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AbstractÐ Tasks where the set of possible actions depend
discontinuously on the state pose a significant challenge for
current reinforcement learning algorithms. For example, a
locked door must be first unlocked, and then the handle turned
before the door can be opened. The sequential nature of these
tasks makes obtaining final rewards difficult, and transferring
information between task variants using continuous learned
values such as weights rather than discrete symbols can be
inefficient. Our key insight is that agents that act and think
symbolically are often more effective in dealing with these
tasks. We propose a memory-based learning approach that
leverages the symbolic nature of constraints and temporal
ordering of actions in these tasks to quickly acquire and
transfer high-level information. We evaluate the performance
of memory-based learning on both real and simulated tasks
with approximately discontinuous constraints between states
and actions, and show our method learns to solve these tasks
an order of magnitude faster than both model-based and model-
free deep reinforcement learning methods.

I. INTRODUCTION

The family of tasks with constraints between states and ac-
tions has posed a significant challenge to many reinforcement
learning-based algorithms. This family is comprised of tasks
where certain affordances or actions may not be available or
fail in some states due to mechanical constraints or other task
constraints. Many tasks exhibit this structure including con-
struction, assembly and disassembly, rearrangement, locking
and unlocking, door operation, and certain navigation and
other manipulation tasks. Even simple manipulation tasks
like retrieving a mug from a cupboard require the cupboard
to be open before the mug can be grasped. In each of these
tasks, there may exist only a small set of action sequences
that will actually solve the task. We will use the term
constraint task to refer to tasks with constraints between
states and actions.

In their work on the Montezuma’s revenge problem, a con-
straint task, Ecoffet et al. highlighted the challenge constraint
tasks pose to current reinforcement learning algorithms [1].
We believe reinforcement learning algorithms struggle with
constraint tasks for several reasons. The sequential nature of
these tasks make it challenging to stumble on the reward,
as the naive approach involves exploring all possible action
sequences. Exploration time increases as a factorial of the
total number of actions available in the task. In addition,
neural network-based methods transfer information between
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versions of the task in an inefficient manner by storing that
information in continuous learned weights rather than ex-
plicitly relating discrete high-level information. To overcome
these challenges, we propose a memory-based learning agent
that leverages the symbolic nature of the task constraints and
temporal ordering of actions to efficiently explore the task
and quickly transfer a learned task model to new instances.

Our contributions are as follows: 1) We design a dual
controller for exploration and completion of constraint tasks.
2) We present a novel memory-based learning method to
acquire a model of constraint interactions between compo-
nents. This model can then be used by the dual controller to
improve its performance. 3) We evaluate the performance of
our method on a real mechanical locking task as well as a
simulated disassembly task. 4) We show our memory-based
learner can be trained quickly on a small handful of task
variations, and then generalize to unseen task variations.

II. RELATED WORK

1) Memory-Based Learning: In memory-based learning
approaches all experiences are explicitly represented and
stored in a memory. At test time, a relatively small subset
of these experiences are indexed and a local model is fit to
them. Memory based learning variants have been used for
both robot control [2][3][4][5], and reinforcement learning
[6][7][8]. Prior work has highlighted the advantages of
memory-based learning including efficient learning, ease of
adding new experiences to the agent by simply storing them
in memory, the avoidance of catastrophic interference, and
the effects of distribution shifts and long tailed distributions.
However, memory-based approaches perform much more
work at query time to find relevant memories.

2) Constraint Tasks: Many manipulation problems in-
volve constraints and prior work has looked at solving
these tasks. Mechanical locking tasks have been explicitly
explored in prior work [9][10]. Kulick et al. and Baum et
al. formalized the exploration of joint dependency structures
in puzzle box problems and tested multiple methods for
physical exploration. We leverage their findings in our work
as the exploration portion of our controller. More generally,
robotic tasks can contain dependencies where the set of
possible actions change discontinuously with with change
in state. This can take the form of rearrangement planning
[11][12][13][14][15], navigation among movable obstacles
(NAMO) [16][17][18], and manipulation among moveable
obstacles (MAMO) [19][20]. Krontiris and Berkis, and Gao
et al. presented the idea of using dependency graphs, where
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A. Dual Controller

Dual control problems are a subset of adaptive optimal
control problems where an agent may need to estimate
information about its environment to solve a task. Dual
control problems have been extensively studied [34][35][36]
and have close ties to the exploration-exploitation problem in
reinforcement learning. In constraint tasks, the agent should
take actions that both identify the constraint structure of
the problem, and make progress towards the goal. Dual
controllers typically contain a utility function to estimate
the costs and benefits of information gathering and taking
actions. This allows dual controllers to automatically balance
information gathering and control by optimizing this utility
function, as well as avoiding unnecessary learning that does
not reduce future costs. Specifying this utility function for a
task can be difficult, so we create a heuristic dual controller
with two explicit objectives: an exploration policy that seeks
to identify the constraint structure of the task, and an
exploitation policy that takes the actions with the highest
expected probability of reaching the goal. Each of these
policies output a value for each action in the action space,
and an action is chosen based on an entropy-based weighting
between the action values of the two policies.

