Title:

Facilitating A Practical Evaluation of Heart Failure Patients: A Novel Method for Assessment of
Aortic Characteristic Impedance and Arterial Compliance from Non-invasive Carotid Pressure
Waveform in The Framingham Heart Study

Running title: Compliance and Impedance via Carotid Waveform

Authors’ names, academic degrees, and affiliations:

Soha Niroumandi, MS?, Rashid Alavi, PhD? Aaron M. Wolfson, MD, MS®, Ajay S. Vaidya, MD,
MPH?, Niema Mohammed Pahlevan, PhD*%"

a Department of Aerospace and Mechanical Engineering, University of Southern California,
Los Angeles, CA, United States.

b Division of Cardiovascular Medicine, Keck School of Medicine, University of Southern
California, Los Angeles, CA, United States.

* Corresponding author

Corresponding author:

Niema M. Pahlevan

Address: 1002 Childs Way, Los Angeles CA 90089

Telephone: (213) 740-7182, Fax: 213 740 8071, E-mail: pahlevan@usc.edu

Sources of Funding

Niema M. Pahlevan acknowledges the support from National Science Foundation (NSF CAREER Award
Number #2145890). The authors acknowledge the support from the Krueger Wyeth settlement case and the Beasley
Allen Law Firm.


mailto:pahlevan@usc.edu

ABSTRACT

The primary goal of this study was to test the hypothesis that a hybrid Intrinsic Frequency-machine-learning
approach (IF-ML) can accurately evaluate total arterial compliance (TAC) and aortic characteristic impedance (Zao)
from a single noninvasive carotid pressure waveform in both female and male with heart failure (HF). TAC and
Zao are cardiovascular biomarkers with established clinical significance. TAC is lower and Zao is higher in females
than males, so females are more susceptible to consequent deleterious effects of these. While the principles of TAC
and Zao are pertinent to a multitude of cardiovascular diseases including HF, their routine clinical use is limited
due to the requirement of simultaneous measurements of flow and pressure waveforms. For this study, the data were
obtained from the Framingham Heart Study (n=6201, 53% females). The reference values of Zao and TAC were
computed from carotid pressure and aortic flow waveforms. Intrinsic frequency (IF) parameters of carotid pressure
waveform were used in machine-learning models. IF models were developed on n=5168 of randomly selected data
and blindly tested the remaining data (n=1033). The final models were evaluated on HF patients. Correlations
between [F-ML and reference values in all HF and HFpEF for TAC were 0.88 and 0.90 and for Zao were 0.82 and
0.80 respectively. The classification accuracy in all HF and HFpEF for TAC were 0.9 and 0.93 and for Zao were
0.81 and 0.89 respectively. In conclusion, IF-ML method provides an accurate estimation of TAC and Zao in all

subjects with HF and in the general population.

Keywords: Heart Failure, Total arterial compliance, Aortic characteristic impedance, Cardiovascular intrinsic

frequency



INTRODUCTION

Heart failure (HF) currently affects about 6 million American adults with more prevalence in females than males
among the elderly population (>80 years) . By 2030, it is estimated that 3% of the total population will be living
with HF !. Despite advances in treatment and therapy optimization, 30-day rehospitalization rates among HF
patients remain high (>25%) 2. Around 50% of patients have heart failure with preserved ejection fraction (HFpEF).
The occurrence of HFpEF is increasing, and studies consistently indicate that HFpEF is more prevalent in females
3. Previous studies have shown the significance of ventricular-arterial coupling (VAC) in cardiac and aortic
mechanics, as well as its role in the pathophysiology of cardiac disease*. Total arterial compliance (TAC) and aortic
characteristic impedance (Zao) are two important cardiovascular biomarkers that combine the effects of arterial
load on LV function®. Furthermore, it is now well-accepted that comprehensive evaluations of VAC necessitate
measurements of pulsatile workload determinants such Zao and TAC *. However, their routine clinical use is limited
due to the requirement of simultaneous measurements of both central flow and pressure waveforms. Therefore, the
evaluation of TAC and Zao from a single carotid pressure waveform may pave the way for routine clinical use of
these biomarkers for risk assessment, management, and monitoring of not only HFpEF but also heart failure with
reduced ejection fraction (HFrEF). Intrinsic frequency (IF) method is a physics-based systems approach for the
analysis of coupled left ventricle-arterial system. The IF method uses a pressure waveform to extract the IF
parameter w, which is dominated by the contractile state of the heart and w, which is strongly dependent on the
vascular dynamics >¢. Using Framingham Heart Study (FHS) data, Cooper et al. ” recently showed that both w; and
w, predict heart failure events after adjustment for traditional CVD risk factors, heart rate, and the systolic ejection
period. Given the reduced order nature of the IF methods and its clinical significance in detecting and predicting
cardiovascular events such as HF, the IF method is an excellent candidate to be combined with machine learning
approaches. The primary goal of this study was to test the hypothesis that hybrid IF-based machine learning (IF-
ML) approaches can accurately evaluate TAC and Zao from a single carotid pressure waveform in healthy

