
ChainedDiffuser: Unifying Trajectory Diffusion and

Keypose Prediction for Robotic Manipulation

Zhou Xian∗, Nikolaos Gkanatsios∗, Theophile Gervet∗, Tsung-Wei Ke, Katerina Fragkiadaki

School of Computer Science

Carnegie Mellon University

{xianz1, ngkanats, tgervet, tsungwek, katef}@cs.cmu.edu

chained-diffuser.github.io

Abstract: We present ChainedDiffuser, a policy architecture that unifies action

keypose prediction and trajectory diffusion generation for learning robot manipu-

lation from demonstrations. Our main innovation is to use a global transformer-

based action predictor to predict actions at keyframes, a task that requires multi-

modal semantic scene understanding, and to use a local trajectory diffuser to pre-

dict trajectory segments that connect predicted macro-actions. ChainedDiffuser

sets a new record on established manipulation benchmarks, and outperforms both

state-of-the-art keypose (macro-action) prediction models that use motion plan-

ners for trajectory prediction, and trajectory diffusion policies that do not predict

keyframe macro-actions. We conduct experiments in both simulated and real-

world environments and demonstrate ChainedDiffuser’s ability to solve a wide

range of manipulation tasks involving interactions with diverse objects.

Keywords: Manipulation, Imitation Learning, Transformers, Diffusion Models

1 Introduction

While learning manipulation policies from demonstrations is a supervised learning problem, the

multimodality and diversity of action trajectories poses significant challenges to machine learning

methods. Some tasks, such as placing a cup in a cabinet, can be handled by a policy that provides

only a desired goal pose for the cup [1, 2, 3], while others, such as wiping off dirt on the floor,

necessitate the policy to generate a continuous action trajectory [4, 5] for the grasped mop.

One line of manipulation learning methods models action trajectories from demonstrations. These

methods either reactively map vision and language to dense temporal actions [6, 7, 8, 5, 9], or

model the input-action compatibility using energy-based models [10, 11, 12, 13]. Despite recent

progress, these methods may struggle with multimodal action trajectory distributions, or experience

training stabilities [14, 13, 15]. Building on successes in diffusion models [16, 17, 18], a recent

line of work proposes to train diffusion-based policies [14, 4, 19] for generating action trajectories.

These approaches have demonstrated stable training behavior and impressive capability in captur-

ing multimodal action trajectory distributions. Yet, they have not yet been tested on long-horizon

manipulation tasks.

Another line of works casts the problem of robot manipulation as predicting a sequence of discrete

end-effector actions on keyframes [1, 20, 12, 21]. This paradigm extracts keyframes from continuous

demonstrations and predicts end-effector actions in these keyframes [2, 22, 3, 21]. Subsequently, a

low-level path planner connects the predicted keyposes (macro-actions), and returns full trajectories

∗ Equal contribution

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

that adhere to both environmental and task constraints. Leveraging recent advances in attention-

based architectures [23], a number of methods extend keyframe action prediction to 6-DoF language-

instructed manipulation tasks [2, 3, 22, 24, 21].

The assumptions behind keyframe prediction hinder its applicability to manipulation tasks that ex-

tend beyond pick-and-place type of actions. Many tasks, such as wiping a table, opening a door

while respecting the kinematic constraints, etc., can only be solved via continuous interactions with

the environment. Moreover, the dependence on low-level path planning further restricts these meth-

ods’ capability: while a range of tasks need collision-free trajectories, other tasks, such as object

pushing [24, 3, 25], necessitate that the motion planner disregards collision avoidance. Although

supervision for this additional reasoning is readily available in simulated datasets [26], real-world

human demonstrations typically lack such data, not to mention that collision-free motion planning

in the real world requires accurate state estimation, which presents its own challenges.

In light of the above, we present ChainedDiffuser, a neural architecture that unifies the two afore-

mentioned paradigms. ChainedDiffuser is a policy architecture that takes as input visual signals

and, optionally, a language instruction and outputs temporally dense end-effector actions. At a

coarse level, it predicts macro-step end-effector actions (which we will call macro-actions), a high-

level task that requires global comprehension of the visual environment and the task to complete,

with a global transformer-based action predictor. Then, a low-level trajectory diffuser generates lo-

cal trajectory segments to connect the predicted macro-actions. In comparison to transformer-based

macro-step prediction methods [2, 3, 22, 24], our model predicts smooth trajectories to accommo-

date tasks that require continuous interactions and collision-free actions. In comparison to diffusion-

only trajectory generation methods [14, 15, 4, 19], our hierarchical approach handles long-horizon

tasks in a more structured manner and allows different modules to concentrate on the tasks at which

they excel.

We test ChainedDiffuser on RLBench [26], an established benchmark for manipulation learning

from demonstrations. We evaluate our model across a variety of tasks and scenarios studied in

previous literature [22, 24]. ChainedDiffuser sets a new state of the art, and outperforms ablative

versions that do not predict macro-actions or use regression or motion planners for keyframe-to-

keyframe trajectory prediction. Furthermore, we validate our model in real-world scenarios with a

number of long-horizon manipulation tasks, using a handful of human demonstrations for training.

