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Abstract—We consider the problem of Influence Maximization
(IM), the task of selecting k seed nodes in a social network such
that the expected number of nodes influenced is maximized. We
propose a community-aware divide-and-conquer framework that
involves (i) learning the inherent community structure of the
social network, (ii) generating candidate solutions by solving the
influence maximization problem for each community, and (iii)
selecting the final set of seed nodes using a novel progressive
budgeting scheme.

Our experiments on real-world social networks show that the
proposed framework outperforms the standard methods in terms
of run-time and the heuristic methods in terms of influence.
We also study the effect of the community structure on the
performance of the proposed framework. Our experiments show
that the community structures with higher modularity lead the
proposed framework to perform better in terms of run-time and
influence.

Index Terms—Social networks, influence maximization, viral
marketing, community detection, submodular maximization

I. INTRODUCTION

A. Motivation

THE advent of social media has changed how traditional
marketing strategies were used to be designed [1]. Com-

panies are now preferring to allocate a significant proportion
of their marketing budget to drive sales through large social
media platforms. There are several ways in which social media
can be leveraged for promotional marketing. For instance,
advertising on the most visited social platforms, making social
media pages for branding and spreading the word about the
product, etc. A more sophisticated approach for promotional
marketing would be to use the dynamics of the social network
to identify the right individuals to be incentivized to get the
maximum influence in the entire network.

In the context of social media marketing, Domingos and
Richardson posed the Influence Maximization (IM) problem
[2]: “if we can try to convince a subset of individuals in a
social network to adopt a new product or innovation, and the
goal is to trigger a large cascade of further adoptions, which
set of individuals should we target?” Formally, it is the task
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of selecting k seed nodes in a social network such that the
expected number of influenced nodes in the network (under
some influence propagation model), referred to as the influ-
ence, is maximized. Kempe et al. [3] showed that the problem
of influence maximization is NP-Hard. This problem has been
widely studied in the literature and several approaches for
solving it have been proposed. Some approaches provide near-
optimal solutions but are costly in terms of run time. On the
other hand, some approaches are faster but heuristics, i.e. do
not have approximation guarantees.

Motivated by the idea of addressing this trade-off between
accuracy and run-time, we propose a community-aware divide-
and-conquer framework to provide a time-efficient solution.
The proposed framework outperforms the standard methods
in terms of run-time and the heuristic methods in terms of
influence.

B. Literature Review

In the literature, researchers have tried to solve the Influence
Maximization (IM) problem using several approaches. We
discuss the relevant approaches as follows.

1) Simple heuristics: Degree centrality is perhaps the sim-
plest way to quantify the influence of an individual in the
network [3]. Observing the fact that many of the most central
nodes may be clustered, targeting all of them is not at all nec-
essary, Chen et al. [4] proposed the degree discount heuristic.
These heuristics are simple and time-efficient. However, they
do not have any provable guarantees.

2) Simulation-based methods: The simulation-based meth-
ods assume an underlying model for the diffusion of infor-
mation in the network and select the influential individuals
by evaluating different sets of individuals using costly Monte
Carlo simulations. Under the independent cascade [5], [6] and
linear threshold [7], [8] models of diffusion (discussed in
Section II-B), Kempe et al. [3] have shown that the problem
of influence maximization is NP-Hard. They also proposed
to use an efficient greedy algorithm [2] which due to a
result by Nemhauser et al. [9] gives an

(︁
1− 1

e

)︁
-approximation

of the solution. The asymptotic run-time of this algorithm
is O(nk). Asymptotically, this greedy algorithm is efficient
but empirically the costly Monte Carlo simulations cause
a huge overhead. Leskovec et al. [10] proposed the CELF
algorithm which improves upon the empirical run-time of the
simple greedy algorithm by further exploiting the property
of submodularity. Goyal et al. [11] proposed the CELF++
algorithm which further improved upon the empirical run-time
of the CELF algorithm by even further exploiting the property
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of submodularity to avoiding unnecessary re-computations
of marginal gains incurred by CELF. Note that both CELF
and CELF++ are greedy algorithms with asymptotic run-time
same as the one proposed by Kempe et al. [3], and the run-
time gains are only empirical. Borgs et al. [12] proposed a
greedy algorithm using reverse influence sampling (RIS) – an
approach to efficiently estimate the influence of a seed set.
CELF, CELF++, and [12] have the same worst-case run time
O(nk) and approximation ratio

(︁
1− 1

e

)︁
as the one proposed by

Kempe et al. [3]. Lotf et al. [13] proposed a genetic algorithm-
based heuristic algorithm for dynamic (evolving over time)
networks. This method involves Monte Carlo simulation and
does not have any approximation guarantees. The framework
proposed in this paper may also involve Monte Carlo sim-
ulations. But, the divide-and-conquer strategy allows us to
significantly reduce the run-time. Asymptotic run-time for both
CELF and CELF++ is still O(nk). The method proposed in this
paper may involve Monte Carlo simulations. But, the divide-
and-conquer strategy allows us to significantly reduce the run-
time.

3) Community-based methods: As the proposed method
utilizes the inherent community structure of the network, we
discuss other community-based methods of influence maxi-
mization as follows. Chen et al. [14] proposed two methods
called CDH-KCut and CDH-SHRINK under heat diffusion
model [15]. They further improved their methods and proposed
another method called CIM [16]. Bozorgi et al. [17] proposed
a method called INCIM which works only for the linear
threshold diffusion model. Moreover, the method involves
overlapping community detection contrary to our work where
the communities are non-overlapping. Bozorgi et al. [18] have
also developed a method for competitive influence maximiza-
tion [19] under the competitive linear threshold model. Shang
et al. [20] have proposed a method called CoFIM under the
independent cascade diffusion model and weighted cascade
edge-weight model. Contrary to these methods, our method
does not depend on the choice of the diffusion model. Huang
et al. [21] proposed a data-based method called CTIM which
requires a potential action log and item-topic relevance.

