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Abstract— This work presents a hierarchical framework for

bipedal locomotion that combines a Reinforcement Learning

(RL)-based high-level (HL) planner policy for the online gen-

eration of task space commands with a model-based low-level

(LL) controller to track the desired task space trajectories.

Different from traditional end-to-end learning approaches, our

HL policy takes insights from the angular momentum-based

linear inverted pendulum (ALIP) to carefully design the obser-

vation and action spaces of the Markov Decision Process (MDP).

This simple yet effective design creates an insightful mapping

between a low-dimensional state that effectively captures the

complex dynamics of bipedal locomotion and a set of task space

outputs that shape the walking gait of the robot. The HL policy

is agnostic to the task space LL controller, which increases the

flexibility of the design and generalization of the framework

to other bipedal robots. This hierarchical design results in a

learning-based framework with improved performance, data

efficiency, and robustness compared with the ALIP model-

based approach and state-of-the-art learning-based frameworks

for bipedal locomotion. The proposed hierarchical controller is

tested in three different robots, Rabbit, a five-link underactu-

ated planar biped; Walker2D, a seven-link fully-actuated planar

biped; and Digit, a 3D humanoid robot with 20 actuated joints.

The trained policy naturally learns human-like locomotion

behaviors and is able to effectively track a wide range of

walking speeds while preserving the robustness and stability

of the walking gait even under adversarial conditions.

I. INTRODUCTION

Robust bipedal robot locomotion presents a challenging
problem for robotics research due to the complexity of
high dimensional models, unilateral ground contacts, and
nonlinear and hybrid dynamics. Common methods applied
in bipedal locomotion rely on solving optimization problems
using the robot’s full-order or reduced-order model to find
feasible trajectories that realize stable walking gaits. In
general, using full-order models results in computationally
expensive problems that cannot be solved in real-time [1],
[2]. To reduce the computation time, reduced-order models
are used to capture the dynamics of the full-order system and
plan trajectories for the robot’s center of mass (CoM) and
end-effectors. However, the assumptions made on reduced-
order models such as a constant CoM height limit their
performance on dynamic locomotion behaviors and their

This work was supported in part by the National Science Foundation
under grant FRR-21441568, and by the National Natural Science Foundation
of China under Grant No. 62073159.

1Electrical and Computer Engineering, Ohio State University, Columbus,
OH, USA; {castillomartinez.2,weng.172}@osu.edu.

2SUSTech Institute of Robotics, Southern University of Science and
Technology (SUSTech), China; 11930364@mail.sustech.edu.cn,
zhangw3@sustech.edu.cn.

3Mechanical and Aerospace Engineering, Ohio State University, Colum-
bus, OH, USA. hereid.1@osu.edu.

accuracy to predict the behavior of the real robot under
certain conditions. Recently, the angular momentum-based
linear inverted pendulum (ALIP) has been presented as an
improved alternative to the Linear Inverted Pendulum (LIP)
to predict the evolution of the model’s state, demonstrating
in simulation and hardware experiments that the angular
momentum about the contact point can be more accurately
predicted than the CoM velocity [3], [4].

With the recent success of deep learning in tackling
challenging control problems, machine learning-based ap-
proaches have exploited advances in physics simulators and
computing power to learn locomotion policies through more
structured learning frameworks. Learning from motion refer-
ences has become a popular choice to exploit large amounts
of data to train walking policies. The data is obtained from
motion capture systems, public motion data sets, or even
from video clips, and it is used as goal references in the
reward design [5]–[7].

Other learning methods rely on using optimization to
obtain a single feasible reference trajectory [8], [9], or
libraries of reference trajectories [10], [11] to guide the
learning. However, these approaches require large amounts
of data, and the learned policy often lacks interpretability
and control over the parameters of the walking gait. This
makes it difficult to adjust the policy during the sim-to-real
transition. As an alternative, more complex frameworks have
been proposed to combine learning algorithms with model-
based controllers. The authors in [12] take insights from the
Hybrid Zero Dynamics (HZD) to learn joint trajectories for
planar robots. In [13], an HZD-based approach is used to
learn a policy that satisfies Control Barrier Functions (CBF)
defined on the reduced-order dynamics.

In this work, we propose a hierarchical RL-based approach
to address bipedal locomotion in underactuated and fully ac-
tuated robots. At the HL stage, RL is used to train policy that
learns task space commands for different walking speeds. At
the LL, a model-based nonlinear controller is implemented to
track the trajectories generated by the HL planning. Several
RL-based approaches have been already proposed to exploit
hierarchical structures. In [11], [14], a task space policy is
trained to walk at different speeds. However, the method
relies on solving a series of optimization problems using
the Spring Linear Inverted Pendulum to create a gait library
that is used as a reference for the reward and the target
end-effector positions. The policy learns residual terms that
are added to the task space references [14] or joint space
references [11]. Different from these approaches, our method
directly learns a set of task space actions that completely
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characterize the dynamic walking gait without the need
for previously computed reference trajectories. Moreover,
we use different state and action spaces that significantly
simplify the complexity of the learning problem and can be
generalized to both unactuated and underactuated robots.

