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Abstract— Childhood mental health problems are 

common, impairing, and can become chronic if left 
untreated. Children are not reliable reporters of their 
emotional and behavioral health, and caregivers often 
unintentionally under- or over-report child symptoms, 
making assessment challenging. Objective physiological 
and behavioral measures of emotional and behavioral 
health are emerging. However, these methods typically 
require specialized equipment and expertise in data and 
sensor engineering to administer and analyze. To address 
this challenge, we have developed the ChAMP (Childhood 
Assessment and Management of digital Phenotypes) 
System, which includes a mobile application for collecting 
movement and audio data during a battery of mood 
induction tasks and an open-source platform for 
extracting digital biomarkers. As proof of principle, we 
present ChAMP System data from 101 children 4-8 years 
old, with and without diagnosed mental health disorders. 
Machine learning models trained on these data detect the 
presence of specific disorders with 70-73% balanced 
accuracy, with similar results to clinical thresholds on 
established parent-report measures (63-82% balanced 
accuracy). Features favored in model architectures are 
described using Shapley Additive Explanations (SHAP). 
Canonical Correlation Analysis reveals moderate to strong 
associations between predictors of each disorder and 
associated symptom severity (r = .51-.83). The open-
source ChAMP System provides clinically-relevant digital 
biomarkers that may later complement parent-report 
measures of emotional and behavioral health for detecting 
kids with underlying mental health conditions and lowers 
the barrier to entry for researchers interested in exploring 
digital phenotyping of childhood mental health.  

Index Terms— digital health, digital biomarkers, pediatric 
mental health, mobile health, machine learning, anxiety, 
adhd, depression, anxiety 
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I. INTRODUCTION 
HILDHOOD mental health problems are common and 
can become chronic and impairing if left untreated. 

Children eight and younger are not reliable reporters of their 
emotional symptoms, making it particularly challenging to 
assess their emotional and behavioral health. Moreover, 
caregivers often unintentionally under-report their children’s 
emotional health, or can exhibit reporting bias based on their 
own mental health [1]. Because of these challenges in 
assessment, early childhood researchers have started to 
explore objective measures of emotional and behavioral health 
captured directly from a child’s physiology and behaviors.  

Successful systems [2], [3] for capturing child physiology 
and behavior typically leverage mood induction tasks, or 
behavioral paradigms that “press” for a specific emotional or 
behavioral response [4]. A child’s response is quantified via a 
physiological metric (i.e., galvanic skin response, heart rate) 
measured using specialized equipment (e.g., [5], [6]) and/or 
via behavioral coding (i.e., tracking facial expressions/body 
movements in task videos [3], [7]) which requires specialized 
computer programs (e.g., [8]) and trained personnel [4], [9]. In 
some cases, quantifiable features responsive to the behavioral 
paradigms and related to the child’s emotional and behavioral 
health [10] are then used to supplement clinical assessment 
[4],[11], [12].  

Despite the plethora of research (i.e., [4], [9], [10], [12]–
[14]) and some clinical utility [4] of objective physiological 
and behavioral measures during mood induction tasks and 
their links with early childhood emotional and behavioral 
health, there are important challenges that limit wide use 
outside of the original authors’ laboratories. Most of these 
systems require a) specialized measurement equipment which 
may be expensive, require expert knowledge to use and 
interpret, and are cumbersome to wear for young children 
and/or b) video coding which require personnel effort, and 
time to train and code reliably. There is an unmet need for a 
system that can capture objective measures of a child’s 
physiological and behavioral response to mood inductions that 
is accessible for patients, researchers, and providers, and could 
enable the broad use, validation, and iterative development of 
these approaches.  
  Digital phenotyping, which leverages metrics available 
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from wearable sensors and smartphones for detecting 
symptoms and presence of underlying health conditions, holds 
great promise for addressing this unmet need [15]. While there 
are some great early examples (e.g., smartphone metrics to 
detect autism in young children [16]), there is still much to 
learn about digital phenotypes, particularly in early childhood.  

Our prior work has demonstrated that digital phenotyping 
derived from wearable sensor and audio data during mood 
induction paradigms can identify young children with 
internalizing disorders with good accuracy (75%-81%) [17]–
[23]. However, it can be difficult for researchers to replicate 
this paradigm as an interdisciplinary team with expertise in 
wearable sensors, biomechanics, signal processing, data 
science, and clinical psychology is required to meet the 
important requirements for stringent validation [24]. We also 
note that these previous models did not classify specific 
diagnoses or severity, which are important outputs to consider 
in a future complementary clinical tool that may leverage 
similar data streams.  

