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Abstract.  Solar Dynamics Observatory (SDO) spacecraft as a space-based project is able to conduct continuous monitoring
of the Sun. The Helioseismic and Magnetic Imager (HMI) instrument on SDO, in particular, provides continuum images and
magnetograms with a cadence of under 1 minute. SDO/HMI’s spatial resolution is only about 1”, which makes it impossible to
perform a good analysis on the subarcsecond scale. On the other hand, larger aperture ground-based telescopes such as the Goode
Solar Telescope (GST) at the Big Bear Solar Observatory are able to achieve a better resolution (16 times better than SDO/HMI).
However, ground-based telescopes like GST have limitations in terms of observation time, which can only make observations during
the day in clear sky condition. The purpose of this study is to make attempts in improving the spatial resolution of images captured
by HMI beyond the diffraction limit of the telescope by employing the Conditional Generative Adversarial Networks algorithm
(cGAN). The cGAN model was trained using 1800 pairs of HMI and GST sunspot images. This method successfully reconstruct
HMI images with a spatial resolution close to GST images, this is supported by ~62% increase in the peak signal-to-noise ratio
(PSNR) value and ~90% decrease in the mean squared error (MSE) value. The higher resolution sunspot images produced by this
model can be useful for further Solar Physics studies.

INTRODUCTION

Latest solar research shows that solar activity has a significant effect on modern technology. Solar activity events such
as Coronal Mass Ejections (CMEs) can cause geomagnetic storms that affect satellite operations, navigation systems
[1], as well as the power grid [2]. Therefore, further solar research will play an important role in mitigating and
minimizing these effects. Some modern instruments provide us with images of the solar surface depicting pores and
sunspots finely structured penumbral filaments and umbral dots. These sub-arcsecond resolution images are needed
to provide accurate information and prediction about future solar activity.

Ground-based solar telescopes, because of their size, can produce solar images with higher spatial resolution than
existing space-based telescopes. Thus, the Goode Solar Telescope (GST) operating at the Big Bear Solar Observatory
(BBSO) routinely produces 0”.1 resolution images of the solar photosphere with the pixel size 0”.034/pixel [3]. At
the same time the Helioseismic and Magnetic Imager (HMI) on board Solar Dynamic Observatory (SDO) acquired
photospheric images with the pixel size 0”.505/pixel and 1” resolution, indicating that the resolution of the GST data
is about one order of magnitude higher than that of HMI instrument. However, ground-based observations have the
disadvantage in that they heavily rely on clear skies and good seeing conditions, while space-based instruments are
able to collect data of uniform quality during long periods of time, and very often continuously for 24 hours a day.

To overcome this limitation, some methods have been developed to improve the spatial resolution of solar images.
Thus, speckle mask method is one of the traditional image reconstruction procedures that can eliminate the atmospheric
turbulence effect [4]. However, this method can not increase the image resolution beyond the diffraction limit of the
telescope. Recently, deep learning methods have been frequently employed to tackle this problem. This approach
utilizes a regression method based on the convolution process that will modify the neural network parameters until
the reconstructed image satisfactorily matches the reference image. Thus, [5] used conditional Generative Adversarial
Networks (cGAN) to reconstruct HMI images that yield an output with four times the resolution of the original HMI
image.
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FIGURE 1: Result of alignment of HMI (/eff) and GST images (right). The data were acquired on 09 May 2021 at
21:23:02 UTC.

DATASETS

The data used in this research consists of i) solar images taken by GST using the head of the Titanium Oxide (TiO)
705.7 nm molecular band that can be accessed via Big Bear Solar Observatory website (http://bbso.njit.edu/)
and ii) SDO/HMI continuum intensity images that can be accessed via Stanford Solar Group website (http://hmi.
stanford.edu/). The dataset training used in this study covers a time interval of nearly 10 years (from 2011 to 2020).
We used 60 sunspot images in 2021 representing each sunspot class to test the performance of the cGAN model. The
data was arranged in pairs and Figure 1 shows an HMI image is on the left and the corresponding GST image is on the
right, with a resolution of 288 x 288 pixels. Before further image processing, we need to extract the sunspot coordinates
from the GST image using the SunPy library ( [6]) to find the corresponding sunspot in the HMI image. The next step
is to align both images with high accuracy. To do so we used the Scale-Invariant Feature Transform (SIFT) method
from OpenCV Library [7] [8].