2 Related Work

Learning from Demonstrations [27, 28] has been a common paradigm for robotics but requires

demonstration data collection in the real world [6, 29, 30] or simulation [26, 31, 32]. To improve data

efficiency, several approaches learn the policy on top of pre-trained visual representations that ex-

ploit large vision-only datasets [33, 34, 35, 36, 37, 38]. Orthogonal to this, other approaches abstract

every task as a sequence of subgoals, expressed as pick-and-place primitives [1, 2] or keyframes

[39, 40]. In this case, hand-designed low-level controllers are employed to plan the end-effector’s

motion between intermediate subgoals. While data-efficient, this abstraction does not generalize

adequately to scenarios where only few specific trajectories that respect all physical constraints are

valid [41], such as manipulations of deformable [42, 43] or articulated [44] objects, motions of

closed-chain robotic systems [45, 46], or trajectories through obstacles in a cluttered environment

[47]. As a result, recent works resort to semi-manual cost specification for each additional constraint

(e.g., collision avoidance, trajectory smoothness [4]). Closer to our approach, James and Abbeel [41]

learn to score trajectories proposed by either hand-designed or learning-based planners. Instead, we

train scene conditioned diffusion models to generate trajectories that connect predicted keyposes.

Transformers for Robotics Following their success in natural language processing [23, 48, 49] and

computer vision [50, 51], numerous recent works use Transformer-based architectures for robotics

and control [52, 53, 6, 54, 55, 21]. One main motivation is the flexibility of attention for long-horizon

prediction when combining information from multiple sensory streams, such as visual observations

and language instructions [56, 22]. Most related to ours is the stream of multi-tasking Transformer-

2

{apos, arot, agrip}, consisting of the end-effector’s 3D position apos, rotation arot represented as a

4D quaternion, and a binary flag agrip indicating whether the gripper is open. For each task, we

assume access to a dataset D = {ζ1, ζ2, ..., ζm} of m expert demonstrations, where ζi contains

the language instructions l, visual observations o and end-effector states qt for all timesteps in the

demonstration.

Input Encoding ChainedDiffuser operates in a 3D space to achieve robustness across changing

camera viewpoints ± an important advantage over prior 2D methods which assume fixed camera

viewpoints [22, 24, 14]. Compared to prior robotic architectures which rely on voxel-based 3D

representation (e.g., [3, 40]), ChainedDiffuser employs a point-based representation, that facilitates

sparse computation and circumvents precision loss during voxelization. ChainedDiffuser uses a

frozen CLIP [73] to encode both the language instruction l and the RGB images ot into a set of

language and visual feature tokens respectively. Then, it uses the depth channel information to

unproject the 2D image feature tokens into a 3D feature cloud (Figure 1(b)), where each visual token

has 2D appearance information and 3D positional information. We also encode the proprioception

information qt with a simple MLP.

3.2 Macro-Action Predictor

Our macro-action predictor πglobal is based on Act3D [21], a state-of-the-art macro-action prediction

method that uses a point-based transformer that casts end-effector action prediction as 3D action map

prediction. We include its main pipeline here for completeness. Act3D samples iteratively 3D point

candidates and featurizes them using relative position attentions to a scene 3D feature cloud. Then,

a trainable query token Zquery is used to score a pool of N point candidates {Pi = ⟨xi, yi, zi⟩}Ni=1

in the scene and select a position for next macro-action. The point candidates are first uniformly

sampled within the robot’s empty workspace and only contain 3D positional information and a

trainable feature embedding Zpoint. The query token and the point candidates individually attend

to the concatenation (across the sequence dimension) of language tokens Zins, visual feature tokens

Zvis and proprioception token Zrobot (Figure 1(d)):

Z̃query = Attn
(

Zquery, ⟨Zins,Zvis,Zrobot⟩
)

(1)

Z̃point = Attn
(

Zpoint, ⟨Zins,Zvis,Zrobot⟩
)

(2)

where Attn(x, y) is an attention operation [23, 74] where the queries are formed from x, the keys

and values from y. After this contextualization step, the query token and the point candidates have

captured the task and scene information. We take the dot product of the contextualized query em-

bedding with all point candidates and select the best-matching point candidate for the position of the

predicted macro-action:

âpos = ⟨xî, yî, zî⟩, î = argmax
i

Z̃T
query · Z̃i

point (3)

Once we obtain the best point candidate, we predict the rotation and gripper open flag with a simple

MLP on top of the query:

⟨ârot, âgrip⟩ = MLP(Z̃query) (4)

3.3 Local Trajectory Diffuser

Once we obtain the macro-action ât for the current step t, we call upon our diffusion-based local

trajectory generator to fill up the gap in-between with micro-actions. We model such trajectory gen-

eration as a denoising process [18, 14, 4]: we start with drawing a sequence of S random Gaussian

samples {xK
s }Ss=1 in the normalized SE(3) space, and then perform K denoising iterations to trans-

form the noisy trajectories to a sequence of noise-free waypoints {x0
s}Ss=1. Each denoising iteration

is described by:

xk−1
s = λk(x

k
s − γkϵθ(x

k
s , k)) +N (0, σ2

kI), 1 ≤ s ≤ S (5)

4

where ϵθ is the noise prediction network, k the denoising step, N (0, σ2
kI) the Gaussian noise added

at each iteration, and λk, γk, σk are scalar noise schedule functions dependent on k (Appendix 7.1).

