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Abstract

Recent advancements in two-photon calcium imaging have enabled scientists to record
the activity of thousands of neurons with cellular resolution. This scope of data collection is crucial
to understanding the next generation of neuroscience questions, but analyzing these large
recordings requires automated methods for neuron segmentation. Supervised methods for
neuron segmentation achieve state of-the-art-accuracy and speed, but currently require large
amounts of manually generated ground truth training labels. We reduced the required number of
training labels by designing a semi-supervised pipeline. Our pipeline used neural network
ensembling to generate pseudolabels to train a single shallow U-Net. We tested our method on
three publicly available datasets and compared our performance to three widely-used
segmentation methods. Our method outperformed other methods when trained on a small number
of ground truth labels and could achieve state-of-the-art accuracy after training on approximately
a quarter of the number of ground truth labels as supervised methods. When trained on many
ground truth labels, our pipeline attained higher accuracy than that of state-of-the-art methods.
Overall, our work will help researchers accurately process large neural recordings while

minimizing the time and effort needed to generate manual labels.



55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

Significance statement

Modern neuroscience analyzes the activity of hundreds to thousands of neurons from
large optical imaging datasets. One important step in this analysis is neuron segmentation.
Supervised algorithms have performed neuron segmentation with class-leading accuracy and
speed but lag unsupervised algorithms in training time. A large component of training time is the
manual labeling of neurons as training samples; current supervised methods train over many
manual labels to achieve accurate prediction. We developed a semi-supervised neuron
segmentation algorithm, SAND, that retained high accuracy in the few-label regime. SAND
employed neural network ensembling to generate robust pseudolabels and used domain-specific
hyperparameter optimization. SAND was more accurate than existing supervised and

unsupervised algorithms in low and high label regimes of multiple imaging conditions.

Introduction

Studying modern neuroscience questions requires scientists to simultaneously measure
and analyze the coordinated activity of neural ensembles formed from hundreds to thousands of
neurons (Makino et al., 2017; Rumyantsev et al., 2020; Stevenson & Kording, 2011; Stringer et
al.,, 2019; Vyas et al., 2020; Yuste, 2015). Understanding the function of neural ensembles is
technically challenging because distinctive genetic or functional sub-types of neurons within
ensembles spatially overlap and temporally change on timescales ranging from seconds to days
(Driscoll et al., 2017; Pérez-Ortega et al., 2021; Sweis et al., 2021; Ziv et al., 2013) .

Calcium imaging using fluorescent protein sensors meets these technical recording
challenges because it can record neural ensembles with cellular spatial resolution and genetic
specificity over multiple months (Chen et al., 2013; Nakai et al., 2001; Stosiek et al., 2003; Y.
Zhang et al., 2023). Calcium influx follows action potentials and typically increases the brightness

of calcium indicators (Grienberger & Konnerth, 2012). Recent optical setups have successfully



80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

recorded the calcium activity of hundreds of thousands of neurons simultaneously (Demas et al.,
2021). Modern calcium protein sensors have trended toward detection of single action potentials
and linear response over multiple action potentials (Ryan et al., 2023; Y. Zhang et al., 2023).

Cellular or sub-cellular resolution imaging that captures rapid single-spike calcium
transients creates large datasets. Extracting single neuron activity from these large-scale imaging
datasets necessitates a pipeline of automated methods; such algorithms could ‘save time and
minimize human error during analysis (Stevenson & Kording, 2011). Analysis pipelines usually
consist of four steps to predict spiking activity from calcium fluorescence recordings: 1) motion
correction, 2) cell segmentation, 3) fluorescence extraction, and 4) spike inference (Bao et al.,
2022; Giovannucci et al., 2019; Keemink et al., 2018; Pachitariu et al., 2017; Pnevmatikakis &
Giovannucci, 2017; Theis et al., 2016). Automated neuron segmentation in particular has received
substantial attention, but needs improvement.

Both supervised and unsupervised machine learning methods exist for neuron
segmentation (Abbas & Masip, 2022; Bao & Gong, 2023). Supervised methods consist of
convolutional neural networks (CNNs), while unsupervised methods include dictionary learning,
PCA/ICA, and matrix factorization (e.g. CalmAn (Giovannucci et al., 2019) and Suite2p
(Pachitariu et al., 2017)). Supervised methods are typically more accurate than unsupervised
methods (Bao et al., 2021; Soltanian-Zadeh et al., 2019). For example, Shallow U-Net Neuron
Segmentation (SUNS) is a supervised deep learning-based pipeline for neuron segmentation that
achieves state-of-the-art accuracy and speed (Bao et al., 2021).

