


compositional instructions. We curate multiple train and test

splits to test out-of-distribution generalization with respect to

(i) longer instructions with more predicates, (ii) novel objects

and (iii) novel background colors. We show SREM generalizes

zero-shot to complex predicate compositions, such as ªput all

red blocks in a circle in the plateº while trained from single

predicate examples, such as ªan apple inside the plateº and

ªa circle of blocksº. We show SREM generalizes to real-

world scene rearrangement without any fine-tuning, thanks

to the object abstractions it operates on. We compare our

model against state-of-the-art language-to-action policies [52]

as well as Large Language Model planners [15] and show it

dramatically outperforms both, especially for long complicated

instructions. We ablate each component of our model and

evaluate contributions of perception, semantic parsing, goal

generation and low-level policy modules to performance.

In summary, our contributions are: (i) A novel energy-based

object-centric planning framework for zero-shot compositional

language-conditioned goal scene generation. (ii) A modular

system for instruction-guided robot scene rearrangement that

uses semantic parsers, vision-language grounding models,

energy-based models for scene generation, and vision-based

policies for object manipulation. (iii) A new instruction-guided

scene rearrangement benchmark in simulation with composi-

tional language instructions. (iv) Comparisons against state-

of-the-art language-to-action policies and LLM planners, and

extensive ablations.

Simulation and real-world robot execution videos, as well

as our code are publicly available on our website: https:

//ebmplanner.github.io.

II. RELATED WORK

Following instructions for rearranging scenes: Language

is a natural means of communicating goals and can easily

describe compositions of actions and arrangements [1, 3, 4],

providing more versatile goal descriptions compared to supply-

ing one or more goal images. The latter requires the task to be

executed beforehand, which defeats the purpose of instruction

[42, 45, 51, 60]. We group methods in the literature in the

following broad categories:

• End-to-end language to action policies [34, 52, 32, 54]

map instructions to actions or to object locations directly.

We have found that these reactive policies, despite im-

pressively effective within the training distribution, typi-

cally do not generalize to longer instructions, new object

classes and attributes or novel backgrounds [32, 52].

• Symbolic planners such as PDDL (Planning Domain Def-

inition Language) planners [40, 20, 55, 35] use predefined

symbolic rules and known dynamics models, and infer

discrete task plans given an instruction with lookahead

logic search [20, 10, 40, 20, 55, 35]. Symbolic planners

assume that each state of the world, scene goal and

intermediate subgoal can be sufficiently represented in a

logical form, using language predicates that describe ob-

ject spatial relations. These methods predominantly rely

on manually-specified symbolic transition rules, planning

domains and grounding, which limits their applicability.

• Large language models (LLMs) map instructions to lan-

guage subgoals [67, 63, 14, 15] or program policies

[27] with appropriate plan-like prompts. The predicted

subgoals interface with low-level short-term policies or

skill controllers. LLMs trained from Internet-scale text

have shown impressive zero-shot reasoning capabilities

for a variety of downstream language tasks [2] when

prompted appropriately, without any weight fine-tuning

[58, 31]. The scene description is usually provided in a

symbolic form as a list of objects present, predicted by

open-vocabulary detectors [21]. Recent works of [27, 28]

have also fed as input overhead pixel coordinates of

objects to inform the LLM’s predictions. The prompts

for these methods need to be engineered per family of

tasks. It is yet to be shown how the composition of spatial

concept functions can emerge in this way.

Language-conditioned scene generation: A large body

of work has explored scene generation conditioned on text

descriptions [19, 48, 50, 64, 36]. The work of [22] leverages

web-scale pre-trained models [13, 47, 49] to generate seg-

mentation masks for each object in the generated goal image.

Given an input image, their method generates a text prompt

using a captioning model and feeds it to a generative model

that outputs a goal image, which is then further parsed into

segmentation masks. However, the prompt is limited to contain

only names of objects and there is no explicit language-guided

spatial reasoning. In this work, we seek to make scene gener-

ation useful as goal imagination for robotic spatial reasoning

and instruction following. Instead of generating pixel-accurate

images, we generate object configurations by abstracting the

appearance of object entities. We show this abstraction suffices

for a great number of diverse scene rearrangement tasks.