1) Exploration Policy: We represent information about
the constraint structure as a belief state over a dependency
graph between components. Our dependency graph contains
a node for each component. A directed edge exists in the
graph if a component in a certain position constrains another
component from actuating. The belief state represents how
confident the agent is on the existence of each dependency
graph edge. The exploration policy’s goal is to confidently
estimate the existence of each edge in as few actions as
possible. This approach builds on work from Kulick et al.
and Baum et al. [9][10].

To choose actions that effectively explore, we select
actions that could maximally change our belief state, and
thus provide the agent with the most information. By this
definition, the optimal action is one that maximizes the
expected KL-Divergence between the current belief state
and the posterior belief state after that action is taken. This
approach typically has lower costs than entropy minimization
methods for exploration and allows the agent to recover from
bad priors in its belief state [37].

We represent our belief state as a set of random variables
Et = {P (eij)|eij ∈ G} for the existence of edges in the
dependency graph G. The action values for ut = n, the
action of trying to change the position of the nth component,
are

D = KLD
(

P (Et)||P (Et+1|Et, xt, ut = n, xt+1)
)

Qinfo(xt, ut = n) = Ext+1∼P (·|Et,xt,ut=n)

[

D
]

(1)

where P (xt+1|Et, xt, ut = n) is the probability of ar-
riving at state xt+1, KLD(P ||Q) is the KL-Divergence
between two distributions P and Q, and P (Et+1) is the
posterior belief state.

We calculate this posterior belief state using Bayesian
inference. We consider the likelihood edge ei exists in the
dependency graph where ei represents a constraint relation-
ship between two components. To reason about whether a
component is current constrained, we consider the distri-
bution across all incoming edges to a node as well as the
possibility that the component associated with that node
is independent (not constrained by other components). For
components n we term this distribution Zn

t . To simplify this
problem, we assume each component in each position is
either constrained by one other component or independent.
Considering multiple constraining components expands the
belief space computation combinatorially and our experi-
ments show this simplification is still able to model more
complex constraint relationships. After trying an action, we
update our distribution across Zn

t using the observation
of whether component n successfully moved. We use this
method to calculate both the expected KL-Divergence using
the marginal probability of component n moving as well as
updating the belief state after observing an action.

2) Exploitation Policy: To calculate the exploitation pol-
icy, we model the constraint task as a task with continuous
probabilities of possible deterministic constraints existing.
Our exploitation policy uses the current belief state to
calculate the action with the highest probability of reaching
the goal state after taking action ut = n at time t. We pose
this as a graph search problem where nodes are symbolic
task states, and edge values are transition probabilities given
by P (xt+1|Et, xt, ut). These transition probabilities can
be calculated as the marginal probability of a component
successfully actuating in a given task state. We implement
Dijkstra’s algorithm to search this graph and terminate when
we reach a success state for the task. For each action ut =
n ∈ N we get a possible subsequent state xt+1 as well as
a probability of that action succeeding P (xt+1|Et, xt, ut).
We then search the graph from xt+1 to get a trajectory
(xt+1, xt+2, . . . , xT ). We can now express our optimal action
values as

V (xt+1) =

T−1
∏

τ=t+1

γP (xτ+1|Et, xτ , uτ )

Qexploit(xt, ut = n) = γP (xt+1|Et, xt, ut)V (xt+1)

(2)

where γ is a discount factor to penalize longer trajectories
with equal probability of completion.

3) Full Controller: We use an entropy-based weighting
scheme to weight the action values from the exploration and
optimal policies. When the belief state entropy is high, we
want to take exploratory actions to improve our confidence
over the dependency graph. When the belief state entropy
is low, this signals we are confident about the dependency
graph, and following the exploitation policy will lead us to
the goal. For belief state entropy h we weight the action
values from the two policies as:

Q(xt, ut = n) =
h

hmax

(Qinfo(xt, ut = n))

+ (1−
h

hmax

)Qexploit(xt, ut = n)

(3)
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where hmax is an observed max entropy value that can also
be tuned. Finally at each step, we choose the action with
the highest weighted action value. In practice we find that
these two objectives work well together. The information
maximization policy can quickly learn the dependency graph
improving the accuracy of the exploitation policy, and the
exploitation policy guides exploration to states relevant to
completing the task.

