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Abstract—Language is compositional; an instruction can ex-
press multiple relation constraints to hold among objects in a
scene that a robot is tasked to rearrange. Our focus in this
work is an instructable scene-rearranging framework that gen-
eralizes to longer instructions and to spatial concept compositions
never seen at training time. We propose to represent language-
instructed spatial concepts with energy functions over relative
object arrangements. A language parser maps instructions to
corresponding energy functions and an open-vocabulary visual-
language model grounds their arguments to relevant objects in
the scene. We generate goal scene configurations by gradient
descent on the sum of energy functions, one per language predi-
cate in the instruction. Local vision-based policies then re-locate
objects to the inferred goal locations. We test our model on es-
tablished instruction-guided manipulation benchmarks, as well as
benchmarks of compositional instructions we introduce. We show
our model can execute highly compositional instructions zero-shot
in simulation and in the real world. It outperforms language-
to-action reactive policies and Large Language Model planners
by a large margin, especially for long instructions that involve
compositions of multiple spatial concepts. Simulation and real-
world robot execution videos, as well as our code and datasets are
publicly available on our website: https://ebmplanner.github.io.

I. INTRODUCTION

We consider the scene arrangement task shown in Figure 1.
Given a visual scene and an instruction regarding object spatial
relations, the robot is tasked to rearrange the objects to their
instructed configuration. Our focus is on strong generalization
to longer instructions with novel predicate compositions, as
well as to scene arrangements that involve novel objects and
backgrounds.

We propose generating goal scene configurations corre-
sponding to language instructions by minimizing a com-
position of energy functions over object spatial locations,
where each energy function corresponds to a language concept
(predicate) in the instruction. We represent each language
concept as an n-ary energy function over relative object poses
and other static attributes, such as object size. We train these
predicate energy functions to optimize object poses starting
from randomly sampled object arrangements through Langevin
dynamics minimization [8], using a handful of examples of
visual scenes paired with single predicate captions. Energy
functions can be binary for two-object concepts such as left
of and in front of, or multi-ary for concepts that describe
arrangements for sets of objects, such as line or circle. We
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Fig. 1: Energy-based Models are Zero-Shot Planners for
Compositional Scene Rearrangement. We represent lan-
guage concepts with energy functions over object locations and
sizes. Gradient descent on the sum of energy functions, one
per predicate in the instruction, iteratively updates the object
spatial coordinates and generates a goal scene configuration
that satisfies the instruction, if one exists.

show that gradient descent on the sum of predicate energy
functions, each one involving different subsets of objects,
generates a configuration that jointly satisfies all predicates,
if this configuration exists, as shown in Figure 1.

We propose a robot learning framework that harnesses
minimization of compositions of energy functions to generate
instruction-compatible object configurations for robot scene
rearrangement. A neural semantic parser is trained to map
the input instruction to a set of predicates and corresponding
energy functions, and an open-vocabulary visual-language
grounding model [21, 17] grounds their arguments to objects
in the scene, as shown in Figure 2. Gradient descent on the
sum of energies with respect to the objects’ spatial coordinates
computes the final object locations that best satisfy the set
of spatial constraints expressed in the instruction. Given the
predicted object goal locations, we use vision-based pick-and-
place policies that condition on the visual patch around the
predicted pick and place locations to rearrange the objects
[66]. We call our framework Scene Rearrangement via Energy
Minimization (SREM).

We test SREM in scene rearrangement of tabletop envi-
ronments on simulation benchmarks of previous works [52],
as well as on new benchmarks we contribute that involve



compositional instructions. We curate multiple train and test
splits to test out-of-distribution generalization with respect to
(1) longer instructions with more predicates, (ii) novel objects
and (iii) novel background colors. We show SREM generalizes
zero-shot to complex predicate compositions, such as “put all
red blocks in a circle in the plate” while trained from single
predicate examples, such as “an apple inside the plate” and
“a circle of blocks”. We show SREM generalizes to real-
world scene rearrangement without any fine-tuning, thanks
to the object abstractions it operates on. We compare our
model against state-of-the-art language-to-action policies [52]
as well as Large Language Model planners [15] and show it
dramatically outperforms both, especially for long complicated
instructions. We ablate each component of our model and
evaluate contributions of perception, semantic parsing, goal
generation and low-level policy modules to performance.

In summary, our contributions are: (i) A novel energy-based
object-centric planning framework for zero-shot compositional
language-conditioned goal scene generation. (ii) A modular
system for instruction-guided robot scene rearrangement that
uses semantic parsers, vision-language grounding models,
energy-based models for scene generation, and vision-based
policies for object manipulation. (iii) A new instruction-guided
scene rearrangement benchmark in simulation with composi-
tional language instructions. (iv) Comparisons against state-
of-the-art language-to-action policies and LLM planners, and
extensive ablations.

Simulation and real-world robot execution videos, as well
as our code are publicly available on our website: https:
/lebmplanner.github.io.

II. RELATED WORK

Following instructions for rearranging scenes: Language
is a natural means of communicating goals and can easily
describe compositions of actions and arrangements [1, 3, 4],
providing more versatile goal descriptions compared to supply-
ing one or more goal images. The latter requires the task to be
executed beforehand, which defeats the purpose of instruction
[42, 45, 51, 60]. We group methods in the literature in the
following broad categories:

e End-to-end language to action policies [34, 52, 32, 54]
map instructions to actions or to object locations directly.
We have found that these reactive policies, despite im-
pressively effective within the training distribution, typi-
cally do not generalize to longer instructions, new object
classes and attributes or novel backgrounds [32, 52].

o Symbolic planners such as PDDL (Planning Domain Def-
inition Language) planners [40, 20, 55, 35] use predefined
symbolic rules and known dynamics models, and infer
discrete task plans given an instruction with lookahead
logic search [20, 10, 40, 20, 55, 35]. Symbolic planners
assume that each state of the world, scene goal and
intermediate subgoal can be sufficiently represented in a
logical form, using language predicates that describe ob-
ject spatial relations. These methods predominantly rely

on manually-specified symbolic transition rules, planning
domains and grounding, which limits their applicability.

o Large language models (LLMs) map instructions to lan-
guage subgoals [67, 63, 14, 15] or program policies
[27] with appropriate plan-like prompts. The predicted
subgoals interface with low-level short-term policies or
skill controllers. LLMs trained from Internet-scale text
have shown impressive zero-shot reasoning capabilities
for a variety of downstream language tasks [2] when
prompted appropriately, without any weight fine-tuning
[58, 31]. The scene description is usually provided in a
symbolic form as a list of objects present, predicted by
open-vocabulary detectors [21]. Recent works of [27, 28]
have also fed as input overhead pixel coordinates of
objects to inform the LLM’s predictions. The prompts
for these methods need to be engineered per family of
tasks. It is yet to be shown how the composition of spatial
concept functions can emerge in this way.