volunteers and HF patients.
METHODS

Our data is from Framingham Heart Study. Details about the participants and noninvasive hemodynamic
measurements have been provided in previous publications’®. This population consisted of individuals aged 19-90
and included both healthy participants and cardiovascular diseases including a minority with heart failure. HF
patients with left ventricle ejection fraction (LVEF) lower than 40% are recognized as HFrEF and HF patients with
LVEF>50% are always considered as HFpEF °. We considered LVEF=45% as a cutoff in this study to limit HF
categorization to only two categories, HFpEF (above) and HFrEF (below)’.



Hybrid Intrinsic Frequency-Machine Learning (IF-ML) Model Development

To test this our hypothesis, we developed and validated hybrid [F-ML models for computation of TAC and Zao
using patients and healthy volunteers from the Framingham Heart Study (FHS) (n=6201; 53% females). The “pulse
pressure method” (PPM) was used to compute the reference total arterial compliance (TAC) from aortic flow and
pressure waveforms '°. The reference aortic characteristic impedance (Zao) was computed using the pressure-flow
loop method as described by Bollache et al. ''. In this method, Zao is computed from the slope of the early systolic
part of the pressure-flow loop. IF method, which is a reduced-order approach for capturing the dynamics of the
cardiovascular system, was applied to carotid pressure waveforms. IF parameters were calculated using an L2-
minimization formulation with a non-calibrated pressure waveform as an input®!2. The outputs are first and second
main [Fs, to w; and w,, intrinsic phases, ¢, and ¢,, and intrinsic envelops, R and R;. Further details about the
mathematics, convergence, and robustness of the intrinsic frequencies (IFs) calculation have been described in
previous studies *1%!4. Visualization of the IF method and its related physical representations are provided in the

supplementary material (Supplement A).

To avoid bias, and overcome the limitation associated with the total number of HF patients (n=65) in the
Framingham database, we developed, validated, and blind-tested the IF-Model using 83% of the entire population
(n=5168) that also included healthy participants and non-HF CVD patients. Before starting the development of the
IF-ML models, we set aside randomly selected portion of the data (n=1033, 17%) for a blind stratified test (a so-
called “external validation™). This holdout set was kept blind to all the stages of the parameter selection, training,
and development of the models. In the final step, the accuracy of the IF-ML models were assessed among HFpEF
and HFrEF patients in both males and females. By adopting this procedure, we sought to avoid any bias that may

be introduced by hemodynamic similarities between HFpEF or HFTEF patients.

IF-ML method for Estimation of TAC and Zao

After setting aside the blind holdout set described above, a feature selection procedure was performed using
permutation feature importance and random forest feature importance methods applied on a comprehensive set of
physically and physiologically relevant parameters (Setar). The Setan contained 3 groups of parameters. Group 1
consisted of the main IF parameters mentioned above (w, w4, @1, ¥4, and E,). Group 2 included normalized and
corrected versions of w; and w, such as w4y, Wyy, D1, D2, W1, and w,- (see Supplement A for definitions).
Group 3 consisted of physiological and demographic data such SBP, DBP, pulse pressure (PP), heart rate (HR),
age, height, and weight (see details in Supplement B).