In this work, our team presents the ChAMP (Childhood 
Assessment and Management of digital Phenotypes) System, 
which is an accessible smartphone app and open-source 
platform for collecting and interpreting motion and audio data 
during mood induction tasks. In so doing, we aim to make 
standardized, validated digital phenotyping tools accessible to 
other researchers to enable efficacy and effectiveness testing 
across diverse populations and use-cases [15], [25], [26]. This 
approach ultimately allows evidence-based complementary 
digital mental health tools, such as this system and 
accompanying models, to get into the hands of patients and 
providers more swiftly. The technological advances and 
findings in this work build considerably on past work. 
Namely, we 1) collect a new sample of over 100 children and 
their families to evaluate our newly developed ChAMP 
System, 2) and explore its ability to detect specific diagnoses 
such as anxiety, depression, and ADHD via machine learning 
approaches deployed on the data it collects and 3) extend our 
past work evaluating individual mood-induction tasks by 
considering data from a combination of tasks and for 
predicting individual diagnoses, as opposed to general 
internalizing disorders. 

II. METHODS 
A. The ChAMP System 

The ChAMP System standardizes the administration of 
behavioral mood induction tasks for children (Table 1) by 
providing a repeatable and replicable digital framework, 
enabling collection of multimodal physiological data at scale 
and facilitating the discovery of digital phenotypes. As 
illustrated in Fig 1, the system is composed of a mobile health 
application and an open-source interactive data processing 
pipeline. To initiate the ChAMP System, the research 
administrator opens the ChAMP app and clicks start for each 
mood induction task when prompted. The ChAMP app is 
designed with simple screens indicating expected 
administrator actions (e.g. start, restart, save) and, large-font 
countdowns while within active tasks. The app collects 
continuous motion (via the onboard inertial measurement unit 
which captures acceleration and angular velocity at a sampling 

rate of 300 Hz) and audio data (via the onboard microphone at 
a sampling rate of 8 kHz), makes sounds to signal procedural 
requirements to the administrator and/or child, ends tasks, and 
stores organized data for researchers.  

The ChAMP App, written in Kotlin, was designed to be 
downloaded onto an Android smartphone and secured to the 
child’s lower back using a custom waist belt (belt instructions 
on the ChAMP Website [27]). The interactive data processing 
pipeline is implemented in Python in a Jupyter Notebook and 
automatically extracts features that quantify how a child 
moves and speaks during each task. Features are extracted 
from theory-driven phases within the task and provide a 
summary of movement and vocal data during each phase. 
Digital biomarkers are defined as features that demonstrate 
clinical relevance and can be combined to form digital 
phenotypes of childhood emotional and behavioral health. The 
platform enables seamless collaboration, so researchers with 
relevant skills can contribute new algorithms for the 
community to use. 

B. The ChAMP Assessment Battery 
Each of the three mood induction tasks (see Table 1: 

Approach [18], [19], [28], Speech [20], [29], [30], and 
Bubbles [2], [3], [21]) induces an emotionally salient stimuli 
representing multiple constructs of daily functioning [31], 
associated with emotional and behavioral problems [6], [10], 
[32], [33]. Each task is described in detail in the full protocol 
(see [27]).  

C. Theory-Driven Feature Engineering 
The Approach task was cut into six 5-second segments that 

capture each protocol sequence (i.e., walking into room; 
standing in front of covered object) and separate theorized 
threat response phases (i.e., potential threat, startle, and 
response modulation) [18], [34]. The Bubbles task was cut 
into twelve 15-second segments to explore potential changes 
in response to a single, repeated reward over time. As time 
until reward satiation is largely unexplored (outside of food 
reward) it was unknown whether or when reward satiation 
would be reached and so a span of seconds (similar, but 
somewhat longer than methodologies used in MRI reward 
studies [35]) was chosen, yet was largely exploratory.  For 
these two tasks, angular velocity magnitude and acceleration 
magnitude were derived from the smartphone’s 3-axis 

TABLE I 
CHAMP BEHAVIOR BATTERY TASKS 

Task Approach Speech Bubbles 

RDoC Construct Potential Threat Acute Threat Reward 
Duration 30 s 3 m 3 m 
Description Child walks into 

darkened room 
toward covered 
object 

Child tells story 
and is told it 
will be judged 

Child plays 
with bubbles 
from a 
machine 

Stimuli Rapid beeping 
from 19 to 25 s 
to induce anxiety 

Buzzer sounds 
at 90 and 160 s 
to induce startle 

None 

Output Motion data as 
CSV 

Audio data as 
mp3 

Motion data 
as CSV 

ChAMP App Behavioral Battery is composed of Approach, Speech 
and Bubbles mood-induction tasks which can be completed in under 
seven minutes. Each task addresses a research domain criteria 
(RDoC) construct associated with childhood mental health.    
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gyroscope and accelerometer. For every segment, the median, 
sum, standard deviation, variance, and 5th, 25th, 75th, and 95th 
percentiles of angular velocity and acceleration magnitudes 
were extracted to summarize the child’s movement within 
each segment. Additional details are available in [27]. 