4) Data-based methods: In the presence of some observa-
tional data or action log involving real-world diffusion traces,
the costly Monte Carlo simulations can be avoided completely
by estimating the influence directly from the data. Goyal et
al. [22], instead of using a propagation model, proposed a
novel data-based-method to introduce a model called the credit
distribution model, which directly leverages the propagation
traces from real-world data and learns the flow of influence in
the network. Pen et al. [23] and Deng et al. [24] have studied
variants of the credit distribution model under time constraints
and node features respectively. The proposed method does not
involve any observational data. However, this is a potential
future work.

5) Online methods: More recently, the focus has also been
on solving the problem of influence maximization in an online
manner where the goal is to maximize the cumulative observed
influence of the seed sets chosen at different times while
receiving instantaneous feedback. Approaches differ based on
semi-bandit feedback [25]–[29] and full-bandit feedback [30],

[31]. The proposed method is not an online method. However,
this is a potential future work.

C. Contribution

In Section I-B, we discussed that the CELF++ [11] algo-
rithm is faster compared to the simple greedy algorithm [2],
[3]. But the costly aspect of performing a large number of
diffusions in the entire network is still there. Motivated by
the idea of solving the influence maximization problem in a
time-efficient manner, we propose a community-aware divide-
and-conquer framework that involves (i) learning the inherent
community structure of the social network, (ii) generating
candidate solutions by solving the influence maximization
problem for each community, and (iii) selecting the final set
of individuals to be incentivized from the candidate solutions
using a novel progressive budgeting scheme. Our method may
also use the Monte Carlo simulations but we are restricting
them within each community as compared to the entire net-
work which brings savings in terms of run-time as compared
to the CELF++ algorithm.

Compared to the other community-based methods, the pro-
posed framework is novel in the following ways. It is not
limited to a specific diffusion and/or an edge-weight model.
In Step 1, the set of candidate solutions is generated by all
combinations of solutions from each community. In Step 2, the
final seed selection is performed by solving an integer linear
program (ILP) over candidate solutions subject to a budget
constraint. We propose an efficient progressive budgeting
scheme to efficiently solve the ILP in Step 3. We provide
the proof of correctness of this scheme which leverages
submodularity (defined in Section II) of the influence.

We provide experiments on real-world social networks,
showing that the proposed framework outperforms simulation-
based methods in terms of run-time and heuristic methods
in terms of influence. We study the effect of the community
structure on the performance of the proposed framework. Our
experiments show that the community structures with higher
‘modularity’ (defined in Section II) lead the proposed frame-
work to perform better in terms of run-time and influence.

D. Organization

The rest of the paper is organized as follows. In Section II,
we discuss the preliminaries and formulate the problem. In
Section III, we discuss our methodology. In Section IV,
we discuss the experiments performed for different social
networks. Section V concludes the paper and discusses future
directions.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we discuss some preliminaries and formulate
the problem of interest in this paper. Refer to Table IV (in
Appendix C) for the important notations used throughout the
paper.
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A. Submodularity

Let Ω denote the ground set of n elements and O = 2Ω to
be the set of all subsets of Ω.

A set function f : O → R is said to be submodular if it
satisfies a natural ‘diminishing return’ property: the marginal
gain from adding an element v to a set S ∈ S is at least as
high as the marginal gain from adding the same element v to
a superset T ∈ O of S. Formally, for any sets S, T ∈ O such
that S ⊆ T , f satisfies

f(S ∪ {v})− f(S) ≥ f(T ∪ {v})− f(T ). (1)

A set function f : O → R, is said to be monotone (non-
decreasing) if for any sets S, T ∈ O such that S ⊆ T , f
satisfies

f(S) ≤ f(T ). (2)

B. Diffusion models and social influence

Diffusion models describe how the cascade takes place in a
social network. For the purpose of our research, we focus on
the independent cascade [5], [6] and linear threshold [7], [8]
models of diffusion.

In the independent cascade model, given a graph G =
(V,E), the process starts at time 0 with an initial set of active
nodes S, called the seed set. When a node v ∈ S first becomes
active at time t, it will be given a single chance to activate each
currently inactive neighbor w, it succeeds with a probability
pv,w (independent of the history thus far). If w has multiple
newly activated neighbors, their attempts are sequenced in an
arbitrary order. If v succeeds, then w will become active at
time t + 1; but whether or not v succeeds, it cannot make
any further attempts to activate w in subsequent rounds. The
process runs until no further activation is possible.

In the linear threshold model, given a graph G = (V,E),
a node v is influenced by each neighbor w according to a
weight pv,w such that

∑︁
w∈∂v pv,w ≤ 1, where ∂v represents

the set of neighbors of v. Each node v chooses a threshold θv
uniformly from the interval [0,1]; this represents the weighted
fraction of v’s neighbors that must become active in order for
v to become active. The process starts with a random choice
of thresholds for the nodes, and an initial set of active nodes
S, called the seed set. In step t, all nodes that were active
in step t − 1 remain active, and we activate any node v for
which the total weight of its active neighbors is at least θv .
The process runs until no more activation is possible.

Note that both these processes of diffusion are progressive,
i.e. the nodes can switch from being inactive to active, but do
not switch in the other direction.

At any time t in the cascade, each node v ∈ V can be either
active or inactive. We denote the process as

y
(v)
t =

{︄
1, if node v was active at time t,
0, otherwise.