STATISTICAL ANALYSES

Values are presented as means + standard deviation (SD). Pearson’s correlation coefficient (R score), root mean
square error (RMSE) were used to assess the accuracy between actual and predicted values. Limit of agreement
(LoA) and bias form Bland-Altman (BA) analysis were used to quantify the agreement between predicted and
reference values. In addition to estimating TAC and Zao, we tested the classification performance of the estimated
TAC and Zao among HF patients. We used thresholds of 0.6 (mL/mmHg) and 0.15(mmHg.s/mL) for TAC and Zao
classifications respectively (see details in Supplement C). Sensitivity, specificity, and accuracy were used as

evaluation metrics for classification:
Sensitivity = (True Positive)/(True Positive + False Negative),
Specificity = (True Negative)/(True Negative + False Positive),
Accuracy = (True Positive + True Negative)/(All Positive + All Negative)

True positive are the cases that are predicted as low compliance/high impedance and are labeled as diseased. True

negative are cases that are predicted as high compliance/low impedance and are labeled as healthy.
RESULTS

Table 1 represents the characteristics of the entire study population as well as patients with HF. Figure 1
demonstrates the agreement between estimated TAC and Zao by IF-ML models and the reference values in the
blind holdout set (external validation). The R score, RMSE, and bias of the IF-ML model for TAC in the blind
holdout set were 0.89 (P-value<0.0001), 0.16 (mL/mmHg), and 0 respectively. The R score, RMSE, and bias of the
IF-ML model for Zao in the blind holdout set were 0.80 (P-value<0.0001), 0.03 (mmHg.s/mL), and 0 respectively
(Table 2).

Performance of IF-ML models among HF population

We further investigated the model's performance for all HF patients, including the HFpEF and HFrEF
subgroups. The correlation (R score) between IF-ML values of TAC and the reference values for all HF, HFpEF
and HFrEF were 0.88, 0.90, and 0.84 respectively. The R score between IF-ML values and reference values of Zao
for all HF, HFpEF and HFrEF were 0.82, 0.80, and 0.77 respectively (Table 2). The regression statistics between
reference values and model predictions in males and females is presented in Table 2. The sensitivity, specificity,
and accuracy of IF-ML models for classifying reduced TAC and elevated Zao in HF groups are provided in Table
3 (The details of selecting the TAC and Zao cutoff values are provided in Supplement C).



DISCUSSION

In this study, we introduced a hybrid intrinsic frequency machine learning (IF-ML) method for calculating TAC
and Zao using a single noninvasive carotid pressure waveform and baseline patient characteristics without requiring
flow or velocity measurements. This method can significantly improve the practicality of usage of TAC and Zao in
heart failure patients. The principal finding of this study is that the proposed pressure-only IF-ML method provides
an accurate estimation of TAC and Zao in heart failure patients (both HFpEF and HFrEF) and in the general
population of community-based Framingham Heart Study. The performance of our IF-ML approach for calculation

of TAC and Zao was excellent particularly among the females HF patients.

Our IF-ML algorithm has several notable advantages: (1) it requires fewer input features and has better
performance than brute-force methods that use the entire pressure waveform (See supplementary material); (2) IF
is robust against signal noise on pressure waveforms'?; and (3) this IF-ML algorithm can be deployed on
inexpensive handheld devices (e.g. optical tonometry, iPhone) to facilitate the routine noninvasive evaluation of
TAC and Zao'*!5. Additionally, scalability and reconciliation of IF parameters have been established across various
measurement platforms and different species such as rat, rabbit and human'4; therefore, the results of the preclinical
studies that are focused on specific therapeutic approaches can be translated and reconciled for clinical use with

minimal effort.

The relatively low-cost nature of our proposed method and its technology platform has relevance in
socioeconomically disadvantaged groups. One application of our hybrid [F-ML model is in assessing the role of
TAC and Zao as therapeutic response biomarker. This is particularly important in monitoring and treatment of
patients with HF, especially HFpEF. Our IF-ML may be an appropriate therapeutic response tool to serially monitor
HF patients with a remote monitoring platform. Moreover, such a platform could rely on inexpensive wireless hand-
held devices'® or a smartphone > and reach more patients due to smaller upfront costs. Similarly, our proposed
approach could serve as a non-invasive alternative in early-stage (Phase 1 and 2) clinical trials. This could have
significant implications, potentially reducing costs and enhancing efficiency in the development of new drug and

device therapies.
LIMITATIONS

Although our study has several strengths as noted above, it also has limitations. All carotid pressure waveforms
were measured using one type of platform, piezoelectric arterial applanation tonometry (Cardiovascular