Language-conditioned scene generation: A large body
of work has explored scene generation conditioned on text
descriptions [19, 48, 50, 64, 36]. The work of [22] leverages
web-scale pre-trained models [13, 47, 49] to generate seg-
mentation masks for each object in the generated goal image.
Given an input image, their method generates a text prompt
using a captioning model and feeds it to a generative model
that outputs a goal image, which is then further parsed into
segmentation masks. However, the prompt is limited to contain
only names of objects and there is no explicit language-guided
spatial reasoning. In this work, we seek to make scene gener-
ation useful as goal imagination for robotic spatial reasoning
and instruction following. Instead of generating pixel-accurate
images, we generate object configurations by abstracting the
appearance of object entities. We show this abstraction suffices
for a great number of diverse scene rearrangement tasks.

Energy-based models: Our work builds upon existing work
on energy-based models (EBMs) [11, 41, 30, 7, 8, 6]. Most
similar to our work is that of [41], which generates and detects
spatial concepts with EBMs on images with dots, and [7, 30],
which demonstrates composability of image-centric EBMs
for generating face images and images from CLEVR dataset
[18]. In this work, we demonstrate zero-shot composability of
EBMs over object poses instead of images, and showcase their
applicability on spatial reasoning and instruction following for
robotic scene rearrangement.

IIT1. METHOD

The architecture of SREM is shown in Figure 2. The
model takes as input an RGB-D image of the scene and a
language instruction. A semantic parser maps the instruction to
a set of spatial predicate energy functions and corresponding
referential expressions for their object arguments. An open-
vocabulary visual detector grounds the arguments of each
energy function to actual objects in the scene. The goal object
locations are predicted via gradient descent on the sum of
energy functions. Lastly, short-term vision-based pick-and-
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Fig. 2: Scene rearrangement through energy minimization. Given an image and a language instruction, a semantic parser
maps the language into a set of energy functions (BinaryEBM, MultiAryEBM), one for each spatial predicate in the
instruction, and calls to an open-vocabulary visual language grounder (VLMGround) to localize the object arguments of each
energy function mentioned in the instruction, here “fruits” and “plate”. Gradient descent on the sum of energy functions with
respect to object spatial coordinates generates the goal scene configuration. Vision-based neural policies condition on the
predicted pick and place visual image crops and predict accurate pick and place locations to manipulate the objects.

place policies move the objects to their inferred goal locations.
Below, we describe each component in detail.

A library of energy-based models for spatial concepts
In our work, a spatial predicate is represented by an energy-
based model (EBM) that takes as input x the set of objects
that participate in the spatial predicate and maps them to a
scalar energy value Ep(x). An EBM defines a distribution
over configurations x that satisfy its concept through the
Boltzmann distribution pg(z) o e F¢(*). Low-energy con-
figurations imply satisfaction of the language concept and
have high probability. An example of the spatial concept can
be generated by optimizing for a low-energy configuration
through gradient descent on (part of) the input 2. We represent
each object entity by its 2D overhead centroid coordinates and
box size. During gradient descent, we only update the center
coordinates and leave box sizes fixed. We consider both binary
spatial concepts (in, left of, right of, in front of, behind) as well
as multi-ary spatial concepts (circle, line).

Using an EBM, we can sample configurations from pg, by
starting from an initial configuration z° and refining it using
Langevin Dynamics [59]:

T = 2F — AV, Ep(2) + 52, (1)

where z" is random noise, A is an update rate hyperparameter
and €* is a time-dependent hyperparameter that monotonically
decreases as k increases. The role of z* and decreasing €* is to
induce noise in optimization and promote exploration, similar
to Simulated Annealing [24]. After K iterations, we obtain
2~ = . During training, we iterate over Equation 1 K = 30
times, using A\ = 1 and ¢; = 5e — 3. During inference, we
find that iterating for more, e.g. K = 50 often leads to better
solution. In this case we also linearly decay ¢ to O for & > 30.

k

We learn the parameters 6 of our EBM using a contrastive
divergence loss that penalizes energies of examples sampled
by the model being lower than energies of ground-truth
configuration:

L= E$+NPDE9($+) - Ex*wngO(x_)a 2)

where z+ a sample from the data distribution pp and z~ a
sample drawn from the learned distribution pg. We additionally
use the KL-loss and the L2 regularization proposed in [8] for
stable training. At test time, compositions of concepts can be
created by simply summing energies of individual constituent
concept, as shown in Figures 1 and 2.

We implement two sets of EBMs, a BinaryEBM and a
MultiAryEBM for binary (e.g., left of) and multi-ary (e.g.,
circle) language concepts, respectively. The BinaryEBM ex-
pects two object arguments, each represented by its bounding
box. We convert the object bounding box to (top-left corner,
bottom-right corner) representation. Then we compute the
difference between all corners of the two object arguments
and concatenate and feed to a multi-layer perceptron (MLP)
that outputs a scalar energy value. Note that the energy
function only depends on the relative arrangement of the two
objects, not their absolute locations. The MultiAryEBM is
used for order-invariant concepts of multiple entities, such
as shapes. The input is a set of objects, each represented
as a point (box center). We subtract the centroid of the
configuration from each point and then featurize each object
using an MLP. We feed this set of object features to a
sequence of four attention layers [56] for contextualization.
The refined features are averaged into an 1D vector which
is then mapped to a scalar energy using an MLP. We train
a separate EBM for each language concept in our vocabulary