In our previous work [15], a cascade structure is imple-
mented to compensate the learned trajectories with feedback
regulators to increase the robustness of the walking gait
[16], [17]. Although the method was successfully tested in
hardware, the interpretability of the learned policy was lim-
ited by the complex structure imposed over the input-output
mapping of the RL policy and the addition of compensation
terms on top of the learned joint trajectories. On the one
hand, the integration of the feedback regulators improves
the robustness and sim-to-real transfer of the learned policy.
On the other hand, it makes it difficult to identify the actual
contribution of the learned policy to the robustness of the
walking gait. This results in a policy limited to naturally
exploiting the state and action spaces and a restricted walking
speed range with the robot Digit, e.g., vx 2 [�0.5, 0.5] m/s.

In this work, we propose a more efficient and clean
framework that completely decouples the HL learning policy
from the LL controller with better insights into the selection
of the state and action spaces that results in improved sample
efficiency and interpretability of the policy. We demonstrate
the proposed framework is general for 2D and 3D bipedal
robots and can be applied even in the case of underactuated
robots. Moreover, we show that the learned policy achieves
enhanced performance and robustness compared with our
previous work [15].

The main contributions of this paper are as follows:
1) A simple, efficient, and general hierarchical learning
framework that fully decouples the HL planner from the LL
feedback controller. Different from other task space learning
approaches, our method (i) uses a reduced-order state for
the RL, (ii) learns to walk from scratch, and (iii) computes
a set of task space actions that fully characterize dynamic
walking gaits. The selection of inputs and outputs is general
to bipedal robots of different morphology and degrees of
freedom. We show results for actuated and underactuated
2D (Rabbit, Walker2D) and 3D robots (Digit).

2) Insightful design of the RL state space. We use
the ALIP state and speed tracking information to design
a reduced-order state space for the RL that captures the
complex dynamics of bipedal locomotion while simplifying
the learning process.

3) Enhanced flexibility of the policy to naturally exploit
the nonlinear dynamics of bipedal locomotion. By including
the desired step length, torso orientation, and CoM’s height
in the action space of the RL, the policy is not restricted to
particular behaviors. This allows the policy to learn natural
behaviors seen in dynamic locomotion without enforcing
them during training.

4) A robust locomotion controller that accurately tracks
a wide range of walking speeds, even under external distur-
bances and challenging terrains, with inclinations up to 20
degrees for both underactuated and fully-actuated robots.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Bipedal locomotion as a hierarchical problem
In general, the bipedal locomotion problem can be char-

acterized as a hybrid system determined by a collection of
phases of continuous dynamics with discrete events between
the transitions of the continuous phases. Formally, the hybrid
system model for biped locomotion can be defined as

⌃ :

⇢
ẋ = f(x) + g(x)u+ !(x, u) x 2 X \ H

x
+ = �(x�) x

�
2 H,

(1)

where x 2 X ✓ Rndenotes the robot states, u 2 U ✓ Rm

is a vector of actuator inputs. and ! 2 ⌦ ✓ Rw a vector
of disturbances and uncertainties. The switching surface H

is typically the hyper-surface of points corresponding to the
height of the swing leg above the ground being zero, and
the reset map � : H ! X denotes the post-impact state
values x

+ immediately after switching as a function of the
pre-impact state values x

� right before switching.
The control of the bipedal locomotion system described

by equation (1) can be formulated as a hierarchical control
problem composed by a HL planner and a LL tracking
controller. This cascade structure is presented in Fig. 1. The
high level policy ⇡y generates trajectories to realize walking
gaits according to design parameters and HL commands, e.g.,
average walking speed, robustness, terrain slope, etc. The LL
policy ⇡m computes the actuator inputs to track the desired
trajectories commanded by the HL planner.

High-level policy Low-level policy 
 Robot

High-level state Low-level state 

Motor
commands 

High-level
commands 

Fig. 1: Hierarchical structure for bipedal locomotion

The general structure presented in Fig. 1 can characterize
most controller formulations used in both model-based and
model-free state-of-the-art methods for bipedal locomotion.
Once the HL trajectories have been generated by the policy,
classic model-based control approaches such as feedback
linearization, inverse dynamics QP, operational task space
controllers, or simple PD controllers can be used to track
the desired HL commands. The choice of the LL control
policy ⇡m will mostly depend on the action space of the HL
policy, e.g., joint space versus task space.

B. Reduced order models for HL planning
Reduced order models have become a powerful tool for

the design of HL planners for bipedal locomotion since they
allow using simple dynamical models to characterize biped
walking behaviors. Recently, the ALIP model has gained
attention because of its advantages over LIP to predict the
evolution of the state space. The learning-based approach
proposed in this work is heavily inspired by recent results
using ALIP as a step planner [3], [4].
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Fig. 2: Prediction of Ly at the end of each step under ideal
(top) and non-ideal (bottom) conditions.

