-
ible physical reasoning capabilities of humans remains one
of the greatest challenges in robotics. Tasks involving locally
unstable or discontinuous dynamics (such as bifurcations and
collisions) are particularly difficult because small, possibly
unobservable, variations in the environment can have a
significant impact on the task outcomes. We are inspired
by prior work that proposes simulation-based mechanical
puzzles as benchmarks for physical reasoning [1], [2]. These
puzzles often involve locally unstable and discontinuous
dynamics, emphasizing collisions as multiple objects move
and interact over extended periods of time. Unlike most tasks
addressed using reinforcement learning, actions can only be
taken at the start of the task (setting the initial configuration
of objects). There is no possibility of further control or re-
planning after the objects start to move. Success depends on
reasoning about the task outcome based on the initial state.

While effective for evaluating general-purpose, long-term
physical reasoning, simulation-based benchmarks neglect
properties of real-world systems such as noisy observations
and environment stochasticity that make reasoning difficult.
One contribution of this work is the development of a robot
system to enable evaluation of learning algorithms in a real-
world marble run environment, shown in Fig. 1. Allowing
actions only at the beginning of the task, marble run tasks are
similar to simulation-based physical reasoning benchmarks
but also incorporate real-world stochasticity which can cause

*This material is based upon work supported by the National Science
Foundation under Grant IIS-1849287

Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
{aallaire, cga}@cmu.edu

Fig. 1: The marble run robot autonomously evaluates learn-
ing algorithms on real-world marble run tasks. (a-b) An
example marble run task (a) and solution (b), where the goal
is to place the curved track so the ball lands in the U-shaped
goal. Stochasticity of the ball’s initial state leads to large
variations in outcome for the same action.

varying outcomes for even the same initial state. Addition-
ally, while our robot runs hundreds of trials without human
intervention, it can take up to a minute to setup and execute
a single trial, so learning algorithms evaluated in this domain
must perform well under a limited evaluation budget.

Due to small changes having major effects on task out-
come and the real time duration of marble run tasks, we focus
on learning a structured exploration policy in simulation that
can be efficiently adapted in the real world. Directly learning
a deterministic policy is difficult due to this parameter
sensitivity and the sim-to-real gap. We choose a policy
representation that is stochastic to support exploration and
captures multiple types of solutions in case the strategy
that is optimal in simulation is not applicable in the real
world. Specifically, we use a mixture of experts (MoE)
policy representation that is composed of multiple Gaussian
sub-policies and a high-level selection policy and represents
multiple strategies to achieve the same or similar goals. Our
proposed approach extends advantage-weighted regression
[3], [4] to train a mixture of experts policy from simulated
experiences. While we do not expect the mixture policy
trained offline in simulation to transfer perfectly to the real
world, it should provide a good starting point to perform
an online search for solutions. The sub-policies represent
promising regions of the action space to explore and the
high-level selection policy directs the search towards high-
reward regions. Our experiments show that online learning
successfully fine-tunes the mixture of experts policy within a

979-8-3503-2365-8/23/$31.00 ©2023 IEEE 7243

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 19,2024 at 23:21:49 UTC from IEEE Xplore. Restrictions apply.

few dozen attempts in the real world and even exceeds human
performance on a test task. Our results demonstrate that
representing multiple strategies promotes efficient adaptation
in new environments. Strategies learned in simulation or
under different dynamics can still provide useful information
about where to look for solutions.

II. RELATED WORK

Many environments for learning physical reasoning have
been explored, ranging from physics-based computer games
[5], [6] to physical reasoning benchmarks [1], [2], [7],
[8]. For evaluating real-world physical reasoning capabilities
beyond prediction and question answering, the most common
application is contact-rich manipulation tasks [9], [10], [11].
In these domains robots usually take actions and receive feed-
back at every time-step, which allows re-planning throughout
a task and reduces the effects of uncertainty or error. The
simulation-based physical reasoning environments Tools [1]
and PHYRE [2] allow actions only at the start of a task
and are effective benchmarks for general-purpose, long-term
physical reasoning. Both PHYRE and Tools define tasks
similar to marble run tasks, which all require placing an
object in a scene so it interacts with other objects to reach
a desired goal state. Unlike the tasks in PHYRE and Tools,
our real-world marble run tasks incorporate challenges of
the real world including noisy observations and environment
stochasticity.

