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Abstract— Preeclampsia (PE) is a leading cause of maternal
and perinatal death globally and can lead to unplanned preterm
birth. Predicting risk for preterm or early-onset PE, has been
investigated primarily after conception, and particularly in the
early and mid-gestational periods. However, there is a distinct
clinical advantage in identifying individuals at risk for PE prior
to conception, when a wider array of preventive interventions
are available. In this work, we leverage machine learning
techniques to identify potential pre-pregnancy biomarkers of PE
in a sample of 80 women, 10 of whom were diagnosed with
preterm preeclampsia during their subsequent pregnancy. We
explore prospective biomarkers derived from hemodynamic,
biophysical, and biochemical measurements and several
modeling approaches. A support vector machine (SVM)
optimized with stochastic gradient descent yields the highest
overall performance with ROC AUC and detection rates up to
.88 and .70, respectively on subject-wise cross validation. The
best performing models leverage biophysical and hemodynamic
biomarkers. While preliminary, these results indicate the
promise of a machine learning based approach for detecting
individuals who are at risk for developing preterm PE before
they become pregnant. These efforts may inform gestational
planning and care, reducing risk for adverse PE-related
outcomes.

Clinical Relevance— This work considers the development
and optimization of pre-pregnancy biomarkers for improving
the identification of preterm (early-onset) preeclampsia risk
prior to conception.

Keywords—  digital medicine, preeclampsia,
pregnancy, maternal health, machine learning.
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[. INTRODUCTION

Preeclampsia (PE) is a hypertensive disorder that affects up
to 5% of pregnancies and is associated with elevated maternal
and perinatal mortality [1,2]. In recent years, work on
predictive modeling of PE risk during gestation has emerged
[2,3], but few studies consider data prior to pregnancy [4,5].
Identifying the pathological underpinnings of PE
distinguishable pre-pregnancy could enable screening tools
for prospective child-bearers, the deployment of proactive
care plans, and novel interventions, reducing the threat of
maternal and perinatal morbidity and mortality during
gestation and post-birth. Past work has laid the groundwork
in identifying and classifying preeclamptic phenotypes of
differing risk levels during gestation [6,7,8]. These
investigations have allowed for new interventions to be tested
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and validated to reduce risk of preterm PE, starting in the first
trimester [9]. Efforts towards identifying phenotypes of
preterm PE risk could have meaningful impacts, as those with
preterm PE have been found to have significantly higher
extended risk of mortality than child bearers who did not have
PE or individuals with PE who were able to carry to term
[10]-[12].

Previous work has begun to validate the combination of
biophysical and biochemical testing as integrative
components for advancing predictive modeling of PE early in
pregnancy [6,13,14]. Our past work has identified significant
differences in the hemodynamics of individuals with prior
preeclampsia vs individuals without a prior pregnancy and
presented preliminary importance of pre-pregnancy features
to the subsequent development of preterm complicated
hypertension [15,16]. This study complements past work by
continuing to assess individuals with PE prior to pregnancy
leveraging new machine learning techniques. We collect
modalities shown to be strong predictors in previous efforts,
as well as examine additional candidate features that may be
unique to pre-gestational monitoring— addressing the need
for models dedicated to pre-pregnancy risk screening for
preterm PE.

Mirroring  the  incremental  biomarker  addition
methodology in [13,17,18], we leverage machine learning
techniques to examine features derived from baseline
maternal cardiovascular hemodynamics (HD), biochemical
(via blood test) biomarkers (BC), and biophysical cardiac
measurements (BP) for detecting risk for preterm PE prior to
pregnancy. These evaluations point to the potential for
deploying devices and procedures to screen for preterm PE
risk prior to pregnancy, allowing for enhanced proactive care
and planning.

II. METHODS

This is a retrospective analysis of a prospective
longitudinal study in which women were recruited prior to
planned pregnancy and followed for pregnancy outcomes.
Following delivery, medical records were reviewed for
diagnosis of preeclampsia. At the time of study, subjects were
healthy, non-smoking, and normotensive. Subjects were
recruited through open advertisement and were compensated
for their time. Out of an original 124 subjects in the study,
data from 80 subjects were considered for analysis based on
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adequate amounts of data collected. During their subsequent
pregnancy, 10 (12.5%) were diagnosed with preterm PE, four
(5%) with PE at term, and 13 (16.25%) with gestational
hypertension. Fifty subjects were nulliparous, 27 had a history
of preterm preeclampsia in their most recent pregnancy, three
did not have a history of preeclampsia in their recent
pregnancy. Pre-pregnancy assessments were made during the
follicular phase of the menstrual cycle, on mean cycle day
94+4. Assessments were made following a three-day
sodium/potassium-controlled diet and in a post-absorptive
fasting state. Subjects were 31+4 years (mean + S.D.) and had
mean body mass index (BMI) of 25.6+5.6 kg/m?.

