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Tunneling Valley Hall Effect Driven by Tilted Dirac Fermions
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Valleytronics is a research field utilizing a valley degree of freedom of electrons for information
processing and storage. A strong valley polarization is critical for realistic valleytronic applications. Here,
we predict a tunneling valley Hall effect (TVHE) driven by tilted Dirac fermions in all-in-one tunnel
junctions based on a two-dimensional (2D) valley material. Different doping of the electrode and spacer
regions in these tunnel junctions results in momentum filtering of the tunneling Dirac fermions, generating
a strong transverse valley Hall current dependent on the Dirac-cone tilting. Using the parameters of an
existing 2D valley material, we demonstrate that such a strong TVHE can host a giant valley Hall angle
even in the absence of the Berry curvature. Finally, we predict that resonant tunneling can occur in a tunnel
junction with properly engineered device parameters such as the spacer width and transport direction,
providing significant enhancement of the valley Hall angle. Our work opens a new approach to generate

valley polarization in realistic valleytronic systems.
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Valley, i.e., a local well-separated extremum of an
energy band in the momentum space, has been recently
identified as an additional degree of freedom carried by
low-energy carriers [1-20]. To date, many material
systems have been discovered exhibiting valleys in their
band structure [21-23]. For example, in two-dimensional
(2D) materials, such as graphene and transition metal
dichalcogenides, there are two inequivalent valleys that
occur at the K and K(—K) points at the edges of the
Brillouin zone. In a doped system, an imbalance in carrier
population between the K and K valleys, known as valley
polarization, could be used to store binary information.
However, the valleys at the reversed momenta, K and K,
in these materials are usually degenerate, which makes
their polarization elusive.

Since K and K are connected by time reversal symmetry
(1), the perturbations breaking 7 symmetry, such as
optical [6,24-33] and magnetic [29,34-44], have been
employed to generate the valley polarization. These effects,
though interesting, require large perturbative fields inacces-
sible for practical use. It was suggested that the large
valley polarization can be induced in magnetic materials or
heterostructures, where the spin and valley degrees of free-
dom are strongly coupled [45,46]. This mechanism, however,
does not work for 7" invariant nonmagnetic materials.

Among the existing mechanisms, a valley Hall effect
(VHE) allows the electrical generation of transverse valley
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dependent Hall currents [2]. This produces a detectable
valley polarization in real space, while not breaking the
valley degeneracy in k space. The intrinsic VHE is driven
by the opposite-sign Berry curvatures at K and K, leading
to the opposite transverse velocities at the two valleys [2].
However, the Berry curvature only emerges in systems
where the Kramers degeneracy is lifted, i.e., in nonmagnetic
materials where space inversion (P) symmetry is broken by a
noncentrosymmetric structure or by the application of an
electric field [47], or in magnetic materials, where T
symmetry is broken by magnetism. It is sizable only in
the semiconductors with very small band gaps. This limits
the material choice for VHE and also demands a very strict
control of the stoichiometry, as the doping effect can easily
shift the Fermi energy (Er) away from the band gap and
significantly reduce the Berry curvature. It would be
interesting from the fundamental point of view and desirable
for valleytronic applications to find a new mechanism of
VHE independent of the Berry curvature.

Here, we predict a Berry-curvature-free tunneling VHE
(TVHE) produced by tilted Dirac fermions. The effect
occurs in an all-in-one tunnel junction based on a 2D valley
material where the valleys are described by the Hamiltonian
supporting tilted Dirac fermions, and the electrodes and the
spacer layer have different doping. We find that the
tunneling Dirac fermions carry net transverse velocities
opposite for K- and K- valleys due to the momentum
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filtering in the spacer layer controlled by the Dirac-cone
tilting. This generates a strong TVHE with a giant valley
Hall angle that is defined by the ratio of the valley Hall
conductance and the longitudinal conductance. Finally, we
predict that resonant tunneling can occur in a tunnel
junction with properly engineered device parameters such
as the spacer width and transport direction, providing
significant enhancement of the valley Hall angle.