The noise prediction network (Figure 1 (e)) is also an attention-based model that absorbs similar

input as the macro-action selector does, i.e., the language instruction l, RGB-D observations ot and

current end-effector state qt, but additionally conditions on the goal macro-action ât and the denois-

ing timestep k. The language tokens Zins, visual tokens Zvis and current end-effector state Zrobot

are featurized similarly to the Macro-Action Selector. We use an MLP to encode the goal macro-

action into Zmacro = MLP(ât). We encode the denoising timestep into Ztime using sinusoidal

positional embeddings [23], and encode the the sampled noise using an MLP into a sequence of

tokens Zk
s . We let this sequence iteratively cross-attend to all encoded inputs first:

Z̃k
s = Attn(Zk

s ,⟨Zins,Zvis,Zrobot,Zmacro,Ztime⟩),
and then self-attend to obtain a finalized Z̃k

s (note that we reuse the same symbol for presentation

clarity):

Z̃k
s = Attn(Z̃k

s , Z̃k
s)

Again, we use relative positional embeddings to encode all tokens’ spatial positions. For the tra-

jectory noise tokens, we additionally encode each sample’s temporal position s using sinusoidal

positional embeddings. These are added to the respective noise tokens Zk
s . The contextualized

noise sample is then fed into another MLP for noise regression:

ϵθ(x
k
s , k) = MLP(Z̃k

s) (6)

After K denoising steps by substituting Equation 6 into 5, we convert the denoised samples back to

the actual micro-actions by unnormalizing them: at−1+s = Unnormalize(x0
s), 1 ≤ s ≤ S. For

more implementation and training details, please see the Appendix 3.4.

Noise schedulers We model local trajectory optimization as a discrete-time diffusion process,

which we implement using the DDPM sampler [18]. DDPM uses a non-parametric time-dependent

noise variance scheduler βk, which defines how much noise is added at each time step. We adopt

a scaled linear schedule for the position and a squared cosine schedule for the rotation of each

trajectory step.

3.4 Implementation and Training Details

ChainedDiffuser takes as input m multi-view RGB-D images of the scene. For experiments in

simulation, we use m = 3 (left, right, wrist) or m = 4 (with an additional front view), depending

on the settings of the baselines we compare with. For real-world experiments, we use k = 1, with a

single front-view camera. Each RGB-D image is 256× 256 and is encoded to 64× 64 visual tokens

with CLIP’s ResNet50 visual encoder [73]. The demonstration data contains end-effector states for

all timesteps. In order to extract macro-actions to supervise the action selection transformer, we use

a simple heuristic following previous literature [3, 22, 24]: a timestep is considered to be a keyframe

containing macro-action if the gripper opens or closes, or if the robot arm is not moving (when all

joint velocities approach zero). All dense actions present in the demonstration are used to supervise

the local trajectory diffuser. We resample the dense trajectories between extracted macro-actions to

a trajectory of fixed length S = 50. We found in practice, denoising fixed number of micro-actions

leads to more stable training, and works better than learning variable-length trajectory diffusion

with predicted trajectory length. We train both the action detector and the trajectory diffuser jointly,

using a cross-entropy (CE) loss to supervise the point candidate selection by predicting a probability

distribution q over all point candidates in the pool, and mean-sqaured error (MSE) losses to supervise

quaternion, gripper opening and trajectory noise regression:

L =
1

|D||ζ|
∑

ζ∈D

∑

t̂∈ζ



CE(q({Pi}N), q∗({Pi}N)) +MSE(ât̂, â
∗

t̂
) +

t̂+S−1
∑

t=t̂

MSE(ϵθ(x
k
s , k), ϵk)



 ,

(7)

5

Table 1: Success rates in 10 single-tasks of the Hiveformer experimental setting.

pick

& lift

pick-up

cup

push

button

put

knife

put

money

reach

target

slide

block

stack

wine

take

money

take

umbrella
Mean

Auto-λ [77] 87 78 95 31 62 100 36 23 38 37 55.0

HiveFormer [24] 92 77 100 70 96 100 95 82 82 90 88.4

InstructRL [22] 98 85 100 85 99 100 98 93 90 93 93.8

ChainedDiffuser (ours) 98 94 96 91 98 100 95 90 100 96 95.8

follow the same setting used in prior works [22, 24], where each task has multiple variations and

contains 100 demonstrations. We report success rates in each task averaged over 100 unseen test

episodes. For baselines, when possible, we use the official numbers reported in their papers.

Baselines We compare ChainedDiffuser with the following baselines:

1. Auto-λ [77] and HiveFormer [24], policy learners that operate on multi-view 2.5D images

and predict actions by offseting detected points in the input images.

2. InstructRL [22], a policy that operates on multi-view 2D images with pre-trained vision

and language encoders, and directly predicts 6-DoF end-effector actions.

3. Act3D [21], a policy that predicts keyframe end-effector macro-actions with a 3D action

detection transformer and relies on low-level motion planner to connect macro-actions.

4. Open-loop trajectory diffusion, which is ChainedDiffuser without the macro-action detec-

tor, making it a trajectory diffusion model.

5. Act3D+ trajectory regression, which replaces the local trajectory diffuser in ChainedDif-

fuser with a deterministic trajectory regression

Dataset We consider the following single-task experimental settings:

• 10 tasks considered in the Auto-λ [77] experimental setup. These tasks are considered by

many prior works and this allows us to compare our performance with them.