using corresponding annotated scenes in given demonstrations.
Note that annotated scenes suffice to train the energy functions,
kinesthetic demonstrations are not necessary, and in practice
each EBM can be trained within a few minutes. We provide
further implementation details and architecture diagrams for
our EBMs in Section VI-A and Figure 4 of the Appendix. We
also visualize the energy landscape for various concepts and
combinations in VI-E and Figure 6 of the Appendix.
Semantic parsing of instructions into spatial concepts and
their arguments. Our parser maps language instructions to
instantiations of energy-based models and their arguments. It
is a Sequence-to-Tree model [5] with a copying mechanism
[12] which allows it to handle a larger vocabulary than
the one seen during training. The input to the model is a
natural language instruction and the output is a tree. Each
tree node is an operation. The three operations supported are
i) BinaryEBM which calls a BinaryEBM from our library, ii)
MultiAryEBM and iii) VLMGround which calls the visual-
language grounding module. Each node has a pointer to the
arguments of the operation, language concepts for EBM calls,
e.g., behind, and noun phrases for grounding model calls,
e.g., “the green cube”. Nodes in the parsing tree may also
have children nodes, which imply nested execution of the
corresponding operations. The input utterance is encoded using
a pre-trained RoBERTa encoder [33], giving a sequence of
contextualized word embeddings and a global representation
of the full utterance. Then, a decoder is iteratively employed
to 1) decode an operation, ii) condition on this operation to
decode or copy the arguments for this operation, iii) add one
(or more) children node(s). For example, the instruction “a
circle of cubes inside the plate” is mapped to a sum of energy
functions where each object of the multi-ary concept circle
participates in the constraining binary concept in:

Etotal =  MultiAryEBM(circle, VLMGround(“cubes”))

+ Y, BinaryEBM(in, z;, VLMGround(“plate”)),
x; € VLMGround(“cubes”).

3)

We train our semantic parser on the instructions of all training
demonstrations of all tasks jointly, as well as on synthesized
instructions paired with programs, each with 1-7 predicates,
that we generate by sampling from a grammar, similar to
previous works [38, 57]. For more details on the domain-
specific language of our parser and the arguments for each
operation see Section VI-A and Table VIII in our Appendix.
We ground noun phrases predicted by our parser with an off-
the-shelf language grounding model [17], which operates as an
open-vocabulary detector. The input is the noun phrase, e.g.,
“the blue cube” and the image, while the output is the boxes
of all object instances that match the noun phrase. The open-
vocabulary detector has been pre-trained for object detection
and referential grounding on MS COCO [29], Flickr30k [44]
and Visual Genome [25]. We finetune the publicly available
code of [17] on our training data of all tasks jointly.
Short-term vision-based manipulation skills We use
short-term manipulation policies built upon Transporter Net-

works [66] to move the obejcts to their predicted locations.
Transporter Networks take as input one or more RGB-D
images, reproject them to the overhead birds-eye-view, and
predict two robot gripper poses: i) a pick pose and ii) a
pick-conditioned placement pose. These networks can model
any behaviour that can be effectively represented as two
consecutive poses for the robot gripper, such as pushing,
sweeping, rearranging ropes, folding, and so on — for more
details please refer to [66].

We modify Transporter Networks to take as input a small
image RGB-D patch, instead of a complete image view.
Specifically, we consider as input the image patches around
the object pick and object goal locations predicted by our
visual grounding and energy-based minimization modules re-
spectively. In this way, the low-level policies know roughly
what to pick and where to place it, and only locally optimize
over the best pick location, as well as the gripper’s relative
rotation, within an object of interest, or placement location,
at a particular part of the scene, respectively. We show in
our ablations (Table VII) that using learning-based pick-and-
place policies helps performance, even if the search space is
limited thanks to grounding and goal imagination. We train
Transporter Networks from scratch on all our pick-and-place
demonstration datasets jointly.

Termination of execution: SREM generates a goal scene
by optimizing the relative poses of the objects mentioned
in the instruction. We estimate how many objects should
be moved by comparing the detected bounding box (by the
language grounding model) and the optimized bounding box
(by the EBM). For non-compositional tasks that involve binary
concepts, we inject the prior that one object is fixed. Then we
take as many actions as the number of objects the EBM moved.

Closed-loop execution: SREM first generates a goal scene
from the input instruction and then executes it. After execution,
we re-detect all relevant objects using our VLM-grounder
module to check if they are close to their predicted goal
locations. If the re-detected object’s bounding box and initially
predicted goal bounding box intersect over a certain IoU
threshold, we consider the goal to be successfully executed.
If we fail to reach the goal, we call again our vision based
policies using the current scene configuration. Comparing the
post-execution object configuration with the initially imagined
goal scene allows to track progress and estimate goal comple-
tion as we show in the experimental section and in Section
VI-C and Table IX of the Appendix.

IV. EXPERIMENTS

We test SREM in its ability to follow language instructions
for rearrangement of tabletop scenes in simulation and in the
real world. We compare our model against LLM planners [15]
and end-to-end language-to-action policies [52]. Our experi-
ments aim to answer the following questions:

1) How does SREM compare to LLM planners in predicting

scene configurations from instructions? (Section IV-A)
2) How does SREM compare to state-of-the-art language-to-
action policies for rearranging scenes? How does their rel-



ative performance change with varying instruction length
and varying amount of training data? (Section IV-B)

3) How does SREM generalize to novel objects, object
colors and background colors, compared to an end-to-end
language-to-action model? (Section IV-C)

4) How much do different modules of our framework con-
tribute to performance? (Section IV-D)

Benchmarks: Existing language-conditioned manipulation
benchmarks are usually dominated by a single spatial concept
like “inside” [52]. To better illustrate the compositionality of
spatial concepts, we introduce the following set of bench-
marks, implemented with PyBullet:

« spatial-relations, containing single pick-and-place in-
structions with referential expressions in cluttered scenes
with distractors, e.g. “Put the cyan cube above the red
cylinder”. We consider the relations left of, right of, in
front of, behind.

« comp-one-step, containing compositional instructions
with referential expressions in cluttered scenes with dis-
tractors that require one object to be re-located to a
particular location, e.g. “put the red bowl to the right
of the yellow cube, to the left of the red cylinder, and
above blue cylinder”.