We extend advantage-weighted regression (AWR) to mix-
ture of expert policies. AWR formulates a constrained policy
search problem as weighted supervised regression on the
actions, allowing the policy to be easily updated with both
online data and offline data [3], [4]. An earlier instantiation
of this framework incorporated a similar advantage-weighted
policy update [12]. Relative entropy policy search (REPS)
[13] and maximum a posteriori policy optimization (MPO)
[14] are closely related and similarly derived as a constrained
policy search, but using the dual formulation for optimizing
constrained objective functions.

Policy hierarchies in robot learning are often represented
as options, which are temporally extended actions [15],
[16]. In our work, actions are only applied at the start of
the task and options become a set of initial actions which
we represent as a mixture of experts [17]. Hierarchical
extensions to both REPS and MPO have been developed [18],
[19] and our approach is similar reflecting the underlying
similarities between REPS, MPO, and AWR. They focus
on learning hierarchies incrementally from scratch which is
hard and requires imposing additional constraints to learn
distinct and diverse sub-policies. We formulate the problem
in a simpler way by assuming access to a datatset of prior
experiences to initialize the mixture policy using batched
supervised regression. We show that a simulator generates
useful training data in this domain to learn the mixture dis-
tribution’s underlying structure, while online learning adapts
the sub-policies and distribution over policies to a specific
task or environment.

III. THE MARBLE RUN ENVIRONMENT

To demonstrate the challenges associated with the marble
run environment, we define a task which initially consists
of a rectangular track at the top of the environment and a
U-shaped goal in the bottom half of the environment. In
the initial configuration, a ball released at the top of the
environment above the rectangular track will miss the goal,
as shown in Fig. 1a. The robot must then find a configuration
of the curved track that allows the ball to land in the goal.
While this task appears easy given that many humans could
find a solution within just a few attempts, Fig. 1b shows that,
due to slight variations in the environment, an action that is
successful once may not be successful every time.

Preliminary experiments
demonstrate that even for
a simple task, finding so-
lutions that are robust to
stochasticity in the en-
vironment is challenging
even for humans. Fig. 2
shows the average perfor-
mance of 5 humans who
were asked to make 10 at-
tempts to solve a marble
run task. Initially, all par-
ticipants were able to find
actions that were some-
what successful. Small adjustments to the initial object
placement usually produced slightly improved performance,
but nearly all participants eventually required switching
strategies with more drastic changes to the object placement
or angle in order to find more robust actions. We task the
robot with finding actions that are always or nearly always
successful, rather than just finding actions that worked once.

5 = &

=

A B-(Fpi Alssso ~F
=

&

N O P QR S 1T, U V NM
kia AlceN {iHA éie
Fig. 2: Average performance
of 5 humans on a marble run

task over 10 attempts.

IV. FRAMEWORK FOR STRUCTURED
EXPLORATION

A. Problem Definition

We focus on the problem of placing an additional track
in an existing configuration so that the ball lands in the
goal. A marble run task is defined by the initial configu-
ration of all objects in the scene, including the ball, goal,
and additional track pieces. In this paper, we simplify the
problem by specifying the single track piece to be moved.
The full 3D state of the environment is not observable, so
we approximate the environment as 2D and ignore small
out-of-plane movement. The state s is the initial scene
configuration, which concatenates each object’s x, y position
and orientation expressed as [sin(6), cos(#)]. Object positions
are computed relative to the ball’s initial position, which is
fixed across tasks and therefore not included in the state. We
consider tasks with the same number and types of objects
so it is not necessary to include object type in the state.
With tracks magnetically attached to a panel, only the ball
is considered dynamic. The action a is the x, y position and
orientation of the single moved track piece. If different types

7244

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 19,2024 at 23:21:49 UTC from IEEE Xplore. Restrictions apply.

of objects could be placed, the object type should also be
included in the action. For now, we consider only one object
type for the action.