Energy-based models: Our work builds upon existing work

on energy-based models (EBMs) [11, 41, 30, 7, 8, 6]. Most

similar to our work is that of [41], which generates and detects

spatial concepts with EBMs on images with dots, and [7, 30],

which demonstrates composability of image-centric EBMs

for generating face images and images from CLEVR dataset

[18]. In this work, we demonstrate zero-shot composability of

EBMs over object poses instead of images, and showcase their

applicability on spatial reasoning and instruction following for

robotic scene rearrangement.

III. METHOD

The architecture of SREM is shown in Figure 2. The

model takes as input an RGB-D image of the scene and a

language instruction. A semantic parser maps the instruction to

a set of spatial predicate energy functions and corresponding

referential expressions for their object arguments. An open-

vocabulary visual detector grounds the arguments of each

energy function to actual objects in the scene. The goal object

locations are predicted via gradient descent on the sum of

energy functions. Lastly, short-term vision-based pick-and-





using corresponding annotated scenes in given demonstrations.

Note that annotated scenes suffice to train the energy functions,

kinesthetic demonstrations are not necessary, and in practice

each EBM can be trained within a few minutes. We provide

further implementation details and architecture diagrams for

our EBMs in Section VI-A and Figure 4 of the Appendix. We

also visualize the energy landscape for various concepts and

combinations in VI-E and Figure 6 of the Appendix.

Semantic parsing of instructions into spatial concepts and

their arguments. Our parser maps language instructions to

instantiations of energy-based models and their arguments. It

is a Sequence-to-Tree model [5] with a copying mechanism

[12] which allows it to handle a larger vocabulary than

the one seen during training. The input to the model is a

natural language instruction and the output is a tree. Each

tree node is an operation. The three operations supported are

i) BinaryEBM which calls a BinaryEBM from our library, ii)

MultiAryEBM and iii) VLMGround which calls the visual-

language grounding module. Each node has a pointer to the

arguments of the operation, language concepts for EBM calls,

e.g., behind, and noun phrases for grounding model calls,

e.g., ªthe green cubeº. Nodes in the parsing tree may also

have children nodes, which imply nested execution of the

corresponding operations. The input utterance is encoded using

a pre-trained RoBERTa encoder [33], giving a sequence of

contextualized word embeddings and a global representation

of the full utterance. Then, a decoder is iteratively employed

to i) decode an operation, ii) condition on this operation to

decode or copy the arguments for this operation, iii) add one

(or more) children node(s). For example, the instruction ªa

circle of cubes inside the plateº is mapped to a sum of energy

functions where each object of the multi-ary concept circle

participates in the constraining binary concept in:

Etotal = MultiAryEBM(circle,VLMGround(“cubes”))
+
∑

i BinaryEBM(in, xi,VLMGround(“plate”)),
xi ∈ VLMGround(“cubes”).

(3)

We train our semantic parser on the instructions of all training

demonstrations of all tasks jointly, as well as on synthesized

instructions paired with programs, each with 1-7 predicates,

that we generate by sampling from a grammar, similar to

previous works [38, 57]. For more details on the domain-

specific language of our parser and the arguments for each

operation see Section VI-A and Table VIII in our Appendix.

We ground noun phrases predicted by our parser with an off-

the-shelf language grounding model [17], which operates as an

open-vocabulary detector. The input is the noun phrase, e.g.,

ªthe blue cubeº and the image, while the output is the boxes

of all object instances that match the noun phrase. The open-

vocabulary detector has been pre-trained for object detection

and referential grounding on MS COCO [29], Flickr30k [44]

and Visual Genome [25]. We finetune the publicly available

code of [17] on our training data of all tasks jointly.

Short-term vision-based manipulation skills We use

short-term manipulation policies built upon Transporter Net-

works [66] to move the obejcts to their predicted locations.

Transporter Networks take as input one or more RGB-D

images, reproject them to the overhead birds-eye-view, and

predict two robot gripper poses: i) a pick pose and ii) a

pick-conditioned placement pose. These networks can model

any behaviour that can be effectively represented as two

consecutive poses for the robot gripper, such as pushing,

sweeping, rearranging ropes, folding, and so on ± for more

details please refer to [66].

We modify Transporter Networks to take as input a small

image RGB-D patch, instead of a complete image view.