Supervised methods trade off superior performance for the large effort required to
generate hundreds of ground truth labels for model training and hyperparameter optimization. The
many manual labels can help train algorithms that account for idiosyncratic fluorescence and
noise distributions within each image dataset, but then necessitate labels for each imaging
condition. Generating such labels is time consuming and subject to human error (Giovannucci et

al., 2019; Zhang et al., 2020).
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Semi-supervised learning presents an opportunity to reduce the burdens of manual
labeling. Semi-supervised segmentation leverages limited numbers of ground truth labels and
unlabeled images to train models using two primary approaches: pseudolabeling and consistency
regularization (Ouali et al., 2020). Pseudolabeling increases the size of the training dataset by
accepting high-confidence labels predicted on unlabeled data as ground truth labels that can
further train the model (Lee, 2013; Zou et al., 2020). Consistency regularization trains models by
penalizing dissimilar predictions for similar inputs (Chaitanya et al., 2020; Huang et al., 2022; Wu
et al., 2022; Zhuang et al., 2021). A combination of pseudolabeling and consistency regularization
significantly improved classification accuracy with small numbers of ground truth labels (Sohn et
al., 2020).

An alternative paradigm to semi-supervised learning that improves generalizability is
ensemble learning. Ensemble learning improves predictive accuracy by combining the outputs of
multiple models (Sagi & Rokach, 2018). Averaging multiple independent models reduces
overfitting, increases generalizability, and compensates for high model variability even when
trained on limited data (Dietterich, 2002; Polikar, 2006). Previous work has successfully applied
ensemble learning to neural networks for image classification and segmentation (Muller et al.,
2022; Zheng et al., 2019), with the ensemble outperforming the individual (Krizhevsky et al.,
2017).

In this study, we developed a semi-supervised neuron segmentation pipeline that
maintained state-of-the-art accuracy and prediction speed while limiting the number of manual
training labels. Our approach, Semi-supervised Active Neuron Detection (SAND), used neural
network ensemble learning to predict active neurons in unlabeled frames. These predictions acted
as pseudolabels to augment our training set. We also developed a novel pipeline to choose

algorithm hyperparameters with few ground truth labels.
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Materials and Methods

Our SAND approach consisted of three main steps: 1) pre-processing the entire video to
enhance active neurons, 2) semi-supervised CNN training using small numbers of manually-
labeled frames, and 3) post-processing to segment unique neuron masks from the CNN output
(Figure 1A). The post-processing step used four hyperparameters. Their values were determined
using only the manually-labeled frames.

Pre-processing

Before training, we pre-processed the video to reduce noise and emphasize active
neurons. We first applied pixel-by-pixel temporal filtering to the registered video, which highlighted
fluorescence activity that was similar to calcium response waveforms (Bao et al., 2021). We
convolved each pixel with the time-reversed average fluorescence response of the ground truth
neurons. Selected fluorescence responses had a peak SNR between 5 and 8, and we aligned
the transients by their peaks. We then diminished nonresponsive neurons and enhanced active
neurons by converting the temporally-filtered video into an SNR representation. We calculated
this representation by first computing the pixel-wise median image and quantile-based noise
image over the entire video. We then pixel-wise subtracted the median image from each frame
and pixel-wise divided the result by the noise image.

Model training

The ariginal SUNS training pipeline used a fully-supervised approach and trained a single
shallow U-Net with a combination of dice loss and focal loss (Bao et al., 2021). The CNN predicted
probability maps that underwent a post-processing pipeline to calculate the final neuron masks.
Our SAND approach used neural network ensembling to generate pseudolabels (Figure 1B). We
used an ensemble of three models based on recent work that developed a semi-supervised
pipeline for accurate medical image segmentation that trained an ensemble of the same size (Wu