(3)

The influence σ(S) of a set S is defined as the expected
number of active nodes at the end of the cascade (denoted by
time T ), given that S is the initial set of nodes.

σ(S) = E

[︄∑︂
v∈V

y
(v)
T

⃓⃓⃓⃓
y
(v)
0 = 1 ∀v ∈ S, y

(v)
0 = 0 ∀v /∈ S

]︄
.

(4)

Kempe et al. [3] have shown that under independent cascade
and linear threshold models of diffusion, σ(S) is a monotone
and submodular set function.

C. Problem statement

For a given integer budget k, we are interested in finding a
k−node subset of the set of nodes V , which has the maximum
influence over all possible k−node subsets of V . Formally, the
problem of influence maximization (IM) is defined as

Problem 1.
S∗ ∈ argmax

S⊆V
σ(S),

s.t. |S| ≤ k.
(5)

III. METHODOLOGY

As discussed earlier, the simulation-based methods suffer
from the huge overhead of carrying out diffusions in the
entire network to estimate the influence of different candidate
solutions. Motivated by the idea of solving the influence maxi-
mization problem defined in (5) in a time-efficient manner, we
propose a community-aware divide-and-conquer framework.
The proposed framework tries to lower the cost of simulations
by restricting the diffusions to some sub-networks of the
original network instead of the entire network by partitioning
the given network into several sub-networks. As most real-
world networks exhibit some community structure, such a
partitioning of a network can be obtained by learning its in-
herent community structure. The proposed framework involves
(i) learning the inherent community structure of the social
network, (ii) generating candidate solutions by solving the
influence maximization problem for each community, and (iii)
selecting the final set of individuals to be incentivized from
the candidate solutions using a novel progressive budgeting
scheme.

Algorithm 1 outlines the framework proposed in this paper.
It uses three sub-routines which are explained in the following
subsections.

Algorithm 1 Community-IM

1: Input G, k, com-method, sol-method.
2: {G1, ..., Gc} = Community-Detection(G, com-method)
3: for community i do
4: Si,Σi = Generate-Candidates(Gi, k, sol-method)
5: end for
6: S = {Si : i = 1, ..., c}, Σ = {Σi : i = 1, ..., c}
7: S∗ = Progressive-Budgeting(S,Σ, k)
8: return S∗
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A. Learning the inherent community structure of the social
network

For the given social network G = (V,E), we obtain a hard
partition {V1, ..., Vc} of V using some community detection
method. By hard partitioning, we mean Vi ∩ Vj = ϕ ∀i ̸=
j = 1, ..., c and

⋃︁
i Vi = V . Let |Vi| = ni be the size of ith

community, i = 1, ..., c,
∑︁c

i=1 ni = n. Define Gi = (Vi, Ei)
where Ei is the set of edges from E which belong to the pairs
of nodes in Vi. We call {G1, ..., Gc} a network-partition.

Most community detection methods try to find communities
in the network such that the nodes within a community are
more ‘well-connected’ than the nodes between communities.
Methods usually differ as to how they measure the connected-
ness of the nodes in a network. Common methods are Louvain
[32], label propagation [33], and Girvan-Newman algorithm
[34]. Algorithm 2 outlines the community detection step.

Algorithm 2 Community-Detection

1: Input G, com-method.
2: Use com-method to partition G into {G1, ..., Gc}
3: return {G1, ..., Gc}

1) Quality of a network-partition: The quality of a
network-partition can be measured using modularity score
[35], [36]. The modularity score of a network-partition is
defined as the fraction of the edges that fall within the given
groups minus the expected fraction if edges were distributed
at random. For a network-partition {G1, ..., Gc}, modularity
[36] is defined as

Q =

c∑︂
i=1

[︄
Li

|E|
−
(︃

δi
|E|

)︃2
]︄

where Li is number of edges between the pairs of nodes in
Gi and δi is the sum of degrees of nodes in Gi.

The modularity score measures how well a community
detection algorithm partitions a network. A higher value of
modularity corresponds to a network-partition with higher
connectedness within each community.

2) Community detection methods: We discuss some com-
monly used community detection methods. The Louvain
method [32] first obtains small communities by optimizing
modularity locally on all of the nodes. Then each small
community is treated as a single node and the previous step
is repeated. Label propagation [33] starts with a (generally
small) random subset of the nodes with community labels.
The algorithm then iteratively assigns labels to previously un-
labeled nodes. The Girvan-Newman method [34] method uses
a measure known as ‘betweenness.’ Define the betweenness
of an edge [34] as the sum of the ‘weights’ of the shortest
paths between any pair of nodes that run along it. If there
are d different shortest paths between any two nodes then the
weight of each path is set as 1/d. The Girvan-Newman method
[34] method involves the following steps.

1) First, calculate the betweenness of all existing edges in
the network.

2) Next, remove the edge(s) with the highest betweenness.

3) Finally, recalculate the betweenness of all edges affected
by the removal at the previous step.

4) Repeat the previous two steps until no edge remains.

B. Generating candidate solutions by solving the influence
maximization problem for each community

For every community, we find the subgraph of the G by
keeping only the nodes in that community and all edges
incident on them, then find ‘best’ seed sets of sizes up to
k for that subgraph using a standard method. Let Si,j be the
best seed set of size j (j = 1, ..., k) from community i, and
σi(Si,j) be its influence within community i (i = 1, ..., c).

Solving the influence maximization problem separately for
different communities instead of the entire network brings
gains in empirical run-time as the lengths of the diffusions
get much shorter within communities as compared to the
entire network. Algorithm 3 outlines the standard influence
maximization step.