« comp-group, containing compositional instructions with
referential expressions in cluttered scenes with distractors
that require multiple objects to be re-located, e.g., “put
the grey bowl above the brown cylinder, put the yellow
cube to the right of the blue ring, and put the blue ring
below the grey bowl”.

« shapes, containing instructions for making multi-entity
shapes (circles and lines), e.g. “rearrange all red cubes
in a circle”.

We further evaluate our model and baselines on four tasks
from the CLIPort benchmark [52], namely put-block-in-
bowls, pack-google objects-seq, pack-google objects-group
and assemble-kits-seq.

For all tasks we train on either 10 or 100 demos and use
the same demos to train all our modules, as discussed in
Section III. We test on 50 episodes per task, where we vary the
instruction and the initial configuration of objects. For spatial-
relations and shapes each concept corresponds to a task, while
the composition benchmarks correspond to one task each.
Baselines: We compare SREM to the following baselines:

o CLIPort [52], a model that takes as input an overhead
RGB-D image and an instruction and uses pre-trained
CLIP language and image encoders to featurize the
instruction and RGB image, respectively; then fuses these
with depth features to predict pick-and-place actions
using the action parametrization of Transporter Networks
[66]. The model capitalizes on language-vision associa-
tions learnt by the CLIP encoders. We use the publicly
available code of [52]. We train one CLIPort model on
all tasks of each benchmark, e.g., one model for spatial-
relations, a different for comp-group etc. Note that the
original CLIPort implementation assumes access to oracle

success/failure information based on which the model can
retry the task for a fixed budget of steps or stop the
execution if oracle confirms that the task is completed.
We evaluate the CLIPort model without this oracle retry
but still with oracle information of how many minimum
steps it needs to take to complete the task, so we force
CLIPort to take exactly that number of actions.

o LLMplanner, inspired by [15], an instruction-following
scene-rearrangement model that uses an LLM to predict
a sequence of subgoals in language form, e.g. “pick the
red cube and place it to the right of the blue bowl”.
The generated language subgoals are fed as input to
language-to-action policies, such as CLIPort. Scene state
description is provided as a list of objects in the scene.
LLMplanner does not finetune the LLM but instead uses
appropriate prompts so that the LLM adapts its behavior
in-context and generates similar statements. The prompts
include various previous successful interactions between
a human user and the model. We design suitable prompts
for our introduced benchmarks and use the LLM to
decompose a long instruction into simpler ones (see
Figure 5 in the Appendix for an example). Then, we feed
each generated instruction to a CLIPort model, trained as
described earlier. Lastly, for tabletop manipulation tasks
in simulation, the LLMPlanner of [15] assumes access to
an oracle success/failure detector. The difference in our
implementation is that we do not assume any success
detector. The execution terminates when all language
subgoals have been fed to and handled by CLIPort.

Note that LLMplanner boils down to CLIPort for non-

compositional instructions. As such, we compare with
LLMplanner only on comp-one-step and comp-group, both
in simulation and real world.
Evaluation Metrics: We use the following two evaluation
metrics: (i) Task Progress (TP) [66] is the percentage of the
referred objects placed in their goal location, e.g. 4/5 = 80.0%
for rearranging 4 out of 5 objects specified in the instruction.
(i1) Task Completion (TC) rewards the model only if the full
rearrangement is complete. For the introduced benchmarks we
have oracle reward functions that evaluate whether the task
constraints are satisfied.

A. Spatial reasoning for scene rearrangement with oracle
perception and control

In this section, we compare spatial reasoning for predicting
compositional scene subgoals in a language space versus in an
abstract visually grounded space. In this section, to isolate this
reasoning ability from nuisance factors of visually localizing
the objects and picking them up effectively, we consider
oracle object detection, referential grounding and low-level
pick-and-place policies. Specifically, we carry out inferred
language subgoals from LLMplanner using oracle controllers
that relocate an object in the scene such that it satisfies the
predicted subgoals. Note that SREM relies on pick-and-place
policies that are not language-conditioned, while LLMplanner
relies on language-conditioned policies for object re-location.



Human: Put the strawberry to the right of the apple and
in front of the green bowl.

Scene: There is an apple, a green bowl and a strawberry
in the scene.

Robot Thought: The goal state is [“strawberry right of
apple”, “strawberry in front of green bowl”]

Robot Action: Put the strawberry to the right of the apple.
Executor: Done.

Robot Action: Put the strawberry in front of the green
bowl.

Executor: Done.

Action 2: Put the strawberry in front of the green bowl.

Fig. 3: Planning in language space with Large Language
Models (LLMs). LLM Planners predict language subgoals
that decompose the initial instruction to simpler-to-execute
subtasks. Predicted language subgoals are fed to reactive
language-to-action policies for execution. In cases where con-
cept intersection is needed, the predicted sequential language
subgoal decomposition of instructions can fail. Here, the LLM
predicts the first subgoal of putting the strawberry to the right
of the apple. The reactive policy can succeed if it places
the strawberry anywhere within the shaded region. During
execution of the next issued language subgoal of putting the
strawberry in front of the bowl, the policy violates the first
constraint. Placing the strawberry in the intersection of the
two shaded regions may not be achieved by decomposing the
two predicates sequentially, as opposed to composing them.
Then the burden of handling the compositional instruction is
outsourced to the language-to-action policy, which often fails
to generalize. Instead, SREM directly addresses composition-
ality of multiple spatial language predicates.

Thus, the oracle control assumption is less realistic in the latter
case. We forego this difference for the sake of comparison.
We show quantitative results of SREM and LLMplanner on
the comp-one-step and comp-group benchmarks in Table I.
Our model outperforms LLMplanner and the performance gap
is larger in more complex instructions. To elucidate why an

comp-one-step comp-group

Method TP TC TP TC
LLMplanner w/ oracle 82.0 59.0 753  29.0
SREM w/ oracle 90.8 76.0 88.7 62.0

TABLE I: Evaluation of SREM and LLMplanner with
oracle perception and oracle low-level execution policies
on compositional spatial arrangement tasks. We report Task
Progress (TP) and Task Completion (TC).

abstract visual space may be preferable for planning, we vi-
sualize steps of energy minimization for different instructions
in Figure 1 and steps of the execution of the LLM prompted
by us to the best of our capability in Figure 3. We can see
that SREM trained on single-predicate scenes shows remark-
able composability in case of multiple predicates. Language
planning on the other hand suffers from the ambiguity of
translating geometric concepts to language and vice versa:
step-by-step execution of language subgoals does not suffice
for the composition of the two subgoals to emerge (Figure 3).