et al., 2022). We first defined three separate shallow U-Nets. Each U-Net had a unique decoder
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architecture, and one U-Net had the same architecture as SUNS (Figure 1-1). We selected the
three U-Net architectures tested by Bao et al. (2021) that achieved the highest accuracy. We
trained all three U-Nets on frames with manually labeled masks using a weighted sum of dice and
focal loss for 200 epochs (Focal loss:Dice loss = 100:1) (Figure 1-2A). We then passed 1800
unlabeled frames through each trained U-Net within the ensemble and averaged the output
probability maps to serve as pseudolabels. Pseudolabels closely resembled the known temporal
masks (Figure 1-3A-B). We then produced the final prediction U-Net by using the pseudolabels
to continue training the U-Net with the SUNS architecture. We trained this U-Net using binary
cross entropy loss for 25 epochs using the pseudolabels (Figure 1-2A), and then we fine-tuned
the U-Net with a final round of training using dice and focal loss for 200 epochs using the original
labeled frames (Figure 1-2A). Training time increased as the number of labeled training frames
increased but remained under an hour for up to 500 training frames (Figure 1-2B). For all training
steps, we used the Adam optimizer with a 0.001 learning rate, and our training pipeline augmented

the input frames with random flips and rotations to help prevent overfitting.

Post-processing

The output probability maps of our neural network represented the model’'s confidence
that a pixel belonged to an active neuron. Additional post-processing converted the output series
of probability maps into unique neuron masks (Figure 1C). We followed the same post processing
steps described in Bao et al. (Bao et al., 2021). First, we binarized the probability maps with a
probability threshold (p_thresh) to determine active pixels. Higher values of p_thresh retained
only high-confidence predictions. Lower values preserved lower confidence predictions, such as
pixels from neurons with relatively low SNR, but also kept more false positive predictions. After
probability thresholding, we grouped active pixels within a frame into separate components using
connected component labeling. We removed components smaller than a minimum area

(min_area), as these regions were unlikely to be neurons. Next, we merged co-localized
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components across different frames; active components in the same location across multiple
frames likely represented the same neuron. We defined components as colocalized if the centers
of mass (COMs) of two components were within a minimum threshold (COM distance <
centroid_dist) or if the areas of two components were substantially overlapping. Overlapped
neurons met either of two criteria: 1) intersection-over-union (loU) > 0.5, or 2) consume ratio
(consume) > 0.75), with loU and consume defined for two binary masks ms and m. as follows

(Bao et al., 2021):

|m; Nnm,|
IoU = #,
|my Ums,|
|my N'my|
consume = —————,
m;

These temporally merged components represented unique ROIs. Lastly, we removed masks that
were not active for a minimum number of consecutive frames (min_consecutive) typical of calcium
responses.
Hyperparameter optimization

Selection of the optimal postprocessing hyperparameters after CNN training was crucial
for accurately identifying neurons and distinguishing neurons from noise. Hyperparameter
optimization with SUNS required manual labeling of all active neurons in the training video. The
original SUNS pipeline used a grid search to determine the postprocessing parameters that
maximized F; on the training frames (Table 1-1). Recall, precision, and F, are common metrics
to define segmentation accuracy:

# True Positives

Recall = # Ground Truth
Precision = # True Positives
T = Ty Predicted

2
Fy

~ Recall-! + Precision™!
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Evaluating Fi on an entire video is impossible using a video that contains unlabeled neurons,
which could be inaccurately labeled as false positives. Similarly, the nature of the
min_consecutive hyperparameter required all video frames to be used in its estimation. We found
that a grid search failed to find the optimal hyperparameters when trained with a small number of
labels. In particular, we found that a grid search often underestimated the optimal p_thresh value
when trained with limited manually labeled frames (Figure 1-4A).

We developed a novel pipeline, Few Label Hyperparameter Optimization (FLHO), to
optimize postprocessing hyperparameters that used only a fraction of the number of ground truth
labels as SUNS (Figure 1-5). Instead of using a grid search to determine all four
hyperparameters, we directly calculated p_thresh and min_consecutive using estimates from a
small number of ground truth labels.

We first used the ground truth labels to estimate p_thresh (Figure 1-5A). For each labeled
neuron, we identified the frames when that neuron’s peak SNR (pSNR) exceeded the threshold
set by Bao et al. (2021). The trained CNN then calculated probability maps for these active frames.
For each neuron, we found the median probability map value within its mask during its active
frames. We used this distribution of median probability values for each neuron to find two values:
1) the 25" percentile, which was used for intermediate steps, and 2) the median, which was used
as the final p_thresh. We used a lower p_thresh for intermediate steps that used only labeled
frames because our initial small set of labeled training frames likely did not include the frames
with the pSNR or peak probability values for each neuron. Our 25™ percentile value for p_thresh
thresholded probability maps and retained neurons with relatively low SNR on the training frames
(Figure 1-3C). We used these thresholded maps to perform a grid search for values of
centroid_dist and min_area that maximized the Fy score on the labeled frames (Figure 1-5B).