We consider a 2D material with valleys originating from
an untilted [Fig. 1(a)] or tilted [Fig. 1(b)] Dirac cone at
momenta K and K [Figs. 1(a) and 1(b)]. We assume an all-
in-one tunnel junction based on this 2D valley material,
which is divided into the left (L) and right (R) electrode
regions and the central (C) spacer region. The electrodes
are assumed to be n doped and the spacer p doped by
voltage applied from the top and bottom gates. The valleys
at the K and K points in this 2D material are described by
the Dirac Hamiltonian [48]

H, (q) = nu619x + pa02qy + nuc0qy + Vi (1)

Here, index i denotes the left (i = L) or right (i = R)
electrodes or the spacer (i = C). The Cartesian coordinate
system X-Y is used, where the X (Y) axis is perpendicular
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FIG. 1. (a),(b) Schematic electronic structure of a 2D material
with a valley arising an untilted [(a), left)] and tilted [(b), left)]
Dirac cone at the K point with respective Fermi surfaces of
untilted [(a), right)] and tilted [(b), right)] Dirac fermions upon
doping. (c) A schematic of the all-in-one tunnel junction
representing left and right electrode regions separated by central
spacer region. Top and bottom gates control doping in the
electrodes and the spacer. A valley-neutral current J, generates
TVHE in the right electrode. (d),(e) The origin of the TVHE. For
untitled Dirac cone valleys, the transverse electron velocities v, at
K and K are perfectly balanced, prohibiting the TVHE (d). For
tilted Dirac cone valleys, electrons with negative (positive)
transverse velocities v, at K (K) are largely filtered out, leading
to a sizable TVHE and the associated transverse valley Hall
current Jyy in the right electrode.

(parallel) to the tilt direction, # =1 (—1) denotes the
K- (K-) valleys, ¢ = (qx,qy) is the wave vector with
respect to K or K, 6, and o, are the Pauli matrices, o is
the identity matrix, parameters p, y,, and y, control the
anisotropy and the tilt of the Dirac cone, and V; are the
potential associated with the doping effect.

In the absence of gate voltage (V; = 0), the Dirac points
are located at the Fermi level, Er = 0, for all regions in the
junction. In the presence of gate voltage, the Dirac point in
region i is shifted to Er + V; due to the doping effect
produced by the gate voltage. When y; = p, and u, = 0,
the Dirac cone is not tilted, resulting in the isotropic Dirac
fermions, as in graphene [49]. The associated Fermi surface
is a circle centered at gy = gy = 0. It changes size but
does not shift upon doping [Fig. 1(a)]. When y, # 0, the
Dirac cone is tilted along the Y direction, resulting in type-I
tilted Dirac fermions. The associated Fermi surface is an
ellipse centered at g = (0,7¢q,). It changes size and
shifts along the Y direction upon doping, with the shift
q, having opposite sign for n and p doping [Fig. 1(b)].
The type-I tilted Dirac fermions have been discussed for
many 2D materials such as strained graphene [48],
a-(BEDT-TTF),1; [50], 8-Pmmn borophene [51,52], and
monolayer 17-MX, (M = Mo, W, X =S, Se, Te) [53].
There can be also type-II Dirac fermions induced by strong
tilting (e.g., [54]), which are not considered in this work
since they cannot represent valleys as the Dirac points are
not at the band extrema.

The longitudinal conductance is given by [55]

(s} =

where x (y) is the longitudinal (transverse) transport
direction, TZv is transmission for valley 5 at the transverse

wave vector ¢, and 6y = 2¢?/h. Hall conductance Oy

and valley Hall conductance oy, in the right electrode are
given by [56-61]

_ kK K VvV _ K _ K
Oy = Oy + Oy Oy = Oy, — Oy (3)

where agx is the conductance associated with the valley-
dependent transverse current J7

00 —

where i~ = (v3. /vy, ). Here v}, denotes the longi-
tudinal (r = x) and transverse (r = y) band velocities of
the right-going (—) states in the electrode. The Hall angle
® = 0,,/0,, and valley Hall angle ®, = 6},/0,, can be
then defined to estimate the strengths of these effects. We
set Er = 0 and assume that the left and the right electrodes
are n doped with V; = V, = —V/), and the central region is
p doped with V- = V. In the ballistic transport regime

