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ABSTRACT 

The primary goal of this study was to test the hypothesis that a hybrid Intrinsic Frequency-machine-learning 

approach (IF-ML) can accurately evaluate total arterial compliance (TAC) and aortic characteristic impedance (Zao) 

from a single noninvasive carotid pressure waveform in both female and male with heart failure (HF). TAC and 

Zao are cardiovascular biomarkers with established clinical significance. TAC is lower and Zao is higher in females 

than males, so females are more susceptible to consequent deleterious effects of these. While the principles of TAC 

and Zao are pertinent to a multitude of cardiovascular diseases including HF, their routine clinical use is limited 

due to the requirement of simultaneous measurements of flow and pressure waveforms. For this study, the data were 

obtained from the Framingham Heart Study (n=6201, 53% females). The reference values of Zao and TAC were 

computed from carotid pressure and aortic flow waveforms. Intrinsic frequency (IF) parameters of carotid pressure 

waveform were used in machine-learning models. IF models were developed on n=5168 of randomly selected data 

and blindly tested the remaining data (n=1033). The final models were evaluated on HF patients. Correlations 

between IF-ML and reference values in all HF and HFpEF for TAC were 0.88 and 0.90 and for Zao were 0.82 and 

0.80 respectively. The classification accuracy in all HF and HFpEF for TAC were 0.9 and 0.93 and for Zao were 

0.81 and 0.89 respectively. In conclusion, IF-ML method provides an accurate estimation of TAC and Zao in all 

subjects with HF and in the general population.  
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INTRODUCTION 

Heart failure (HF) currently affects about 6 million American adults with more prevalence in females than males 

among the elderly population (≥80 years) 1. By 2030, it is estimated that 3% of the total population will be living 

with HF 1. Despite advances in treatment and therapy optimization, 30-day rehospitalization rates among HF 

patients remain high (>25%) 2. Around 50% of patients have heart failure with preserved ejection fraction (HFpEF). 

The occurrence of HFpEF is increasing, and studies consistently indicate that  HFpEF is more prevalent in females 

3. Previous studies have shown the significance of ventricular-arterial coupling (VAC) in cardiac and aortic 

mechanics, as well as its role in the pathophysiology of cardiac disease4. Total arterial compliance (TAC) and aortic 

characteristic impedance (Zao) are two important cardiovascular biomarkers that combine the effects of arterial 

load on LV function4. Furthermore, it is now well-accepted that comprehensive evaluations of VAC necessitate 

measurements of pulsatile workload determinants such Zao and TAC 4. However, their routine clinical use is limited 

due to the requirement of simultaneous measurements of both central flow and pressure waveforms. Therefore, the 

evaluation of TAC and Zao from a single carotid pressure waveform may pave the way for routine clinical use of 

these biomarkers for risk assessment, management, and monitoring of not only HFpEF but also heart failure with 

reduced ejection fraction (HFrEF). Intrinsic frequency (IF) method is a physics-based systems approach for the 

analysis of coupled left ventricle-arterial system. The IF method uses a pressure waveform to extract the IF 

parameter 𝜔1 which is dominated by the contractile state of the heart and 𝜔2 which is strongly dependent on the 

vascular dynamics 5,6. Using Framingham Heart Study (FHS) data, Cooper et al. 7 recently showed that both 𝜔1 and 

𝜔2 predict heart failure events after adjustment for traditional CVD risk factors, heart rate, and the systolic ejection 

period. Given the reduced order nature of the IF methods and its clinical significance in detecting and predicting 

cardiovascular events such as HF, the IF method is an excellent candidate to be combined with machine learning 

approaches. The primary goal of this study was to test the hypothesis that hybrid IF-based machine learning (IF-

ML) approaches can accurately evaluate TAC and Zao from a single carotid pressure waveform in healthy 

volunteers and HF patients.  