B. Spatial scene rearrangement

Simulation: In this section, we compare our model and the
baselines in the task of instruction-guided scene rearrange-
ment. We first show results on spatial-relations and shapes
in Table II. We largely outperform CLIPort, especially when
less training demos are considered.

To evaluate generalization on longer instructions at test time,
we show quantitative results in Table III for the benchmarks
of comp-one-step and comp-group. We compare our model
with CLIPort trained on atomic spatial relations and zero-
shot evaluated on compositional benchmarks. We further fine-
tune CLIPort on demos from the compositional benchmarks.
SREM is not trained on these benchmarks, because the en-
ergy functions are already composable, meaning that we can
jointly optimize over an arbitrary number of constraints by
simply summing the different energy terms. Under all different
settings, we significantly outperform all variants of CLIPort
and LLMplanner. We also observe that closed-loop execution
boosts our performance further.

We additionally show results on the CLIPort benchmark in
Table IV. We largely outperform CLIPort on almost all tested
tasks. Margins are significantly larger when i) less demos are
used and ii) the robot has to interact with objects of unseen
colors or classes. Most of the failure cases for our model
are due to the language grounding mistakes - in particular
for assemble-kits-seq we find that the grounder gets confused
between letters and letter holes.

Real World: We test our model on a 7-DoF Franka
Emika robot, equipped with a parallel jaw gripper and a
top-down Azure Kinect RGB-D camera. We do not perform
any real-world finetuning. Our test set contains 10 language-
guided tabletop manipulation tasks per setting (Comp-one-



left-seen-colors

left-unseen-colors

right-seen-colors right-unseen-colors

Method 10 demos 100 demos 10 demos 100 demos 10 demos 100 demos 10 demos 100 demos
CLIPort 13.0 44.0 9.0 33.0 29.0 43.0 28.0 44.0
SREM 95.0 95.0 93.0 94.0 89.0 92.0 93.0 96.0
behind-seen-colors behind-unseen-colors front-seen-colors front-unseen-colors
Method 10 100 10 100 10 100 10 100
CLIPort 24.0 45.0 22.0 51.0 23.0 55.0 13.0 40.0
SREM 87.0 87.0 89.0 90.0 89.0 90.0 88.0 89.0
circle-seen-colors circle-unseen-colors line-seen-colors line-unseen-colors
Method 10 demos 100 demos 10 demos 100 demos 10 demos 100 demos 10 demos 100 demos
CLIPort 34.1 61.5 31.2 55.6 48.6 88.2 48.6 88.5
SREM 91.3 91.5 90.2 91.2 98.1 99.0 98.4 99.4

TABLE II: Evaluation (TP) of SREM and CLIPort on spatial-relations and shapes in simulation.

comp-one-step

seen-colors

comp-one-step
unseen-colors

comp-group
seen-colors

comp-group
unseen-colors

Method 10 100 10 100 10 100 10 100
Initial (no movement) 0.0 0.0 0.0 0.0 31.7 31.7 318 31.8
CLIPort (zero-shot) 9.0 12.0 7.0 12.0 374 375 326 384
CLIPort 13.0 15.0 14.0 9.0 382 385 347 409
LLMplanner 51.2 53.2 494 53.5 386 390 37.1 39.0
SREM (zero-shot) 90.0 91.0 92.7 90.3 712 774 717 784
SREM (zero-shot + closed-loop) 91.6 92.0 92.9 914 80.8 81.6 81.1 824

TABLE III: Evaluation (TP) of SREM, CLIPort and LLMplanner on compositional tasks. SREM is trained only on atomic
relations and tested zero-shot on tasks with compositions of spatial relations which involve moving one (comp-one-step) or
multiple (comp-group) objects to satisfy all constraints specified by the language. Some language constraints are satisfied
already in the initial configuration and the Initial model captures that.

step, Comp-group, Circles, Lines). We show quantitative re-
sults in Table VI. SREM generalizes to the real world without
any real-world training or adaptation thanks to the open-
vocabulary detector trained on real-world images, as well
as the object abstractions in the predicate EBMs and low-
level policy modules. We encourage readers to refer to our
supplementary video and our website for more detailed results.

C. Generalization analysis

We conduct controlled studies of our model’s generalization
across three axes: a) novel colors: we train the models with
objects of 7 different colors and evaluate them on objects
of 4 unseen colors; b) novel background colors: we train
all models on black-colored tables and evaluate on tables of
randomly sampled RGB colors; c) novel objects: we train the
models on objects of 4 classes and evaluate on rearrangement
of 11 novel classes. In each of these settings, we only change
one attribute (i.e. object color, background color or object
instance) while keeping everything else constant.

We evaluate our model and CLIPort trained on 10 or 100
demos per task on spatial-relations (average performance over
all tasks) and composition (average performance over all tasks
from comp-one-step and comp-group). The results are sum-
marized in Table-V. We observe that our model maintains high
performance across all axes of generalization, independently
of the number of training demos.