Engineering Inc). However, this may not affect the performance of our approach since IF method is agnostic to the
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measurement platform as shown by Alavi et al'®. Finally, our data from were comprised predominantly of white



participants of Western European descent from Framingham Heart Study, so our models may not be generalizable

to other racial or ethnic groups.
CONCLUSIONS

We present a novel hybrid intrinsic frequency machine learning approach (IF-ML) for calculating total arterial
compliance (TAC) and aortic characteristic impedance (Zao) from a single noninvasive carotid pressure waveform
in HF patients. This method only relies on uncalibrated noninvasive carotid waveform and concurrent systemic
blood pressure and patient characteristics. As such, this method can be programmed into a hand-held device for an
at-home, patient administered test to assess TAC and Zao. Future studies in HF patients are needed to evaluate the
role for IF-ML based TAC and Zao as potential therapeutic response biomarkers for a non-invasive remote
hemodynamic monitoring platform. Our method facilitates the evaluation of TAC and Zao in clinical practice that
may be used for risk assessment, management, and monitoring of HF, especially in females who have lower TAC

and higher Zao than men.
ACKNOWLEDGEMENTS

The Framingham Heart Study is supported by Contract No. HHSN2682015000011 from the National Heart,
Lung, and Blood Institute (NHLBI) with additional support from other sources. This manuscript was not prepared
in collaboration with investigators of the Framingham Heart Study and does not necessarily reflect the opinions or

conclusions of the Framingham Heart Study or the NHLBI.

DISCLOSURES

Niema M. Pahlevan holds equity and has a consulting agreement with Avicena LLC. The remaining
authors report no relevant conflicts.

REFERENCES:

1. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson
AP, Commodore-Mensah Y. Heart disease and stroke statistics—2022 update: a report from the American Heart
Association. Circulation 2022;145:€153-e639.

2. Jencks SF, Williams MV, Coleman EA. Rehospitalizations among patients in the Medicare fee-for-service
program. New England Journal of Medicine 2009;360:1418-1428.

3. Lau ES, Panah LG, Zern EK, Liu EE, Farrell R, Schoenike MW, Namasivayam M, Churchill TW, Curreri L,
Malhotra R. Arterial stiffness and vascular load in HFpEF: differences among women and men. Journal of cardiac

failure 2022;28:202-211.



4. Tkonomidis I, Aboyans V, Blacher J, Brodmann M, Brutsaert DL, Chirinos JA, De Carlo M, Delgado V,
Lancellotti P, Lekakis J. The role of ventricular—arterial coupling in cardiac disease and heart failure: Assessment,
clinical implications and therapeutic interventions. A consensus document of the European Society of Cardiology
Working Group on Aorta & Peripheral Vascular Diseases, European Association of Cardiovascular Imaging, and
Heart Failure Association. European journal of heart failure 2019;21:402-424.

5. Pahlevan NM, Rinderknecht DG, Tavallali P, Razavi M, Tran TT, Fong MW, Kloner RA, Csete M, Gharib M.
Noninvasive iphone measurement of left ventricular ejection fraction using intrinsic frequency methodology.
Critical care medicine 2017;45:1115-1120.

6. Pahlevan NM, Tavallali P, Rinderknecht DG, Petrasek D, Matthews RV, Hou TY, Gharib M. Intrinsic frequency
for a systems approach to haemodynamic waveform analysis with clinical applications. Journal of The Royal
Society Interface 2014;11:20140617.

7. Cooper LL, Rong J, Pahlevan NM, Rinderknecht DG, Benjamin EJ, Hamburg NM, Vasan RS, Larson MG,
Gharib M, Mitchell GF. Intrinsic frequencies of carotid pressure waveforms predict heart failure events: The
Framingham Heart Study. Hypertension 2021;77:338-346.