Algorithm 3 Generate-Candidates

1: Input Gi, k, sol-method.
2: Use sol-method to solve IM for Gi up to budget k
3: return Si = {Si,j : j = 1, ..., k}, Σi = {σi(Si,j) : j =

1, ..., k}

C. Selecting the final seed set

We select as many sets from {Si,j : i = 1, ..., c; j = 1, ..., k}
with no repeating elements across them such that the sum of
their influences is maximized and their union has exactly k
elements. Use that union as a solution to (5). Formally, we
are solving the following integer linear program (ILP).

xi,j ∈ argmax
xi,j

c∑︂
i=1

k∑︂
j=1

xi,jσi(Si,j),

s.t.
c∑︂

i=1

k∑︂
j=1

xi,j |Si,j | = k, (budget constraint),

k∑︂
j=1

xi,j = 1 ∀i, (no repetition constraints),

xi,j ∈ {0, 1}, ∀i, j, (integer constraints).

(6)

After solving the above, the final solution is given as

S∗ =
⋃︂

i=1,...c;j=1,...,k
xi,j=1

Si,j (7)

In general, solving an ILP is an NP-Complete problem [37].
However, the submodularity of the influence allows us to solve
the ILP in (6) in polynomial time.

1) Progressive Budgeting: By the definition of submodular-
ity, we know that the marginal gains in influence due to every
additional node in the seed set are diminishing. Hence, we can
progressively allocate the budget across the sets in S in the
sense that once a set is allocated a budget, it remains there
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Algorithm 4 Progressive-Budgeting

1: Input S,Σ, k.
2: {Si : i = 1, ..., c} = S, {Σi : i = 1, ..., c} = Σ
3: {Si,j : j = 1, ..., k} = Si, {σi(Si,j) : j = 1, ..., k} = Σi

4: δi = σi(Si,1) ∀i ▷ Initialize the marginal gains.
5: bi = 0 ∀i ▷ Initialize the budget allocations.
6: S∗ = ϕ ▷ Initialize the final set.
7: for l = 1, ..., k do
8: m = argmaxi δi ▷ Index of the community with

maximum marginal gain.
9: bm = bm + 1 ▷ Update the budget allocated to

community m.
10: S∗ = S∗ ∪ Sm,bm ▷ Add the corresponding set to the

final set.
11: δm = σi(Sm,bm+1)− σi(Sm,bm) ▷ Update the

marginal gains.
12: end for
13: return S∗ ▷ Final seed set.

in the list of all finally selected sets. Progressive-Budgeting
sub-routine used in Algorithm 1 is outlined in Algorithm 4.

Theorem 1. Progressive budgeting solves the ILP in (6).

Proof. The proof follows due to the submodularity of the
influence. The ILP in (6) is trying to select unique Si,j’s such
that the sum of the cardinalities of all of them is equal to
k and the sum of their influences is maximized. We know
that Si = {Si,j : j = 1, ..., k} is the greedy solution to
the problem of influence maximization within community i.
Hence, due to submodularity, we have σi(Si,1) − σi(Si,0) ≥
... ≥ σi(Si,k) − σi(Si,k−1) ∀i. Leveraging this property, the
progressive budgeting algorithm is iteratively building up the
set of unique Si,j’s by comparing marginal improvements
in influence between different choices. Hence, progressive
budgeting indeed solves the ILP in (6).

An illustrative example of progressive budgeting is provided
in Appendix B.

D. Computational complexity analysis

We now analyze the computational complexity of the pro-
posed framework (Algorithm 1). The run-time of the proposed
framework is the sum of the times taken at the three steps. It
depends on the choice of community detection method as well
as the solution method to solve IM for each community. We
analyze the run-time involved at each step as follows.

1) Learning the inherent community structure of the social
network: The worst-case run-times of different community
detection algorithms considered in this paper are given as
follows: the Louvain method is O(n log n) [32], label propa-
gation is O(n+ |E|) [33], and the Girvan-Newman method is
O(n|E|2) [34].

2) Generating candidate solutions by solving the influence
maximization problem for each community: If we use CELF++
to solve IM for c different communities then we are solving
c problems of finding a k-node subset for each community
from ni nodes, i = 1, . . . , c. For the ith community, CELF++

iteratively builds the k-node subset as follows. First, find the
best individual node by evaluating all ni subsets of cardinality
one. Next, find the node with the highest marginal influence in
the presence of the best individual node by evaluating (up to)
all ni−1 subsets of the previously selected best individual and
an additional node. CELF++ then keeps adding nodes to the
previous set in the same manner until the size of the current
set is k. The number of k-node subsets evaluated at the kth
step is ni − (k − 1) in the worst case. Thus, the number of
subsets evaluated in the worst case is

c∑︂
i=1

[ni + (ni − 1) + · · ·+ (ni − (k − 1))]

= nk − ck(k − 1)

2
. (8)

On the contrary, if we use CELF++ for the entire network
then the total number of subsets evaluated in the worst case is

n+ (n− 1) + · · ·+ (n− (k − 1)) = nk − k(k − 1)

2
. (9)

By comparing (8) and (9), we observe that the Generate-
Candidates step of the proposed framework achieves a lower
run-time compared to using the sol-method for the entire
network by an additive factor of (c − 1)k(k − 1)/2. Further-
more, as ni ≤ n ∀i = 1, . . . , c, the length of the diffusion
while evaluating a subset of the nodes using Monte Carlo
simulations within any community will always be smaller as
compared to doing the same in the entire network. This further
reduces the run-time of the Generate-Candidates step.