We found that the pipeline was robust across different choice of percentiles with respect
to the ultimate algorithm accuracy (Figure 1-4B). The values of centroid_dist and min_area were

also robust to changes in p_thresh, which may partially explain the robustness in accuracy across
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percentiles (Figure 1-4C). Additionally, the median value of the p_thresh distribution trained on a
small number of labels was very similar to the optimal p_thresh value calculated using all labels
(Figure 1-4A). Therefore, we set our final p_thresh to the median value. We set an upper bound
on this value so that p thresh was not greater than 80% probability. Finally, we calculated
min_consecutive by assessing the distribution of consecutive frames for all neurons (Figure 1-
5C). For this step, we used the probability maps for all frames. Therefore, we set p_thresh to its
final (median) value. We thresholded these probability maps using p_thresh and min_area. We
calculated the maximum number of consecutive frames that the model identified for each neuron.
We observed that the minimum consecutive frame value among all neurons was occasionally an
outlier, so we selected the second smallest value to be min consecutive. However, the
performance of our method was robust across different choices of min_consecutive (Figure 1-
4D). We set an upper bound on min_consecutive so that it did not surpass 8 frames (Figure 1-

5D).

Peer segmentation methods

SUNS: Shallow U-Net Neuron Segmentation (SUNS) is a supervised deep learning pipeline for
neuron segmentation from fluorescence recordings (Bao et al., 2021). SUNS first computed an
SNR representation of imaging videos that emphasized active neurons and de-emphasized
inactive neurons. SUNS then trained a shallow U-Net on 1800 to 2400 of all imaging frames
developed from a set of comprehensively labeled neurons over all imaging movies. Finally, a
multi-step post-processing pipeline identified unique ROIs across all frames. SUNS determined
the hyperparameters for this post-processing pipeline with a grid search that evaluated accuracy
against the ground truth labels. Python code for SUNS is available at

https://github.com/YijunBao/Shallow-UNet-Neuron-Segmentation SUNS.
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CalmAn: CalmAn is a calcium imaging analysis pipeline that uses both unsupervised and
supervised algorithms to identify active neurons (Giovannucci et al., 2019; Pnevmatikakis et al.,
2016). The unsupervised step was a non-negative matrix factorization method that separated
spatially overlapping neurons based on the temporal activity of active neurons; these sparse
decomposed components also included sources that represented background noise and neuropil
activity. Components representing unique regions of interest (ROls) were curated by iteratively
combining components that exceeded a threshold for correlated temporal activity. The supervised
portion was a quality control step to remove nonneuronal components. This step used a peak
signal-to-noise (SNR) threshold, spatial footprint consistency, and a CNN classifier. Python code

for CalmAn is available at https://github.com/flatironinstitute/CalmAn (version 1.6.4).

Suite2p: Suite2p is another widely used pipeline that applies unsupervised algorithms to identify
potential neurons and a supervised quality control step to refine the neurons (Pachitariu et al.,
2017). Suite2p first reduced the dimensionality of the input video using singular value
decomposition. Then, unsupervised nonnegative matrix factorization identified ROls and modeled
decomposed neural activity as the weighted sum of underlying neural activity and neuropil signal.
A supervised classifier then processed these ROIls and separated cells from non-cells based on
temporal and spatial features. Lastly, manual acceptance or rejection of the classifier’s predictions
refined the  final output neurons. Python code for Suite2p is available at

https://github.com/Mouseland/suite2p (version 0.6.16).

Datasets

We tested our pipeline on two-photon videos from three different datasets, all recorded in
mice. These videos covered multiple cortical and subcortical brain regions, were collected with
multiple imaging conditions, and utilized various calcium sensors with different responses and

kinetics (Table 1-2).
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Allen Brain Observatory: The dataset from the Allen Brain Observatory (ABO) consisted of 10
videos recorded from a depth of 275 um and 10 videos recorded from a depth of 175 uym in the
primary visual cortex (V1) (de Vries et al., 2020). The 175 ym set had ~200 neurons per video,
and the 275 um set had ~300 neurons per video. For each depth, we used 10-fold cross validation:
we trained our model and determined the hyperparameters using one video and tested on the

other nine videos. Data is available at http://observatory.brain-map.org/visualcoding.