Angular Momentum-based Linear Inverted Pendulum

(ALIP): Considering the states {x, Ly
}, where x is the CoM

position in x direction and L
y is the pitch component of

the angular momentum about the contact point, the ALIP
dynamics is given by


ẋ

L̇
y

�
=


0 1/(mH)
mg 0

� 
x

L
y

�
, (2)

where m is the total mass and H is the constant CoM height.
The main advantage of using the ALIP model over the LIP
model is that the evolution of the angular momentum about
the contact point is closer to its behavior on the full-order
robot’s model and the actual hardware [3].

1) Limitations: Although ALIP does better work describ-
ing the actual behavior of the system than LIP, both are linear
models subject to assumptions such as point mass body,
constant CoM height, and the angular momentum about the
CoM being zero during the walking gait.

In addition, the prediction of the state at the end of the
step depends on the step duration T . This implies that an
accurate prediction would depend on the perfect timing of
the touchdown event, which could only happen in ideal
conditions, e.g., perfect tracking of the LL controller, point-
contact foot, and non-irregular walking surfaces.

To analyze this effect, we compare the predicted value of
L
y scaled by mH at the end of the step with the actual Ly

for the five-link bipedal robot Rabbit in Fig. 2. We show
the evolution of Ly in simulation using the MuJoCo physics
engine [18]. To simulate ideal conditions on the model as
closely as possible, we set the geometry of the robot’s links
to be very thin (to emulate point contact with the ground) and
use a LL feedback linearization controller with high gains
to encourage better tracking and accurate touchdown timing.
For the ”non-ideal” conditions, we use the real geometry and
dynamic properties of the robot’s links (as described in [19]),
and we use an inverse dynamics QP controller [20]. The
results show that under non-ideal conditions, the prediction
of L

y at the end of the step differs significantly from its
actual value.

C. Task-space LL controller
Several approaches have been proposed in the literature

to design task space controllers that consider the full-order

model of the legged robot. Considering a mechanical system
with configuration space Q and generalized coordinates q 2

Q, the equations of motion formulated using the method of
Lagrange are given by:

M(q)q̈ +H(q, q̇) = Bu+ J
T (q)� (3)

J(q)q̈ + J̇(q, q̇)q̇ = 0, (4)

where D(q) is the inertia matrix, H(q, q̇) = C(q, q̇)q̇ +
G(q) + F is the vector sum of the Coriolis, centripetal,
gravitational, and additional non-conservative forces, B is
the actuation matrix, and J(q) the Jacobian of the holonomic
constraints.

We denote that the system (3) can be expressed in the
general form (1). Let x =

�
q
T
, q̇

T
�T

2 TQ = X , then

f(x) =


q̇

�D
�1(q)

�
J
T (q)��H(q, q̇)

�
�

(5)

g(x) =


0

D(q)�1
B

�
. (6)

The task space feedback controller tracks a set of desired
trajectories of the form:

y(x) = y
a(x)� y

d(⌧(x)), (7)

where y
a and y

d are smooth functions, and y
d characterizes

the desired behavior of the system. Upon the assumption that
y(x) has relative degree 1 or 2, nonlinear control methods
can be applied to find a control law that drives y(x) to zero,
which implies the outputs converge to their target values.

III. METHOD

This section presents the methodology for the design of the
proposed learning-based hierarchical controller for bipedal
locomotion. First, we introduce the overall structure of the
framework. Then, we describe the learning-based HL and
model-based LL components of the framework.

A. Hierarchical structure for bipedal locomotion
The proposed learning-based framework combines the

capabilities of model-based and model-free methods into a
hierarchical structure to realize robust locomotion controllers
for underactuated and fully-actuated bipedal robots. Inspired
by the success of reduced-order models for the online gen-
eration of HL trajectories, we use reinforcement learning to
train an HL policy that maps a reduced state space inspired
by the ALIP model to a set of task space commands to
generate online task space trajectories for the robot’s base
and end-effectors. For the LL task space controller, we
use well-known model-based inverse dynamics controllers to
guarantee the tracking performance of the system’s outputs.

The proposed hierarchical structure is presented in Fig. 3.
By combining the learning-based HL planner with the model-
based LL controller, we obtain a robust controller capable of
accurately tracking a wide range of walking speeds while
preserving a good tracking performance for the task space
trajectories. This significantly increases the flexibility and
safety of the policy when compared with pure learning-based
controllers.
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Fig. 3: Overall structure of the proposed learning-based
framework. The HL policy maps a reduced-order state to
task space trajectories that are tracked by the LL policy.