3) Final seed set selection using progressive budgeting:
The progressive budgeting method of final seed set selection
solves ‘finding the maximum of c elements’ k times. Hence,
the worst-case run-time of progressive budgeting is O(ck).

In practice, solving IM for each community (using a
simulation-based sol-method) is the step that takes the
most amount of time due to the costly Monte Carlo simu-
lations. In that sense, the worst-case run-time of the proposed
framework (with a simulation-based sol-method) to solve
IM for each community is lower compared to the same for
solving IM for the original network using the same simulation-
based sol-method.

IV. EXPERIMENTS

We evaluated the performance of the proposed framework
using real-world social networks. We discuss the network
data used for our experiments, list the algorithms chosen for
comparison, provide experimental details, present results, and
discussion.

A. Network data

We used 4 real-world social networks for our experiments.
The data is available at Stanford Large Network Dataset
Collection [38]. The number of nodes, number of edges, and
type of each network are provided in Table I.

The Facebook network is a dataset consisting of ‘circles’ (or
‘friends lists’) from Facebook [39]. Bitcoin network is a who-
trusts-whom network of people who trade using Bitcoin on

https://snap.stanford.edu/data/
https://snap.stanford.edu/data/
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TABLE I: Basic information of the networks used.

Network Nodes Edges Type
Facebook [39] 4,039 88,234 Undirected

Bitcoin [40], [41] 5,881 35,592 Directed
Wikipedia [42], [43] 7,115 103,689 Directed

Epinions [44] 75,879 508,837 Directed

a platform called Bitcoin OTC [40], [41]. Wikipedia network
is a who-votes-on-whom network to become an administrator
[42], [43]. Epinions is a who-trust-whom online social network
of a general consumer review platform called Epinions [44].

For undirected networks, each edge was replaced by two
directed edges.

For edge-weights, two models are used which are weighted
cascade model [3] where for each node v ∈ V , the weight of
each edge entering v was set to 1/in-degree(v) and trivalency
model [22] where each edge-weight was drawn uniformly at
random from a small set of constants {0.1, 0.01, 0.001}.
However, for the linear threshold model of diffusion, only
the weighted cascade model is used for edge-weights as the
trivalency model does not necessarily maintain the sum of
weights of all edges incident on a node to be less than or
equal to 1.

B. Algorithms

We compared the proposed community-aware framework
(Community-IM) with the following algorithms.

1) CELF++ [11], a simulation-based greedy algorithm.
2) CoFIM [20], a community-aware heuristic algorithm.
3) DSGA [13], an genetic algorithm-based method.
4) Degree-Discount [4], a heuristic algorithm.
5) Out-Degree, a heuristic algorithm where for budget k,

top-k out-degree nodes are selected.
We chose the above algorithms due to the following reasons.
• CELF++ is the state-of-the-art simulation-based algo-

rithm.
• CoFIM is a community-aware heuristic with theoretic

guarantees under the independent cascade diffusion
model with the weighted-cascade [3] edge-weight model.

• DSGA [13] is a recent genetic algorithm-based method
that uses Monte Carlo simulations.

• Degree-Discount and Out-Degree are some of the sim-
plest yet powerful heuristics.

INCIM algorithm [17] discussed in the literature review
subsection under Section I could have been a community-
aware baseline for our comparisons under the linear threshold
diffusion model but it uses overlapping community structure
contrary to our method.

Note that the CoFIM algorithm was developed only for
the independent cascade diffusion model with the weighted-
cascade edge-weight model. However, for empirical compar-
isons, we have implemented it for other choices of diffusion
models and edge-weight models as well.

As part of Community-IM, we used the Louvain method
[32] as com-method, and CELF++ [11] as sol-method
for Community-Detection and Generate-Candidates respec-
tively.

We also studied the effect of the inherent community struc-
ture on the performance of the proposed framework. For this,
we use the community structures learned using the community
detection algorithms discussed in Section III-A2.

For brevity, we only consider the Facebook network under
the weighted cascade edge-weight model to study the effect
of the learned community structure of the social network.

C. Experimental details

We used the budget k = 1, 5, 10, . . . , 100 for comparing
different algorithms. However, for DSGA [13], we only used
the budget k = 1, 20, 40, . . . , 100 due to its high run-time. The
influence of any seed set was estimated as the average number
of active nodes from 1, 000 different Monte Carlo simulations
of the underlying diffusion starting with the same seed set.
For any network, if a community detection method returns
some communities whose individual sizes are below 1% of
the number of nodes in the network then we merged them all
into a single community. We do this to avoid having too many
small communities.

The experiments are carried out on a computer with 2.6 GHz
24-core Intel Xeon Gold Sky Lake processors and 96 GB of
memory. We used Python for our implementation. The source
codes of CELF++ and CoFIM provided by their authors are
written in C++.

D. Results

For different networks under different diffusion models and
edge-weight models,

• Figure 1 - 3 show the influences of chosen seed sets using
different algorithms for different values of k.

• Table II shows the influence of the seed set of size
100 chosen using CELF++, Community-IM, CoFIM, and
DSGA.

• Table III shows the empirical run-times of CELF++,
Community-IM, CoFIM, and DSGA for k = 100.

Further, the results for the Facebook network under different
diffusion models and the weighted cascade edge-weight model
using different community detection methods are provided in
Appendix C.