Neurofinder: We used three sets of videos (01, 02, and 04) from three different labs with different
imaging conditions from the Neurofinder competition (CodeNeuro, 2016). Each video was paired
with another video obtained under the same imaging conditions, making 6 pairs of videos. For
each of the 6 pairs, we trained the model and determined the hyperparameters on one video and
tested on the other video. The 12 videos averaged ~250 neurons per video. Videos are available

at http://Neurofinder.Codeneuro.Orq/.

CalmAn: The CalmAn dataset (Giovannucci et al., 2019) contained four videos (J115, J123, K53,
and YST) that imaged various brain regions. We divided each video into quarters to perform cross
validation, so that the training and test set had the same imaging conditions. For two of the videos
(J115 and K53), the average number of neurons per sub-video was ~200. For these videos, we
trained the model on one sub-video and tested on the remaining three sub-videos. The other two
videos (J123 and YST) had ~40 and ~80 neurons per sub video, respectively. For these videos
containing far fewer neurons, we used leave-one-out cross validation, training on three sub-videos
and testing on the remaining sub-video.
Analysis

We compared three different deep learning segmentation pipelines: 1) SUNS: model
training with supervised learning (SL) and hyperparameter optimization with a full grid search
(GS), 2) SL and our new hyperparameter optimization pipeline (FLHO), and 3) SAND: model
training using a combination of SL and neural ensemble learning, and hyperparameter

optimization with FLHO. We also compared SAND to the widely used matrix factorization methods
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Suite2p and CalmAn. We quantified the quality of the identified masks as the proportion of the
mask’s area divided by the area of the mask’s convex hull. We evaluated model accuracy by
calculating the F; score of each method on the test videos when trained with different numbers of
ground truth neuron masks from the training video. We altered the number of ground truth masks
used in training by randomly sampling different sets of SNR frames (Figure 1-6). We evaluated
F1 across all frames and neurons in the test videos using the same ground truth masks as previous
work (Bao et al., 2021; Soltanian-Zadeh et al., 2019). For CalmAn and Suite2p, we used the F;
values found in (Bao et al., 2021), which previously optimized the hyperparameters for these
pipelines.

We ran multiple analyses to test the performance of SAND. First, we compared SAND to
SUNS, SL + FLHO, CalmAn, and Suite2p when trained on a low number of ground truth neurons.
We also compared the performance of SAND trained on a low number of ground truth neurons to
the asymptotic performance of SUNS. Finally, we compared the asymptotic performance of SAND
to the asymptotic performance of SUNS. We binned the F; scores for each condition by the
number of neurons used in training. We compared algorithms using the Wilcoxon rank-sum test
and by computing the effect size (Cohen’s q).

Code Accessibility

The code described in the paper is available at
https://github.com/caseymbaker/SemiSupervisedNeuronSegmentation2p. The github repository
includes a tutorial for downloading and running SAND as well as the data and code for recreating
figures in this paper. Code was tested on two Windows 10 PCs (AMD Ryzen 9 3900X, 128 GB

RAM, RTX 2080 and Intel Core i7-7700K, 64 GB RAM, Quadro P5000).
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Results

We first evaluated SAND using both ABO datasets (Figure 2). Masks generated by SAND
closely matched the ground truth masks even when trained on only 10 frames (Figure 2A-B).
Masks generated by SUNS trained on few frames, however, included many false positives, and
masks generated by Suite2p and CalmAn were more irregularly shaped and less accurate than
those generated by SAND (Figures 2A-B, 2-1A; Table 2-1, 2-2). SAND significantly
outperformed all other methods when trained on 0-50 ground truth labels (~10 labeled frames)
(Figure 2-2; Table 2-1). In the 275 pm dataset, SUNS achieved a median F; score of 0.81 when
trained on more than 250 labels (Figure 2C; Table 2-1). However, SAND achieved this F; score
when trained on only ~25% the number of labels and came within one standard deviation of this
value when trained on only ~12% the number of labels (median Fi = 0.79, 34 £ 10 neurons).
Additionally, the F; score for SAND when trained on more than 250 neurons was significantly
higher than the SUNS F; score (Table 2-1). In the 175 um dataset (Figure 2D), SUNS achieved
a median F; score of 0.81 when trained on more than 200 neuron labels (Table 2-1). However,
SAND came within one standard deviation of this value when trained on only ~13% the number
of labels (median F; = 0.77, 29 £ 12 neurons). Additionally, the Fy score for SAND when trained
on more than 200 labels was significantly higher than the SUNS F; score when trained on more
than 200 labels (Table 2-1). SAND also significantly outperformed the matrix factorization
methods, CalmAn and Suite2p, over all numbers of ground truth masks (Table 2-1). In particular,
SAND trained on only 10 frames more reliably detected low pSNR neurons than CalmAn and
Suite2p (Figure 2-3). SAND generally improved model precision (Figure 2C-D). Both our new
training method and our new hyperparameter optimization method helped maximize F; in our
pipeline. FLHO without pseudolabel training (SL + FLHO) had a modest effect on accuracy when