Reward Function. The reward function for a single trial
is R(s,a) = {1, if success; —dum, otherwise}, where
dmin 1s the minimum distance between the ball and the goal
along the ball’s trajectory. The reward is 1 for successful
trials to differentiate between true successes and trials where
the ball bounces out of the goal, where d,,;, = 0 in both
cases. Uncertainty in the real system’s initial state can cause
the outcome to vary significantly across trials from the same
state and action, so the reward is averaged over 6 trials per
action taken in the real world or in a stochastic simulator. We
empirically found 6 trials provides a good trade-off between
minimizing evaluation time and minimizing variance.

B. Mixture of Experts (MoE) Policy Representation

To represent knowledge learned from past experiences,
we learn a stochastic policy parameterized as a probabilistic
mixture of experts (MoE) that maps an input state to a
multi-modal distribution of actions. The MoE consists of K
Gaussian “expert” policies {7 }vke{1,...x} and a “gating”
policy ¢ that predicts a categorical distribution over the
experts such that

k ~ Categorical(v)(k|s, ¢)) (D)
a~ m(als, 0y),)

where ¢ and @) are learned parameters for the neural
networks representing ¢ and 7. k is the expert model index
sampled from the categorical distribution predicted by v and
a is the action sampled from the Gaussian distribution with
mean p;, and covariance X, represented by 0.

C. Learning a Mixture of Experts Policy from (Simulated)
Experience

We generate a dataset of prior experiences using a simu-
lated marble run environment by randomly sampling actions
on a set of training tasks until 500 successful and unsuccess-
ful actions are found for each task. Each sample is stored in
the dataset D as a state-action-reward tuple (s, a, R(s,a)).
We do not expect the mixture policy trained in simulation to
transfer perfectly to the real world, but it should provide a
good starting point to search for potential solutions.

Expectation Maximization for Mixture of Experts Poli-
cies. We derive a training procedure from the expectation
maximization (EM) algorithm [20]. The EM algorithm esti-
mates the parameters ¢ and @ = {0} 1.5 that maximize
the complete log-likelihood of the selection variables {zj}
and actions a given the state s. The selection variable zj is
1 if the k*" expert generates or predicts the action a and 0
otherwise. The E-step calculates the expected log-likelihood,
given as J(¢,0) below, where wj, is the probability zj is

one given the state and action.

s,anv

K
J(¢,0) = EDlZwﬁc(logﬂk(ab,Bk)
S 3)
+logwk<s,¢>)]

VYr(s, @)i (als, 0})
S (s, @) (als, 0))

The superscript ’ indicates wy, is computed using the current
parameter estimates and is not involved in the gradient calcu-
lation. In the standard EM algorithm, the M-step analytically
computes parameters which maximize J(¢, 0). There is not
a closed-form solution when ¢ and 7, are neural networks
with non-linear activations as in this work so we instead use
a generalized EM algorithm, where the M-step performs a
gradient step to move J (¢, 0) closer to the maximum [21].
Advantage-Weighted Regression. Using the mixture log-
likelihood in (3), we apply advantage-weighted regression
(AWR), which weights the log-likelihood with the exponen-
tial advantage exp(%) [3], [4], [12]. The advantage
A™(s,a) = R(s,a) — V™(s) is a measure of improvement
based on how the reward of an action compares to the
average reward observed from a state under the current
policy. When the advantage is negative, the weights approach
zero and filter out poorly performing actions. The resulting
advantage-weighted objective function is

K /
ATk
E wﬁg exp (k E}S’ a) >

k=1

<log m(als, Ox) + log (s, d’))] ;

wy, = Pz = 1]s,a) =

“4)

J(¢70) =

E
s,a~D

®)

where 7 is a Lagrange multiplier associated with constraining
the policy to stay close to the behavior policy mg that
represents the distribution of data seen so far. Dual gradient
descent can be used to estimate 7, but this requires estimating
mg from the data [19]. We treat 7 as a fixed hyperparameter,
which has been effective in prior work [3], [4]. In marble
run tasks, the final episode reward is observed immediately
after taking each action, so the value function is the average
reward of actions sampled from the current policy at a
specified state. During offline training, we pre-compute the
per-state values as the average reward of actions observed in
the dataset at each state.