246301-2



PHYSICAL REVIEW LETTERS 131, 246301 (2023)

with negligible intervalley scattering and conserved wave
vector [62-64], and TZV is determined by matching the
Fermi surfaces in the electrodes and the spacer. When
the tilt direction Y is perpendicular to the longitudinal
transport direction [Fig. 1(b)], the Fermi surface of
valley 7 is symmetric with respect to g, = nq,, resulting
in vy = vz;,’ and vy, = _UZ:Z’ where ¢, = 2119, — q,.
This leads to (" = —Z_,";’;__’. Therefore, the distribution of
T} determines c'y.

In the absence of tilting, the valley Fermi surfaces are
perfectly circular with different sizes in the electrode
and spacer regions due to different doping, as shown in
Figs. 1(a) and 1(d). Since the origin of these Fermi surfaces
does not change with doping (¢, = 0), the tunneling barrier
height for Dirac fermions is momentum and valley inde-
pendent, resulting in 7§ = TX, =T§ =TX
the transmitted Dirac fermions have zero net transverse
velocities, for both total current J, and valley-dependent
current J?, resulting in zero Hall and valley Hall con-
ductances [Fig. 1(d)].

In contrast, in the presence of tilting, the Fermi surfaces
of Dirac fermions are shifted and elongated along the y (Y)
direction, as shown in Figs. 1(b) and 1(e). Since the
displacement of the Fermi surfaces in the electrodes and
the spacer are opposite in sign due to reverse (n and p)
doping, the tunneling barrier height is momentum depen-
dent, resulting in momentum filtering that creates disba-
lance between the tunneling Dirac fermions at g, and g,
at each valley, leading to 7% # TZ,\» and hence the finite

. Therefore,

valley-dependent transverse current Ji. However, for
tilting along the y (Y) direction, each valley is symmetric

with respect to g, =0 and hence vl, = —uvlgy and

vyg = Vyg, Where « denotes the left-going state. In
addition, the two valleys are connected by 7 symmetry

K. K. K. K,
so that wyy’ iy = Uy g

= —Uxq,» Uyg =
5,_) = —Q’E;;. T symmetry also enforces TS = T’Eqv
and thus ok = — fx resulting in the valley-dependent
—J f . Therefore,
a nonzero valley Hall current Jyy = J§ — JK = 2J% is
expected with the valley Hall conductance given by

20 R
o= o / KT dg,. (5)

and hence

. . . K _
transverse currents opposite in sign, Jy =

N e v :
Because of g~ = —Cq; , @ nonzero oy, occurs if

TS # T(’j,v, which is expected for a tilted Dirac cone.
Next, we quantitatively demonstrate TVHE by perform-
ing quantum-transport calculations for a realistic tunnel
junction. We first consider p = p, = pp = 10° m/s
and p, = 0, corresponding to isotropic Dirac fermions in
graphene [49], and assume central region width w = 10 nm
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FIG. 2. (a),(b) Transmission TK for valley K as a function of g,
(a) and valley Hall angle ®y, as a function u; (b) for w = 10 nm.
(c),(d) Transmission TK)_ (c) and ®y valley Hall angle (d) as
functions of w. The parameters used in the calculations are
indicated.

and low doping of V; = 0.05 eV. As expected, we find that
Tffy is symmetric with respect to g, = 0 [Fig. 2(a) for
u; = 0], leading to vanishing o, and o;’x. For nonzero y,,
transmission T becomes asymmetric with respect to g,
[Fig. 2(a) for u, > 0], which implies 7§ # ng_ giving rise
to a finite a;’x [Fig. 2(b)]. For a weak tilting of i1, = 0.2 up,
we obtain a sizable valley Hall angle ®,, = 0.15. ®y, can be
further enhanced by increasing y, [Fig. 2(b)].