Specifically, we consider as input the image patches around

the object pick and object goal locations predicted by our

visual grounding and energy-based minimization modules re-

spectively. In this way, the low-level policies know roughly

what to pick and where to place it, and only locally optimize

over the best pick location, as well as the gripper’s relative

rotation, within an object of interest, or placement location,

at a particular part of the scene, respectively. We show in

our ablations (Table VII) that using learning-based pick-and-

place policies helps performance, even if the search space is

limited thanks to grounding and goal imagination. We train

Transporter Networks from scratch on all our pick-and-place

demonstration datasets jointly.

Termination of execution: SREM generates a goal scene

by optimizing the relative poses of the objects mentioned

in the instruction. We estimate how many objects should

be moved by comparing the detected bounding box (by the

language grounding model) and the optimized bounding box

(by the EBM). For non-compositional tasks that involve binary

concepts, we inject the prior that one object is fixed. Then we

take as many actions as the number of objects the EBM moved.

Closed-loop execution: SREM first generates a goal scene

from the input instruction and then executes it. After execution,

we re-detect all relevant objects using our VLM-grounder

module to check if they are close to their predicted goal

locations. If the re-detected object’s bounding box and initially

predicted goal bounding box intersect over a certain IoU

threshold, we consider the goal to be successfully executed.

If we fail to reach the goal, we call again our vision based

policies using the current scene configuration. Comparing the

post-execution object configuration with the initially imagined

goal scene allows to track progress and estimate goal comple-

tion as we show in the experimental section and in Section

VI-C and Table IX of the Appendix.

IV. EXPERIMENTS

We test SREM in its ability to follow language instructions

for rearrangement of tabletop scenes in simulation and in the

real world. We compare our model against LLM planners [15]

and end-to-end language-to-action policies [52]. Our experi-

ments aim to answer the following questions:

1) How does SREM compare to LLM planners in predicting

scene configurations from instructions? (Section IV-A)

2) How does SREM compare to state-of-the-art language-to-

action policies for rearranging scenes? How does their rel-



ative performance change with varying instruction length

and varying amount of training data? (Section IV-B)

3) How does SREM generalize to novel objects, object

colors and background colors, compared to an end-to-end

language-to-action model? (Section IV-C)

4) How much do different modules of our framework con-

tribute to performance? (Section IV-D)

Benchmarks: Existing language-conditioned manipulation

benchmarks are usually dominated by a single spatial concept

like ªinsideº [52]. To better illustrate the compositionality of

spatial concepts, we introduce the following set of bench-

marks, implemented with PyBullet:

• spatial-relations, containing single pick-and-place in-

structions with referential expressions in cluttered scenes

with distractors, e.g. ªPut the cyan cube above the red

cylinderº. We consider the relations left of, right of, in

front of, behind.

• comp-one-step, containing compositional instructions

with referential expressions in cluttered scenes with dis-

tractors that require one object to be re-located to a

particular location, e.g. ªput the red bowl to the right

of the yellow cube, to the left of the red cylinder, and

above blue cylinderº.

• comp-group, containing compositional instructions with

referential expressions in cluttered scenes with distractors

that require multiple objects to be re-located, e.g., ªput

the grey bowl above the brown cylinder, put the yellow

cube to the right of the blue ring, and put the blue ring

below the grey bowlº.

• shapes, containing instructions for making multi-entity

shapes (circles and lines), e.g. ªrearrange all red cubes

in a circleº.

We further evaluate our model and baselines on four tasks

from the CLIPort benchmark [52], namely put-block-in-

bowls, pack-google objects-seq, pack-google objects-group

and assemble-kits-seq.

For all tasks we train on either 10 or 100 demos and use

the same demos to train all our modules, as discussed in

Section III. We test on 50 episodes per task, where we vary the

instruction and the initial configuration of objects. For spatial-

relations and shapes each concept corresponds to a task, while

the composition benchmarks correspond to one task each.

Baselines: We compare SREM to the following baselines:

• CLIPort [52], a model that takes as input an overhead

RGB-D image and an instruction and uses pre-trained

CLIP language and image encoders to featurize the

instruction and RGB image, respectively; then fuses these

with depth features to predict pick-and-place actions

using the action parametrization of Transporter Networks

[66]. The model capitalizes on language-vision associa-

tions learnt by the CLIP encoders. We use the publicly

available code of [52]. We train one CLIPort model on

all tasks of each benchmark, e.g., one model for spatial-

relations, a different for comp-group etc. Note that the

original CLIPort implementation assumes access to oracle

success/failure information based on which the model can

retry the task for a fixed budget of steps or stop the

execution if oracle confirms that the task is completed.