• 10 tasks in RLbench we identify to require continuous interaction with the environment,

such as wipe desk where a wiping trajectory is needed to remove the dirt from a desk, and

open fridge where a local trajectory needs to adhere to the kinematic constraint when the

robot is grasping the door handle. Most tasks in RLBench can be reasonably solved with

only macro-action prediction and motion planners. This set of tasks we consider highlights

the limitation of these approaches.

Results We train single-task ChainedDiffuser and the baselines. For Auto-λ, HiveFormer and

InstructRL we use the numbers reported in the corresponding papers. We show quantitative results

in Tables 1 and 2. ChainedDiffuser consistently achieves better performance than prior methods on

all task categories. On the set of challenging tasks for motion planners, ChainedDiffuser gives a

significant boost of 60% on average. ChainedDiffuser improves upon open-loop trajectory diffusion

model, which demonstrates that delegating global macro-action prediction to a high-level policy

to guide local trajectory diffusion helps. Act3D+ trajectory regression struggles where multi-modal

trajectories are present in demonstrations, e.g. cup in cabinet where multimodal trajectories exist

for grasping the cup and feeding into the cabinet in the training set. This demonstrates that modeling

trajectory generation as a multi-step denoising process is advantageous over regression-based model,

which aligns with conclusions from previous literature [14].

4.2 Real-world Experiments

We conduct experiments with a real-world setup, using a Franka Emika Panda robot with a parallel-

jaw gripper. We use a single Azure Kinect camera to collect front-view RGB-D image input. See Ap-

pendix 7.4 for more details on our hardware and data collection setup. We design 7 tasks that involve

7

Table 2: Success rates on challenging tasks for motion planners.

unplug

charger

close

door

open

box

open

fridge

frame off

hanger

open

oven

books on

shelf

wipe

desk

cup in

cabinet

shoes out

of box
Mean

Act3D [21] 48 9 9 19 66 2 34 4 0 19 21.0

Open-loop trajectory diffusion 65 21 46 37 43 16 40 34 6 9 31.7

Act3D + trajectory regression 95 5 95 60 77 17 68 70 40 67 59.6

ChainedDiffuser (ours) 95 76 96 68 85 86 92 65 68 78 80.9

multi-step actions and continuous interactions with the scene (5 are shown in Figure 2), collected

10 − 20 demos for each tasks, and train a multi-task ChainedDiffuser for real-world deployment.

Task # Train Success

put mask in kit 20 6/10
fold and wipe coffee 20 8/10
stack cups 15 7/10
spread dough 15 7/10
fold and wip beans 20 6/10
put nails in box 20 6/10
press stapler 10 10/10

Table 3: Real-world tasks.

We refer the reader to our supplementary video

for qualitative executions of the robot. We eval-

uate it on 10 episodes for each task, and re-

port success rates in Table 3. ChainedDiffuser

is able to perform reasonably well on most of

the tasks, even for tasks with multiple action

modes and skills. The most common failure

case is caused by noisy depth image: we lever-

age point selection for macro-action prediction,

which would suffer from incorrect depth esti-

mation in the real world. This could potentially

be resolved by more accurate camera calibra-

tion with a multi-view camera setup and learning to recover from noisy input, which we leave as our

future work.

4.3 Limitations

Our method currently has the following limitations: 1) Our trajectory diffuser is conditioned on

end-effector poses in SE(3) space. It would be ideal to extend it to full joint configuration space for

more flexible trajectory prediction. 2) Our model performs closed-loop control on the macro-action

level, which restricts its flexibility in highly dynamic environments. That said, our framework can

be easily extended with closed-loop re-planning at the micro-action level, making the policy more

robust to environment dynamics, which we leave as our future work. 3) Following the standard

setting in RLBench, our method assumes access to calibrated cameras. We believe this assumption

is valid as mobile robots performing household tasks for humans in the future should have cameras

attached to the robots, where these cameras can be calibrated when coming out of the factories.

5 Conclusion

We presented ChainedDiffuser, a neural policy architecture for learning 6-DoF robot manipulation

from demonstrations. Our model achieves competitive performance on various task settings, in both

simulation and the real-world. Our experiments demonstrate that by unifying both transformer-

based macro-action detection and diffusion-based trajectory generation, ChainedDiffuser achieves

the best of both families and addresses their respective limitations. ChainedDiffuser outperforms

both keyframe prediction methods and trajectory diffusion alone, which justifies their unification

in our framework. It sets a new state-of-the-art in RLbench, and especially improves performance

on contact-rich tasks and tasks that involve articulated objects, where methods that rely on hand

designed planners typically struggle.

6 Acknowledgements

This work is supported by Sony AI, NSF award No 1849287, DARPA Machine Common Sense, an

Amazon faculty award, and an NSF CAREER award.

8

References

[1] A. Zeng, P. R. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Armstrong, I. Krasin,

D. Duong, V. Sindhwani, and J. Lee. Transporter networks: Rearranging the visual world for

robotic manipulation. In Conference on Robot Learning, 2020.

[2] M. Shridhar, L. Manuelli, and D. Fox. Cliport: What and where pathways for robotic manipu-

lation. ArXiv, abs/2109.12098, 2021.

[3] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-actor: A multi-task transformer for robotic

manipulation. In Conference on Robot Learning, pages 785±799. PMLR, 2023.