B. Reinforcement Learning for High-Level Planning
The problem of determining a motion policy for bipedal

robots can be modeled as a Markov Decision Process (MDP),
which consists of a tuple of components defined as

M := (S,A,P, r, ⇠, �). (8)

Here S is the state space, and A is the set of feasible actions
referred to as the action space. Specifically, at time t, an
agent (i.e., the motion planner) takes an action at 2 A at
state st 2 S , transits into the next state st+1 2 S according
to the transition probability P(st+1|st, at) and receives a
reward r(st, at, st+1). Moreover, ⇠ denotes the distribution
of the initial state s0 2 S , and � 2 (0, 1) denotes the
discount factor. The stochastic transition of the MDP process
captures the random sampling of initial states in the policy
training and dynamics uncertainty due to model mismatch
and random interactions with the environment (e.g., early
ground impacts).

1) Reduced-Order State Space: Several works have al-
ready proposed using a reduced state of the robot as the
observation space of the learning algorithm. However, the
choice of the reduced state is made based on trial and error
or empirical observations of the policy performance. In this
work, we leverage recent results on the effectiveness of using
angular momentum about the contact point to regulate the
walking speed of biped robots [3]. Inspired by the ALIP
model, we select the state

s = (x, y, Lx
, L

y
, ev̄x , ev̄y , v

d
x, v

d
y ,↵). (9)

where (x, y, Lx
, L

y) is the ALIP state composed by the
robot’s base x and y position and the angular momentum
about the contact point along the x and y axes, (ev̄x , ev̄y )
is the error between the average velocity the robot’s base
(v̄x, v̄y) and the desired robot’s velocity (vdx, v

d
y), and ↵ is

the terrain slope measured in radians. We denote that we
use the robot’s base position instead the CoM because of
practical convenience for future hardware experiments. The
CoM estimation on complex robots may result in noisy mea-
surements, while the base position with respect to the contact
point can be easily computed using forward kinematics.

We assume the slope of the terrain is known by the
learning agent. This assumption is reasonable since most
of the bipedal robots available for research and commercial
applications are equipped with perception systems to map
the surrounding environment. Even in the absence of per-
ception systems, proprioceptive approaches could be used to
accurately estimate the terrain slope based on the orientation
of the robot’s base and feet, as we have shown in simulation
and hardware in our previous work [15].

2) Task Action Space: The action a 2 A is chosen to be

a = (pxsw,T , p
y
sw,T , q�, h

d) (10)

where p
x
sw,T , p

y
sw,T correspond to the position of the swing

foot w.r.t. the robot’s base at the end of the swing phase T ,
i.e., the landing position of the swing foot, q� is the absolute
torso pitch angle, and h

d is an offset added to the nominal
height of the robot’s base w.r.t. the stance foot. This selection
of the action space encourages the flexibility of the policy to
exploit the natural nonlinear dynamics of the biped robot and
enhance the robustness of the policy under big disturbances,
sudden speed changes, and walking at high speeds, as it will
be shown in section V.

The HL actions a are used to generate smooth task space
trajectories for the robot’s floating base and end-effectors.
The trajectory for p

x,y
sw is generated using a minimum jerk

trajectory of a straight line segment connecting p
x,y
sw,0 with

p
x,y
sw,T . The swing foot position at the beginning of the

walking step, px,ysw,0 is computed using Forward Kinematics
(FK) and updated at every touch-down event. The desired
position for the swing foot at landing, px,ysw,T is updated by the
HL policy at the frequency of 30Hz. The vertical trajectory
of the swing foot position w.r.t. the robot’s base is generated
using a 5th order Bézier Polynomial parameterized by the
vertical position of the foot at the beginning (pzsw,0) and the
end (pzsw,T ) of the step, and the high foot clearance p

z
sw,T/2.

For flat ground terrain, we have

p
z
sw,T = �h

d (11)

We update p
z
sw,T by

p
z
sw,T = �h

d + p
x
sw,T ⇤ tan(↵)� p

z
off, (12)

where ↵ is the terrain slope and p
z
off = 0.005m is a small

offset added to guarantee the swing foot makes contact with
the ground.

The Neural Network chosen to parameterize the HL policy
is a Recurrent Neural Network with 2 hidden layers, each
layer with 128 units for the case of 2D robots and 256 units
for 3D robots. The hidden layers use the ReLU activation
function, and the output layer is bounded by the sigmoid
activation function and a scaling factor to constrain the
maximum value of the HL commands.

C. Low-level task space controller
The LL task space controller is designed using standard

techniques of the nonlinear systems control literature. In par-
ticular, we implement two types of model-based controllers i)
Feedback Linearization (FL), and ii) Inverse Dynamics with
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QP formulation (ID-QP). We evaluate the performance of the
HL policy with different LL controllers and show that the
learned policy is robust to any choice of the LL controller.
The purpose of this evaluation is to demonstrate the versatil-
ity of the task space-based HL planner to adapt to different
LL control structures without affecting the performance of
the learned policy. This also provides more flexibility for the
designer to use any LL control approach at their convenience.
For instance, FL is easy to implement and requires less
computation time, but it is known to be hard to implement
on real hardware. Therefore, FL could be used during the
training process of the HL policy, while any suitable ID-QP
formulation could be used for hardware experiments.