For high doping of V; = 0.5 eV, we find a much larger
Oy . This is expected as the increase of V| shifts the Fermi
surfaces stronger upon doping and thus enhances momen-
tum filtering asymmetry between g, and ¢ at each valley
and thus JK and Jyy = 2 : [Fig. 1(e)]. Interestingly, we
find that the ®y-versus-u, curve exhibits anomalous peaks
[Fig. 2(b)]. Such peaks originate from resonant tunneling
due to the matching of the spacer width w and the
longitudinal electronic wavelength A, in the spacer region,
such that w = 0.5n4,, where n is an integer, 4, = 27/q,,

and g, = (1/ﬂ1)\/(EF — Ve —mqy)* — u3qs [65].

The emergence of resonant tunneling implies a possibil-
ity to realize a strong VHE with a low doping and moderate
tilting. Here, we consider parameters pu; = 0.86 up,
Hr =0.69 pup, and u; = 0.32 up corresponding to 2D
valley material 8-Pmmn borophene [52], and calculate
T gv and ®y as functions of w. For a low doping of
Vo = 0.05 eV, we find that the distribution of TffV exhibits
a “fishbone” pattern [Fig. 2(c)], which has typical
peaks reflecting the resonant tunneling. For example,
for g, = 0.05 nm~!, the resonant enhancements occur at
w = 0.5n4, ~ 32n nm, as can be seen from Fig. 2(c). As a
result, a large ®y = 0.75 is predicted for certain widths of
the spacer layer w [Fig. 2(d)].
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FIG. 3. (a),(b) Hall conductance oy, as a function of angle ¢ for
w = 0 (a) and 200 nm (b) for V; = 0.05 and 0.1 eV. (c) Hall angle
® as a function of ¢ for the parameters as in (a) and (b). (d),
(e) Valley Hall conductance a}’x as a function of ¢ forw = 1 nm
(d) and 200 nm (e). (f) Valley Hall angle ®y, as a function of ¢ for

the parameters as in (d) and (e).

We further consider a more general case where the tilting
Y direction has an angle ¢ away from the transverse y
direction [inset in Fig. 3(a)], using the parameters for
8-Pmmn borophene [52]. Experimentally, the angle ¢ can
be controlled by changing the direction of the longitudinal
current. We choose the central region widths w such that
they do not support resonant tunneling and calculate Hall
conductance o, as a function of ¢ for different V. For
¢ #0.5nz (n is an integer), we find that the symmetry

I is absent, resulting in a finite o,
even for a uniform system [w = 0, Fig. 3(a)]. This is due to

the fact that at p; # py, 6. (¢p =0) # 0. (¢ =0.57)
resulting in  6,,(¢p) = [6,,(0.57) — 6,,(0)] sin¢ cos .
When w is large, resonant tunneling appears and leads
to peaks in o, [Fig. 3(b)]. Interestingly, although w and V,

strongly influence the o,.-¢p curve, the calculated Hall
|

constraint o5 = —o

_ 2singeosp(r} — 13— 1)

T cos?p+ (3 —p3)sin’g
(r2Voui cos d + (v} —13)qumd) (gv — 47)

9

angles © are the same for different w and V), and the
features of resonant tunneling are not revealed in ©
[Fig. 3(c)]. On the contrary, the valley Hall conductance
a}’x arises only at nonzero w and ¢ # 0.5 mz (m is an odd
number) [Figs. 3(d) and 3(e)] and increases with increasing
V. For a small w, the a;’x—qb curves are smooth [Fig. 3(d)],
while for a large w, pronounced peaks associated with
resonant tunneling emerge [Fig. 3(e)]. These peaks also
appear in the ©y-¢ curves [Fig. 3(f)]. Therefore, transport
direction can also be used to control resonant tunneling for
enhancing ©y,. This is different from that in the ordinary
Hall effect (OHE) and the AHE in bulk materials, where the
Hall current is usually independent of the current direction,
but is similar to that in the in-plane AHE discovered
recently, where the Hall current is strongly dependent on
the relative direction of the longitudinal current and an in-
plane magnetic field [66,67].