E. Discussion

Figure 1(a) shows that for the Facebook network under the
independent cascade diffusion model and the weighted cascade
edge-weight model, for budget k up to 60, the influence for
Community-IM is marginally lower than the influence for
CELF++. However, for budget k larger than 60, the influence
for Community-IM is the same or higher than the influence for
CELF++. Furthermore, for all values of budget k, the influence
for Community-IM is much higher compared to the influence
for all the other methods except CELF++. Figure 1(d) provides
a similar insight for the Epinions network under the indepen-
dent cascade diffusion model and the weighted cascade edge-
weight model. Figure 2(a) provides a similar insight for the
Facebook network under the independent cascade diffusion
model and the trivalency edge-weight model.
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Fig. 1: Influence vs. k for different networks under independent cascade diffusion model and weighted cascade edge-weight
model.

TABLE II: Comparison of influences for budget k = 100.

Diffusion
model

Edge-weight
model

Network CELF++ Community-IM CoFIM DSGA Degree Degree-Discount

Independent
cascade

Weighted
cascade

Facebook 1,378.39 1,406.02 1,236.78 846.40 1,091.66 1,289.28
Bitcoin 3,493.23 3,692.89 3,678.58 1,643.27 3,596.40 3,625.06
Wikipedia 876.91 873.04 528.36 212.60 866.06 878.36
Epinions 14,042.60 14,706.07 12,314.97 2,439.24 13,457.51 13,771.25

Trivalency

Facebook 1,977.27 1,977.42 1,809.12 1,304.82 1,765.09 1,801.25
Bitcoin 550.90 562.27 550.69 487.38 531.74 548.24
Wikipedia 1,235.22 1,228.07 888.18 847.63 1,152.01 1,183.11

Linear
threshold Weighted

cascade

Facebook 1,946.41 2,231.34 1,936.23 969.04 1,835.35 1,999.80
Bitcoin 4,505.65 4,829.30 4,821.53 1,742.90 4,740.46 4,793.51
Wikipedia 1,138.64 1,117.36 602.26 246.26 1,118.68 1,162.21

Figure 1(b) shows that for the Bitcoin network under the
independent cascade diffusion model and weighted cascade
edge-weight model, for budget k up to 60, the influences
for all methods are very close to each other except that the
influence for DSGA and Degree-Discount are lower than the
rest. However, for budget k larger than 60, the influence for
Community-IM tends to surpass the influence of all other
methods except the influence for CoFIM.

Figure 1(c) shows that for the Wikipedia network, for
all values of budget k, the influence for Community-IM is
marginally lower than that for CELF++, and the influence for
Community-IM is higher compared to that for CoFIM, DSGA,
Degree-Discount and Degree under the independent cascade

diffusion model and the trivalency edge-weight model.

Figure 2(b) shows that for the Bitcoin network under the
independent cascade diffusion model and the trivalency edge-
weight model, for budget k up to 30, the influence for
Community-IM is marginally lower than that for CELF++.
However, for budget k larger than 30, the influence for
Community-IM is higher than that for CELF++. Furthermore,
the influence for Community-IM is higher compared to that
for CoFIM, DSGA, Degree-Discount, and Degree.

Figure 2(c) shows that for the Wikipedia network under the
independent cascade diffusion model and the trivalency edge-
weight model, for all values of budget k, the influence for
Community-IM is marginally lower than that for CELF++.
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Fig. 2: Influence vs. budget k for different networks under independent cascade diffusion model and trivalency edge-weight
model.
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Fig. 3: Influence vs. budget k for different networks under linear threshold diffusion model and weighted cascade edge-weight
model.

TABLE III: Comparison of empirical run-times (in seconds) for budget k = 100.

Diffusion
model

Edge-weight
model

Network CELF++ Community-IM CoFIM DSGA

Independent
cascade

Weighted
cascade

Facebook 17,359 3,782 547 9,1267
Bitcoin 10,859 850 35 20,825
Wikipedia 2,660 3,477 213 18,447
Epinions 250,241 16,465 7,397 267,796

Trivalency
Facebook 74,684 7,195 567 312,948
Bitcoin 7,818 576 35 34,453
Wikipedia 35,227 3,771 211 77,241

Linear
threshold

Weighted
cascade

Facebook 46,771 8,545 554 65,391
Bitcoin 45,747 1,077 36 62,184
Wikipedia 5,940 4,628 224 23,307

However, the gap between the influence for Community-IM
and that for CELF++ decreases as the budget k increases. Fur-
thermore, the influence for Community-IM is higher compared
to that for CoFIM, DSGA, Degree-Discount, and Degree. Fig-
ure 3(c) provides a similar insight for the Wikipedia network
under the linear threshold diffusion model and the weighted
cascade edge-weight model.

Figure 3(a) shows that for the Facebook network un-
der linear threshold diffusion model and weighted cascade
edge-weight model, for budget k up 15, the influence for
Community-IM is marginally lower than that for CELF++.

However, for budget k larger than 15, the influence for
Community-IM is higher than that for CELF++. Furthermore,
the influence for Community-IM is higher compared to that
for CoFIM, DSGA, Degree-Discount, and Degree.

Figure 3(b) shows that for the Bitcoin network under linear
threshold diffusion model and weighted cascade edge-weight
model, for budget k up 40, the influence for Community-IM
is marginally lower than that for CELF++. However, for
budget k larger than 40, the influence for Community-IM
is higher than that for CELF++. Furthermore, note that for
budget k ≥ 30, the influence for CoFIM, Degree-Discount
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and Degree are higher than that for CELF++, but at the same
time Community-IM performs better or as good as DSGA,
Degree-Discount and Degree.

Moreover, Table II shows that for each network, the influ-
ence of the chosen seed set of size 100 using Community-IM
is very close or even better to the same for CELF++ under
different diffusion models and edge-weight models.