To implement SIFT, we need to identify a key-point as a reference, match the key-point, and then determine the
registration parameter. Noise reduction also needs to be done by using gaussian blurring, to decrease the probability
of noise feature used as the key-point. Rotation, translation, and scale (RTS) values can be obtained by comparing the
adjacent layers of the multi-scale gaussian pyramids. Image matching was assessed from the relationship between the
feature point descriptors in the two images. The problem that often occurs is that this relationship is not strong. It can
be overcome by implementing the nearest neighbor method that is used to minimize the Euclidean distance between
the descriptor and the feature point. When the ratio of the closest distance to the second closest Euclidean distance
is less than a predetermined threshold value, the feature point will be considered a match. The last stage is image
registration, which is the process of converting different data sets into the same coordinate system. To get the equation
of homogeneous coordinate transformation, we need to connect the feature points of the two images. In the process of
solving it, we use the consensus sampling algorithm (RANSAC) to overcome the problem of unstable feature points.

For training process we selected 450 HMI-GST pairs since GST observations not always included a sunspot in their
field of view. To increase variations in the training data, data augmentation was carried out by applying vertical and
horizontal flip, as well as 180-degree rotation to the main data so that a total of 1800 HMI-GST image pairs were
obtained.
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(a) Generator (b) Discriminator
FIGURE 2: Generator network structure (a) is divided into the downsampling part of feature extraction and the
upsampling part of the feature fusion. The input layer in the generator is an HMI image. Discriminator network

structure (b) classifies the generated and target images; returns the evaluation for generated image as a fake or real
image.

TABLE I: Structure of the Neural Network

2S'02:LL ¥20T Ydie 0z

Structure Layer Filter Strides Normalization Activation Output Size
Input Layer - - - - 288 x 288 x 3
Conv 64 4x4 2x2 - Leaky ReLU 144 x 144 x 64
Conv 128 4 x4 2x2 Batch Norm Leaky ReLU T2 X T2 x 128
Conv 256 4 x4 2x2 Batch Norm Leaky ReLU 36 x 36 x 256
Conv 512 4 x4 2x2 Batch Norm Leaky ReLU 18 x 18 x 512

Generator Conv 1024 4x4 2x2 - RelLU 9 x 9 x 1024
ConvT 512 4x4 2x2 Batch Norm ReLU 18 x 18 x 512
ConvT 256 4 x4 2x2 Batch Norm ReLU 36 x 36 x 256
ConvT 128 4x4 2x2 Batch Norm ReLU 72 x 72 x 128
ConvT 64 4x4 2x2 Batch Norm ReLU 144 x 144 x 64
ConvT 3 4x4 2x2 Batch Norm tanh 288 x 288 x 3
Input Layer - - - - 288 x 288 x 3
Concat - - - - 288 x 288 x 6
Conv 64 4x4 2x2 - Leaky ReLU 144 x 144 x 64
Conv 128 4x4 2x2 Batch Norm Leaky ReLU 72 x 72 x 128

Discriminator Conv 256 4x4 2x2 Batch Norm Leaky ReLU 36 x 36 x 256
Conv 512 4x4 2x2 Batch Norm Leaky ReLU 18 x 18 x 512
Conv 1024 4 x4 2x2 Batch Norm Leaky ReLU 9 x 9 x 1024
Conv 1024 4 x4 1x1 Batch Norm Leaky ReLU 9 x 9 x 1024
Conv 1 4x4 1x1 - sigmoid Ix9x1
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FIGURE 3: PSNR, SSIM, and MSE value of the reconstructed images for the 10 final models compared to the
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(a) HMI image (input) (b) Reconstructed image

FIGURE 4: Testing results, 2 out of 60 images from 09 May 2021 at 21:23:02 UTC and 12 May 2021 at 18:57:08
UTC. The images from the left shows the HMI image (a), reconstructed image (b), and GST image (c) respectively.
The contrast and brightness of the reconstructed images are consistent with the GST images.