8. Splansky GL, Corey D, Yang Q, Atwood LD, Cupples LA, Benjamin EJ, D'Agostino Sr RB, Fox CS, Larson
MG, Murabito JM. The third generation cohort of the National Heart, Lung, and Blood Institute's Framingham
Heart Study: design, recruitment, and initial examination. American journal of epidemiology 2007;165:1328-1335.
9. Ozlek B, Ozlek E, Agus HZ, Tekinalp M, Kahraman S, Cil C, Celik O, Basaran O, Dogan V, Kaya BC,
Renciizogullar I, Osken A, Bekar L, Cakir MO, Celik Y, Mert KU, Sancar KM, Seving S, Mert GO, Biteker M.
Patients with HFpEF and HFmrEF have different clinical characteristics in Turkey: A multicenter observational
study. European Journal of Internal Medicine 2019;61:88-95.

10. Stergiopulos N, Meister J-J, Westerhof N. Simple and accurate way for estimating total and segmental arterial
compliance: the pulse pressure method. Annals of biomedical engineering 1994;22:392-397.

11. Bollache E, Kachenoura N, Bargiotas I, Giron A, De Cesare A, Bensalah M, Lucor D, Redheuil A, Mousseaux
E. How to estimate aortic characteristic impedance from magnetic resonance and applanation tonometry data?

Journal of hypertension 2015;33:575-583.



12. Tavallali P, Hou TY, Rinderknecht DG, Pahlevan NM. On the convergence and accuracy of the cardiovascular
intrinsic frequency method. Royal Society open science 2015;2:150475.

13. Tavallali P, Razavi M, Pahlevan NM. Artificial intelligence estimation of carotid-femoral pulse wave velocity
using carotid waveform. Scientific reports 2018;8:1-12.

14. Alavi R, Dai W, Amlani F, Rinderknecht DG, Kloner RA, Pahlevan NM. Scalability of cardiovascular intrinsic
frequencies: Validations in preclinical models and non-invasive clinical studies. Life Sciences 2021;284:119880.
15. Rinderknecht D, De Balasy JM, Pahlevan NM. A wireless optical handheld device for carotid waveform

measurement and its validation in a clinical study. Physiological measurement 2020;41:055008.



Fig. 1 The agreement between intrinsic-frequency-machine-learning (IF-ML) models and the reference values in
the blind holdout set (external validation). A (left): scatter plot of the total arterial compliance (TAC) form IF-ML
(y-axis) versus the reference value (x-axis). B (right): scatter plot of the aortic characteristic impedance (Zao) form

IF-ML (y-axis) versus the reference value (x-axis).
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Table 1. Characteristics of the study population

All participants
All population Males Females N
) t. HF (n=65 HFpEF (n=30 HFrEF (n=30
arameter (n=6201) (n=2931) (n=2931) (n=65) PEF (n=30) rEF (n=30)
Age,y 49.74 +£15.27 49.95+15.23 49.55+ 15.31 68.83 +£13.57 7273 £11.76 65.26 +14.27
1, bpm 87.56 +8.59 88.49 +8.72 86.73 £ 8.38 93.60 £11.04 88.68 +7.38 98.83 £12.37
2, bpm 52.84 £20.79 51.90 +20.80 53.68 £20.75 50.96 £25.61 46.37+17.93 58.58 £31.31
TAC,
0.93 +£1.494 1.03 £0.35 0.84 £0.31 0.75+1.46 0.65+1.61 0.84 +1.22
[mL/mmHg]
Zao, 0.12 + 0.035 0.1 +0.04 0.13 £0.05 0.15 + 0.341 0.18 + 0.360 0.13 0313
[mmHg.s/mL]
HF patients
Parameter Female HF Male HF Female HFpEF Male HFpEF Female HFrEF Male HFrEF
(n=22) (n=43) (n=16) (n=14) (n=5) (n=15)
Agey 69.36 + 16.06 69.58 +£12.25 72.18 £14.92 73.35+7.13 5720+ 11.09 66.88 + 14.46
®1, bpm 90.31 £7.39 9528 £12.25 88.53+7.29 88.85+7.74 96.21 £5.53 99.36 +£13.35
2, bpm 51.23+19.73 50.82 +28.36 49.83 £19.99 4241 +14.99 58.87 +£20.06 58.52+33.43
TAC,
0.60 +0.28 0.83+0.34 0.52+0.23 0.80 +0.42 0.78 £0.36 0.84 +£0.31
[mL/mmHg]
Zao, 0.19+0.08 0.13 + 0.05 0.20 + 0.08 0.15 + 0.06 0.14 +0.05 0.12 +0.04
[mmHg.s/mL]