METHODS 

Our data is from Framingham Heart Study. Details about the participants and noninvasive hemodynamic 

measurements have been provided in previous publications7,8. This population consisted of individuals aged 19-90 

and included both healthy participants and cardiovascular diseases including a minority with heart failure. HF 

patients with left ventricle ejection fraction (LVEF) lower than 40% are recognized as HFrEF and HF patients with 

LVEF>50% are always considered as HFpEF 9. We considered LVEF=45% as a cutoff in this study to limit HF 

categorization to only two categories, HFpEF (above) and HFrEF (below)7.  
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Hybrid Intrinsic Frequency-Machine Learning (IF-ML) Model Development 

To test this our hypothesis, we developed and validated hybrid IF-ML models for computation of TAC and Zao 

using patients and healthy volunteers from the Framingham Heart Study (FHS) (n=6201; 53% females). The “pulse 

pressure method” (PPM) was used to compute the reference total arterial compliance (TAC) from aortic flow and 

pressure waveforms 10. The reference aortic characteristic impedance (Zao) was computed using the pressure-flow 

loop method as described by Bollache et al. 11. In this method, Zao is computed from the slope of the early systolic 

part of the pressure-flow loop. IF method, which is a reduced-order approach for capturing the dynamics of the 

cardiovascular system, was applied to carotid pressure waveforms. IF parameters were calculated using an L2-

minimization formulation with a non-calibrated pressure waveform as an input6,12. The outputs are first and second 

main IFs, to 𝜔1 and 𝜔2, intrinsic phases, 𝜑1 and 𝜑2, and intrinsic envelops, 𝑅𝑠 and 𝑅𝑑. Further details about the 

mathematics, convergence, and robustness of the intrinsic frequencies (IFs) calculation have been described in 

previous studies 6,12-14. Visualization of the IF method and its related physical representations are provided in the 

supplementary material (Supplement A). 

To avoid bias, and overcome the limitation associated with the total number of HF patients (n=65) in the 

Framingham database, we developed, validated, and blind-tested the IF-Model using 83% of the entire population 

(n=5168) that also included healthy participants and non-HF CVD patients. Before starting the development of the 

IF-ML models, we set aside randomly selected portion of the data (n=1033, 17%) for a blind stratified test (a so-

called “external validation”). This holdout set was kept blind to all the stages of the parameter selection, training, 

and development of the models. In the final step, the accuracy of the IF-ML models were assessed among HFpEF 

and HFrEF patients in both males and females. By adopting this procedure, we sought to avoid any bias that may 

be introduced by hemodynamic similarities between HFpEF or HFrEF patients. 

IF-ML method for Estimation of TAC and Zao  

After setting aside the blind holdout set described above, a feature selection procedure was performed using 

permutation feature importance and random forest feature importance methods applied on a comprehensive set of 

physically and physiologically relevant parameters (Setall). The Setall contained 3 groups of parameters. Group 1 

consisted of the main IF parameters mentioned above (𝜔1, 𝜔2, 𝜑1, 𝜑2, and 𝐸𝑟). Group 2 included normalized and 

corrected versions of 𝜔1 and 𝜔2 such as 𝜔1𝑁, 𝜔2𝑁, 𝜔̄1, 𝜔̄2, 𝜔1𝐶 , and 𝜔2𝐶 (see Supplement A for definitions). 

Group 3 consisted of physiological and demographic data such SBP, DBP, pulse pressure (PP), heart rate (HR), 

age, height, and weight (see details in Supplement B). 
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STATISTICAL ANALYSES 

Values are presented as means ± standard deviation (SD). Pearson’s correlation coefficient (R score), root mean 

square error (RMSE) were used to assess the accuracy between actual and predicted values. Limit of agreement 

(LoA) and bias form Bland-Altman (BA) analysis were used to quantify the agreement between predicted and 

reference values. In addition to estimating TAC and Zao, we tested the classification performance of the estimated 

TAC and Zao among HF patients. We used thresholds of 0.6 (mL/mmHg) and 0.15(mmHg.s/mL) for TAC and Zao 

classifications respectively (see details in Supplement C). Sensitivity, specificity, and accuracy were used as 

evaluation metrics for classification: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =   (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)/(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) , 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =   (𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)/(𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) , 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)/(𝐴𝑙𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝐴𝑙𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) 

True positive are the cases that are predicted as low compliance/high impedance and are labeled as diseased. True 

negative are cases that are predicted as high compliance/low impedance and are labeled as healthy.  