METHODS

Network Structure

This study only uses the cGAN algorithm without any Self-Attention optimization as done by J. Deng et al which
became our reference paper in this study. A Conditional Generative Adversarial Network (¢cGAN) [9] was utilized
to reconstruct sunspot images. A low resolution (LR) HMI images were used as input to generate or reconstruct a
higher resolution (HR) image similar to a target GST image. The basic structure of the generator follows the U-Net,
which is suitable for scenes with similar structures between input and output images. The unique structure allows
the network to transmit contextual information to higher layers for full integration. The shallow feature map usually
contains low-frequency information of the image, such as the overall information of the image. The deep feature
maps usually contain high-frequency information of the image, such as the edges and textures of the image. U-Net
cascades high-level features and low-level features together through skip connection so that different levels of detailed
information can be well preserved and integrated. cGAN consist of two networks: generator which generates an image
from an input image and a simple classifier called discriminator.

The generator structure applies an autoencoder model consisting of an encoder and a decoder layer. The encoder
layer is composed of convolution kernel with size 4, strides 2, normal random initializer kernel with standard deviation
0.02, padding same, batch normalization, and LeakyReL U (rectified linear activation function/unit) activation function
with alpha 0.2. While the decoder layer is composed of a deconvolution kernel with size 4, strides 2, a normal random
initializer kernel with a standard deviation of 0.02, padding same, batch normalization, and ReLU activation function.
The last layer of the decoder implements the tanh activation function. The optimization of the generator model uses
Adam with a learning rate of 0.0002 and a beta of 0.5.

The discriminator model is composed of a convolution layer with size 4, strides 2, normal random kernel initializer
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with a standard deviation of 0.02, padding same, batch normalization, and sigmoid activation function. Optimizing
the discriminator model using Adam with a learning rate of 0.0002, and beta 0.5, the loss function used is binary
cross-entropy. The network structure for generator and descriminator is described in Figure 2.

Evaluation Metrics

For this work, we apply two evaluation metrics/methods to measure the quality of the reconstructed images produced
by the models. The first method is visual inspection, which is done by directly comparing the original HMI and
GST images, and the reconstructed images. The evaluation criteria includes: (1) how well the reconstructed images
can return the detail information found in HMI images, (2) contrast of the intergranular lanes, which are boundaries
between photospheric granules, (3) consistency of the contrast and brightness of GST and the reconstructed images,
and (4) sharpness of the reconstructed images.

The second method is carried out by implementing quantitative evaluation using three indicators: (1) Peak Signal to
Noise Ratio (PSNR) [10], which measures the ratio between the maximum possible power of a signal and the power
of corrupting noise, (2) Structural Similarity Index Measure (SSIM) [11] that is used to measure contrast, brightness,
and structural details in images, and (3) Mean Squared Error (MSE) that is usually used to check the estimated value
of the pixel prediction error against the actual value.

The PSNR value is determined by the maximum pixel value MAX; of the image and the pixel mean square error
(MSE) between I r and Iy R.

MAX?
PSNR = 10 - 1 —1 1
S 0-log,, < MSE ) (1)
with
1 m—1n—1
MSE = — [ILr(i,j) — Iur(i, 5))° (2)
mmn =0 j5=0

PSNR is the ratio between the maximum possible power of a signal and the power of corrupting noise that affects the
fidelity of its representation. Because many signals have a very wide dynamic range, PSNR is usually expressed as
a logarithmic quantity using the decibel scale. A higher PSNR generally indicates that the reconstruction is of higher
quality. PSNR only focuses on pixel differences and does not consider structural information in the image.

The other indicator that usually used is the Structural Similarity Index Measure (SSIM) which is used to measure
contrast, brightness, and structural detail in both images.

Qurrpar +c1)(20LRER + C2)
(MZLR + M%{R + Cl)(U%R + ‘712&11% + ¢2)

SSIM(LR, HR) = 3)

The brightness and contrast are obtained by calculating the average (1) and standard deviation (o) of image pixels.
c1 and ¢y are constant. iy rsp represents the covariance of Iz and Iy . SSIM assigns a rating to the image with
a range of 0 to 1, where a value of 1 indicates that the two images are very similar or the same. While the value 0
indicates the two images are very different.