trained on fewer ground truth masks (Figure 2C-D). In addition to state-of-the-art accuracy, SAND
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also achieved the state-of-the-art processing speed of SUNS at ~300 frames per second (Figure
2-4).

We next tested SAND on the Neurofinder dataset (Figure 3). Masks generated by SAND
closely matched the ground truth masks even when trained on only 10 frames (Figure 3A-B).
Masks generated by Suite2p and CalmAn were more irregularly shaped and had more false
negative predictions than SAND (Figures 3A-B, Figure 2-1B, Table 2-3). SAND significantly
outperformed SUNS when trained on 0-50 ground truth neuron labels (~10 frames) (Figure 3C,
Figure 3-1; Table 3-1). SUNS achieved a median F; score of 0.58 when trained on 200-250
labels. However, the performance of SAND was not significantly different from this when trained
on only ~14% the number of labels (median Fy = 0.53, 32 + 12 neurons; Table 3-1). Similar to
observations when processing the ABO datasets, our new hyperparameter optimization without
pseudolabel training partially improved accuracy when trained on fewer ground truth masks.
SAND performed as well as or better than CalmAn segmentation over all numbers of ground truth
masks (Table 3-1). Overall, the Neurofinder dataset had the most variability in performance, likely
due to the variety of imaging conditions throughout this dataset.

Finally, we tested SAND on the CalmAn dataset, starting with the K53 and J115 videos
(Figure 4A-B). When processing the K53 dataset, SAND significantly outperformed SUNS,
Suite2p, and CalmAn at all numbers of ground truth neurons (Table 4-1). SAND’s performance
when trained on 0-50 neurons (~10-25 frames) was more accurate than the performance of SUNS
using more than 150 ground truth neurons (~500-1800 frames) (Figure 4A, Figure 4-1; Table 4-
1). When processing the J115 dataset, SAND significantly outperformed CalmAn and Suite2p on
all numbers of ground truth neurons (Figure 4B, Table 4-1). SAND also significantly outperformed
SUNS when trained on 0-50 ground truth neuron labels (~10 frames) (Figure 4-1; Table 4-1). For
both videos, SAND’s predicted masks aligned closely with the ground truth masks, even when
trained on just 10 frames (Figure 4-2). SUNS’s predicted masks included many false positives.

Conversely, CalmAn and Suite2p both failed to detect many ground truth neurons. SAND
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outperformed CalmAn and Suite2p on both the YST and J123 videos on all numbers of ground
truth neurons; however, SAND did not consistently outperform SUNS (Figure 4C-D, Figure 4-3).
On all of the CalmAn videos, SAND predicted masks with more consistent soma shapes than
other methods (Figure 2-1C, Table 2-4).

To understand why SAND only moderately outperformed SUNS when processing the
J123 and YST videos, we compared the quality of these videos to the quality of the other datasets.
The pSNR of a neuron’s fluorescence can predict likeliness of being detected by both supervised
and unsupervised segmentation methods: neurons with higher pSNR were more likely to be
detected (Bao et al., 2021). We calculated the average and standard error of pSNR for all ground
truth neurons in each video (Figure 4-4).

Neurons in J123 and YST had both lower average pSNR and more variable pSNR than
neurons in other videos. This suggests that SAND works best on videos with high pSNR values
and low variability of pSNR across neurons. However, SAND appears to be effective when only
one of these conditions is met. For example, SAND effectively processed video K53, which had
high pSNR but high variability; it also effectively processed the Neurofinder dataset, which had
low variability but low pSNR.