D. Online Learning

The mixture policy trained offline in simulation represents
prior knowledge about what strategies might work well in
different contexts. When new environments or task configu-
rations are encountered, the offline policy is a starting point
from which to perform an online search for robust solutions
in the current context. Expert policies represent promising
regions of the action space to explore. The gating network
directs the search towards the most promising regions.

7245

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 19,2024 at 23:21:49 UTC from IEEE Xplore. Restrictions apply.

Decomposing the Objective Function with Hard Policy
Updates. As a supervised learning algorithm, advantage-
weighted regression is easily adapted to online learning
by incorporating online samples into policy updates. The
objective function defined in (5) requires indiscriminately
optimizing all sub-policies over batches sampled across the
entire dataset with each update step, where samples are
weighted according to responsibilities wj.. This soft policy
update shares information between policies and is important
during early stages of training to learn a better division of
the state space. We empirically observe that after pre-training
the above soft updates become less effective during online
learning. We assume this is because a locally optimal division
of the state space is learned during pre-training.

To compensate for the declining effectiveness of soft up-
dates, we perform hard policy updates during online learning
by updating expert policies independently using only data
associated with each policy. Performing policy updates using
only the most relevant samples helps sub-policies quickly
specialize to the current task. The individual update rules
can be derived by setting wj, to 0 or 1 in (5), where 1
is assigned to the component with the highest probability
P(z, = 1|s,a). We decompose (5) into separate objective
functions for the gating policy and each expert policy. The
objective function for policy k is

[exp <A7Tk7(78’a)> log 7(als, 0x)|, (6)

where Dy, is a subset of the dataset generated by or associated
with the k' policy. We also decompose the advantage
function. The advantage function for the k*" policy is defined
as A™k(s,a) = R, (s, a)—Eavr [Ruw, (s, a)]. Similarly, the
gating policy’s objective function is

[EXP (W) logwk(s,@}, (7

and its advantage function is AY'(s, k) =
Eanr [Ruwy (8,8)] — Egny [Eann [Ruw, (s,a)]]. The gating
policy’s advantage function provides an estimate of how
actions from expert & compare to other experts. A similar
advantage function is defined in hierarchical reinforcement
learning as the advantage over options for determining
option termination criteria [16].

Learning an Approximate Reward Function. During
online learning, the advantage is estimated using learned
reward functions. Learning a single function to approximate
a multi-modal, discontinuous reward function is difficult, so
different learned reward functions are associated with each
expert policy. Each approximate reward function R,,, (s,a)
is trained using only data generated by the associated expert.
During offline training of the policy, the best divisions of
the state-action space are not yet known, so we estimate
the advantage directly from sampled rewards to avoid bias.
After the mixture policy is trained offline, we perform a hard
assignment of samples to the most likely policy indicated
by responsibilities wj, and R, (s,a) is pre-trained over

JO) = E

s,a~Dy,

J)= E

s,k~D

the corresponding subset of data, Dy, by minimizing the
mean-squared-error (MSE) between predicted and observed
rewards. An equal number of positive and negative samples is
used in each update for both pre-training the reward functions
and during online learning. Samples are considered positive
if at least half the trials for the action are successful (i.e.
success rate > (.5). During online learning, each reward
function is updated using both online and offline samples
from the corresponding policy.