The Speech task was cut into three segments: prior to the 
first buzzer (0-90 sec), between the first and second buzzer 
(90-150 sec), and after the second buzzer (150-180 sec). These 
segments attempt to capture differential aspects of fear 
including proactive avoidance of upcoming threat (being 
judged pre buzzers), and reactive escape from startle [36], as 
well as any changes due to habituation of a repeated stimuli 
[37] (after the second buzzer). Five seconds of audio at the 
beginning and end of the task and before and after each buzzer 
were removed to reduce the likelihood of any administrator 
audio being captured (i.e., giving instruction and/or time left). 
The WebRTC voice activity detector (VAD) was used to 
isolate the child’s voice in the recording for analysis [38] 
following which recording volume was increased by 15 dB to 
ensure we were accommodating for the posterior positioning 
of the phone. Audio features were selected from our previous 
work (e.g., (zero crossing rate (ZCR), Mel frequency cepstral 
coefficients (MFCC), spectral centroid [20]) and expanded to 
include proportion of time spent speaking in each task 
segment and throughout the whole task, chromagram (chroma 
stft), root mean square, spectral bandwidth, and the 
approximate minimum and maximum frequency. We also 
assessed the variance and mean pitch intensity, as well as the 
ranked list of dominant pitch intensities, all extracted using 
chroma stft [39]. We developed the ranked-dominant pitch 
intensity feature by summing the intensity of each pitch across 
the segment, and then ranking the pitches from 0-1 by the 
pitch intensity contribution, 0 being more dominant (e.g. mean 
ranked-dominant pitch intensity of C♯ in diagnosed children 
was .727 versus for undiagnosed children it was .454, 
indicating the dominant pitch for undiagnosed children was 

more likely ranked higher for C♯ than diagnosed children). 
Descriptive statistics (variance and/or mean) were computed 
for each feature. Additional details are available in [27].  

D. Study Recruitment and Experimental Protocol 
Children and their primary caregiver were recruited as 

participants in Fall 2021-2022 from a state-wide sample via 
advertisements (n = 104) as well as in collaboration with the 
Vermont Center for Children, Youth and Families (VCCYF) 
in the Division of Child Psychiatry at the University of 
Vermont (n=6). To meet inclusion criteria, children had to be 
aged 4-8 years, with no suspected or diagnosed developmental 
disorders, serious medical conditions, or cognitive 
impairments, and primary caregivers had to be at least 18 
years old and English-speaking. 

For this analysis, 104 children between ages 4 and 8 years 
were included (M=81.42 months, SD=14.50), 61.5% (n=62) 
were male, and 89.4% (n=93) were White, non-Hispanic. 
Most reporting caregivers (80.2% biological mothers, n=77) 
were married (82.6%, n=71, 18 missing), had attained a 
bachelor’s degree or higher (88% n=75, 19 missing) and 81% 
(n=69, 19 missing) had average yearly household income of 
$75,000 or more. During the study lab visit, children were 
assessed for mental health diagnoses of which 47.6% (n=49) 
met criteria for at least one disorder of anxiety, depression or 
ADHD. Overall, 33% (n=34) had an anxiety disorder 
(inclusive of generalized anxiety disorder, separation anxiety 
disorder, social phobia, anxiety-unspecified, and post-
traumatic stress disorder); 13.6%, (n=14) had a depressive 
disorder (inclusive of major depressive disorder, persistent 
depressive disorder and depressive disorder-unspecified); 
19.4% (n=20) had a diagnosis of ADHD (inattentive, 
hyperactive or combined), including 11 children (10%) with 
an anxiety or depressive disorder (Fig 3). The range of 
disorders in this sample fit recommendations of recruiting 
participants with less specific clinical criteria, and without a  

 
Fig. 1.  To facilitate scalable validation and reproduction of the Kid Study we make the critical components to using the ChAMP mobile application 
widely accessible, including: a process for researchers to directly request ChAMP app download to enable their own data collection (left), the 
protocol for administering the ChAMP behavioral battery (middle), and an interactive open-source analysis script for reproducing biomarker 
feature sets (right). 
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“super-normal” control group to better represent general 
populations [40].  