For more details, we refer the reader to [20], [21], where
several QP formulations for bipedal locomotion are proposed
with successful applications to real hardware. In this work,
we use the most basic case of the ID-QP formulation in
[20] for the 2D robots and the Task Space Inverse Dynamics
(TSID) formulation in [20] for the 3D robot Digit.

D. Learning procedure
The reinforcement learning algorithm we use in this work

is an implementation of the Proximal Policy Optimiza-
tion [22] algorithm with parallel experience collection, input
normalization, and fixed covariance. The algorithm shares
the same code base as the implementations in [11] and [9].

For each episode, the initial state of the robot is set
randomly from a normal distribution about an initial pose
corresponding to the robot standing in the double support
phase. One iteration of the HL policy corresponds to the
interaction of the learning agent with the environment. The
HL policy takes the reduced-order state s 2 S and computes
an action a 2 A that is converted in desired task space
trajectories y

d at the time t. The reference trajectories are
then sent to the LL task space controller. The LL control
loop runs at a frequency of 1 KHz, while the HL planner
runs at 33 Hz. The maximum length of each episode is 300
steps, which corresponds to 9 seconds of simulated time.

The episode has an early termination if any of the follow-
ing conditions are violated:

|q�| < 1rad, h < 0.5m. (13)

The simple reward function (14) adopted in this work is
designed to keep track of the target walking speed while
realizing a stable walking gait. In particular, the terms
rvx , rvy encourage the tracking of the longitudinal and lateral
target speeds. Since the torso pitch angle is part of the
learning action space, the term rLCoM encourages the policy
to avoid excessive changes in the torso orientation without
explicitly restricting the torso pitch angle. Finally, the term ra

encourages the policy to avoid excessive variations between
the last action and the current action. This avoids unnecessary
overshooting in the commanded actions that may produce
risky behaviors during the walking gait. The weighted reward
function is given as:

r = wT [rvx , rvy , rLCoM , ra]
T
, (14)

where

rvx = exp (�
��v̄x � v

d
x

��2) (15)

rvy = exp (�
��v̄y � v

d
y

��2) (16)

rLCoM = exp (�kLCoMk
2) (17)

ra = exp (�kak � ak�1k
2). (18)

and wT is a vector of weights corresponding to each reward
term. For 2D robots we use wT = [0.6, 0, 0.2, 0.2] while for
3D robots we use [0.3, 0.3, 0.2, 0.2].

IV. ILLUSTRATION EXAMPLE

In this section, we show the proposed method can be
generalized to both underactuated and fully actuated robots
without any changes to the structure of the HL planner policy.
Moreover, we demonstrate the framework can be applied in
2D and 3D bipedal robots. We use 3 different robots.

Rabbit is a five-link, planar underactuated bipedal robot
with point feet and four actuated joints, two in the hips and
two in the knees. Despite its simple mechanical structure,
Rabbit still provides a suitable representation of biped lo-
comotion, which is the reason it has been considered as a
test bed for advanced control theory in the field of legged
robots [19].

Walker2D is a seven-link, planar, fully actuated bipedal
robot with 6 actuated joints, two in the hips, two in the knees,
and two in the ankles. The additional degrees of freedom at
the ankles enable the robot to realize human-like walking
gaits and balancing.

Schematics of the Walker2D and Digit are shown in Fig. 4.
Rabbit shares the same design and structure as Walker2D
without the feet and ankle joints.

Digit is a 3D fully actuated bipedal robot with 30 DoF
and 20 actuated joints. Each leg has six actuated joints
corresponding to the motors located on the robot’s hip, knee,
and ankle and two passive joints corresponding to the robot’s
shin and tarsus joints. In addition, it has four actuated joints
per arm corresponding to the shoulder and elbow joints.
Fig. 4 shows the kinematic structure of Digit.

Fig. 4: Schematics of the robots Walker2D and Digit.

8586

Authorized licensed use limited to: The Ohio State University. Downloaded on March 20,2024 at 19:03:15 UTC from IEEE Xplore.  Restrictions apply. 



A. Task-space outputs for the LL controller.
The set of task space outputs of relative degree 2 described

by equation (7) to characterize the walking gait of the biped
robot are defined as follows:

y
a
2 (q) :=

2

6666664

q�

h

p
x
sw

p
y
sw

p
z
sw

�sw

3

7777775
!