Summary of Online Learning Algorithm. We assume
the online learning phase for each new task is initialized
with the same offline policy and dataset. At each iteration
of online learning, an expert policy and action are sampled
from the mixture policy (k ~ 1, a ~). The action is
executed and stored in the dataset as a tuple (s, a, k, R(s, a)).
The learned reward function R,,, (s,a) associated with the
current expert k£ is then updated with a batch of training
points (sg,ay, R(sk,a)) ~ Dy containing an even mixture
of positive and negative samples. The policy 7 is updated
with a batch of training points (sg,ag, R(sx,ax)) ~ D
using (6) and the gating policy v is updated using (7) with a
batch of training points (s, a, k, R(s,a)) ~ D sampled over
the entire dataset. The batches used for the policy and reward
function updates are composed of a balanced ratio of online-
to-offline samples, providing more aggressive updates than
uniform sampling. The ratio is initially set to O and linearly
increased to 1 over IV steps, where each batch contains only
online samples by the N*" step. For the expert policy and
reward function updates, we increase the ratio to 1 over 25
steps. For the gating network, we increase the ratio more
slowly over 100 steps to preserve exploration and reduce the
risk of premature convergence to a sub-optimal strategy.

Additional Implementation Details. The sub-policies, gat-
ing network, and reward function are all represented as multi-
layer perceptions (MLP) with 2 hidden layers, where each
layer has 256 units and is followed by ReLU activations.
For the sub-policies, the output layer splits into two heads
for the mean and covariance. To estimate the covariance, the
network outputs Cholesky factors A such that ¥ = AAT,
where A is lower triangular and the diagonals of A are
Ay + exp(A;;) +e. The Gumbel-Softmax activation, which
provides a differentiable approximation of samples drawn
from a categorical distribution [22], is applied to the output
layer of the gating network. All networks are optimized using
the Adam optimizer.

V. EVALUATION
A. Simulation Setup

The simulated marble run environment is built in Box2D
(box2d.org) using 2D models of the real marble run tracks
extracted from RGB images. The physical parameters (co-
efficient of restitution, friction, and gravity are optimized to
match data from the real system. The ball’s initial position
and velocity are assumed fixed but do vary in the real world
because the ball’s diameter does not match the diameter of
the launching tube and its velocity is not explicitly controlled.
Noise is added to the ball’s initial state to reflect this

7246

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 19,2024 at 23:21:49 UTC from IEEE Xplore. Restrictions apply.

~2 1.00
@ £ 2(1&‘\
;E 10" \ o2 0.67
< N w
—g 10° %0.50
£ s 2033
o 10 3
S ., 0.7
£10
S s 0.00
w10 20 40 60 80 100

Task Index

(a)

Test Tasks
Il Original

(b)

[Shifted

Dynamics:

Fig. 3: (a) Solution probabilities per task estimated over 10,000 random actions in simulation. Tasks increase in difficulty from
left to right. (b) Success rate distribution of actions with success rate > 0 out of 10,000 randomly sampled actions. Results
are shown for 5 test tasks, sorted in order of increasing difficulty. The width at each point corresponds to the proportion
of occurrences with a success rate of that value. Results are also shown for different simulation dynamics (shifted) where
we apply a horizontal wind-like force in the same direction the ball rolls off the initial rectangular track. Depending on the
environment dynamics, it may be more difficult to find actions with high success rates for some tasks.

stochasticity. For some experiments, we add an additional
horizontal gravitation force which acts like wind to represent
a shift in dynamics from the training environment to the test
environment. We add this force in the same direction that
the ball rolls off the rectangular track to prevent cases where
wind slows the ball to a stop and the task become unsolvable.

B. Metrics

The average success rate is used as a performance metric,
where the success rate refers to the number of successful
trials out of 6 taken for each action. We find aggregating
performance across tasks computed using the arithmetic
mean can be dominated by outlier tasks (i.e. very easy or very
difficult tasks). We use the inter-quartile mean (IQM), which
is less sensitive to outliers and stratified bootstrap confidence
intervals to report aggregate performance [23].

C. Task Dataset Generation

We randomly generate 100 marble run tasks with varying
initial configurations of a long rectangular track and a U-
shaped goal. The objective is to place a curved track so the
ball lands in the goal. On the real system, the ball is dropped
through a fixed tube so we assume its mean initial position
and velocity are the same for every task. The rectangular
track is placed near the tube to catch the ball, but varies
slightly in x, y, and 6. The goal position is more varied,
where the range of nearly spans the environment width, the
range of y spans the region below the rectangular track, and
its angle is always 0. We use task generation scripts from
the PHYRE code-base to ensure tasks are non-trivial and
sufficiently diverse [2]. The tasks are split into 80 training,
10 validation, and 10 test tasks.