We evaluate the CLIPort model without this oracle retry

but still with oracle information of how many minimum

steps it needs to take to complete the task, so we force

CLIPort to take exactly that number of actions.

• LLMplanner, inspired by [15], an instruction-following

scene-rearrangement model that uses an LLM to predict

a sequence of subgoals in language form, e.g. ªpick the

red cube and place it to the right of the blue bowlº.

The generated language subgoals are fed as input to

language-to-action policies, such as CLIPort. Scene state

description is provided as a list of objects in the scene.

LLMplanner does not finetune the LLM but instead uses

appropriate prompts so that the LLM adapts its behavior

in-context and generates similar statements. The prompts

include various previous successful interactions between

a human user and the model. We design suitable prompts

for our introduced benchmarks and use the LLM to

decompose a long instruction into simpler ones (see

Figure 5 in the Appendix for an example). Then, we feed

each generated instruction to a CLIPort model, trained as

described earlier. Lastly, for tabletop manipulation tasks

in simulation, the LLMPlanner of [15] assumes access to

an oracle success/failure detector. The difference in our

implementation is that we do not assume any success

detector. The execution terminates when all language

subgoals have been fed to and handled by CLIPort.

Note that LLMplanner boils down to CLIPort for non-

compositional instructions. As such, we compare with

LLMplanner only on comp-one-step and comp-group, both

in simulation and real world.

Evaluation Metrics: We use the following two evaluation

metrics: (i) Task Progress (TP) [66] is the percentage of the

referred objects placed in their goal location, e.g. 4/5 = 80.0%

for rearranging 4 out of 5 objects specified in the instruction.

(ii) Task Completion (TC) rewards the model only if the full

rearrangement is complete. For the introduced benchmarks we

have oracle reward functions that evaluate whether the task

constraints are satisfied.

A. Spatial reasoning for scene rearrangement with oracle

perception and control

In this section, we compare spatial reasoning for predicting

compositional scene subgoals in a language space versus in an

abstract visually grounded space. In this section, to isolate this

reasoning ability from nuisance factors of visually localizing

the objects and picking them up effectively, we consider

oracle object detection, referential grounding and low-level

pick-and-place policies. Specifically, we carry out inferred

language subgoals from LLMplanner using oracle controllers

that relocate an object in the scene such that it satisfies the

predicted subgoals. Note that SREM relies on pick-and-place

policies that are not language-conditioned, while LLMplanner

relies on language-conditioned policies for object re-location.





left-seen-colors left-unseen-colors right-seen-colors right-unseen-colors

Method 10 demos 100 demos 10 demos 100 demos 10 demos 100 demos 10 demos 100 demos

CLIPort 13.0 44.0 9.0 33.0 29.0 43.0 28.0 44.0

SREM 95.0 95.0 93.0 94.0 89.0 92.0 93.0 96.0

behind-seen-colors behind-unseen-colors front-seen-colors front-unseen-colors

Method 10 100 10 100 10 100 10 100

CLIPort 24.0 45.0 22.0 51.0 23.0 55.0 13.0 40.0

SREM 87.0 87.0 89.0 90.0 89.0 90.0 88.0 89.0

circle-seen-colors circle-unseen-colors line-seen-colors line-unseen-colors

Method 10 demos 100 demos 10 demos 100 demos 10 demos 100 demos 10 demos 100 demos

CLIPort 34.1 61.5 31.2 55.6 48.6 88.2 48.6 88.5

SREM 91.3 91.5 90.2 91.2 98.1 99.0 98.4 99.4

TABLE II: Evaluation (TP) of SREM and CLIPort on spatial-relations and shapes in simulation.