B. Learned Priors

The key contribution of our work is a memory-based
learning method to learn priors on belief states that allow the
controller to quickly solve unseen task variations. To utilize
information from previous tasks for new tasks, we make two
assumptions: interactions between component classes have
similarities that persist across task variations and component
interactions are dependent on the relative positions of the two
components. These assumptions are based on our knowledge
of mechanical constraint interactions and indicate that if we
saw component ci constraining component cj at a given
relative position in a previous task, then component c′i and
c′j of the same classes as the original components and at a
similar relative position are likely to interact the same way
in the current task. Even if these assumptions aren’t always
true they are very helpful for directing the agents exploration.
Both these features are required to learn good component
interaction priors. An agent that only pays attention to
position difference may learn physically close components
interact, but will be unable to tell in which direction the
constraint relationship goes. An agent that only considers
component classes can learn constraint relationships between
components, but will assume these relationships exist at
a distance as well which does not hold for mechanical
constraints.

Memory-based learning allows us to learn good priors
from only a handful of past experiences. After completing a
task, we take each pair of components in the learned depen-
dency graph and store the value of the edge between them
in a bucket depending on the classes of the two components.
For a problem with C component classes, this gives us C2

buckets. We also store the likelihood that a component is
independent in a separate bucket. Each bucket contains a
space that represents the difference in pose between the two
components. For planar relationships, a point in this space
looks like (∆x,∆y,∆sin(θ),∆cos(θ)). Each stored edge is
indexed within its bucket by the pose difference between the
two components it connects.

At test time, when faced with a new task variant, we
initialize our belief state using the selected dependency graph
edges from prior experiences. For each pair of components in
the new task variant, we look up the bucket that corresponds
to these two components. We use K-Nearest Neighbors in the
pose difference space to index the most relevant prior edges.
We then average the priors on these edges and initialize the
edge in the new dependency graph with this value. This
process can be repeated for every pair of edges in the new
graph to construct a the new dependency graph. Finally, we

add entropy to the graph by reducing certainty of dependency
graph edges to model uncertainty and enable the controller
to recover from bad priors. This new belief state over the
dependency graph is used to initialize the controller for rapid
convergence.

V. EXPERIMENTS AND DISCUSSION

A. Baselines

We compare our agent to two deep reinforcement learning
(RL) agents, a model-free RL agent trained with Deep Q
Learning [38] and a model-based RL agent inspired by
[39]. The model-based agent attempts to learn a precondition
model to predict which components are likely to be currently
unlocked in any given state. We use this learned precondition
model with the exploitation planner from our dual controller
to select the action with the highest probability of reaching
the goal. The deep learning methods both leverage the same
symbolic abstraction we give our memory-based method.
Both the model-free and model based agents use Deep
Networks with Graph Convolution Layers following the
architecture by Battaglia et al. [40]. When training these
agents, the numerical identifier, 1, . . . , N , of each component
was randomized during training to prevent agents from learn-
ing a static policy that opened components based on their
numerical identifier. We also had to continually retrain agents
on previous task variations to prevent catastrophic forgetting.
We add MT-OPT as a Multi-Task Reinforcement Learning
baseline [41]. MT-OPT adds a cross-task data sharing metric
to training as well as balancing the number of successful and
unsuccessful episodes in the training buffer.

B. Simulation Results

1) Locking Puzzle: We first evaluate our method in a
simulated symbolic environment. This simulated symbolic
environment matches our symbolic description of locking
puzzles in section III with puzzles comprising of 5 se-
quentially locking components. For each permutation of
puzzle components, we procedurally generate multiple re-
alistic layouts of these components that can be sampled.
We test our memory-based learner against the Deep RL
agents mentioned above. We provide the agents with up to
9 different training environments, each representing locking
puzzle variants, with randomized component locations. We
evaluate the performance of the agents on three unseen
locking puzzle variants. Each of the test variants contains
a new permutation of components never seen in the training
set. Figure 2 shows the performance of these agents on the
set of unseen test puzzle boxes. Performance is defined as
the percent of test tasks that are solved in under 15 actions.

In the left plot of figure 2, we varied the number of
training task variants the agents had access to. All agents
in this experiment were trained until convergence on the
set of environments available to them. Our memory-based
agent quickly acquires the task even with access to only
one training environment. The Deep RL agents take longer
with the model-based RL agent requiring training on all 9
training tasks to solve all test tasks. In the middle plot, we
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