Eligible children and their primary caregivers attended a 
2.5-hour laboratory visit. During the visit, the child’s caregiver 
was consented, administered a clinical interview about their 
child’s mental health (Schedule for Affective Disorders and 
Schizophrenia Preschool Version, present and lifetime) [41], 
[42] and completed several questionnaires about their child’s 
mental health and development. Diagnoses were derived via 
clinical consensus with a supervising licensed clinical 
psychologist using the best-estimate procedures based on 
parent-report symptom checklists and family history.  

Simultaneously, the child was outfitted with sensors and a 
mobile phone (Fig 2A). The child was led to a novel room by 
an administrator to engage in the ChAMP Behavior Battery 
(Fig 2B). Afterward the child completed a structured 
intelligence test and played with toys until their caregiver 
completed their tasks. Families were compensated with a $60 
gift card and a $5 toy. Families were called by a licensed 
clinical psychologist to discuss the results of their child’s 
mental health assessment and referral recommendations within 
two weeks of their visit. Study procedures were approved by 
the University of Vermont Institutional Review Board 
(CHRBSS 00001218). 

E. Analytic Methods 
Raw signal data needs context to interpret, and the theory 

driven phases used to segment each task provides this needed 
context. However, prior to assessment of theory driven phases, 
a determination of inclusion or exclusion of demographic 
information is needed for model feature selection. We 
performed t-tests to determine associations between age and 
disorder presence. We also used t-testing to assess if child sex 
was related to symptom severity for children who endorsed at 
least one symptom. We performed Chi squares testing to 
determine relationships between child sex and disorder 
presence. We then evaluated for correlations between age and 
symptom severity using Spearman correlations.  

Preparing to dig deeper into understanding the relationship 
between the movement and audio features extracted from 
these tasks and emotional and behavioral health, we 
partitioned the dataset by task and by availability of data. This 
process produced 5 separate feature sets from the original 104 
subjects, each were evaluated separately through model 
building efforts; Approach Task only (94 subjects), Bubbles 
Task only (99 subjects), Speech Task only (99 subjects), all 
three completed tasks (94 subjects), and 5-nearest neighbors 
imputation for tasks for subjects who were missing one or 
more tasks (101 subjects). Three subjects were not included in 
analysis as they had no sensor data. While in previous work 
we considered task-specific models, this is the first dataset we 

Fig. 2.  Participating children and their primary caregiver participate in a ~2.5-hour study visit. The caregiver completes a clinical interview to 
assess their child’s mental health status (A, bottom left) while the child is outfitted with several wearable sensors including 5 BioStamp sensors, 
an E4 Empatica wrist sensor, and the belt-worn Android smartphone with the downloaded app, ChAMP (A, right) and completes the ChAMP 
behavioral assessment (B). 
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have considered that combined multiple valance tasks into one 
cohesive model. 
 To assess the potential for the ChAMP System to detect 
underlying mental health conditions in young children, we 
trained several binary classification models. Models were 
trained to identify children with depression, anxiety, or ADHD 
based on age, gender, and the 5 differing feature sets from the 
ChAMP System. To begin, we examine relative performance 
of Gaussian Naïve Bayes (NB), Support Vector Machine with 
Stochastic Gradient Descent Booster (SVM), Decision Tree 
(DT), XGBoost (XGB), and Logistic Regression (LR) 
classification models with varying infrastructures and feature 
selection methods. Specifically, we considered each classifier, 
with and without hyperparameter tuning, with and without 
decision thresholding weighted on balanced accuracy, trained 
on either 10 or 20 of the top predictors from 4 different feature 
importance methods. The feature importance methods 
considered ranked and selected predictors considering 
entropy-based Shannon information gain (DT), GINI impurity 
(GINI), permutation importance (PERM), and XGBoost 
feature importance (XGB). Models were trained and evaluated 
using stratified 2-fold shuffled cross-validation and 
characterized by the mean balanced accuracy (B-Accuracy), 
mean area under curve for the receiver operating curve (ROC 
AUC), sensitivity, specificity, false positive rate (FPR), and 
true positive rate (TPR) averaged across the two folds’ test 
cases. The primary metric defining performance ranking was 
balanced accuracy. Two folds were selected to maintain 
sufficient training instances for diagnoses that have small 
sample sizes (Fig 4C). For models predicting ADHD, there 
were 9-10 diagnosed individuals per fold. For anxiety, 15-16 
diagnosed children per fold. For depression, there were 6 
diagnosed children per fold. Evaluations of feature importance 
occurred within each fold of the cross validation. The feature 
set sizes of 10 and 20 were selected to limit model overfitting 
caused by too many considered features and to narrow down 
the modalities yielding the most influential biomarkers.  