comp-one-step comp-one-step comp-group comp-group

seen-colors unseen-colors seen-colors unseen-colors

Method 10 100 10 100 10 100 10 100

Initial (no movement) 0.0 0.0 0.0 0.0 31.7 31.7 31.8 31.8

CLIPort (zero-shot) 9.0 12.0 7.0 12.0 37.4 37.5 32.6 38.4

CLIPort 13.0 15.0 14.0 9.0 38.2 38.5 34.7 40.9

LLMplanner 51.2 53.2 49.4 53.5 38.6 39.0 37.1 39.0

SREM (zero-shot) 90.0 91.0 92.7 90.3 77.2 77.4 77.7 78.4

SREM (zero-shot + closed-loop) 91.6 92.0 92.9 91.4 80.8 81.6 81.1 82.4

TABLE III: Evaluation (TP) of SREM, CLIPort and LLMplanner on compositional tasks. SREM is trained only on atomic

relations and tested zero-shot on tasks with compositions of spatial relations which involve moving one (comp-one-step) or

multiple (comp-group) objects to satisfy all constraints specified by the language. Some language constraints are satisfied

already in the initial configuration and the Initial model captures that.

step, Comp-group, Circles, Lines). We show quantitative re-

sults in Table VI. SREM generalizes to the real world without

any real-world training or adaptation thanks to the open-

vocabulary detector trained on real-world images, as well

as the object abstractions in the predicate EBMs and low-

level policy modules. We encourage readers to refer to our

supplementary video and our website for more detailed results.

C. Generalization analysis

We conduct controlled studies of our model’s generalization

across three axes: a) novel colors: we train the models with

objects of 7 different colors and evaluate them on objects

of 4 unseen colors; b) novel background colors: we train

all models on black-colored tables and evaluate on tables of

randomly sampled RGB colors; c) novel objects: we train the

models on objects of 4 classes and evaluate on rearrangement

of 11 novel classes. In each of these settings, we only change

one attribute (i.e. object color, background color or object

instance) while keeping everything else constant.

We evaluate our model and CLIPort trained on 10 or 100

demos per task on spatial-relations (average performance over

all tasks) and composition (average performance over all tasks

from comp-one-step and comp-group). The results are sum-

marized in Table-V. We observe that our model maintains high

performance across all axes of generalization, independently

of the number of training demos.

Our model’s generalization capabilities rely on the open-

vocabulary detector and the fact that EBMs and transporter-

based low-level execution policy operate on abstracted space in

a modular fashion. While CLIPort models can also generalize

to novel scenarios by leveraging the CLIP model, the action

prediction and perception are completely entangled and hence

even if CLIP manages to identify the right objects based on

the language, it has trouble predicting the correct pick and

place locations.



put-block-in-bowl put-block-in-bowl packing-google-objects packing-google-objects

seen-colors unseen-colors seq-seen-objects seq-unseen-objects

Method 10 demos 100 demos 10 demos 100 demos 10 demos 100 demos 10 demos 100 demos

CLIPort 31.0 82.1 4.8 17.6 34.8 54.7 27.2 56.4

SREM 84.3 93.8 89.0 95.3 86.8 94.8 88.0 92.9

packing-google-objects packing-google-objects assembling-kits assembling-kits

group-seen-objects group-unseen-objects seq-seen-colors seq-unseen-colors

Method 10 100 10 100 10 100 10 100

CLIPort 33.5 61.2 32.2 70.0 38.0 62.6 36.8 51.0

SREM 86.1 76.8 87.2 79.6 38.4 42.0 40.8 44.0

TABLE IV: Evaluation (TP) of SREM and CLIPort on CLIPort benchmark in simulation.

spatial-relations composition

Novel attribute Model 10 demos 100 demos 10 demos 100 demos

None
CLIPort 22.0 47.0 25.6 26.8

SREM 90.0 91.0 83.6 84.2

Color
CLIPort 18.0 39.0 25.1 24.5

SREM 87.0 85.0 86.5 84.0

Background
CLIPort 10.0 20.0 23.7 23.2

SREM 79.0 68.0 77.0 72.0

Objects
CLIPort 17.0 19.0 24.5 24.8

SREM 86.0 86.0 80.9 81.5

TABLE V: Generalization experiments of SREM and CLIPort in manipulation tasks in simulation (metric is TP).