Furthermore, Table III shows that the proposed community-
aware framework brings huge savings in terms of empirical
run-time as compared to the CELF++ algorithm under all
choices of diffusion models and edge-weight models. As noted
Community-IM is much faster than CELF++, and DSGA
across different networks, diffusion models, and edge-weight
models.

From Table III, we also note that the gain in run-time
varies across diffusion models and edge-weight models. The
highest gains are for the independent cascade model with the
trivalency edge-weight model and the least gains are for the
independent cascade model with the weighted cascade edge-
weight model.

Table VII (in Appendix C) shows that for the Facebook
network, the influence of the chosen seed set of size 50
using Community-IM is approximately equal to the same
for CELF++ for different choices of community detection
methods under different diffusion models and weighted cas-
cade edge-weight model. Moreover, Tables VII and VIII (in
Appendix C) show that the performance of Community-IM
compared to CELF++ in terms of influence and run-time
improves as the modularity of the partition and the number
of communities increase. From Table VII and Table VIII (in
Appendix C), we also note that the Louvain method is the
best choice of community detection method and the Girwan-
Newman method performs the worst. The Louvain method
partitions the graph into 18 communities with the largest
community having 523 nodes which are approximately 10%
of the size of the entire network. Hence, Community-IM does
not come across any giant component and converges faster.
Contrary to this, the Girwan-Newman algorithm partitions the
network into just two communities with the largest community
having 3,833 nodes which are very close to the size of the
entire network, and hence the Community-IM method takes a
lot of time in converging.

We also observe that for all values of budget k, the influence
for Community-IM with the Girwan-Newman algorithm is
very close to CELF++ which can be explained by the fact that
the Girwan-Newman algorithm divides the entire network into
just two communities with one community being a giant con-
nected component of the entire network. On the other hand, for
all values of budget k the influences for Community-IM with
Louvain algorithm and Community-IM with Label propagation
algorithm are very close to each other which can be explained
by the fact that the modularity scores of the partitions obtained
by these two methods are quite close.

Overall, we observe that the proposed framework brings
savings in terms of run-time at the cost of minimal loss in
terms of influence compared to the state-of-the-art simulation-
based algorithm, CELF++ and improves in terms of influence
compared to the rest of the algorithms.

V. CONCLUSION AND FUTURE WORK

For solving the problem of influence maximization on social
networks, we leveraged the inherent community structure of a
network and proposed a novel community-aware framework
for maximizing the spread of influence through a social
network in a fast manner. Based on our experiments, we
conclude that the proposed framework outperforms simulation-
based algorithms in terms of empirical run-time and heuristic
algorithms in terms of influence. As the proposed method
leverages the inherent community structure of the network,
we also studied the effect of the community structure on the
performance of our framework. Based on our experiments, we
conclude that the community structures with higher modularity
lead the proposed framework to perform better in terms of
run-time and influence. Among the methods considered in this
paper, we find the Louvain algorithm [32] to be the best for
the problem of influence maximization.

We point out two limitations of our method. First, our
method requires the communities learned during step (i) to
be non-overlapping. However, in general, a real-world social
network may have overlapping communities. Second, our
method does not explicitly account for the inter-community
influence while generating the candidate solutions during step
(ii). In the future, we want to extend our method so that
it can handle overlapping community structures and also
explicitly accounts for the inter-community influence. Other
future directions are to extend the proposed community-aware
framework to competitive influence maximization [45], data-
based influence maximization [22], and full-bandit online
influence maximization [30], [31].
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APPENDIX A
TABLE OF NOTATIONS

TABLE IV: Table of notations.

Symbol Explanation
Ω Ground set.
O Set of all subsets of Ω.
G = (V,E) Directed graph.
V = (v1, . . . , vn) Set of vertices or nodes.
n Size of V .
E = (e1, . . . , en) Set of directed edges where ei, i = 1, . . . , n are ordered pairs of nodes.
pv,w Weight of the edge v → w.
∂v Set of neighbors of node v.
y
(v)
t Activation/state of node v at time t.

k Budget.
σ(S) Influence of a set S of nodes.
c Number of communities.
com-method Community detection method.
sol-method Influence maximization method.
{G1, . . . Gc} A partition of G with c sub-graphs that are G1, . . . Gc.
{V1, . . . Vc} Set of sets of vertices for all sub-graphs in the partition {G1, . . . Gc}.
ni Size of Vi, i = 1, ..., c.
{E1, . . . Ec} Set of sets of edges for all sub-graphs in the partition {G1, . . . Gc}.
Q Modularity of a network-partition.
Si,j Best seed set of size j (j = 1, ..., k) from community i (i = 1, ..., c).
σi(Si,j) Influence of Si,j within community i (i = 1, ..., c).
Si Set of all candidate solutions from community i = {Si,j : j = 1, ..., k}.
Σi Influences of all candidate solutions from community i = {σi(Si,j) : j = 1, ..., k}.
S Set of sets of all candidate solutions from all communities = {Si : i = 1, ..., c}.
Σ Set of sets of influences of all candidate solutions from all communities = {Σi : i = 1, ..., c}.
S∗ Final solution of our framework.

APPENDIX B
AN ILLUSTRATIVE EXAMPLE OF PROGRESSIVE BUDGETING

In this section, we provide an illustrative example of progressive budgeting. After executing the Community-Detection and
the Generate-Candidates steps of the proposed framework, we obtain the following output.

Si,j = Candidate set of size j from community i,

σi,j := σi(Si,j) = Influence of Si,j within community i,

i = 1, . . . , j = 1, . . . , k.