Our model’s generalization capabilities rely on the open-
vocabulary detector and the fact that EBMs and transporter-
based low-level execution policy operate on abstracted space in
a modular fashion. While CLIPort models can also generalize
to novel scenarios by leveraging the CLIP model, the action
prediction and perception are completely entangled and hence
even if CLIP manages to identify the right objects based on
the language, it has trouble predicting the correct pick and
place locations.



put-block-in-bowl
seen-colors

put-block-in-bowl
unseen-colors

packing-google-objects
seq-seen-objects

packing-google-objects
seq-unseen-objects

Method 10 demos 100 demos 10 demos 100 demos 10 demos 100 demos 10 demos 100 demos
CLIPort 31.0 82.1 4.8 17.6 34.8 54.7 27.2 56.4
SREM 84.3 93.8 89.0 95.3 86.8 94.8 88.0 92.9
packing-google-objects packing-google-objects assembling-kits assembling-kits
group-seen-objects group-unseen-objects seq-seen-colors seq-unseen-colors
Method 10 100 10 100 10 100 10 100
CLIPort 33.5 61.2 322 70.0 38.0 62.6 36.8 51.0
SREM 86.1 76.8 87.2 79.6 38.4 42.0 40.8 44.0

TABLE 1V: Evaluation (TP) of SREM and CLIPort on CLIPort benchmark in simulation.

spatial-relations composition

Novel attribute Model 10 demos 100 demos 10 demos 100 demos
N CLIPort 22.0 47.0 25.6 26.8
one SREM 90.0 91.0 83.6 84.2
CLIPort 18.0 39.0 25.1 24.5

Color

SREM 87.0 85.0 86.5 84.0
Backeround CLIPort 10.0 20.0 23.7 23.2
grou SREM 79.0 68.0 77.0 72.0
Objects CLIPort 17.0 19.0 24.5 24.8
4 SREM 86.0 86.0 80.9 81.5

TABLE V: Generalization experiments of SREM and CLIPort in manipulation tasks in simulation (metric is TP).

Method comp-one-step comp-group circles lines
CLIPort 13.1 229 34.0 46.0
LLMplanner 39.5 259 - -

SREM 85.6 75.8 94.0 90.0

TABLE VI: Real-world evaluation (TP) of SREM

Method Accuracy
SREM 77.2
SREM w/o goal generation 42.1
SREM w/o learnable policies 61.2
SREM w/ oracle language grounding 82.3
SREM w/ everything oracle except goal 88.3

TABLE VII: Ablations of SREM on the benchmark comp-
group-seen-colors (metric is TP).

D. Ablations

We show an error analysis of our model in Table-VII.
First, we remove the goal generation from SREM (SREM
w/o goal generation) by conditioning the place network on
the language input instead of the EBM-generated goal image,
while keeping the pick network and object grounders identical.

We observe a drop of 35.1% in accuracy, underscoring the
importance of goal generation. We then remove our executor
policy (SREM w/o learnable policies) and instead randomly
select pick/place locations inside the bounding box of the
relevant object. This results in a drop of 16%, showing the
importance of robust low-level policies. We do not remove
the grounder and parser since they are necessary for goal
generation. We then experiment with oracle visual language
grounder (SREM w/ oracle language grounding) that perfectly
detects the objects mentioned in the sentence, which results in
a performance gain of 5.1%. We finally evaluate with perfect
grounding, language parsing and low-level execution (SREM
w/ everything oracle except goal) to test the error rate of our
goal generator. We obtain an 88.3% accuracy, thus concluding
that our goal generator fails in 11.7% cases. For a more
detailed error analysis, please refer to VI-C in the Appendix.

E. Limitations

Our model presently has the following two limitations: First,
it predicts the goal object scene configuration but does not
have any knowledge regarding temporal ordering constraints
on object manipulation execution implied by physics. For
example, our model can predict a stack of multiple objects on
top of one another but cannot suggest which object needs to



be moved first. One solution to this problem is to heuristically
pick the order based on objects that are closer to the floor
in the predicted scene configuration. However, more explicit
encoding of physics priors are important to also identify if the
generated configuration is stable or not. A promising direction
is to model physics-based constraints as additional energy
constraints, and obtain optimization gradients by leveraging
either differentiable physics simulators [16, 46, 62] or learned
dynamics models [26, 61, 43]. Second, our EBMs are cur-
rently parametrized by object locations and sizes, but different
tasks need different abstractions. Manipulation of articulated
objects, fluids, deformable objects or granular materials, would
require finer-grained parametrization in both space and time.
Furthermore, even for rigid objects, many tasks would require
finer in-space parametrization, e.g., it would be useful to know
a set of points in the perimeter of a plate as opposed to
solely representing its bounding box for accurately placing
things inside it. Considering EBMs over keypoint or object
part graphs [53, 37] is a direct avenue for future work.

V. CONCLUSION

We introduce SREM, a modular robot learning framework
for instruction-guided scene rearrangement that maps instruc-
tions to object scene configurations via compositional energy
minimization over object spatial coordinates. We test our
model in diverse tabletop manipulation tasks in simulation and
in the real world. Our model outperforms state-of-the-art end-
to-end language-to-action policies, and LLM-based instruction
following methods both in in- and out-of-distribution settings,
and across varying amount of supervision. We contribute a new
scene rearrangement benchmark that contains more composi-
tional language instructions than previous works, which we
make publicly available to the community. Our work shows
that a handful of visually-grounded examples suffice to learn
energy-based spatial language concepts that can be composed
to infer novel instructed scene arrangements, in long and
complex compositional instructions.
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VI. APPENDIX

In Section VI-A we give implementation details for the
components of our method; in Section VI-B we present in
more detail the evaluation metrics for the newly-introduced
tasks; in Section VI-C we show the effectiveness of closed-
loop execution for predicting the success or failure of execu-
tion and present a detailed error analysis; we show an example
prompt used for our LLMPlanner baseline in Section VI-D;
we visualize the learned energy landscapes in Section VI-E; in
Section VI-F we include additional related work on constraint-
guided layout optimization.

A. Implementation Details

Energy-based Models: The architectures of the Bina-
ryEBM and MultiAryEBM are shown in Figure 4a and b
respectively. We train a separate network for each concept in
our library using the same demos that are used to train the
other modules. We augment and repeat the samples multiple
times to create an artificially larger dataset during training. We
use Adam [23] optimizer, learning rate 1le — 4, batch size 128.

Buffer: During training, we fill a buffer of previously gener-
ated examples, following [8]. The buffer is updated after each
training iteration to store at most 100000 generated examples.
When the buffer is full, we randomly replace older examples
with incoming new ones. We initialize xy for Equation 1 by
sampling from the buffer 70% of the times or loading from
the data loader 30% of the times.