*HF group are a combination of HFrEF and HFpEF and five HF patients whose LVEF values were not available.
HF= Heart Failure

HFpEF= Heart Failure with Preserved Ejection Fraction
HFrEF= Heart Failure with Reduced Ejection Fraction
TAC= Total Arterial Compliance

Zao= Aortic Characteristic Impedance
1= First (systolic) intrinsic frequency
@2= Second (diastolic) intrinsic frequency
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Table 2. Regression statistics between reference value and model prediction in women and men populations

All Population
HF Patients(n=65) HFpEF Patients(n=30) HFrEF Patients(n=30)
R RMSE Bias pr"eV:eIf/o (i R Rzls Bias Upr"ev:eIi . R RMSE Bias L°weer) Epp"
TAC -0.28/
[mL/mm  0.88 0.17 0.01 03 0.9 0.16 -0.01 -0.25/0.21 0.84 0.19 0.05 -0.28/0.41
Hg] '
Zao -0.07/
[mmHg.s/ 0.82 0.04 0 0.07 0.8 0.05 0.01 -0.08/ 0.1 0.84 0.03 -0.01 -0.06/ 0.04
mL]
Females
HF Patients(n=22) HFpEF Patients(n=16) HFrEF Patients(n=5)
R RMSE Bias proev:eIf/o (i R Rrs Bias U;p“::eli . R RMSE Bias LW?{)EPP"
TAC -0.25/
[mL/mm  0.88 0.14 0.02 03 0.91 0.01 -0.02 -0.22/0.16 0.96 0.23 0.18 -0.1/0.05
Hg]
Zao -0.08/
[mmHg.s/ 0.81 0.04 0 0.1 0.79  0.05 0.01 -0.08/0.12 0.84 0.03 -0.01 -0.07/0.03
mL]
Males
HF Patients(n=43) HFpEF Patients(n=14) HFrEF Patients(n=15)
R RMSE Bias ;‘;Vrveﬂi R RIES Bias Lowfgip"er R RMSE Bias L"w;’zipper
TAC
[mL/mm  0.87 0.18 0.03 -0.3/04 090 0.20 0.04 -0.35/0.45 0.80 0.18 0.03 -0.32/0.39
Hg]
Zao -0.06/
[mmHg.s/ 0.82 0.03 0 0.05 0.85 0.03 0 -0.06/ 0.07 0.77 0.03 0 -0.06/0.04
mL]

* In all the cases p-values are < 1e-4

HF= Heart Failure

HFpEF= Heart Failure with Preserved Ejection Fraction
HFrEF= Heart Failure with Reduced Ejection Fraction
TAC= Total Arterial Compliance

Zao= Aortic Characteristic Impedance

LoA= Limit of agreement
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Table 3. Classification performances of IF-ML models in HF groups

All Population
HF Patients HFpEF Patients HFrEF Patients
Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity = Accuracy Spetcyiﬁci Sensitivity
TAC 0.90 0.92 0.88 0.93 0.92 0.93 0.86 0.90 0.75
Zao 0.81 0.78 0.86 0.89 0.90 0.88 0.72 0.70 0.78
Females
HF Patients HFpEF Patients HFrEF Patients
Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy Spetcyiﬁci Sensitivity
TAC 0.91 0.8 1 0.94 0.83 1 0.8 0.67 1
Zao 0.90 0.87 0.92 0.93 1 0.92 0.8 0.67 1
Males
HF Patients HFpEF Patients HFrEF Patients
Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy Spetcyiﬁci Sensitivity
TAC 0.88 0.93 0.78 0.93 1 0.83 0.84 0.90 0.67
Zao 0.77 0.75 0.78 0.86 0.87 0.83 0.72 0.72 0.71

HF= Heart Failure

HFpEF= Heart Failure with Preserved Ejection Fraction
HFrEF= Heart Failure with Reduced Ejection Fraction
TAC= Total Arterial Compliance

Zao= Aortic Characteristic Impedance
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