For models that were tuned, we selected a subset of 
parameters for each classifier to consider. For SVM, 
parameters of learning_rate, loss, penalty, fit_intercept, and 

alpha were tuned. For the DT classifier, max_features, 
max_depth, criterion, min_samples_leaf, and 
min_samples_split, were considered. For the NB classifier, we 
selected only var_smoothing. For XGB, max_depth, 
min_child_weight, gamma, subsample, and reg_alpha. For LR, 
penalty, C, and class_weight were tuned. Top performing 
models following model evaluations were then explored using 
SHAP (SHapley Additive exPlanations)[43] and compared to 
foundational work. Features identified in top performing 
models were then evaluated using one-component Canonical 
Correlation Analysis to assess the relationship between these 
top predictors and diagnostic symptom counts, a measure of 
symptom severity, for children who had at least one symptom. 

 
III. RESULTS 

A. Demographic Associations with Diagnosis and 
Severity 

Child age was not related to the presence of Anxiety 
(t(101)=.-1.88, p=.064) or ADHD (t(101)=.-.738, p=.462), but 
related to Depression (t(101)=.-2.88, p=.005) such that 
children with a diagnosis were older than those without. Child 
sex was unrelated to the presence of Anxiety (x(1,103)=.117, 
p=.732) ADHD (x(1,103)=.154, p=.695), and Depression 
(x(1,103)=.719, p=.397). For children with at least one 
symptom within diagnosis, child age was unrelated to 
symptom severity for Anxiety (r(41)=.089, p=.578), or ADHD 
(r(29)=-.018, p=.927), but was related to depression 
(r(38)=.356, p=.028). Child sex was related to symptom 
severity for Anxiety (t(39)=2.178, p=.036), such that females 
exhibited more symptoms than males, but child sex was 
unrelated to ADHD (t(27)=-.160, p=.874), or depression 
(t(37)=-.912, p=.368) symptoms. Based on several significant 
relationships found here, we included child sex and age in 
months in all model datasets.  

B. Predictive Modeling of Mental Health Diagnosis 
We build several binary models classifying each diagnosis 

(anxiety, depression, ADHD) using only objective child 
physiology and behavior which would not require caregiver 
reporting that can be dependent on caregiver-child 
relationship, contexts for observations, caregiver mental 
health, mental health literacy, and societal stigma. All of the 
top performing models for each diagnostic classification (Fig 
4A) favored feature sets that included features across all three 
behavioral tasks. Notably, each of these top models favored 
infrastructures that included decision thresholding for 
optimizing balanced accuracy and two of the three included 
hyperparameter tuning. All top performing models were able 
to correctly classify at least 50% of the true positives within 
the dataset and all models achieved balanced accuracy rates 
between 70 and 73%.  

The top performing thresholds were all found to be lowered 
from the default rate (.5) to a threshold ranging from .12 to 
.32. This finding is interesting, as typically lowering a 
threshold so dramatically would cause an increased risk of 
false positives. However, the models we present still exhibit 
false positive rates in similar ranges to parent report (.08-.35 
vs .1 to .26).   

 
Fig. 3.  Breakdown of participant diagnostic results by sex.  
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In previous work, we built several models considering the 
ability of features derived from each of the individual tasks in 
the ChAMP mood induction battery to classify the presence of 
an internalizing diagnosis (depression and/or anxiety) [21]. 
Sensitivities for top performing models for each task in 
previous work are similarly or less than the sensitivities 
achieved for classifying specific disorders (ADHD, 
depression, and anxiety) herein (.39-.67 vs .5-.77). For 
example, the model we present for anxiety has better 
sensitivity than any of the internalizing disorder models we 
have presented in prior work. Specificities of single-task 
models for internalizing disorders ranged from .64 to .93 in 
our prior work. In this work on multi-task diagnostic-specific 
models, have specificities ranging from .65 to .92.  