Regularization losses: We use the KL-loss from [8], Licy =
E,-p, Eo(z™), where the bar on top of E indicates the
stop-gradient operation (we only backpropagate to E through
x7). We additionally use the L2 energy regularization loss
Eotpp g (a1) + By op, E5 (7). We refer the reader to [8]
for more explanation on these loss terms.

Extension to tasks with 3D information or pose: An impor-
tant design choice is what parameters of the input we should
be able to edit. We inject the prior knowledge that on our
manipulation domain the objects move without deformations,
so we fix their sizes and update only their positions. Our EBMs
operate on boxes so that they can abstract relative placement
without any need for object class or shape information. How-
ever, EBMs can be easily extended to optimize other types of
representations, such as 3D bounding boxes or pose.

We train EBMs that optimize over 3D locations for rel-
ative placement. The architecture is shown in Figure 4c. We
adapt the BinaryEBM to represent boxes as (ZYZmin, TYZmaz)
and then compute the relative representations as in the 2D
case. We optimize for one 3D relation, “on”. For pose-aware
EBMs, we adapt the MultiAryEBM to represent objects as
(Teenters Yeenter, ), where 0 is the rotation wrt the world
frame. We then simply change the first linear layer of the
MultiAryEBM to map the new input tuple to a 128-d feature
vector. The architecture is shown in Figure 4d. We show
qualitative results that compose these EBMs into new concepts
on our website.

Domain-Specific Language: We design a Domain-Specific
Language (DSL) which extends the DSL of NS-CL [38]

(designed for visual question answering in CLEVR [18]) to
further predict scene generations, e.g. “put all brown shoes in
the green box”. Detailed description of our DSL can be found
in Table VIII.

Semantic Parser We construct program annotations for
the language instructions of the training demos by mapping
them to our DSL (rule-based). We then train our parser on all
instructions using Adam optimizer with learning rate le — 3
and batch size 32. The same parser weights are used across
all tasks. For compositional tasks, we train the parser on the
descriptions from the demos that are used to finetune our
baselines. The parser is the only part of our framework that
needs to be updated to handle longer instructions.

Visual-language Grounder: We finetune BEAUTY-DETR
[17] on the scenes of the training demos in simulation.
BEAUTY-DETR is an encoder-decoder Detection Transformer
that takes as input an image and a referential language
expression and maps word spans to image regions (bounding
boxes). The original BEAUTY-DETR implementation uses an
additional box stream of object proposals generated by an
off-the-shelf object detector. We use the variant without this
box stream for simplicity. BEAUTY-DETR has been trained
on real-world images. We finetune it using the weights and
hyperparameters from the publicly available code of [17].

Short-term Manipulation Skills Our low-level policy net-
work is based on Transporter Networks. Transporter Networks
decompose a given task into a sequence of pick-and-place
actions. Given an overhead image, the model predicts a pick
location and then conditions on it to predict a place location
and gripper pose. The original implementation of Transporter
Networks supports training with batch size 1 only. We im-
plement a batch-supporting version and find it more stable.
We use batch size 8 and follow the original paper in other
hyperparameter values.

B. Benchmark Generation

We extend the Ravens [66] benchmark for spatial reasoning
in the PyBullet simulator. For each benchmark, we write a
template sentence (e.g. “Arrange OBJ1 into a circle”) and
then randomly select valid objects and colors from a pre-
defined list. To test generalization, we include novel colors
or novel objects in the evaluation set. Once the sentence
is generated, we programatically define valid regions which
satisfy the relation and then sample empty locations from it to
specify object goal locations. We start by placing all objects
randomly in the scene. Then, an oracle hand-designed policy
picks and places the objects to the desired locations and returns
a demo trajectory which consists of raw RGB-D images and
pick-and-place locations. These can be used then to train a
behaviour cloning policy similar to CLIPort.

Evaluation Metrics for Rearrangement Tasks To evaluate
make-a-circle task, we fit a best-fit circle for the final con-
figuration predicted by SREM. To do this, we consider the
centers of the bounding boxes as points. Then, we compute
the centroid of those points and the distance of each point
from the centroid. This is an estimate of “radius”. We compute
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Fig. 4: (a): Architecture of the EBM used for binary concepts such as “right of””. The inputs are two boxes O; and O2 and the
output is the energy of their relative placement. (b): Architecture of the EBM used for multi-ary concepts such as “circle”. The
input is a set of n entities O, k = 1,...,n. The output is the energy of this set of entities wrt the concept. (¢): Architecture of
the EBM used for 3D binary concepts such as “on”. Each object is now represented by a 3D bounding box. (d): Architecture
of the EBM used for concepts that involve pose optimization (rotation). Each object is represented with its center and rotation

wrt the global coordinate frame.

Operation Signature Semantics
Filter (ObjectSet, ObjectConcept) — ObjectSet Filter out set of objects based on some Object
Concept like object name (eg. cube) or property
(color, material)
BinaryEBM (Object A, Object B, Relation) — (Pick locations, Executes BinaryEBMs for rearranging Object A
Place locations) and Object B to satisfy the given binary relation
(like left of/right of/inside etc.)
MultiAryEBM  (ObjectSet, Shape Type, Property) — (Pick loca- Executes MultiAryEBMs for the given Shape Type
tions, Place locations) (circle, line, etc.) with specified Properties (like
size, position etc.) on a set of given objects and
generates pick and place locations to complete the
shape.

TABLE VIII: All operations in the domain-specific language for SREM

the standard deviation of this radius. If this is lower than 0.03,
then we assign a perfect reward. The reward linearly decreases
when the std increases from 0.03 to 0.06. Beyond that, we
give zero reward. We tuned these thresholds empirically by
generating and distorting circle configurations.

We follow a similar evaluation strategy for make-a-line.
Here we compute the average slope and fit a line to our data.
Then we measure the standard deviation of the distance of
each point from the line. We found that the same thresholds
we use for circles work well for lines as well.