Hemodynamic (HD) data were collected continuously via
a Finipres Pro (FMS, Netherlands) with non-invasive
tonometric assessment. The HD data included a one-minute
baseline period in a rested supine position. Four subjects had
less than 60 seconds of valid baseline data (24, 42, 48, and 54
seconds), but were still included in the 80 total subjects
considered. HD data included beat-by-beat heart rate, systolic
blood pressure, diastolic blood pressure, pulse interval,
cardiac output, mean arterial pressure, stroke volume, left
ventricular ejection time, maximum slope, and total
peripheral resistance. A number of these modalities are
employed for gestational biomarker measurements included
within predictive models for preeclampsia and hypertensive
disorders of pregnancy [6,3]. For each of these continuous
data streams, the following statistical features were computed
using tsfresh [19]: coefficient of variation, mean absolute
changes, mean, min, max, time series complexity (CIDce),
and absolute sum of changes.

Blood was collected from the clinical data visit for analyses
of chemical screening (BC) to document insulin resistance
(HomalR), C-Reactive Protein, soluble amyloid precursor
protein alpha (s-APPa) and s-APP beta, which have been
identified as being increased in women who develop
preeclampsia [20,21]. Four subjects, with normotensive
pregnancy outcomes did not have biochemical testing, but
were included in this study. For any model that used BC
markers, we elected to remove them from the training data
rather than to impute their values. Each subject also had
biophysical (BP) data collected during the visit: intravascular
plasma volume corrected for lean body mass, renal cortical
resistance index (RI), and two measures of aortic-popliteal
pulse wave velocity. Consistent with previous studies
[6,3,22], maternal clinical characteristics including age and
BMI were also tested for applicability within the sample. We
do not assess several features common in previous work, such
as first trimester assessment of uterine hemodynamics or early
pregnancy serum markers of placental function as the focus
of this work is the pre-pregnancy period.

We evaluated performance of three classifiers deployed
with shuffled 2-fold subject-wise cross validation for
predicting preterm PE— gaussian naive Bayes (NB), support
vector machine optimized using stochastic gradient descent
(SVM), and random forest (RF)— chosen largely based on
past work within PE predictive modelling [6,3]. The number
of folds were selected based on the small dataset size. In
future work we aim to collect larger datasets to support more
robust validatory models. We present data from an analysis of

seven modality combinations, each tested on the three
classifiers: BP, BC, HD, HD + BP, HD + BC, BP + BC, and
HD + BC + BP. With each combination, we also consider
maternal BMI and age.

Of these classifiers and modality combinations, we identify
the top models based on each of the performance metrics:
ROC AUC (presented as mean of the test sets), false positive
rate, and true positive rate, consistent with past literature [6].
We then identify the top performing classifier across the
spectrum of our analysis and present the performance metrics
based on the various modality-based feature combinations for
that classifier. We conclude with a breakdown of top-ranking
features from each modality after feature reduction, wherein
candidate features were selected via univariate analysis with
a significance level of .05, mirroring the methodology of
several works reviewed in [6].

III. RESULTS

A. Top Performing Models and Modalities

The top 5 highest performing models based on each of the
performance metrics are presented in Table 1. Based upon
maximization of ROC AUC and true positive rate, the models
built with the SVM had the highest performance. Compared
to statistical surveys for the relevance of maternal screening
guidelines such as those provided by National Institute for
Health and Care Excellence (NICE) and the American
College of Obstetricians and Gynecologists (ACOG), our
models perform on-par with the published detection rates,
which are based largely on individual and family diagnostic
history and maternal health characteristics. Between these
two organizations, they present detection rates of 5-41%, with
a .2-10% false positive rate [9]. Our top models produced 50-
70% detection rates, with 3-16% false positive rate. This
indicates that data collected pre-pregnancy has the potential
to classify risk of preterm preeclampsia with similar or
superior performance to current nationally accepted and
widely used screening procedures.