Difficulty of Marble Run Tasks. We evaluate task diffi-
culty using the stochastic simulation environment by estimat-
ing the solution probability for each task as the average suc-
cess rate of 10,000 randomly sampled actions. The solution
probabilities shown in Fig. 3a demonstrate varying difficulty
across tasks, with some requiring more than 10,000 actions
before finding a solution with random sampling alone.

The average success rate that can be achieved for each
task depends on the environment dynamics and may be

considerably less than 1 on difficult tasks, which is shown
in Fig. 3b. When a wind-like force is introduced in the
environment, lower success rates under shifted dynamics
indicate some tasks are more difficult to solve. If finding
actions with success rates of 1 is possible, such actions may
be rare, difficult to reproduce, or occur by chance. Estimating
the success rate with more than 6 trials per action would
reduce the occurrence of finding high success rate actions
by chance, but with increased run-time.

D. Method Comparisons

Offline Mixture of Experts [Offline]: We evaluate the
mixture of experts policy’s performance after training offline
on the simulated dataset, as described in Section IV-C.
Offline performance is reported as the average success rate
of 20 actions sampled from the mixture policy and evaluated
on the test tasks. Actions are selected by sampling an expert
policy from the categorical distribution over policies (i.e. the
gating network) and then using the mean of the sampled
policy as the action to evaluate. Online Mixture of Experts
[Online]: The mixture of experts policy is updated with
online learning, as described in Section IV-D, by attempting
100 actions and updating the policy after each attempt. Every
5 attempts, we take an additional action to evaluate the mean
of the current expert policy and record the performance.
These evaluation actions are used only to report perfor-
mance and are not used in the policy update. Simulation
Performance Baseline [Sim Baseline]: As a performance
baseline for simulation-based experiments, we rank 10,000
randomly sampled actions for each test task using a perfect
model of the evaluation environment (i.e. the simulator). The
average success rate of the top 5 actions ranked by the model
is reported. As the number of sampled actions approaches
infinity, the baseline performance would represent the best
performance that could possibly be achieved on the simulated
test tasks. The baseline’s reported performance may be lower
than the true best performance because it is limited to ranking
10,000 actions per task. Single Gaussian Policy [Single]: To
emphasize the importance of representing multiple strategies,
we compare the MoE policy performance to that of a single

7247

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 19,2024 at 23:21:49 UTC from IEEE Xplore. Restrictions apply.

Online = = =Offline Online (Single) = = =Offline (Single) = = -Sim Baseline
1.0 1.0

1.0 1.0
[}]
] 0.8 = 0.8
0.8 £~ 0.8
B e e e e e .. ()6 A 0.6
3. R R RS m——— 3 0.6| e e e :
5 s [T
|77] 0.4 U2) i m m e 0.4
004 o 04
2 b
502 02 502 02
< 0.0 0.0 < 0.0 0.0

(] 25 50 75 o> 0 1 2 3 4 5 6 7 8 9 -0 25 50 75 o™ 0 1 2 3 4 5 6 7 8 9
Number of Attempts Task Index Number of Attempts Task Index

(a) Simulation

(b) Simulation with Wind

Fig. 4: Online learning performance in (a) simulation and (b) simulation with a wind-like force producing different dynamics
than the offline dataset. Average success rate vs. number of attempts (per task) is shown for the evaluation steps taken every
5 attempts during online learning. The bar charts show the average success rate over all evaluation steps for each task.

Gaussian policy trained using the same procedures as in
Sections IV-C and IV-D, except only a single policy is used
so no gating network is learned.