Method comp-one-step comp-group circles lines

CLIPort 13.1 22.9 34.0 46.0
LLMplanner 39.5 25.9 - -
SREM 85.6 75.8 94.0 90.0

TABLE VI: Real-world evaluation (TP) of SREM

Method Accuracy

SREM 77.2

SREM w/o goal generation 42.1

SREM w/o learnable policies 61.2

SREM w/ oracle language grounding 82.3

SREM w/ everything oracle except goal 88.3

TABLE VII: Ablations of SREM on the benchmark comp-

group-seen-colors (metric is TP).

D. Ablations

We show an error analysis of our model in Table-VII.

First, we remove the goal generation from SREM (SREM

w/o goal generation) by conditioning the place network on

the language input instead of the EBM-generated goal image,

while keeping the pick network and object grounders identical.

We observe a drop of 35.1% in accuracy, underscoring the

importance of goal generation. We then remove our executor

policy (SREM w/o learnable policies) and instead randomly

select pick/place locations inside the bounding box of the

relevant object. This results in a drop of 16%, showing the

importance of robust low-level policies. We do not remove

the grounder and parser since they are necessary for goal

generation. We then experiment with oracle visual language

grounder (SREM w/ oracle language grounding) that perfectly

detects the objects mentioned in the sentence, which results in

a performance gain of 5.1%. We finally evaluate with perfect

grounding, language parsing and low-level execution (SREM

w/ everything oracle except goal) to test the error rate of our

goal generator. We obtain an 88.3% accuracy, thus concluding

that our goal generator fails in 11.7% cases. For a more

detailed error analysis, please refer to VI-C in the Appendix.

E. Limitations

Our model presently has the following two limitations: First,

it predicts the goal object scene configuration but does not

have any knowledge regarding temporal ordering constraints

on object manipulation execution implied by physics. For

example, our model can predict a stack of multiple objects on

top of one another but cannot suggest which object needs to



be moved first. One solution to this problem is to heuristically

pick the order based on objects that are closer to the floor

in the predicted scene configuration. However, more explicit

encoding of physics priors are important to also identify if the

generated configuration is stable or not. A promising direction

is to model physics-based constraints as additional energy

constraints, and obtain optimization gradients by leveraging

either differentiable physics simulators [16, 46, 62] or learned

dynamics models [26, 61, 43]. Second, our EBMs are cur-

rently parametrized by object locations and sizes, but different

tasks need different abstractions. Manipulation of articulated

objects, fluids, deformable objects or granular materials, would

require finer-grained parametrization in both space and time.

Furthermore, even for rigid objects, many tasks would require

finer in-space parametrization, e.g., it would be useful to know

a set of points in the perimeter of a plate as opposed to

solely representing its bounding box for accurately placing

things inside it. Considering EBMs over keypoint or object

part graphs [53, 37] is a direct avenue for future work.

V. CONCLUSION

We introduce SREM, a modular robot learning framework

for instruction-guided scene rearrangement that maps instruc-

tions to object scene configurations via compositional energy

minimization over object spatial coordinates. We test our

model in diverse tabletop manipulation tasks in simulation and

in the real world. Our model outperforms state-of-the-art end-

to-end language-to-action policies, and LLM-based instruction

following methods both in in- and out-of-distribution settings,

and across varying amount of supervision. We contribute a new

scene rearrangement benchmark that contains more composi-

tional language instructions than previous works, which we

make publicly available to the community. Our work shows

that a handful of visually-grounded examples suffice to learn

energy-based spatial language concepts that can be composed

to infer novel instructed scene arrangements, in long and

complex compositional instructions.
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VI. APPENDIX

In Section VI-A we give implementation details for the

components of our method; in Section VI-B we present in

more detail the evaluation metrics for the newly-introduced

tasks; in Section VI-C we show the effectiveness of closed-

loop execution for predicting the success or failure of execu-

tion and present a detailed error analysis; we show an example

prompt used for our LLMPlanner baseline in Section VI-D;

we visualize the learned energy landscapes in Section VI-E; in

Section VI-F we include additional related work on constraint-

guided layout optimization.

A. Implementation Details

Energy-based Models: The architectures of the Bina-

ryEBM and MultiAryEBM are shown in Figure 4a and b

respectively. We train a separate network for each concept in

our library using the same demos that are used to train the

other modules. We augment and repeat the samples multiple

times to create an artificially larger dataset during training. We

use Adam [23] optimizer, learning rate 1e−4, batch size 128.