[4] J. Urain, N. Funk, G. Chalvatzaki, and J. Peters. Se (3)-diffusionfields: Learning cost functions

for joint grasp and motion optimization through diffusion. arXiv preprint arXiv:2209.03855,

2022.

[5] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei, S. Savarese,

Y. Zhu, and R. MartÂın-MartÂın. What matters in learning from offline human demonstrations

for robot manipulation. arXiv preprint arXiv:2108.03298, 2021.

[6] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-

man, A. Herzog, J. Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. arXiv

preprint arXiv:2212.06817, 2022.

[7] T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, and P. Abbeel. Deep imita-

tion learning for complex manipulation tasks from virtual reality teleoperation. In 2018 IEEE

International Conference on Robotics and Automation (ICRA), pages 5628±5635. IEEE, 2018.

[8] M. Sieb, Z. Xian, A. Huang, O. Kroemer, and K. Fragkiadaki. Graph-structured visual imita-

tion. In Conference on Robot Learning, pages 979±989. PMLR, 2020.

[9] N. M. Shafiullah, Z. Cui, A. A. Altanzaya, and L. Pinto. Behavior transformers: Cloning k
modes with one stone. Advances in neural information processing systems, 35:22955±22968,

2022.

[10] P. Florence, C. Lynch, A. Zeng, O. A. Ramirez, A. Wahid, L. Downs, A. Wong, J. Lee, I. Mor-

datch, and J. Tompson. Implicit behavioral cloning. In Conference on Robot Learning, pages

158±168. PMLR, 2022.

[11] D. Jarrett, I. Bica, and M. van der Schaar. Strictly batch imitation learning by energy-based

distribution matching. Advances in Neural Information Processing Systems, 33:7354±7365,

2020.

[12] N. Gkanatsios, A. Jain, Z. Xian, Y. Zhang, C. Atkeson, and K. Fragkiadaki. Energy-

based models as zero-shot planners for compositional scene rearrangement. arXiv preprint

arXiv:2304.14391, 2023.

[13] Y. Du, S. Li, J. Tenenbaum, and I. Mordatch. Improved contrastive divergence training of

energy based models. arXiv preprint arXiv:2012.01316, 2020.

[14] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:

Visuomotor policy learning via action diffusion. arXiv preprint arXiv:2303.04137, 2023.

[15] M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior

synthesis. arXiv preprint arXiv:2205.09991, 2022.

[16] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. arXiv preprint

arXiv:2010.02502, 2020.

[17] A. Q. Nichol and P. Dhariwal. Improved denoising diffusion probabilistic models. In Interna-

tional Conference on Machine Learning, pages 8162±8171. PMLR, 2021.

9

[18] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in Neural

Information Processing Systems, 33:6840±6851, 2020.

[19] M. Reuss, M. Li, X. Jia, and R. Lioutikov. Goal-conditioned imitation learning using score-

based diffusion policies. arXiv preprint arXiv:2304.02532, 2023.

[20] D. Seita, P. Florence, J. Tompson, E. Coumans, V. Sindhwani, K. Goldberg, and A. Zeng.

Learning to rearrange deformable cables, fabrics, and bags with goal-conditioned transporter

networks. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages

4568±4575. IEEE, 2021.

[21] T. Gervet, Z. Xian, N. Gkanatsios, and K. Fragkiadaki. Act3d: Infinite resolution action detec-

tion transformer for robotic manipulation. Conference on Robot Learning, 2023.

[22] H. Liu, L. Lee, K. Lee, and P. Abbeel. Instruction-following agents with jointly pre-trained

vision-language models. arXiv preprint arXiv:2210.13431, 2022.

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, è. Kaiser, and I. Polo-

sukhin. Attention is all you need. Advances in neural information processing systems, 30,

2017.

[24] P.-L. Guhur, S. Chen, R. G. Pinel, M. Tapaswi, I. Laptev, and C. Schmid. Instruction-driven

history-aware policies for robotic manipulations. In Conference on Robot Learning, pages

175±187. PMLR, 2023.

[25] H.-Y. F. Tung, Z. Xian, M. Prabhudesai, S. Lal, and K. Fragkiadaki. 3d-oes: Viewpoint-

invariant object-factorized environment simulators. arXiv preprint arXiv:2011.06464, 2020.

[26] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. Rlbench: The robot learning benchmark &

learning environment. IEEE Robotics and Automation Letters, 5(2):3019±3026, 2020.

[27] D. A. Pomerleau. Efficient training of artificial neural networks for autonomous navigation.

Neural Computation, 3:88±97, 1991.

[28] C. G. Atkeson and S. Schaal. Robot learning from demonstration. In International Conference

on Machine Learning, 1997.

[29] A. Stone, T. Xiao, Y. Lu, K. Gopalakrishnan, K.-H. Lee, Q. H. Vuong, P. Wohlhart,

B. Zitkovich, F. Xia, C. Finn, and K. Hausman. Open-world object manipulation using pre-

trained vision-language models. ArXiv, abs/2303.00905, 2023.

[30] T. Yu, T. Xiao, A. Stone, J. Tompson, A. Brohan, S. Wang, J. Singh, C. Tan, M. Dee, J. Per-

alta, B. Ichter, K. Hausman, and F. Xia. Scaling robot learning with semantically imagined

experience. ArXiv, abs/2302.11550, 2023.