The type of calcium indicator used in each recording impacted the pSNR values. Notably,
the J123 and YST videos used GCaMP5 (Akerboom et al., 2012) and GCaMP3 (Tian et al., 2009),
respectively. These older sensors have very low SNR relative to modern sensors, such as the
GCaMP6 used in the other videos (Table 4-2). Protein sensors of calcium have continued to
develop, so recent sensors in the GCaMP8 series have even higher SNR than that of GCaMP6
(Chenetal., 2013; Ryanet al., 2023; Y. Zhang et al., 2023). It is likely that the high SNR of modern
sensors will translate to high pSNR in two-photon neural recordings. This superior signal fidelity
should more effectively allow our pipeline to accurately process modern neural recordings with

small numbers of ground truth labels.
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Finally, we tested how different imaging conditions (e.g. pSNR variability) affected the
generalizability of SAND (Figure 4-5). We found that SAND generalized well when the training
and test data had similar imaging conditions. For example, SAND trained on the ABO 175 um
dataset and tested on the ABO 275 um dataset performed as well as SAND trained on the ABO
275 um dataset and tested on the ABO 275 um dataset. We then tested ABO-trained SAND on
the K53 dataset, which has higher average pSNR values and higher pSNR variability than the
ABO dataset. We found that ABO-trained SAND still outperformed CalmAn and Suite2p on K53,
but K53-trained SAND achieved the highest accuracy across all numbers of training labels. The
accuracy of SAND and SUNS trained on the ABO 275 pym dataset and tested on the K53 dataset
decreased as the number of ABO labels used to train these models increased. This is likely the
result of increased model specificity when trained on data specific to certain imaging conditions.
Augmenting the training data of SAND to make consistent predictions on a variety of noise levels
would likely improve model generalizability. For example, we could add an additional training step
to SAND to include mutual consistency learning: we could train SAND to predict the same

probability maps after adding different amounts of noise to the same frame.

Discussion

Current methods of neuron segmentation have a trade-off between accuracy and manual
effort: supervised methods have superior accuracy but require substantial manual effort to
generate ground truth labels for each imaging condition (Abbas & Masip, 2022). This work
developed SAND, the first semi-supervised pipeline to segment active neurons from two-photon
calcium recordings with limited ground truth labels. SAND effectively operated in this low label
regime by using neural network ensembling and a new hyperparameter optimization pipeline. The
former process generated a large and robust set of pseudolabels that trained a deep learning
segmentation algorithm, while the latter process determined post-processing hyperparameters

from limited numbers of ground truth labels.
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SAND achieved higher accuracy than the accuracy of fully-supervised methods at multiple
scales of labeling. At the small scale, SAND trained on labels from less than 1% of frames and
25% of all ground truth labels available in a movie was comparably accurate as fully-supervised
methods trained on all labels. When trained on all available ground truth labels in our movies
(more than 200 neurons), SAND attained higher accuracy than that of current methods. SAND
trained on low number of ground truth labels also consistently outperformed matrix factorization
methods.

The high accuracy of SAND trained on low numbers of manual labels could allow
researchers to circumvent the accuracy-effort tradeoff. SAND attained state-of-the-art accuracy
with approximately 25% of the manual labels, but likely even lower fractions of labeling effort.
Previous studies on supervised methods required the manual labeling of all hundreds to
thousands of neurons in a single video to serve as a comprehensive training set (Bao et al., 2021;
Soltanian-Zadeh et al., 2019). We estimate that manual labelers could identify and outline a single
neuron per minute, with diminishing speed as they find fewer neurons when scanning through
more frames of a movie. Therefore, SAND could greatly reduce the labeling time needed to
generate effective labels for training deep learning neuron segmentation algorithms to well under
one hour per experimental condition.

Pseudolabel training and FLHO both played a role in SAND’s high accuracy when trained
on few labels. Pseudolabeling generated a robust training dataset much larger than the manually
labeled training set. This larger training set helped train our shallow U-net to distinguish between
noise and active neurons, reducing the number of false positive calls. On the other hand, FLHO
improved accuracy by improving hyperparameters in post-processing. Selection of
hyperparameters can greatly impact algorithm performance, but many other pipelines, such as
SUNS, CalmAn and Suite2p, employ supervised postprocessing steps that require large numbers