Best Models for True Positive Rate Performance
Classifier|Modalities Mean ROC AUC |False Positive Rate|True Positive Rate

SVM HD 0.85 0.16 0.70
SVM BP + BC 0.81 0.21 0.70
SVM HD + BP 0.88 0.03 0.60
SVM HD + BC 0.87 015 0.60
NB HD 0.81 i 0.07 0.50

Best Models for False Positive Rate Performance
Classifier [ Modalities Mean ROC AUC |False Positive Rate|True Positive Rate

RF BP 0.83 0.00 0.30
RF HD + BP 0.84 0.01 0.40
NB BP 0.91 0.01 0.40
RF BP + BC 0.86 0.02 0.20
RF HD + BP + BC 0.87 0.02 0.10

Best Models for ROC AUC Performance
Mean ROC AUC |False Positive Rate|True Positive Rate

Classifier [ Modalities

SVM BP 0.92 0.10 0.40
NB BP 0.91 0.01 0.40
SVM HD + BP + BC 0.91 0.08 0.40
SVM HD + BP 0.88 0.03 0.60
RF HD + BP + BC 0.87 0.02 0.10

Table 1. Model Performance by Classifier and Modality Integration
Scenario. Mean ROC AUC across k-fold test groups, as well as overall false
positive rate and true positive rate from prediction across k-fold groups
grouped by classifier and modality scenario. Only the top five highest
performing models based on each of the three metrics are shown.

Model performance (ROC AUCs between .8-.92) is in line
with results from a robust and modern review of prediction
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models for PE based on data collected during pregnancy [6].
The review featured studies with ROC AUCs ranging .65-.98.
Considering our dataset only includes data recorded pre-
pregnancy at varying time windows to conception, the
resulting model performance is promising.

Examining results from the best performing SVM model
more closely, Figure 1 highlights the relative performance of
each modality combination. Across modalities, ROC AUC
varied only slightly between the top 6 modality combinations
(~.8-92), with the two highest performing models
considering only biophysical data with maternal BMI and a
model combining all three modalities with maternal BMI. We
also observe relatively low false positive rates (<~.2) across
all modalities. This result, in combination with the fact that
six out of seven of the SVM model assessments’ true positive
rates are greater than or equal to 0.4, bodes well for a
relatively wide, but accurate net being cast for identifying
preterm preeclamptic risk across models using the SVM
classifier.

BP I I I

0.0 0.2 0.4 0.6 0.8 1.0
Mean ROC AUC

HD + BP + BC
HD + BP | |

0.0 02 0.4 0.6 0.8 1.0

False Positive Rate

BC
BP
HD + BP + BC
HD + BP
HD + BC
HD
BP + BC [ I B
0.0 0.2 0.4 0.6 0.8 1.0
True Positive Rate

Figure 1. Model Performance by Modality Integration Scenario for
only SVM Models. Mean ROC AUC, overall false positive rates, and true
positive rates from test-case prediction across k-fold groups aggregated by
modality scenario.

B. Feature Reduction and Diagnostic-Specific Differences

For each modality, univariate significance testing yielded a
substantial reduction in the number of features (Table 2). Of
the 83 initial features from the HD, BP, BC, and maternal
characteristics data sources, only 24 features remained.
Sixteen of those features were HD variables, 4 were BP, and
3 were BC. Of the maternal characteristics of age and BMI,
only BMI was significant and thus was included in model
testing. Several biomarker trends emerging through these
feature reduction efforts are consistent with international
guidelines on maternal biomarkers for preeclampsia risk.
Specifically, we observed increased systolic and diastolic
blood pressure, and higher average BMI, which provides
additional support for these results [5,9,23].

Permutation analysis of each model suggests that models
including the BP features of aortic-popliteal pulse wave
velocity and renal cortical resistance index consistently
ranked those features as being highly influential in model
prediction. Maternal BMI was also consistently regarded as
influential for model performance across the modality
combinations. For BC and HD features, the top-ranking
biomarkers are more varied but often pertain to mean systolic
pressure and diastolic pressure, mean left ventricular ejection
time, and cardiac output. Further testing must be completed
to establish more robust feature importance rankings within
and across modalities.