[31] T. Mu, Z. Ling, F. Xiang, D. Yang, X. Li, S. Tao, Z. Huang, Z. Jia, and H. Su. Maniskill: Gen-

eralizable manipulation skill benchmark with large-scale demonstrations. In NeurIPS Datasets

and Benchmarks, 2021.

[32] Y. Jiang, A. Gupta, Z. Zhang, G. Wang, Y. Dou, Y. Chen, L. Fei-Fei, A. Anandkumar,

Y. Zhu, and L. J. Fan. Vima: General robot manipulation with multimodal prompts. ArXiv,

abs/2210.03094, 2022.

[33] T. Xiao, I. Radosavovic, T. Darrell, and J. Malik. Masked visual pre-training for motor control.

ArXiv, abs/2203.06173, 2022.

[34] I. Radosavovic, T. Xiao, S. James, P. Abbeel, J. Malik, and T. Darrell. Real-world robot

learning with masked visual pre-training. ArXiv, abs/2210.03109, 2022.

10

[35] Y. Seo, D. Hafner, H. Liu, F. Liu, S. James, K. Lee, and P. Abbeel. Masked world models for

visual control. ArXiv, abs/2206.14244, 2022.

[36] Y. Seo, J. Kim, S. James, K. Lee, J. Shin, and P. Abbeel. Multi-view masked world models for

visual robotic manipulation. ArXiv, abs/2302.02408, 2023.

[37] S. Parisi, A. Rajeswaran, S. Purushwalkam, and A. K. Gupta. The unsurprising effectiveness

of pre-trained vision models for control. In International Conference on Machine Learning,

2022.

[38] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta. R3m: A universal visual represen-

tation for robot manipulation. In Conference on Robot Learning, 2022.

[39] S. James and A. J. Davison. Q-attention: Enabling efficient learning for vision-based robotic

manipulation. IEEE Robotics and Automation Letters, PP:1±1, 2021.

[40] S. James, K. Wada, T. Laidlow, and A. J. Davison. Coarse-to-fine q-attention: Efficient learning

for visual robotic manipulation via discretisation. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 13739±13748, 2022.

[41] S. James and P. Abbeel. Coarse-to-fine q-attention with learned path ranking. ArXiv,

abs/2204.01571, 2022.

[42] Z. Xian, B. Zhu, Z. Xu, H.-Y. Tung, A. Torralba, K. Fragkiadaki, and C. Gan. Fluidlab:

A differentiable environment for benchmarking complex fluid manipulation. arXiv preprint

arXiv:2303.02346, 2023.

[43] Z. Xu, Z. Xian, X. Lin, C. Chi, Z. Huang, C. Gan, and S. Song. Roboninja: Learning an

adaptive cutting policy for multi-material objects. arXiv preprint arXiv:2302.11553, 2023.

[44] H. Geng, Z. Li, Y. Geng, J. Chen, H. Dong, and H. Wang. Partmanip: Learning cross-category

generalizable part manipulation policy from point cloud observations. ArXiv, abs/2303.16958,

2023.

[45] F. SuÂarez-Ruiz, X. Zhou, and Q.-C. Pham. Can robots assemble an ikea chair? Science

Robotics, 3(17):eaat6385, 2018.

[46] Z. Xian, P. Lertkultanon, and Q.-C. Pham. Closed-chain manipulation of large objects by

multi-arm robotic systems. IEEE Robotics and Automation Letters, 2(4):1832±1839, 2017.

[47] A. Fishman, A. Murali, C. Eppner, B. N. Peele, B. Boots, and D. Fox. Motion policy networks.

In Conference on Robot Learning, 2022.

[48] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional

transformers for language understanding. ArXiv, abs/1810.04805, 2019.

[49] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,

P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances

in neural information processing systems, 33:1877±1901, 2020.

[50] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-

hghani, M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transform-

ers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[51] K. He, X. Chen, S. Xie, Y. Li, P. DollÂar, and R. Girshick. Masked autoencoders are scalable

vision learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 16000±16009, 2022.

[52] W. Liu, C. Paxton, T. Hermans, and D. Fox. Structformer: Learning spatial structure for

language-guided semantic rearrangement of novel objects. 2022 International Conference on

Robotics and Automation (ICRA), pages 6322±6329, 2021.

11

[53] I. Radosavovic, T. Xiao, B. Zhang, T. Darrell, J. Malik, and K. Sreenath. Learning humanoid

locomotion with transformers. ArXiv, abs/2303.03381, 2023.

[54] M. Janner, Q. Li, and S. Levine. Reinforcement learning as one big sequence modeling prob-

lem. In Neural Information Processing Systems, 2021.

[55] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and

I. Mordatch. Decision transformer: Reinforcement learning via sequence modeling. In Neural

Information Processing Systems, 2021.

[56] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson,

Q. Vuong, T. Yu, et al. Palm-e: An embodied multimodal language model. arXiv preprint

arXiv:2303.03378, 2023.

[57] K.-H. Lee, O. Nachum, M. Yang, L. Y. Lee, D. Freeman, W. Xu, S. Guadarrama, I. S. Fis-

cher, E. Jang, H. Michalewski, and I. Mordatch. Multi-game decision transformers. ArXiv,

abs/2205.15241, 2022.