Buffer: During training, we fill a buffer of previously gener-

ated examples, following [8]. The buffer is updated after each

training iteration to store at most 100000 generated examples.

When the buffer is full, we randomly replace older examples

with incoming new ones. We initialize x0 for Equation 1 by

sampling from the buffer 70% of the times or loading from

the data loader 30% of the times.

Regularization losses: We use the KL-loss from [8], LKL =
Ex−∼pθ

Ēθ(x
−), where the bar on top of Ē indicates the

stop-gradient operation (we only backpropagate to E through

x−). We additionally use the L2 energy regularization loss

Ex+∼pD
E2

θ (x
+)+Ex−∼pθ

E2
θ (x

−). We refer the reader to [8]

for more explanation on these loss terms.

Extension to tasks with 3D information or pose: An impor-

tant design choice is what parameters of the input we should

be able to edit. We inject the prior knowledge that on our

manipulation domain the objects move without deformations,

so we fix their sizes and update only their positions. Our EBMs

operate on boxes so that they can abstract relative placement

without any need for object class or shape information. How-

ever, EBMs can be easily extended to optimize other types of

representations, such as 3D bounding boxes or pose.

We train EBMs that optimize over 3D locations for rel-

ative placement. The architecture is shown in Figure 4c. We

adapt the BinaryEBM to represent boxes as (xyzmin, xyzmax)
and then compute the relative representations as in the 2D

case. We optimize for one 3D relation, ªonº. For pose-aware

EBMs, we adapt the MultiAryEBM to represent objects as

(xcenter, ycenter, θ), where θ is the rotation wrt the world

frame. We then simply change the first linear layer of the

MultiAryEBM to map the new input tuple to a 128-d feature

vector. The architecture is shown in Figure 4d. We show

qualitative results that compose these EBMs into new concepts

on our website.

Domain-Specific Language: We design a Domain-Specific

Language (DSL) which extends the DSL of NS-CL [38]

(designed for visual question answering in CLEVR [18]) to

further predict scene generations, e.g. ªput all brown shoes in

the green boxº. Detailed description of our DSL can be found

in Table VIII.

Semantic Parser We construct program annotations for

the language instructions of the training demos by mapping

them to our DSL (rule-based). We then train our parser on all

instructions using Adam optimizer with learning rate 1e − 3
and batch size 32. The same parser weights are used across

all tasks. For compositional tasks, we train the parser on the

descriptions from the demos that are used to finetune our

baselines. The parser is the only part of our framework that

needs to be updated to handle longer instructions.

Visual-language Grounder: We finetune BEAUTY-DETR

[17] on the scenes of the training demos in simulation.

BEAUTY-DETR is an encoder-decoder Detection Transformer

that takes as input an image and a referential language

expression and maps word spans to image regions (bounding

boxes). The original BEAUTY-DETR implementation uses an

additional box stream of object proposals generated by an

off-the-shelf object detector. We use the variant without this

box stream for simplicity. BEAUTY-DETR has been trained

on real-world images. We finetune it using the weights and

hyperparameters from the publicly available code of [17].

Short-term Manipulation Skills Our low-level policy net-

work is based on Transporter Networks. Transporter Networks

decompose a given task into a sequence of pick-and-place

actions. Given an overhead image, the model predicts a pick

location and then conditions on it to predict a place location

and gripper pose. The original implementation of Transporter

Networks supports training with batch size 1 only. We im-

plement a batch-supporting version and find it more stable.

We use batch size 8 and follow the original paper in other

hyperparameter values.

B. Benchmark Generation

We extend the Ravens [66] benchmark for spatial reasoning

in the PyBullet simulator. For each benchmark, we write a

template sentence (e.g. ªArrange OBJ1 into a circleº) and

then randomly select valid objects and colors from a pre-

defined list. To test generalization, we include novel colors

or novel objects in the evaluation set. Once the sentence

is generated, we programatically define valid regions which

satisfy the relation and then sample empty locations from it to

specify object goal locations. We start by placing all objects

randomly in the scene. Then, an oracle hand-designed policy

picks and places the objects to the desired locations and returns

a demo trajectory which consists of raw RGB-D images and

pick-and-place locations. These can be used then to train a

behaviour cloning policy similar to CLIPort.