C. Evaluating Potential as a Complementary System 
Consistent with our previous work, we compared 

psychometric evaluations of the questionnaire-based parent-
reported CBCL with our smartphone-based movement and 
vocal feature models on child internalizing and externalizing 
diagnosis as determined via K-SADS-PL with clinical 
consensus. Clinical thresholds on the parent-report CBCL 
Externalizing Score detect ADHD with lower balanced 
accuracy (.69 vs. .73) and specificity (.84 vs. .92), but slightly 
higher sensitivity (.55 vs. .53) than models based on 
movement and vocal biomarkers (Fig 4A & B). Clinical 
thresholds on the parent-reported CBCL Internalizing Score 
for detecting depression exhibit lower balanced accuracy (.63 
vs. .71), sensitivity (.36 versus .5), and specificity (.9 vs .91), 
higher false positive rate (.1 vs .09) and lower true positive 
rate (.36 versus .5) than models based on movement and vocal 
biomarkers (Fig 4A & B). Clinical thresholds on parent-
reported CBCL Internalizing Score for detecting anxiety 
exhibited superior performance than the top performing 
ChAMP model in all metrics.  

Our current and past studies have paralleled previous work 
demonstrating varied sensitivity of the CBCL, ranging from 
.0-.38 [44] to as high as .44 to .86 [45]. In our past work, 
biomarker-based models yielded a minimum 60% 
improvement in sensitivity over CBCL-based concordance to 
consensus report. In this work, we observed higher 
performance of CBCL-based concordance compared to 
previous work (.36-.91 vs. 00-.42 [23]) and thus sensitivities 
observed in ChAMP-based models did not yield such 
significant improvements relative to CBCL (.5-.74 vs .36-.91). 
The CBCL psychometrics observed here are similar to, and for 
some diagnostic groups higher than, those in larger studies 
[46,47]. Interestingly, anxiety in this sample of parents was 
reported with sensitivities higher than previously reported in 
any of our teams’ past work (.91). Notably, specificity of 
CBCL-based concordance in this study was similar to prior 
work (.88-1 [23] vs. .74-.90). ChAMP-based models we 
engineered performed with nearly parallel specificity to the 
observed CBCL-concordance in this study (.65-.92 vs. .74-
.90).  

In exploratory post-hoc analyses, we compared model false 
negatives (FNs) to true positives (TPs) on demographics (sex, 
age, race, income) and symptom characteristics (ADHD, 
depression and anxiety symptom counts and diagnostic 
subtypes), to investigate reasons the models may be missing 

some children with diagnoses. For ADHD, TPs were 
significantly younger than FPs (t(17)=-2.13, p=.049). For 
Depression, TPs may exhibit more ADHD symptoms than FPs 
(t(5.03)=2.10, p=.089), but did not reach statistical 
significance. For anxiety, there appeared to be no differences 
between TPs and FPs. Perhaps anxiety should be analyzed as 
subtypes (i.e., specific anxiety diagnoses, or fear vs. distress) 
in future analyses to improve model specificity. There were no 
significant differences between TNs and FNs for any 
diagnosis. 

For CBCL internalizing reports, TPs exhibited more anxiety 
symptoms according to the KSADS interview than FP 
(t(38)=2.09, p=.043) and there were differences by group in 
terms of caregiver education. Caregivers with higher 
education were more likely to fall in the FP than the TP group 
(t(31)=-2.14, p=.040). For CBCL externalizing reports on 
KSADS ADHD diagnoses (which is not a direct comparison 
of ADHD), FPs were more likely to be boys than TPs 
(x(1,20)=3.78, p=.052) and there was a significant difference 
by group in terms of household income. Caregivers with 
higher income were more likely to be in the FP than the TP 
group (t(13)=-2.21, p=.045). Overall, analyses of subtypes 
may suggest that caregiver report may be influenced by 
caregiver demographics, and that physiological/behavioral 
models still need more analyses to understand better what is 
driving FPs. 

We survey model explainability using Shapley Additive 
Explanations (SHAP)-based feature contributions [43]. All 
models selected features originating from more than one of the 
three behavioral tasks, rather than favoring a task-specific 
model. Interestingly, the ADHD model was the only of the top 
models to favor 20 instead of 10 features, and the top 10 
features (Fig 4D) nearly all originated from the Bubbles task. 
The top performing Depression model included both of the 
two demographic features (Age and Sex), as well as features 
from both the Approach and Bubbles tasks. The Anxiety top 
performing model included both demographic features, as well 
as features across all three tasks.  

D. Child Diagnosis and Symptom Severity 
Considering these top 10 to 20 features (depending on 

model), we performed Canonical Correlation Analysis (CCA) 
to evaluate the relationship between these predictors and 
symptom counts from the K-SADS-PL. We found that all 
predictor combinations yielded moderate to strong correlations 
(r = .51-.83) to diagnostic severity (defined by symptom 
count). This finding supports the hypothesis that theory-driven 
biomarkers may complement current screening by not only 
assisting in diagnostic classification, but also by potentially 
screening for estimated severity of an underlying disorder.  