E. Simulation Experiments

In Fig. 4, we show the average success rate of evaluation
steps taken every 5 attempts during online learning in simu-
lation (Fig. 4a) and with different simulated dynamics than
the offline dataset (Fig. 4b). The bar charts show the per-task
success rates averaged over all evaluation steps.

When the dynamics of the training and test environments
match, the performance gained by representing multiple
strategies is less pronounced. The offline performance of
the single Gaussian policy falls slightly below the MoE
policy, likely due to the single Gaussian policy averaging
over multiple solution regions which may include pockets
of lower reward regions between them. The MoE policy can
represent distinct solution regions as separate policies which
allows the policies to fit more closely to the high reward
regions and converge more quickly during online learning.

The benefits of representing multiple strategies are more
easily observed when the dynamics of the test environment
do not match the dynamics of the training environment,
as in Fig. 4b. At the start of convergence, after around
25 attempts, the MoE continues to increase beyond the
performance of the single Gaussian policy. This indicates
that the MoE policy is more capable of escaping local
optima by switching between different candidate solutions.
Escaping local optima is especially important under differ-
ent dynamics, because the best strategies for a task will
change depending on the dynamics. The relative robustness
of the MoE policy to shifts in dynamics is further shown
by the offline policy performance which is less affected
by the shifted dynamics than the single Gaussian policy.
Please visit https://sites.google.com/view/learning-strategies-
icra2023/home to view supplementary videos.

E Real-World Experiments

Fig. 5a shows offline and online MoE policy performance
on the real system, evaluated on a random subset of 5 test
tasks. We also limit online learning to just 60 attempts to

Online = ==Offline = = -Human Baseline

A B-(Fpi Az 4B
= A B = %
g
= &

£

SM M ™M . M SM
kia Apele i éie

(b) Test Task 7

M M .M
kia AReeNe ifFa éfe
(a) Real World

Fig. 5: (a) Online learning performance in the real world
evaluated on a subset of 5 test tasks. (b) Comparison to
human performance for a single test task.

reduce run-time. Despite the mismatched dynamics between
the simulation environment and the real world, the MoE
policy achieves an average success rate just over 0.8 within a
few dozen attempts, which is consistent with the simulation
results. In Fig. 5b, we compare the performance of the MoE
policy to the human performance from Fig. 2 which was
evaluated on test task 7. We plot the average performance
from the last 5 attempts as the human baseline. The MoE
policy starts off with around the same performance as the
human baseline, but eventually exceeds human performance.
By the end of online learning, the average performance of the
MoE policy is hovering between 0.7 and 1 so the asymptotic
performance is likely in the range of 0.8-0.9 for that task.

VI. CONCLUSIONS

We present a method using a mixture of experts policy
to represent multiple strategies for solving marble run tasks.
Our experiments demonstrate that, even when trained offline
on simulated data, online learning quickly adapts the policy
to solve new marble run tasks in the real world. Finally, by
developing a robot system to evaluate the proposed approach
on real-world marble run tasks, this work emphasizes the
importance of enabling experimental evaluation in domains
that involve complex dynamic interactions in the physical
world.

7248

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 19,2024 at 23:21:49 UTC from IEEE Xplore. Restrictions apply.

[1]

[2]

[3]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

K. R. Allen, K. A. Smith, and J. B. Tenenbaum, “Rapid trial-and-error
learning with simulation supports flexible tool use and physical
reasoning,” Proceedings of the National Academy of Sciences,
vol. 117, no. 47, pp. 29302-29310, 2020. [Online]. Available:
https://www.pnas.org/content/117/47/29302

A. Bakhtin, L. van der Maaten, J. Johnson, L. Gustafson, and R. Gir-
shick, “Phyre: A new benchmark for physical reasoning,” in Advances
in Neural Information Processing Systems, vol. 32, 2019.

X. B. Peng, A. Kumar, G. Zhang, and S. Levine, “Advantage-weighted
regression: Simple and scalable off-policy reinforcement learning,”
arXiv preprint arXiv:1910.00177, 2019.