RESULTS AND DISCUSSIONS

This study uses cloud computing with specifications of 25 GB RAM and GPU T4 from google colaboratory pro which
runs for 7 hours. The programming language used Python version 3.7.13 with supporting libraries for sunpy 3.1.16,
astropy 4.3.1, and OpenC 4.5.5.64.

In this project, the model training was conducted for 100 epochs/cycles. One cycle is considered completed when
the entire data set has gone through the training process. Each cycle produced a model that can be used to reconstruct
solar images. However, instead of saving the entire model for every cycle, we stored one model for every 10th cycle,
hence, generating 10 final models, which were used to analyse the change in the model’s performance during the
training. We used 60 images of different sunspots as a test sample. Due to the limitation in the number of GST images,
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TABLE II: The average of changes in PSNR, SSIM, and MSE scores as the performance indicators of the model.
The increase of PSNR value and the decrease of MSE score shows the improvement of the image. On the contrary,
the decrease of SSIM value indicates the decline of the similarity of the reconstructed image with GST.

Sunspot Class Number of sample APSNR ASSIM AMSE
Regions without sunspots 14 12% -40% -87%
Class A 2 18% -44% -93%
Class B 6 117% -18% -93%
Class C 8 67% -16% -86%
Class D 5 132% -71% -95%
Class E 5 113% -12% -89%
Class F 11 98% -11% -89%
Class H 9 88% -12% -92%

we have a different number of test images for each class of sunspots. Using visual inspection, all criteria presented in
Evaluation Metrics subsection were achieved for all 60 test images.

Figure 3 plots PSNR, SSIM, and MSE values for each of the models and HMI images, which demonstrate a good
images reconstruction with ~67% increase in the average PSNR value and ~90% decrease in the average MSE score.
These results show that the reconstructed image structure is closer to the target GST image as compared to the HMI
image. We see, however, an average decline of ~22% in the SSIM indicator. One plausible explanation is that the
matching process between HMI and GST images is not perfect. Other possibility is that the SSIM is inherently not
suitable to be used as a performance indicator in this type of image since it may create non-intuitive results [12]. This,
for example, may happen for low luminance values or when the local distribution of pixel values visually differ very
little, though regularly. These criteria are applied for solar surface images.

We grouped the test result based on the sunspot classes to inspect the correlation between the performance of the
model and the sunspot classes. Shown in Table II that the models perform better on sunspot class D, E, F, and H
compared to the other classes. It is evident from a very high increase in the PSNR value, ranging between 88%-132%,
which demonstrates the models’ excellent ability to increase the dynamic range of these sunspot images. This is also
supported by the magnitude of the SSIM index that declines only slightly from 7% to 12%, indicating no significant
difference between GST’s and the reconstructed images. Figure 4 shows the test result for the last model for 2 sunspot
images. It shows that the contrast and brightness of the reconstructed images are consistent with the GST images.

CONCLUSIONS

From the visual inspection, it is shown that the cGAN model provides good performance. The model is able to restore
the granular structure in the HMI image and provide consistent contrast and brightness with the GST image. This
is also supported by the PSNR indicator, with the average PSNR value for reconstructed images increased by 67%
compared to the average PSNR value for HMI images. However, the SSIM indicator shows a decrease in the quality
of the reconstructed image by 22% when we compared it to the average value of the SSIM of HMI images. The value
of PSNR and SSIM also shows that the model does not perform well for sunspot images which are dominated by
granules structure, such as granule images (no sunspot region), class A, B, and C. One of the possible explanation is
the error in image matching process, i.e. the HMI image is not fully matched with the GST image for these classes.
Other explanation is that SSIM is inherently not suitable as an indicator when we work with solar surface images
[12]. Comparing similar studies conducted by J. Deng et al., it was found that increasing the spatial resolution of the
sunspot image has better results if, using an optimized cGAN algorithm using Self-Attention. This is shown in the
metric PSNR evaluation was able to increase up to 82% and SSIM increased by 3%, this is far from the results obtained
when using the original cGAN algorithm. In the future work we will add larger datasets, improve the image matching
process, and try different network structure.
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