While these results are promising and show the potential of 
the ChAMP tool to collect valuable biomarkers for classifying 
childhood mental health status, significant future work is 
needed to engineer additional theory-driven features, integrate 
other physiological signals, and continue to explore modeling 
approaches to optimize performance. These results imply that 
each task in the ChAMP battery provides important, 
independent, and potentially clinically relevant, information 
for characterizing emotional and behavioral health that could 
complement parent report. Future work should also be done to 
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evaluate how combinations of parent-report with wearable-
sensor and smartphone-based signals may improve clinical 
capability by providing a complementary data stream for 
identifying and intervening on early childhood mental health 
concerns in young children. 

IV. DISCUSSION 
Through the introduction of the ChAMP system, we 

provide an accessible, digital tool to collect physiological and 
behavioral data during brief, structured mood induction tasks 
and an open-source platform to engineer objective features 
related to childhood emotional and behavioral health. We 
provide promising results suggesting that even some of the 
simplest movement and vocal features from these tasks could 
serve as biomarkers for childhood mental health.  

A. Relationship Within and Across Tasks 
Our feature analyses demonstrate several key findings for 

future use. First, it is important to use a variety of multimodal 
features to model the complexity of child behavior during this 
battery. This implies that machine learning techniques which 
allow for modeling these complex relationships will likely be 
the best analytical strategy for these data [1], [19], [20]. 
Herein, we used only high-level features. However, based on 
our previous work, it is likely that that more granular 
biomechanical features may provide improved model 
performance [23]. Thus, we aim to explore a greater variety 
and complexity of features (e.g., turning behavior, postural 
sway [48]) in future work. Second, engineering features from 
temporal segments within each task is crucial as results 
revealed that specific task segments are differentially 
important in classifying children with and without a disorder 
(Fig 4D-F). While behaviorally coded features from mood 
induction tasks are typically summed across one (or multiple) 
tasks [3], [10], our task protocols and measurements were 
developed and adapted to evoke and quantify differential 

 
Fig. 4. A. Highest performing binary diagnostic classification models for true clinical consensus prediction using ChAMP features and demographic 
features (sex and age in months). B. Parent report questionnaire (CBCL) concordance with true clinical consensus C. Breakdown of subject counts 
by task and diagnostic classification (A) for the Approach task (top, green door), Speech task (blue middle speech bubbles) and the Bubbles task 
(bottom pink bubble icon). Top 10 predictors as defined by Shapley Additive Explanations for overall model contributions in each binary diagnostic 
model for one fold of the highest performing model for ADHD (D right), Anxiety (E right), and Depression (F right). Canonical correlation plots for 1-
component CCA comparing the canonical variable for the diagnostic predictors in each o the top moels compared to diagnostic symptom count for 
ADHD (D left), Anxiety (E left), and Depression (F left).NB = Naïve Bayes, XGB = XGBoost, PERM = Permutation Feature Importance, DT = 
Entropy-based Shannon information gain. FPR = False Positive Rate. TPR = True Positive Rate. D = Diagnosed. ND = Not Diagnosed. N = Number 
of Features Selected. D-Threshold = Decision Threshold Value. HP Tuning = Hyperparameter Tuning. ANX = Anxiety, DEP = Depression, B-
Accuracy = Balanced Accuracy. KNN = K-Nearest Neighbors. 
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magnitudes of emotional stimuli across time. Thus, including 
all three mood induction tasks as one behavior battery is 
important as features from each appear to contribute uniquely 
to disorder classification. These findings are important in the 
context of our past work, as we have never before combined 
results across mood-induction tasks. 

B. Association with Diagnoses and Symptom Counts  
In our prior work in a separate sample, children with a 

diagnosis turned away more and more quickly from an 
unknown threat in the Approach task compared to children 
without a diagnosis [18]. We observed this phase showed 
importance in this new sample as well, especially for the 
classification of Depression and Anxiety. These heightened 
features (herein, median and sum of movement magnitude, 
and previously, more tilt/turn of the child’s body) could 
represent biomarkers of elevated attentiveness and 
responsiveness to potential threat, consistent with work 
demonstrating children with internalizing disorders attended 
more to potentially threatening faces than those without [33]. 
Second, we found higher dominant pitch tone after an 
unexpected startle in the Speech task in children with an 
Anxiety diagnosis, consistent with our previous work in a 
separate sample [20]. These heightened biomarkers represent 
elevated reactivity to acute threat, consistent with work 
demonstrating adults with fear-related anxiety disorders startle 
more (higher magnitude eye blink) than those without [49]. 
Third, we found that the Bubbles task was dominantly 
representative across top features in the diagnostic prediction 
models. This supports our previous work demonstrating that 
the Bubbles task biomarkers were more related to broad 
emotional dysregulation than specific diagnostic symptoms 
[21].  