A. Nair, M. Dalal, A. Gupta, and S. Levine, “Accelerating
online reinforcement learning with offline datasets,” CoRR, vol.
abs/2006.09359, 2020. [Online]. Available: https://arxiv.org/abs/2006.
09359

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. A. Riedmiller, A. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, pp. 529-533, 2015.
K. Fragkiadaki, P. Agrawal, S. Levine, and J. Malik, “Learning visual
predictive models of physics for playing billiards,” in ICLR, 2016.

J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Feli,
C. Lawrence Zitnick, and R. Girshick, “Clevr: A diagnostic dataset
for compositional language and elementary visual reasoning,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017.

R. Girdhar and D. Ramanan, “CATER: A diagnostic dataset
for compositional actions and temporal reasoning,” CoRR, vol.
abs/1910.04744, 2019. [Online]. Available: http://arxiv.org/abs/1910.
04744

P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine,
“Learning to poke by poking: Experiential learning of intuitive
physics,” CoRR, vol. abs/1606.07419, 2016. [Online]. Available:
http://arxiv.org/abs/1606.07419

A. Ajay, M. Bauza, J. Wu, N. Fazeli, J. B. Tenenbaum, A. Rodriguez,
and L. P. Kaelbling, “Combining Physical Simulators and Object-
Based Networks for Control,” in IEEE International Conference on
Robotics and Automation (ICRA), 2019.

A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser, “Toss-
ingbot: Learning to throw arbitrary objects with residual physics,” in
Proceedings of Robotics: Science and Systems (RSS), 2019.

G. Neumann and J. Peters, “Fitted g-iteration by advantage weighted
regression,” in Advances in Neural Information Processing Systems,
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, Eds., vol. 21.
Curran Associates, Inc., 2009.

J. Peters, K. Mulling, and Y. Altun, “Relative entropy policy search,”
in Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.
A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos, N. Heess,
and M. Riedmiller, “Maximum a posteriori policy optimisation,”
in International Conference on Learning Representations, 2018.
[Online]. Available: https://openreview.net/forum?id=S1ANxQWOb
R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning,”
Artificial intelligence, vol. 112, no. 1-2, pp. 181-211, 1999.

P-L. Bacon, J. Harb, and D. Precup, “The option-critic architecture,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31,
no. 1, 2017.

S. E. Yuksel, J. N. Wilson, and P. D. Gader, “Twenty years of mixture
of experts,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 23, no. 8, pp. 1177-1193, 2012.

C. Daniel, G. Neumann, O. Kroemer, and J. Peters, “Hierarchical
relative entropy policy search,” Journal of Machine Learning
Research, vol. 17, no. 93, pp. 1-50, 2016. [Online]. Available:
http://jmlr.org/papers/v17/15-188.html

M. Wulfmeier, A. Abdolmaleki, R. Hafner, J. T. Springenberg,
M. Neunert, T. Hertweck, T. Lampe, N. Y. Siegel, N. Heess, and M. A.
Riedmiller, “Compositional transfer in hierarchical reinforcement
learning,” in Robotics Science and Systems, 2020. [Online]. Available:
https://roboticsconference.org/2020/program/papers/54.html

S.-K. Ng and G. McLachlan, “Using the em algorithm to train
neural networks: misconceptions and a new algorithm for multiclass
classification,” IEEE Transactions on Neural Networks, vol. 15, no. 3,
pp. 738-749, 2004.

[21]

[22]

[23]

7249

R. M. Neal and G. E. Hinton, “A view of the em algorithm that justifies
incremental, sparse, and other variants,” in Learning in Graphical
Models, 1998.

E. Jang, S. Gu, and B. Poole, “Categorical reparameterization
with gumbel-softmax,” in International Conference on Learning
Representations (ICLR), 2016. [Online]. Available: https://arxiv.org/
abs/1611.01144

R. Agarwal, M. Schwarzer, P. S. Castro, A. Courville, and M. G.
Bellemare, “Deep reinforcement learning at the edge of the statistical
precipice,” Advances in Neural Information Processing Systems, 2021.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 19,2024 at 23:21:49 UTC from IEEE Xplore. Restrictions apply.