RESULTS 

Table 1 represents the characteristics of the entire study population as well as patients with HF. Figure 1 

demonstrates the agreement between estimated TAC and Zao by IF-ML models and the reference values in the 

blind holdout set (external validation). The R score, RMSE, and bias of the IF-ML model for TAC in the blind 

holdout set were 0.89 (P-value<0.0001), 0.16 (mL/mmHg), and 0 respectively. The R score, RMSE, and bias of the 

IF-ML model for Zao in the blind holdout set were 0.80 (P-value<0.0001), 0.03 (mmHg.s/mL), and 0 respectively 

(Table 2).  

Performance of IF-ML models among HF population 

We further investigated the model's performance for all HF patients, including the HFpEF and HFrEF 

subgroups. The correlation (R score) between IF-ML values of TAC and the reference values for all HF, HFpEF 

and HFrEF were 0.88, 0.90, and 0.84 respectively. The R score between IF-ML values and reference values of Zao 

for all HF, HFpEF and HFrEF were 0.82, 0.80, and 0.77 respectively (Table 2). The regression statistics between 

reference values and model predictions in males and females is presented in Table 2. The sensitivity, specificity, 

and accuracy of IF-ML models for classifying reduced TAC and elevated Zao in HF groups are provided in Table 

3 (The details of selecting the TAC and Zao cutoff values are provided in Supplement C). 
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DISCUSSION 

In this study, we introduced a hybrid intrinsic frequency machine learning (IF-ML) method for calculating TAC 

and Zao using a single noninvasive carotid pressure waveform and baseline patient characteristics without requiring 

flow or velocity measurements. This method can significantly improve the practicality of usage of TAC and Zao in 

heart failure patients. The principal finding of this study is that the proposed pressure-only IF-ML method provides 

an accurate estimation of TAC and Zao in heart failure patients (both HFpEF and HFrEF) and in the general 

population of community-based Framingham Heart Study. The performance of our IF-ML approach for calculation 

of TAC and Zao was excellent particularly among the females HF patients.  

Our IF-ML algorithm has several notable advantages: (1) it requires fewer input features and has better 

performance than brute-force methods that use the entire pressure waveform (See supplementary material); (2) IF 

is  robust against signal noise on pressure waveforms12; and (3) this IF-ML algorithm can be deployed on 

inexpensive handheld devices (e.g. optical tonometry, iPhone) to facilitate the routine noninvasive evaluation of 

TAC and Zao13,15. Additionally, scalability and reconciliation of IF parameters have been established across various 

measurement platforms and different species such as rat, rabbit and human14; therefore, the results of the preclinical 

studies that are focused on specific therapeutic approaches can be translated and reconciled for clinical use with 

minimal effort.   

The relatively low-cost nature of our proposed method and its technology platform has relevance in 

socioeconomically disadvantaged groups. One application of our hybrid IF-ML model is in assessing the role of 

TAC and Zao as therapeutic response biomarker. This is particularly important in monitoring and treatment of 

patients with HF, especially HFpEF. Our IF-ML may be an appropriate therapeutic response tool to serially monitor 

HF patients with a remote monitoring platform. Moreover, such a platform could rely on inexpensive wireless hand-

held devices15 or a smartphone 5 and reach more patients due to smaller upfront costs. Similarly, our proposed 

approach could serve as a non-invasive alternative in early-stage (Phase 1 and 2) clinical trials. This could have 

significant implications, potentially reducing costs and enhancing efficiency in the development of new drug and 

device therapies. 

LIMITATIONS 

Although our study has several strengths as noted above, it also has limitations. All carotid pressure waveforms 

were measured using one type of platform, piezoelectric arterial applanation tonometry (Cardiovascular 

Engineering Inc). However, this may not affect the performance of our approach since IF method is agnostic to the 

measurement platform as shown by Alavi et al14. Finally, our data from were comprised predominantly of white 
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participants of Western European descent from Framingham Heart Study, so our models may not be generalizable 

to other racial or ethnic groups.  