[58] M. Xu, Y. Shen, S. Zhang, Y. Lu, D. Zhao, J. B. Tenenbaum, and C. Gan. Prompting decision

transformer for few-shot policy generalization. ArXiv, abs/2206.13499, 2022.

[59] M. Xu, Y. Lu, Y. Shen, S. Zhang, D. Zhao, and C. Gan. Hyper-decision transformer for efficient

online policy adaptation. ArXiv, abs/2304.08487, 2023.

[60] J. N. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised

learning using nonequilibrium thermodynamics. ArXiv, abs/1503.03585, 2015.

[61] P. Dhariwal and A. Nichol. Diffusion models beat gans on image synthesis. ArXiv,

abs/2105.05233, 2021.

[62] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, S. K. S. Ghasemipour, B. K.

Ayan, S. S. Mahdavi, R. G. Lopes, T. Salimans, J. Ho, D. J. Fleet, and M. Norouzi. Photorealis-

tic text-to-image diffusion models with deep language understanding. ArXiv, abs/2205.11487,

2022.

[63] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthe-

sis with latent diffusion models. 2022 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 10674±10685, 2022.

[64] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen. Hierarchical text-conditional image

generation with clip latents. ArXiv, abs/2204.06125, 2022.

[65] A. Ajay, Y. Du, A. Gupta, J. B. Tenenbaum, T. Jaakkola, and P. Agrawal. Is conditional

generative modeling all you need for decision-making? ArXiv, abs/2211.15657, 2022.

[66] S. Huang, Z. Wang, P. Li, B. Jia, T. Liu, Y. Zhu, W. Liang, and S.-C. Zhu. Diffusion-based

generation, optimization, and planning in 3d scenes. ArXiv, abs/2301.06015, 2023.

[67] I. Kapelyukh, V. Vosylius, and E. Johns. Dall-e-bot: Introducing web-scale diffusion models

to robotics. IEEE Robotics and Automation Letters, 8:3956±3963, 2022.

[68] W. Liu, T. Hermans, S. Chernova, and C. Paxton. Structdiffusion: Object-centric diffusion for

semantic rearrangement of novel objects. ArXiv, abs/2211.04604, 2022.

[69] Z. Zhong, D. Rempe, D. Xu, Y. Chen, S. Veer, T. Che, B. Ray, and M. Pavone. Guided

conditional diffusion for controllable traffic simulation. ArXiv, abs/2210.17366, 2022.

[70] C. Jiang, A. Cornman, C. Park, B. Sapp, Y. Zhou, and D. Anguelov. Motiondiffuser: Control-

lable multi-agent motion prediction using diffusion. In Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition (CVPR), pages 9644±9653, June 2023.

12

[71] Y. Du, M. Yang, B. Dai, H. Dai, O. Nachum, J. B. Tenenbaum, D. Schuurmans, and P. Abbeel.

Learning universal policies via text-guided video generation. ArXiv, abs/2302.00111, 2023.

[72] T. Pearce, T. Rashid, A. Kanervisto, D. Bignell, M. Sun, R. Georgescu, S. V. Macua, S. Z.

Tan, I. Momennejad, K. Hofmann, and S. Devlin. Imitating human behaviour with diffusion

models, 2023.

[73] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,

P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervi-

sion. In International conference on machine learning, pages 8748±8763. PMLR, 2021.

[74] J. Lu, D. Batra, D. Parikh, and S. Lee. Vilbert: Pretraining task-agnostic visiolinguistic repre-

sentations for vision-and-language tasks. In Neural Information Processing Systems, 2019.

[75] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint

arXiv:1711.05101, 2017.

[76] K. Zhang, M. Sharma, J. Liang, and O. Kroemer. A modular robotic arm control stack for

research: Franka-interface and frankapy. arXiv preprint arXiv:2011.02398, 2020.

[77] S. Liu, S. James, A. J. Davison, and E. Johns. Auto-lambda: Disentangling dynamic task

relationships. arXiv preprint arXiv:2202.03091, 2022.

[78] Y. Li and T. Harada. Lepard: Learning partial point cloud matching in rigid and deformable

scenes. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

pages 5544±5554, 2022.

[79] J. Su, Y. Lu, S. Pan, A. Murtadha, B. Wen, and Y. Liu. Roformer: Enhanced transformer with

rotary position embedding. arXiv preprint arXiv:2104.09864, 2021.

13

7 Appendix

7.1 Noise schedulers for Local Trajectory Diffuser

We model local trajectory optimization as a discrete-time diffusion process, which we implement

using the DDPM sampler [18]. DDPM uses a non-parametric time-dependent noise variance sched-

uler βk, which defines how much noise is added at each time step. We adopt a scaled linear schedule

for the position and a squared cosine schedule for the rotation of each trajectory step.

xk−1 =

√
ᾱk−1βk

1− ᾱk

(xk − ϵθ(xk, k,)) +

√
αk(1− ᾱk−1)

1− ᾱk

xk +
1− ᾱk−1

1− ᾱk

βkz (8)

By defining αk = 1− βk, and ᾱk =
∏k

i=1 αi, we can now obtain the analytical form of λk, γk, σk

in Equation 5 as follows:

λk =
1√
αk

(9)

γk =
1− αk√
1− ᾱk

(10)

σk =
1− ᾱk+1

1− ᾱk

βk (11)

where k is the diffusion denoising timestep.