0

BBBBBB@

torso pitch angle
base height

swing foot x
swing foot y
swing foot z

swing foot pitch

1

CCCCCCA
(19)

This selection of outputs is common in the field of bipedal
locomotion. The first five outputs (q�, h, pxsw, pysw, pzsw) are
valid for both underactuated and fully actuated robots. How-
ever, for an underactuated robot, it is not possible to control
the horizontal position of the robot’s base or CoM. Therefore,
the evolution of the base velocity is indirectly controlled by
the HL learned policy through the planning of touchdown
position. In the case of fully actuated robots, we also consider
the sixth output to control the swing foot pitch angle to be
parallel to the walking surface. This contributes to reducing
disturbances at the touchdown event. Although we could add
an additional output (�sw) to control the horizontal position
and velocity of the robot’s base, we prefer to rely on the
HL planning to control the robot’s speed indirectly. The
objectives of this choice of design are twofold: i) devise a
general framework for both underactuated and fully-actuated
robots that share the same structure for the HL policy
independently of the particular design of the bipedal robot.
ii) simplify the design of the controller and avoid limitations
of the torque ankle to control the robot’s base position.
Although this effect could not be significant for quasi-static
locomotion gaits, it does matter when realizing agile and
dynamic locomotion.

V. SIMULATION RESULTS

In this section, we show the performance of the learned HL
policy under different testing scenarios with three different
robot models, including Rabbit, Walker2D, and Digit. More-
over, we analyze the contribution of the HL policy to the
robustness of the walking gait, and we compare our method
with similar model-based and model-free approaches.

A. Speed tracking for different velocity profiles.
We test the learned policy for tracking a velocity profile

in different directions. Fig. 5 shows the velocity tracking
performance of the learned HL policy for the robots Rabbit
and Walker2D. To evaluate the robustness of the policy under
different LL controllers, we test the same policy with the ID-
QP controller and the FL controller with different tracking
gains. The results show the policy effectively tracks the
walking speeds in the range [�1, 1] m/s, even with aggressive
changes in the velocity profile.

To highlight the contribution of the choice of action
space, we present in Fig. 6 the actions computed by the
HL policy for different commanded velocities. When a steep
change in the desired velocity is commanded, the policy
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Fig. 5: Velocity tracking performance of the learned policy
with different LL controllers. The prefix R/W is used to
differentiate a policy for Rabbit or Walker2D.

uses the torso orientation to compensate for variations in the
robot’s speed and angular momentum. We denote that these
behaviors are not enforced during the training process but
arise naturally from the insightful design of the proposed
framework. Interestingly, some of these strategies are also
observed in human locomotion [23].
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Fig. 6: Contribution of the policy actions for different speeds.

B. Comparison with ALIP model-based approach
To assess the advantages of the proposed HL planner with

respect to pure model-based approaches, we compare the
performance between our learning-based controller and the
ALIP-based controller. Fig. 7 (top) shows the HL-RL policy
(ours) outperforms the model-based controller in tracking a
velocity profile, especially for high speeds. We also show the
variation of LCoM (bottom) to denote the trade-off the policy
learns between minimizing LCoM and tracking v

d
x. For small

speeds, LCoM looks quite similar for both controllers. For
high speeds, the policy learns to prioritize speed tracking
over minimizing LCoM. This behavior is encouraged by the
selection of weights in the reward function (14).

C. Comparison with other RL-based approaches
To highlight the contribution of the proposed framework

in terms of speed tracking for 3D bipedal robots and sample
efficiency, we compare our method with our previous work
in [15] and the end-to-end learning approach presented in
[9]. Although there are no end-to-end learning approaches
implemented on the Digit robot in the literature, there are
several works that have done so with the robot Cassie, which
shares the same leg morphology as Digit. Therefore, we
choose to implement the method in [9] with Digit as it
focuses on speed tracking, which makes it more comparable
to our method. Moreover, the framework in [9] is the base
for several SOTA end-to-end learning approaches for bipedal
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Fig. 7: Comparison of HL-RL with ALIP-based controller.

locomotion [14], [24], [25]. Finally, the code implementation
for [9] is publicly available online, which makes the com-
parison as fair as possible in terms of the reproducibility of
their work.

In Fig. 8, we present the comparison results for speed
tracking on flat ground with the robot Digit using our learned
HL policy, the HZDRL controller in [15], and the end-to-end
RL policy in [9]. We observe that the HZDRL controller
fails, i.e., the robot falls, for speeds higher than 0.5 m/s,
while the end-to-end RL controller fails to track low speeds
accurately and realizes a non-smooth walking motion that
causes higher variance in the speed profile. This effect may
be caused by the reference trajectory used to guide the
learning. In our implementation of [9], we use a reference
trajectory corresponding to Digit walking forward at a speed
of 0.8 m/s. For more details, the reader can refer to [9].
Our learned policy can successfully track the desired walking
speed in a significantly wider range compared with the other
methods. Additional testing with Digit demonstrates our
controller can handle desired walking speeds in the range
vx 2 [�1.0, 1.5]m/s and vy 2 [�0.5, 0.5]m/s, including
combinations of both, i.e., diagonal walking, as can be seen
in the accompanying video submission.
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Fig. 8: Comparison of speed tracking performance with
SOTA RL-based approaches.