CONCLUSIONS 

We present a novel hybrid intrinsic frequency machine learning approach (IF-ML) for calculating total arterial 

compliance (TAC) and aortic characteristic impedance (Zao) from a single noninvasive carotid pressure waveform 

in HF patients. This method only relies on uncalibrated noninvasive carotid waveform and concurrent systemic 

blood pressure and patient characteristics. As such, this method can be programmed into a hand-held device for an 

at-home, patient administered test to assess TAC and Zao. Future studies in HF patients are needed to evaluate the 

role for IF-ML based TAC and Zao as potential therapeutic response biomarkers for a non-invasive remote 

hemodynamic monitoring platform. Our method facilitates the evaluation of TAC and Zao in clinical practice that 

may be used for risk assessment, management, and monitoring of HF, especially in females who have lower TAC 

and higher Zao than men. 
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Fig. 1 The agreement between intrinsic-frequency-machine-learning (IF-ML) models and the reference values in 

the blind holdout set (external validation). A (left): scatter plot of the total arterial compliance (TAC) form IF-ML 

(y-axis) versus the reference value (x-axis). B (right): scatter plot of the aortic characteristic impedance (Zao) form 

IF-ML (y-axis) versus the reference value (x-axis). 
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Table 1. Characteristics of the study population 

All participants 

Parameter 
All population 

(n=6201) 

Males 

(n=2931) 

Females 

(n=2931) 
HF (n=65)* HFpEF (n=30) HFrEF (n=30) 

Age, y 49.74 ± 15.27 49.95± 15.23 49.55± 15.31 68.83 ± 13.57 72.73 ± 11.76 65.26 ± 14.27 

, bpm1ω 87.56 ± 8.59 88.49 ± 8.72 86.73 ± 8.38 93.60 ± 11.04 88.68 ± 7.38 98.83 ± 12.37 

, bpm2ω 52.84 ± 20.79 51.90 ± 20.80 53.68 ± 20.75 50.96 ± 25.61 46.37 ± 17.93 58.58 ± 31.31 

TAC, 

[mL/mmHg]  
0.93 ± 1.494 1.03 ± 0.35 0.84 ± 0.31 0.75 ± 1.46 0.65 ± 1.61 0.84 ± 1.22 

Zao, 

[mmHg.s/mL] 
0.12 ± 0.035 0.11 ± 0.04 0.13 ± 0.05 0.15 ± 0.341 0.18 ± 0.360 0.13 ± 0.313 

HF patients 

Parameter 
Female HF 

(n=22) 

Male HF 

(n=43) 

Female HFpEF 

(n=16) 

Male HFpEF 

(n=14) 

Female HFrEF 

(n=5) 

Male HFrEF 

(n=15) 

Age,y 69.36 ± 16.06 69.58 ± 12.25 72.18 ± 14.92 73.35 ± 7.13 57.20 ± 11.09 66.88 ± 14.46 

, bpm1ω 90.31 ± 7.39 95.28 ± 12.25 88.53 ± 7.29 88.85 ± 7.74 96.21 ± 5.53 99.36 ± 13.35 

, bpm2ω 51.23 ± 19.73 50.82 ± 28.36 49.83 ± 19.99 42.41 ± 14.99 58.87 ± 20.06 58.52 ± 33.43 

TAC, 

[mL/mmHg]  
0.60 ± 0.28 0.83 ± 0.34 0.52 ± 0.23 0.80 ± 0.42 0.78 ± 0.36 0.84 ± 0.31 

Zao, 

[mmHg.s/mL] 
0.19 ± 0.08 0.13 ± 0.05 0.20 ± 0.08 0.15 ± 0.06 0.14 ± 0.05 0.12 ± 0.04 

*HF group are a combination of HFrEF and HFpEF and five HF patients whose LVEF values were not available. 