Evaluation Metrics for Rearrangement Tasks To evaluate

make-a-circle task, we fit a best-fit circle for the final con-

figuration predicted by SREM. To do this, we consider the

centers of the bounding boxes as points. Then, we compute

the centroid of those points and the distance of each point

from the centroid. This is an estimate of ªradiusº. We compute



Fig. 4: (a): Architecture of the EBM used for binary concepts such as ªright ofº. The inputs are two boxes O1 and O2 and the

output is the energy of their relative placement. (b): Architecture of the EBM used for multi-ary concepts such as ªcircleº. The

input is a set of n entities Ok, k = 1, . . . , n. The output is the energy of this set of entities wrt the concept. (c): Architecture of

the EBM used for 3D binary concepts such as ªonº. Each object is now represented by a 3D bounding box. (d): Architecture

of the EBM used for concepts that involve pose optimization (rotation). Each object is represented with its center and rotation

wrt the global coordinate frame.

Operation Signature Semantics

Filter (ObjectSet, ObjectConcept) → ObjectSet Filter out set of objects based on some Object

Concept like object name (eg. cube) or property

(color, material)

BinaryEBM (Object A, Object B, Relation) → (Pick locations,

Place locations)

Executes BinaryEBMs for rearranging Object A

and Object B to satisfy the given binary relation

(like left of/right of/inside etc.)

MultiAryEBM (ObjectSet, Shape Type, Property) → (Pick loca-

tions, Place locations)

Executes MultiAryEBMs for the given Shape Type

(circle, line, etc.) with specified Properties (like

size, position etc.) on a set of given objects and

generates pick and place locations to complete the

shape.

TABLE VIII: All operations in the domain-specific language for SREM

the standard deviation of this radius. If this is lower than 0.03,

then we assign a perfect reward. The reward linearly decreases

when the std increases from 0.03 to 0.06. Beyond that, we

give zero reward. We tuned these thresholds empirically by

generating and distorting circle configurations.

We follow a similar evaluation strategy for make-a-line.

Here we compute the average slope and fit a line to our data.

Then we measure the standard deviation of the distance of

each point from the line. We found that the same thresholds

we use for circles work well for lines as well.

C. Additional Experiments

Details on Generalization Experiments: We conduct con-

trolled studies of our model’s generalization across three axes:

a) Novel Colors b) Novel background color of the table c)

Novel Objects. In each of these settings, we only change one

attribute (i.e. object color, background color or object instance)

while keeping everything else constant.

• Novel colors: We train the models with [ªblueº, ªredº,

ªgreenº, ªyellowº, ªbrownº, ªgrayº, ªcyanº] colors and

evaluate them with unseen [ªorangeº, ªpurpleº, ªpinkº,

ªwhiteº].

• Novel background colors: All models are trained with

black colored tables and evaluated with randomly sam-

pled RGB color for each instruction.

• Novel objects: We train the models on [ªringº, ªcubeº,

ªcylinderº, ªbowlº] and evaluate them with [ªtriangleº,

ªsquareº, ªplusº, ªdiamondº, ªpentagonº, ªrectangleº,

ªflowerº, ªstarº, ªcircleº, ªhexagonº, ªheartº].





F. Additional Related Work

Constraint-Guided Layout Optimization: Automatic op-

timization for object rearrangement has been studied outside

the field of robotics. [65] and [39] use few user-annotated

examples of scenes to adapt the hyperparameters of task-

specific cost functions, which are then minimized using stan-

dard optimization algorithms (hill climbing and/or simulated

annealing). To learn those hyperparameters from data, these

approaches fit statistical models, e.g. Mixtures of Gaussian,

to the given samples. [9] further employ such optimization

constraints into an interactive environment, where the user

can provide an initial layout and the algorithm suggests im-

provements. All these approaches require expert knowledge to

manually design rules and cost function, namely [65] identifies

seven and [9] eleven expert-suggested criteria for successful

rearrangement. Since they are hand-crafted, these methods do

not generalize beyond the domain of furniture arrangement.

In contrast, energy optimization is purely data-driven and

domain-agnostic: a neural network scores layouts, assigning

high energy to those that do not satisfy the (implicit) con-

straints and low energy to those who do, essentially modeling

the underlying distribution of valid layouts.
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