C. Additional Experiments

Details on Generalization Experiments: We conduct con-
trolled studies of our model’s generalization across three axes:
a) Novel Colors b) Novel background color of the table c)

Novel Objects. In each of these settings, we only change one
attribute (i.e. object color, background color or object instance)
while keeping everything else constant.

e Novel colors: We train the models with [“blue”, “red”,
“green”, “yellow”, “brown”, “gray”, “cyan”] colors and
evaluate them with unseen [“orange”, “purple”, “pink”,
“white”].

e Novel background colors: All models are trained with
black colored tables and evaluated with randomly sam-
pled RGB color for each instruction.

e Novel objects: We train the models on [“ring”, “cube”,
“cylinder”, “bowl”] and evaluate them with [“triangle”,
“square”, “plus”, “diamond”, “pentagon”, “rectangle”,

star”, “circle”, “hexagon”, “heart”].

99 <

“flower”,



Benchmark Precision Recall Accuracy
Comp-group 80.5 82.5 85.0
Comp-one-step 71.4 19.2 77.0

TABLE IX: Performance of failure detection using our
generated goal. We check whether the boxes of the objects
in the rearranged scene overlap with the locations the EBM
generated. If not, we mark the rearrangement as failed (not
satisfying the goal).

Fig. 5: Example prompt used for LLMPlanner.

o Real-World Experiments In our real-world experiments,
we also use novel objects or novel object descriptions
like “bananas”, “strawberry”, “small objects” which the

model hasn’t seen during training in simulation.

Closed-Loop Execution: As we show in the main pa-
per, adding feedback roughly adds 3.5% performance boost
on comp-group benchmark and 1% boost on comp-one-step
benchmark. Retrying cannot always recover from failure,
however, it would be still important to know if the execution
failed so that we can request help from a human. Towards this,
we evaluate the failure detection capabilities of our feedback
mechanism in Table-IX. We observe that all metrics are high
for comp-group benchmark. For comp-one-step, however, the
recall is very low i.e. only 19.2%. This is because in this
benchmark, we only need to move one object to complete the
task and hence most failures are due to wrong goal generation.
Thus, the failure classifier classifies those demos as success,
because indeed the model managed to achieve its predicted
goal and hence results in low recall. This motivates the use of
external failure classifiers in conjunction with internal goal-
checking classifiers. In contrast, comp-group benchmark is
harder because it requires the model to move many objects
and thus results in higher chances of robot failures. These
failures can be better detected and fixed by our goal-checking
classifier.

Also, note that while previous works like InnerMonologue
[14] show large improvements by adding closed-loop feed-
back, the improvements for us are smaller. This is because,
by design, our model is more likely to reach its goal - since
the EBM generates a visual goal and then the low-level policy

Error Mode Error Percentage
Robot failure 6.0
Goal Generation failure 11.7
Grounding failure 5.1
Language Parsing failure 0.0

TABLE X: Error Analysis of SREM on the benchmark
comp-group-seen-colors.

predicts a pick-and-place location within the predicted goal,
it is very likely to satisfy its predicted goal. Indeed, in the
comp-one-step, the model satisfies its goal in 93% cases and
in 70% cases in the comp-group benchmark. In contrast,
InnerMonologue does not have any built-in mechanisms for
promoting goal-reaching behaviours and thus the difference
in performance with additional goal-satisfying constraints is
larger for that method.

There is a lot of potential in designing better goal checkers.
As already discussed, we can incorporate external success
classifiers like those used by prior literature [14] in conjunction
with goal-checking classifiers. Explicit goal generation allows
then to check validity of goals directly even before actual robot
execution (which makes it safer and less expensive). We leave
this for future work. Another promising direction is to add
object trackers in the feedback mechanism to keep track of
the objects and detect if a failure happened. This is important,
if we have multiple objects that are visually similar and hence
we would need to keep track of which object corresponds to
which goal and retry if it failed to reach it.

Error Analysis: We conduct a detailed error analysis of
our model on comp-group benchmark, shown in Table-X. We
find that robot failures, i.e. collisions or failure to pick/place
objects, result in 6.0% drop in accuracy. Goal generation adds
11.7% to the failure. Visual grounding leads to 5.1% errors
while we find language parsing to be nearly perfect.

D. Prompt used for LLMPlanner

We show a prompt used for LLMPlanner for comp-one-step
in Figure 5.

E. EBM Energy Landscape Visualization

We visualize the energy landscape of our EBMs for different
concepts in Figure-6. For binary relations (A, rel, B), we fix
B’s bounding box in the scene and then move the bounding
box of A all over the scene and evaluate the energy of the
configuration at each position. For shapes, it is impossible
to represent the landscape in 2D or 3D because we need to
jointly consider all possible combinations of objects in the
scene. Hence, we fix all but one object in a valid circle/line
location and move a free box in all possible regions. For
compositions of relations, we move only one box and score the
sum of energy for all constraints. We expect the energy to be
low in regions which satisfy the described concept (relation(s)
or shape) and high elsewhere. We observe that the energy
landscape is usually smooth with low values in valid regions
and high otherwise.



F. Additional Related Work

Constraint-Guided Layout Optimization: Automatic op-
timization for object rearrangement has been studied outside
the field of robotics. [65] and [39] use few user-annotated
examples of scenes to adapt the hyperparameters of task-
specific cost functions, which are then minimized using stan-
dard optimization algorithms (hill climbing and/or simulated
annealing). To learn those hyperparameters from data, these
approaches fit statistical models, e.g. Mixtures of Gaussian,
to the given samples. [9] further employ such optimization
constraints into an interactive environment, where the user
can provide an initial layout and the algorithm suggests im-
provements. All these approaches require expert knowledge to
manually design rules and cost function, namely [65] identifies
seven and [9] eleven expert-suggested criteria for successful
rearrangement. Since they are hand-crafted, these methods do
not generalize beyond the domain of furniture arrangement.
In contrast, energy optimization is purely data-driven and
domain-agnostic: a neural network scores layouts, assigning
high energy to those that do not satisfy the (implicit) con-
straints and low energy to those who do, essentially modeling
the underlying distribution of valid layouts.



Below

o .
-
Lu I
| . |

Right

Right of blue box and left of green box Left of red box and above blue box and
and below red box below green box

- vy B -

Line

Circle

Fig. 6: EBM Energy Landscape visualization: The boxes shown here remain fixed and we score the energy by moving
another box all along the workspace. Energy decreases from white to orange to purple to black.
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