HF= Heart Failure 

HFpEF= Heart Failure with Preserved Ejection Fraction 

HFrEF= Heart Failure with Reduced Ejection Fraction 

TAC= Total Arterial Compliance 

Zao= Aortic Characteristic Impedance 

ω1= First (systolic) intrinsic frequency  

ω2= Second (diastolic) intrinsic frequency  
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Table 2. Regression statistics between reference value and model prediction in women and men populations 

All Population 

 HF Patients(n=65) HFpEF Patients(n=30) HFrEF Patients(n=30) 

 R RMSE Bias 
Lower/U

pper LoA 
R 

RMS

E 
Bias 

Lower/ 

Upper LoA 
R RMSE Bias 

Lower/ Upper 

LoA 

TAC 

[mL/mm

Hg] 

0.88 0.17 0.01 
-0.28/ 

0.3 
0.9 0.16 -0.01 -0.25/ 0.21 0.84 0.19 0.05 -0.28/ 0.41 

Zao 

[mmHg.s/

mL] 

0.82 0.04 0 
-0.07/ 

0.07 
0.8 0.05 0.01 -0.08/ 0.1 0.84 0.03 -0.01 -0.06/ 0.04 

Females  

 HF Patients(n=22) HFpEF Patients(n=16) HFrEF Patients(n=5) 

 R RMSE Bias 
Lower/U

pper LoA 
R 

RMS

E 
Bias 

Lower/ 

Upper LoA 
R RMSE Bias 

Lower/ Upper 

LoA 

TAC 

[mL/mm

Hg] 

0.88 0.14 0.02 
-0.25/ 

0.3 
0.91 0.01 -0.02 -0.22/ 0.16 0.96 0.23 0.18 -0.1/ 0.05 

Zao 

[mmHg.s/

mL] 

0.81 0.04 0 
-0.08/ 

0.1 
0.79 0.05 0.01 -0.08/ 0.12 0.84 0.03 -0.01 -0.07/ 0.03 

Males 

 HF Patients(n=43) HFpEF Patients(n=14) HFrEF Patients(n=15) 

 R RMSE Bias 
Lower/U

pper LoA 
R 

RMS

E 
Bias 

Lower/Upper 

LoA 
R RMSE Bias 

Lower/Upper 

LoA 

TAC 

[mL/mm

Hg] 

0.87 0.18 0.03 -0.3/ 0.4 0.90 0.20 0.04 -0.35/ 0.45 0.80 0.18 0.03 -0.32/ 0.39 

Zao 

[mmHg.s/

mL] 

0.82 0.03 0 
-0.06/ 

0.05 
0.85 0.03 0 -0.06/ 0.07 0.77 0.03 0 -0.06/0.04 

* In all the cases p-values are < 1e-4 
HF= Heart Failure 

HFpEF= Heart Failure with Preserved Ejection Fraction 

HFrEF= Heart Failure with Reduced Ejection Fraction 

TAC= Total Arterial Compliance 

Zao= Aortic Characteristic Impedance 

LoA= Limit of agreement 
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Table 3. Classification performances of IF-ML models in HF groups 

All Population 

 HF Patients HFpEF Patients HFrEF Patients 

 Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy 
Specifici

ty 
Sensitivity 

TAC 0.90 0.92 0.88 0.93 0.92 0.93 0.86 0.90 0.75 

Zao 0.81 0.78 0.86 0.89 0.90 0.88 0.72 0.70 0.78 

Females 

 HF Patients HFpEF Patients HFrEF Patients 

 Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy 
Specifici

ty 
Sensitivity 

TAC 0.91 0.8 1 0.94 0.83 1 0.8 0.67 1 

Zao 0.90 0.87 0.92 0.93 1 0.92 0.8 0.67 1 

Males 

 HF Patients HFpEF Patients HFrEF Patients 

 Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy 
Specifici

ty 
Sensitivity 

TAC 0.88 0.93 0.78 0.93 1 0.83 0.84 0.90 0.67 

Zao 0.77 0.75 0.78 0.86 0.87 0.83 0.72 0.72 0.71 

HF= Heart Failure 

HFpEF= Heart Failure with Preserved Ejection Fraction 

HFrEF= Heart Failure with Reduced Ejection Fraction 

TAC= Total Arterial Compliance 

Zao= Aortic Characteristic Impedance 

 

 

 

 

 

 

 

 

 