of ground truth labels to accurately tune hyperparameters (Bao et al., 2021; Giovannucci et al.,
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2019; Pachitariu et al., 2017). FLHO helped bypass the accuracy-effort tradeoff in hyperparameter
optimization through direct calculation of certain parameters using the limited ground truth labels.
The relationship between the number of ground truth labels and accuracy of neuron
segmentation displayed three trends. First, in the regime of extremely low numbers of labels, such
as 20-50, SAND outperformed its fully-supervised sibling SUNS. Second, both algorithms
increased F; performance as the number of training labels increased, often reaching performance
asymptotes at high numbers of labels ranging from 150 to 250 labels. This large number of labels
needed to saturate SAND and SUNS highlights the need for large sets of publicly available
manual annotations for a variety of data, such that the field can better understand the conditions
that saturate neural network-based segmentations. Third, precision often lagged recall in both
SUNS and SAND; the increase in precision largely accounted for the increase in Fi. The reason
for this is likely two-fold. First, our ensemble learning method averaged the predictions of three
models to generate pseudolabels that were conservative, and thus reduced training on samples
near the detection threshold that could increase false positives. Second, FLHO was also likely
conservative. It produced hyperparameters, such as p_thresh values that were higher than those
found by grid search on the few-label dataset, which eliminated weakly confident predictions.
SAND reduces the manual labeling effort compared to fully-supervised algorithms, but
inherits the prediction speed of the underlying SUNS shallow U-Net architecture (Figure 2-4).
This speed was an order of magnitude faster than the rate of data collection (Bao et al., 2021).
Fast prediction speed can enable researchers to quickly identify neurons of interest from their
recordings in real time and perform targeted perturbation experiments within the same imaging
session or during imaging. This capability could help researchers study neural ensemble
dynamics in memory and perception that are consistent on the minutes time-scale but change
from one day to the next (Deitch et al., 2021; Driscoll et al., 2017; Pérez-Ortega et al., 2021; Rule
et al., 2020; Ziv et al., 2013). Our ensemble training and hyperparameter optimization processes

also reduces training time compared to SUNS because it trained on only 10 to 25 labeled frames,
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far fewer than the 1800 frames used for SUNS. The above benefits at training and test time could
also arise from partnerships between existing or future neuron segmentation algorithms and our
semi-supervised approaches. Because our ensemble learning and FLHO modify the training
approach without dictating the underlying supervised machine learning architecture, these
training approaches could retain the accuracy or speed of other algorithms while boosting the
other algorithms’ performance in the low label regime.

Similar to all machine learning neuron segmentation algorithms, SAND will likely benefit
from recent developments in protein engineering and video processing. Our work showed that
SAND in particular benefits from higher response and small variance in response. Such
distributional changes have been instantiated by recent generations of protein calcium indicators,
which are both more responsive and more linear (Dana et al., 2019; Y. Zhang et al., 2023).
Additionally, the development of novel unsupervised video denoising pipelines, such as
Deeplnterp (Lecoq et al., 2021) and DeepCAD-RT (Li et al., 2022), may also improve recall by
reducing noise, thereby increasing SNR. Increases in pSNR has correlated with increased recall
(Bao et al., 2021; Soltanian-Zadeh et al., 2019). SNR gains will likely increase precision as well
by reporting even small calcium fluctuations.

Future work could directly improve our implementation of SAND or create alternative
implementations. Direct improvement of SAND could optimize the frame selection or model
selection to maximize accuracy. Our current approach randomly selected the frames used for
labeling. It is possible that systematic selection of these frames could more effectively represent
the range of neuron characteristics (e.g. size and pSNR) with even fewer ground truth labels.
Additionally, our current approach defaulted to the SUNS shallow U-net architecture as the final
neural network to make neuron predictions. Future iterations of SAND could evaluate the
accuracy of all ensemble U-nets when processing the ground truth data and then perform
pseudolabel training on the U-net with the lowest error. Finally, improvements to SAND or SUNS

could also help detect neurons by improving the post-processing classification step. Such
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changes could use dynamic information from a large temporal extent to detect sparsely and
weakly active neurons (Soltanian-Zadeh et al., 2019).

Application of SAND beyond the two-photon datasets in this work are potentially
numerous. Future SAND applications could help process imaging data from one-photon or
volumetric imaging settings, which generally have lower SNR than planar two-photon imaging
(Ahrens et al., 2013; Ji et al., 2016; Jung et al., 2004; Waters, 2020). SAND can stand alone to
process such data, or pair with segmentation algorithms that target specific optical imaging data
types (Yuanlong Zhang et al., 2023). Likewise, future testing could also apply SAND to process
the diverse calcium recordings of many cell types, such as inhibitory neurons or glia (Akerboom
et al., 2013; Mulholland et al., 2021; Semyanov et al., 2020). SAND’s ability to accurately segment
neurons in the few labels regime can potentially help individual labs process imaging data from
distinctive imaging preparations even if a substantial manually labeled training dataset, generated

by a single lab or large community, does not yet exist.
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