We have extended our past work by implementing a variety 
of supervised classification models which further demonstrate 
the importance of including multi-modal features across 
temporal phases, and tasks as multiple modalities, phases, and 
tasks were included in each optimal diagnostic model. These 
models perform on-par with, or improve upon, several of our 
previous models presented in foundational efforts and 
incorporate several mood induction tasks in a structured 
battery. We also demonstrate, for the first time, that linear 
combinations of top-performing ChAMP features during these 
tasks are strongly associated with symptom counts of child 
anxiety, depression, and, most notably, ADHD. Future work 
should consider additional wearable sensors, features, 
subjects, and modeling approaches (e.g., deep learning or 
transfer learning).  

A strength of this study is the inclusion of a wide range of 
internalizing disorders, while not excluding externalizing 
disorders. This allowed us to advance modelling efforts to 
specialize classification to specific diagnoses under the 
internalizing and externalizing umbrella, which we previously 
had not evaluated. This may make our small sample more 
clinically representative of community populations. Overall, 
findings show promise that specific segments of each of the 
three mood induction tasks may contribute to future models 

for detecting childhood anxiety and depression and for 
assessing severity of underlying diagnosis.  

It is also important to note potential limitations relating to 
bias. We have found that our models less clearly portray 
biases related to demographic background in parent-report 
surveys on child mental health status, however we cannot 
affirm that the models built are without bias. Notably, our 
sample may not represent the general population in terms of 
demographics or impairments. Our sample was less racially 
and ethnically diverse, and more affluent than that US 
population. Families of children with impairment appeared 
more likely than those without to self-select into the study. 
During recruitment, community waitlists for diagnostic 
evaluations were long (>9 months) and receiving a diagnostic 
assessment for their child within two weeks through 
participation in the study was reported as a significant 
motivator for families. It is also possible that the emotional 
impact of COVID anxiety/isolation may have increased child 
impairment as seen in adolescent samples[50]. We aim in 
future work to further bolster our training samples with a 
wider diversity of children and families.  

C. ChAMP as an Open-Access Digital Tool 
In the past decade, we have seen a rise in validated mobile 

applications and platforms that aim to increase awareness, 
monitoring, and intervention of mental illness (e.g., 
PanicMechanic [51],[52], LAMP [25], FOCUS [53]). There is 
an increase in commercial and research platforms that 
incorporate aspects of the digital phenotyping lifecycle (i.e., 
study protocol portal, data collection tool, mechanism for 
storing and accessing data, data analysis tools), but very few 
feature all of the necessary components and data to replicate 
and validate findings [15]. ChAMP provides accessibility and 
flexibility in these components, and for the first time, with a 
focus on early childhood. We hope with this platform that 
other researchers may extend this work to explore intrasubject 
variability and repeatability of findings across additional 
participant groups. 

By offering an app and platform, we aim to aid researchers 
in advancing the field of digital psychiatry [54]. We aim to 
increase explainability for this toolkit, and accessibility for 
approved clinical researchers utilizing the toolkit, by 
providing a website with additional documentation [27]. 
Future improvements to ChAMP will increase the 
customizability of our platform to enhance research and future 
clinical utility [15], [54]. Our next steps toward a customizable 
tool would allow investigation into additional conditions 
impacting children across a wider range of ages. Potential 
modifications could include additional mood induction tasks, 
project-specific enhancements to app protocols, and 
companion wearable devices for enabling additional sensing 
modalities. For instance, autism is an area where movement 
and speech data has often been used for assessment of 
diagnostic status and severity [55], [56] as well as ADHD 
[57], [58]. With more replication and validation across 
samples by clinical researchers, precision and model 
performance can be further enhanced. This is important, as a 
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future iteration of a similar objective system must have high 
accuracy so as to not overburden the system or family with 
false positive reports or under-identify children that may be 
struggling un-noticed. Moreover, this system, once further 
refined, could have potential to ultimately improve assessment 
by serving as a complementary clinical endpoint to better 
inform intervention. 
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