In terms of sample efficiency, Fig. 9 shows our approach
uses fewer data samples to successfully train a robust pol-
icy when compared with the end-to-end learning approach.
Although this is not a surprising result as several authors
have studied the effects of task space learning in the data
sample efficiency [14], [26], to the best of our knowledge,

our method is the only task space approach that learns to
walk from scratch and has been successfully implemented in
3D bipedal robots without the need of previously computed
reference trajectories, e.g., the gait library used in [14].
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Fig. 9: Comparison of sample efficiency between traditional
end-to-end RL and our proposed method. The higher vari-
ance in the reward is caused by the effect of the exploration
noise in the task-space actions, which allows the policy to
explore a more diverse set of behaviors during training.

D. Robustness on challenging terrain
We test our controller in terrains with slopes up to 20

degrees for Rabbit and Walker2D and 10 degrees for Digit.
Fig. 10 shows a grid plot with the Root Mean Squared Error
between v̄x and v

d
x for Digit with v

d
x 2 [�1.0, 1.0]m/s,

v
d
y 2 [�0.5, 0.5]m/s, and ↵ 2 [�10, 10] degrees. We denote

that during training, we only use ↵ 2 [0, 10]. Yet, we
test the policy in an extended range of slopes to highlight
the robustness and interpolation capability of the policy to
scenarios not seen during training. In this scenario, we define
the robustness of the policy by its capability to keep track
of v

d
x, v

d
y under challenging conditions. The results show

that the learned policy keeps good tracking of v
d
x in almost

all conditions, except for combinations where the robot is
walking backward at high speed on very steep terrain.

Fig. 10: Robustness of the learned policy under different
conditions of terrain slope and target speed.

A higher error in the tracking of vdy is caused by the higher
variance of the instantaneous velocity along the y axis, which
is expected in bipedal locomotion as the robot’s torso tends to
oscillate more about the sagittal plane. We also notice there
is a higher error when tracking positive speeds along the y

axis. This effect may be caused by a biased created during
training by the exposure of the policy to more samples with
negative commands of vy .
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E. Robustness against disturbances.
The trained policy is also subjected to extensive tests

against external disturbances Fx 2 [�80, 60]N applied in
both forward and backward directions with duration t 2

[0.15, 3]s. Fig. 11 shows the policy reacts effectively to all
the applied disturbances without falling and maintaining the
tracking of the desired walking speeds. In some scenarios, the
policy uses interesting combinations of the task space outputs
to realize effective strategies to reject the disturbances, e.g.,
bending forward/backward to absorb the impact. The results
are similar for Walker2D and Digit. More details can be seen
in the accompanying video submission.
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Fig. 11: Robustness test to external disturbances.

VI. CONCLUSION

In this work, we present a simple and effective learning-
based hierarchical approach to realize robust locomotion
controllers for bipedal robots. The design of the HL policy is
inspired by the reduced-order state of the ALIP model, and a
set of task space commands that include the step length, torso
orientation, and height. This insightful choice of state and
action spaces results in a compact policy that learns effective
strategies for robust and dynamic locomotion. We show the
HL planner is agnostic to the choice of LL controller, and its
application is general to underactuated and fully actuated 2D
and 3D robots. Finally, we show the learned policy tracks a
wide range of speeds even under challenging conditions, such
as external forces and slopes up to 20 degrees. Future work
will focus on hardware experiments with the robot Digit
and the extension of the proposed hierarchical framework
to integrate different behaviors such as balancing, climbing
stairs, and walking over stepping stones.

REFERENCES

[1] A. Hereid, C. M. Hubicki, E. A. Cousineau, and A. D. Ames,
“Dynamic humanoid locomotion: a scalable formulation for HZD gait
optimization,” IEEE Transactions on Robotics, vol. 34, no. 2, pp. 370–
387, Apr. 2018.

[2] J. W. Grizzle, C. Chevallereau, R. W. Sinnet, and A. D. Ames,
“Models, feedback control, and open problems of 3D bipedal robotic
walking,” Automatica, vol. 50, no. 8, pp. 1955–1988, 2014.

[3] Y. Gong and J. W. Grizzle, “Zero dynamics, pendulum models,
and angular momentum in feedback control of bipedal locomotion,”
Journal of Dynamic Systems, Measurement, and Control, vol. 144,
no. 12, 10 2022.

[4] G. Gibson, O. Dosunmu-Ogunbi, Y. Gong, and J. Grizzle, “Terrain-
adaptive, alip-based bipedal locomotion controller via model predic-
tive control and virtual constraints,” in 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2022.

[5] X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne, “Deeploco:
Dynamic locomotion skills using hierarchical deep reinforcement
learning,” ACM Transactions on Graphics (TOG), vol. 36, 2017.