Features Remaining After Univariate Analysis {p <=.05)
HomalR BC A 2.537|%¥ 0.944| 0.0005
Max Left Ventricular Ejection Time (ms) HD W 3161084 337.862| 0.0005
Renal Cortical Resistance Index (RI) BP v 0.587| & 0.636| 0.0008
Aortic-Popliteal Pulse Wave Velocity Measure1 |BP & 4482|W 3.797| 0.0008
Mean Diastolic Pressure (mmHg) HD 4 75429|% 66505 0.0013
Mean Left Ventricular Ejection Time (ms) HD ¥ 311617|4 332309 0.0014
Min Diastolic Pressure (mmHg) HD & 71135|"% 63| 0.0021
BMI MC A 29949|W 23301 0.003
s-APPa BC L 0.795|W% 0.52| 0.0031
Max Diastolic Pressure (mmHg) HD &4 7832|"% 70.08| 0.0042
Min Left Ventricular Ejection Time (ms) HD v 307.5/4 328631 0.0042
C-Reactive Protein BC “4 6683157 1695.76| 0.0049
Mean Mean Pressure (mmHg) HD 4 97306|% 86.587| 0.0054
Max Mean Pressure (mmHg) HD 4  100.08|V¥ 90.16| 0.0095
Plasma Volume Corrected for Lean Body Mass BP ¥ 601854 64.79| 0.0113
Min Mean Pressure (mmHg) HD £ 92072 82892 0.0118
Absolute Sum Changes Cardiac Output (I/min) HD “H 1.635|W% 1132| 0.0124
Mean Cardiac Output (I/min) HD “ 6.947|W 6.098| 0.0264
Mean Systolic Pressure (mmHg) HD 4 125827\ 115872 0.0274
Max Cardiac Output (I/min) HD “H 7187|% 6.432| 0.0285
Mean Absolute Change Cardiac Output(l/min) HD &~ 0.023|w 0.017| 0.0297
Aortic-Popliteal Pulse Wave Velocity Measure2 |BP a~ 4203|W 3.719| 0.0309
Absolute Sum Changes Heart Rate (bpm) HD 4 15971|'% 10.717| 0.0389
Max Pulse Interval (ms) HD W 819377|4 957.523| 0.0487

Table 2. Features Remaining After Univariate Significance Analysis.
Each feature with a significant group-level difference between preterm
preeclamptic individuals (P) versus all others in the sample population (N),
evaluated via Mann Whitney U. Modality, Medians, and p-values are
reported for each feature. Arrows indicate the higher and lower median across
the two groups for each feature. Top-ranking biomarkers based on
permutation testing are bolded.

IV. DISCUSSION

In this study we explore machine learning based
approaches for detecting women, pre-pregnancy, who will
develop preterm PE. Data collected from a sample of 80 adult
women pre-pregnancy were used to explore three
classification models and seven combinations of
measurement modalities to identify two best performing
model-modality combinations. These models achieved both
high classification performance (0.88 and .85) and detection
rates (.6 and .7). Results are in line with prior work, but
uniquely considers data from this pre-gestational timepoint
which has significant clinical implications for managing
gestational planning and care.

Notably, the models we consider are binary classifiers for
identifying preterm preeclampsia, which in this study
categorizes individuals in our sample with no preeclampsia
diagnosis alongside individuals with diagnoses of
hypertension and term preeclampsia. Further analysis of
model misclassifications reveals that false positives are highly
saturated by individuals of different preeclamptic diagnoses
rather than no diagnosis, indicating potential biomarker
similarities between preterm preeclampsia and other
preeclamptic phenotypes at the pre-gestational phase.
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Additional data collection is needed to increase sample size
of all the PE subgroups, and additional analysis is needed to
develop high performing multiclass models which are
sensitive to the finer-grained phenotypic differences between
PE diagnoses and can stratify pre-gestational risk
accordingly. Despite these misclassifications, performance of
the predictive models is still impressive, and particularly
considering the use of data sampled from women before they
become pregnant.

Building on prior work which has examined performance of
predictive models trained on features extracted based on
gestational period [5], we have identified new and reoccurring
candidate biomarkers pre-pregnancy which is a relatively
unexplored data collection window. Interestingly, the feature
reduction analysis (Table 2) revealed a number (16) of HD
features that captured important differences between the
preterm PE group and all others. Of the identified HD features,
50% captured the extremes (e.g., maximum left ventricle
ejection time, minimum diastolic pressure) of the underlying
cardiovascular hemodynamics timeseries which mirrors
findings in other populations [24]. Given the importance of
these extremes, it may follow that additional data collection
activities extending beyond a simple supine baseline
collection, such as collection of a subset of hemodynamic
measures via wearables during daily life, may reveal
hemodynamic measures more sensitive to risk for developing
preterm PE and improve model performance further.

Future work recruiting additional subjects pre-pregnancy,
and matched on potentially confounding factors (i.e., gravida),
as well as testing additional modalities, and expanding the
conditions under which data are collected will further our
ability to differentiate (via modelling and biomarker analysis)
preeclamptic risk groups and allowing higher confidence pre-
pregnancy screening models to be developed. Successful
development of these models could open the door to important
advances in maternal care.

V. CONCLUSION

We present results supporting the potential for pre-
gestational prediction of preterm preeclampsia. Machine
learning models trained on various combinations of maternal
cardiovascular hemodynamics, biochemical (via blood test)
biomarkers, and biophysical cardiac measurements yield
results that are in line with the best-performing PE risk
models in prior work but are based on novel pre-gestational
data. Further development of this approach for predicting risk
for developing preterm PE could have significant clinical
impact, namely through increased preparation and proactive
monitoring or interventions for intending child-bearers and
their families.
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