Let the budget, k = 4. No. of communities, c = 5. The influences of different candidate sets within different communities are
given in Table V(a). For every i = 1, . . . , c; j = 1, . . . , k, we calculate the marginal influences as mi,j := σi(Si,j)−σi(Si,j−1),
where σi(Si,0) = 0,∀i. The marginal influences for the influences given in Table V(a) are provided in Table V(b).

Influence
i σi,1 σi,2 σi,3 σi,4

C
om

m
un

ity 1 8 14 18 21
2 5 10 14 15
3 9 14 16 17
4 7 12 16 18
5 5 9 11 11

(a) Influences of candidate sets after step (ii).

Marginal Influence
i mi,1 mi,2 mi,3 mi,4

C
om

m
un

ity 1 8 6 4 3
2 5 5 4 1
3 9 5 2 1
4 7 5 4 2
5 5 4 2 0

(b) Marginal Influences of candidate sets after step (ii).

TABLE V: An example input for progressive budgeting.

The progressive budgeting scheme for the example in Table V is explained in Table VI. At any iteration, the circled cells ( ·⃝)
are the ones whose maximum is to be obtained. An asterisk (∗) is placed before the maximum value at the current iteration.
The superscript(s) on any community label represents the nodes selected from that community (ordered based on the ordering
in the corresponding candidate set obtained in step (ii)).

For the example we considered, the final seed set is {11,2, 31, 41} which is equivalent to S1,2 ∪ S3,1 ∪ S4,1.
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Marginal Influence
i mi,1 mi,2 mi,3 mi,4

C
om

m
un

ity 1 8⃝ 6 4 3
2 5⃝ 5 4 1
31 ∗ 9⃝ 5 2 1
4 7⃝ 5 4 2
5 5⃝ 4 2 0

(a) Iteration 1: Allocating the first unit.

Marginal Influence
i mi,1 mi,2 mi,3 mi,4

C
om

m
un

ity 11 ∗ 8⃝ 6 4 3
2 5⃝ 5 4 1
31 9 5⃝ 2 1
4 7⃝ 5 4 2
5 5⃝ 4 2 0

(b) Iteration 2: Allocating the second unit.

Marginal Influence
i mi,1 mi,2 mi,3 mi,4

C
om

m
un

ity 11 8 6⃝ 4 3
2 5⃝ 5 4 1
31 9 5⃝ 2 1
41 ∗ 7⃝ 5 4 2
5 5⃝ 4 2 0

(c) Iteration 3: Allocating the third unit.

Marginal Influence
i mi,1 mi,2 mi,3 mi,4

C
om

m
un

ity 11,2 8 ∗ 6⃝ 4 3
2 5⃝ 5 4 1
31 9 5⃝ 2 1
41 7 5⃝ 4 2
5 5⃝ 4 2 0

(d) Iteration 4: Allocating the fourth unit.

TABLE VI: An illustration of progressive budgeting.

APPENDIX C
EFFECT OF THE COMMUNITY STRUCTURE ON THE PERFORMANCE OF COMMUNITY-IM

For the Facebook network under different diffusion models and weighted cascade edge-weight models using different
community detection methods,

• Figure 4 shows the influences of chosen seed sets using different algorithms for different values of k.
• Table VII shows the modularity score, no. of communities, the influence of the seed set of size 50 chosen using CELF++

and Community-IM, and their ratios.
• Table VIII shows the modularity score, no. of communities, the empirical run-times of CELF++ and Community-IM for

k = 50. The run-times for Degree and Degree-Discounts in all cases were just a few seconds.
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(a) Independent cascade model
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(b) Linear threshold model

Fig. 4: influence vs. k for the Facebook network under different diffusion models and weighted cascade edge-weight model.

TABLE VII: Comparison of influences for k = 50 for the Facebook network under weighted cascade edge-weight model for
different community detection methods.

Diffusion
model

Community detection
method

No. of communities Modularity score CELF++ Community-IM

Independent
cascade

Louvain 18 0.8678 1203.42 1205.12
Label propagation 11 0.7368 1203.42 1188.16
Girvan-Newman 2 0.0439 1203.42 1138.93

Linear
threshold

Louvain 18 0.8304 1946.41 2231.34
Label propagation 11 0.7368 1946.41 2212.57
Girvan-Newman 2 0.0439 1946.41 2019.08

Table VII shows that for the Facebook network, the influence of the chosen seed set of size 50 using Community-IM
is approximately equal to the same for CELF++ for different choices of community detection methods under different
diffusion models and weighted cascade edge-weight model. Moreover, Table VII and Table VIII show that the performance
of Community-IM compared to CELF++ in terms of influence and run-time improves as the modularity of the partition and
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TABLE VIII: Comparison of run-times (in seconds) for k = 50 for the Facebook network under weighted cascade edge-weight
model for different community detection methods.

Diffusion
model

Community detection
method

No. of communities Modularity score CELF++ Community-IM

Independent
cascade

Louvain 18 0.8678 14077 3069
Label propagation 11 0.7368 14077 4068
Girvan-Newman 2 0.0439 14077 14221

Linear
threshold

Louvain 18 0.8304 38968 7224
Label propagation 11 0.7368 38968 12961
Girvan-Newman 2 0.0439 38968 34606

the number of communities increase. From Table VII and Table VIII, we also note that the Louvain method is the best choice
of community detection method and the Girwan-Newman method performs the worst. The Louvain method partitions the
graph into 18 communities with the largest community having 523 nodes which are approximately 10% of the size of the
entire network. Hence, Community-IM does not come across any giant component and finishes faster. Contrary to this, the
Girwan-Newman algorithm partitions the network into just two communities with the largest community having 3,833 nodes
which are very close to the size of the entire network hence the Community-IM method takes a lot of time in finishing.
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