[6] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, “Deepmimic:
Example-guided deep reinforcement learning of physics-based char-
acter skills,” ACM Transactions on Graphics (TOG), vol. 37, no. 4,
pp. 1–14, 2018.

[7] S. Starke, I. Mason, and T. Komura, “Deepphase: Periodic autoen-
coders for learning motion phase manifolds,” ACM Trans. Graph.,
vol. 41, no. 4, jul 2022.

[8] Z. Xie, G. Berseth, P. Clary, J. Hurst, and M. van de Panne, “Feedback
control for cassie with deep reinforcement learning,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 1241–1246.

[9] J. Siekmann, S. Valluri, J. Dao, L. Bermillo, H. Duan, A. Fern, and
J. Hurst, “Learning memory-based control for human-scale bipedal
locomotion,” arXiv preprint arXiv:2006.02402, 2020.

[10] Z. Li, X. Cheng, X. B. Peng, P. Abbeel, S. Levine, G. Berseth,
and K. Sreenath, “Reinforcement learning for robust parameterized
locomotion control of bipedal robots,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA), 2021.

[11] K. Green, Y. Godse, J. Dao, R. L. Hatton, A. Fern, and J. Hurst,
“Learning spring mass locomotion: Guiding policies with a reduced-
order model,” IEEE Robotics and Automation Letters, vol. 6, no. 2,
pp. 3926–3932, 2021.

[12] G. A. Castillo, B. Weng, A. Hereid, Z. Wang, and W. Zhang,
“Reinforcement learning meets hybrid zero dynamics: A case study for
rabbit,” in 2019 International Conference on Robotics and Automation
(ICRA). IEEE, 2019, pp. 284–290.

[13] I. D. J. Rodriguez, N. Csomay-Shanklin, Y. Yue, and A. D. Ames,
“Neural Gaits: Learning Bipedal Locomotion via Control Barrier
Functions and Zero Dynamics Policies,” arXiv, 2022.

[14] H. Duan, J. Dao, K. Green, T. Apgar, A. Fern, and J. Hurst, “Learning
task space actions for bipedal locomotion,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA), 2021.

[15] G. A. Castillo, B. Weng, W. Zhang, and A. Hereid, “Reinforcement
Learning-Based Cascade Motion Policy Design for Robust 3D Bipedal
Locomotion,” IEEE Access, vol. 10, pp. 20 135–20 148, 2022.

[16] G. Castillo, B. Weng, W. Zhang, and A. Hereid, “Hybrid zero dynam-
ics inspired feedback control policy design for 3d bipedal locomotion
using reinforcement learning,” in IEEE International Conference on
Robotics and Automation (ICRA). Paris, France: IEEE, May 2020.

[17] G. A. Castillo, B. Weng, W. Zhang, and A. Hereid, “Robust feed-
back motion policy design using reinforcement learning on a 3d
digit bipedal robot,” in 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2021, pp. 5136–5143.

[18] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: a physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Oct. 2012, pp. 5026–5033.

[19] C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E. R. Westervelt,
C. C. De-Wit, and J. W. Grizzle, “RABBIT: a testbed for advanced
control theory,” IEEE Control Systems, vol. 23, no. 5, Oct. 2003.

[20] J. Reher, C. Kann, and A. D. Ames, “An Inverse Dynamics Approach
to Control Lyapunov Functions,” 2020 American Control Conference
(ACC), vol. 00, pp. 2444–2451, 2020.

[21] A. Del Prete, F. Nori, G. Metta, and L. Natale, “Prioritized mo-
tion–force control of constrained fully-actuated robots: “task space
inverse dynamics”,” Robotics and Autonomous Systems, vol. 63, pp.
150–157, 2015.

[22] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[23] B. C. Bennett, S. D. Russell, P. Sheth, and M. F. Abel, “Angular
momentum of walking at different speeds,” Human Movement Science,
vol. 29, no. 1, pp. 114–124, Feb. 2010.

[24] J. Siekmann, Y. Godse, A. Fern, and J. Hurst, “Sim-to-real learning of
all common bipedal gaits via periodic reward composition,” in 2021
IEEE International Conference on Robotics and Automation (ICRA),
2021, pp. 7309–7315.

[25] H. Duan, A. Malik, J. Dao, A. Saxena, K. Green, J. Siekmann, A. Fern,
and J. Hurst, “Sim-to-real learning of footstep-constrained bipedal
dynamic walking,” in 2022 International Conference on Robotics and
Automation (ICRA), 2022, pp. 10 428–10 434.

[26] G. Bellegarda and K. Byl, “Training in task space to speed up
and guide reinforcement learning,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2019, pp. 2693–
2699.

8589

Authorized licensed use limited to: The Ohio State University. Downloaded on March 20,2024 at 19:03:15 UTC from IEEE Xplore.  Restrictions apply. 