7.2 Act3D Background and Implementation Details

Act3D is a language-conditioned end-effector 6-DoF keypose predictor that learns 3D perceptual

representations of arbitrary spatial resolution via recurrent coarse-to-fine 3D point sampling and

featurization. Act3D featurizes multi-view RGB images with a pre-trained 2D backbone and lifts

them in 3D using depth to obtain a multi-scale 3D scene feature cloud. It then iteratively predicts 3D

foci of attention in the empty 3D workspace, samples 3D point grids in their vicinity, and featurizes

the sampled 3D points using relative cross-attention to the physical scene feature cloud, language

tokens, and proprioception. Act3D detects the 3D point that corresponds to the next best end-effector

position using a detection Transformer head, and regresses the rotation, end-effector opening, and

planner collision avoidance from the decoder’s parametric query.

We extract two feature maps per 256 × 256 input image view: 32 × 32 coarse visual tokens and

64×64 fine visual tokens. We use three ghost point sampling stages: first across the entire workspace

(roughly 1 meter cube), then in a 16 centimeter diameter ball, and finally in a 4 centimeter diameter

ball. The coarsest ghost points attend to a global coarse scene feature cloud (32× 32×ncam coarse

visual tokens) whereas finer ghost points attend to a local fine scene feature cloud (the closest 32×
32×ncam out of the total 64×64×mcam fine visual tokens). During training, we sample 1000 ghost

points in total split equally across the three stages. At inference time, we trade-off extra performance

for additional compute by sampling more ghost points than the model ever saw at training time

(20, 000). We use 2 layers of cross-attention and an embedding size 60 for single-task experiments

and 120 for multi-task experiments. Training samples are augmented with random crops of RGB-D

images and ±45.0 yaw rotation perturbations (only in the real world as this degrades performance

in simulation).

7.3 Simulation Setup in RLBench

The RLBench simulation environment uses a Franka Panda robotic arm on a table-top setting. We

consider m = 4 camera inputs: left shoulder, right shoulder, wrist, and front, as shown in Figure

3. The wrist camera is attached to the robot’s end-effector and moves together with the robot. The

other 3 are static. To ensure a fair comparison, when comparing with PerAct, we use all 4 cameras

following PerAct setting, and use the first 3 cameras when compared with other baselines.

14

Visual and language encoder Our visual encoder maps multi-view RGB-D images into a multi-

scale 3D scene feature cloud. We use a large-scale pre-trained 2D feature extractor followed by

a feature pyramid network to extract multi-scale visual tokens for each camera view. Our input

is RGB-D, so each pixel is associated with a depth value. After featurizing the image, we obtain a

feature map whose spatial resolution is lower than the original image. We associate every super-pixel

(2D grid location) in this feature map to a depth value, by averaging the depth values of the image

pixels that correspond to this super-pixel, i.e., the receptive field. Then we ªliftº this 2D feature

vector to 3D using the pinhole camera equation and the camera intrinsics, as shown in Figure 5.

Each visual token in 3D uses the mean 3D position of all the 2.D pixels as its 3D position.

The language encoder featurizes instructions with a large-scale pre-trained language encoder. We

use the CLIP ResNet50 [73] visual encoder and language encoders to exploit their common vision-

language feature space for interpreting instructions and referential grounding. Our pre-trained visual

and language encoders are frozen during training.

Relative 3D cross-attentions ChainedDiffuser uses relative 3D positional encodings proposed in

[78, 79] to incorporate translational invariance. We featurize each of the 3D point candidates and a

parametric query (used to select via inner-product one of the point candidate as the next best end-

effector position in the decoder) independently through cross-attentions to the multi-scale 3D scene

feature cloud, language tokens, and proprioception. Our cross-attentions use relative 3D position

information and are implemented efficiently with rotary positional embeddings [79]. Given a point

p = (x, y, z) ∈ R3 and its feature x ∈ Rd, the rotary position encoding function PE is defined as:

PE(p,x) = M(p)x =

[

M1

.
.
.

Md/6

]

x, Mk =







cos xθk − sin xθk 0 0 0 0

sin xθk cos xθk 0 0 0 0

0 0 cos yθk − sin yθk 0 0

0 0 sin yθk cos yθk 0 0

0 0 0 0 cos zθk − sin zθk
0 0 0 0 sin zθk cos zθk







where θk = 1

100006(k−1)/d , k ∈ {1, .., d/6}. The dot product of two positionally encoded features is

PE(pi,xi)
TPE(pj ,xj) = xT

i M(pi)
TM(pj)xj = xT

i M(pj − pi)xj

which depends only on the relative positions of points pi and pj .

17

	Introduction
	Related Work
	ChainedDiffuser
	Overview
	Macro-Action Predictor
	Local Trajectory Diffuser
	Implementation and Training Details

	Experiments
	Simulation Experiments
	Real-world Experiments
	Limitations

	Conclusion
	Acknowledgements
	Appendix
	Noise schedulers for Local Trajectory Diffuser
	Act3D Background and Implementation Details
	Simulation Setup in RLBench
	Real-world Setup
	Discussion on contribution versus Act3D
	Robustness of 2D and 3D Methods under Varying Camera Viewpoints
	Further Architecture Details