The different behaviors of ® and ®y, shown in Figs. 3(c)
and 3(f) can be understood from a simple analytic deriva-
tion. Since the two valleys are connected by 7 symmetry,
we have ’Z'q_v = T{Ii = Tﬁh and vf;; = —vfi;y (where
< denotes the left-going state). The latter results in

5" =X~ We can then define 9, = {5~ £ and

rewrite Eq.'(3) as follows:

00
ny = W/Tqylg_i_dqy,

00
= / T, 9_dg,. (6)

Introducing parameters y, = p, /p; and y, = u,/u; to reflect
the anisotropy and tilting, respectively, we obtain [68]

(7)

It is seen that 9, is a function of y, y,, ¢ and does not
depend on w, V, and g,. As a result, the Hall angle takes a
universal form

: 2 2
. 731
0= 0}’ _ sin ¢COS ¢(YI y2 ) (8)

O COs’p+ (yf —y3)sin’p’

consistent with our numerical result in Fig. 2(c). On the
other hand, 9_ is dependent on V, and g,. This leads to ©y,
being dependent on w and V|, as shown in Fig. 3(f).

(R =r)@E 4 2r2Voui (cos @ + 1) — (cos’p + yisin’p) V3

|

The predicted TVHE is related to the previously pro-
posed tunneling anomalous and spin Hall effects [56-61].
Both effects are associated with the momentum filtering.
However, the origins of the momentum filtering for these
effects are different. The tunneling anomalous and spin
Hall effects occur due to the symmetry mismatch in a
magnetic electrode, where 7" symmetry is broken, and a
nonmagnetic barrier layer with strong spin-orbit coupling,
where 7' symmetry is preserved [56-61]. On the contrary,
for the TVHE, the momentum filtering is due to the
mismatch of the Fermi surfaces of the tilted Dirac fermions
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in the electrode and spacer regions resulting from reverse.
The symmetry remains the same for all regions of such a
tunnel junction, and hence the junction can be constructed
using a single 2D material (Fig. 1), where the doping, the
spacer width, and the transport direction can be conven-
iently controlled.

The proposed TVHE has significant advantages over the
intrinsic VHE driven by the Berry curvature mechanism.
First, the intrinsic VHE occurs only in materials with
broken P 7 symmetry. The proposed TVHE, on the other
hand, does not have these restrictions, and thus can emerge
even in centrosymmetric nonmagnets or spin-degenerate
antiferromagnets with preserved P 7 symmetry. Second,
the strong intrinsic VHE normally requires E to be close
to the Weyl points or at the band edge with not too large
spin splitting [62,63,75], while the proposed TVHE exhib-
its a giant valley Hall angle that can be further optimized by
engineering the parameters of the junction such as Dirac
cone tilting, doping, spacer width, and transport direction.

The TVHE is expected to occur not only for the reversly
doped electrodes and spacer (V; = Vi = —V(), as was
assumed above, but for any modulated doping along the
junction. As long as V; = V # V-, a nonvanishing trans-
verse valley current emerges and produces the TVHE.
We note here that although we consider a tunnel junction
with the abrupt potential changes at the interfaces,
our conclusions are also valid for the potential smoothly
changing across the interfaces, as discussed in Supplemental
Material [68]. The presence of regions with inhomogeneous
doping and tilting may produce stronger intervalley scattering
that is expected to affect the predicted TVHE, which is worth
investigating in future.

Finally, the proposed TVHE device can be made
nonvolatile. In a heterostructure where the 2D valley
material is placed on top of a ferroelectric insulator,
different doping of the electrodes and the spacer layer
can be induced by polarization charges of oppositely
polarized ferroelectric domains, and the TVHE can be
controlled by ferroelectric switching.

In conclusion, we have predicted a TVHE driven by the
tilted Dirac fermions in an all-in-one tunnel junction based
on a 2D valley material. Different doping of the electrodes
and the spacer layer in this tunnel junction results in tilting-
dependent momentum filtering of the tunneling Dirac
fermions, generating a strong TVHE with a giant valley
Hall angle. Resonant tunneling is predicted to occur in the
tunnel junction with properly engineered device parameters,
such as the spacer width and transport direction, providing
significant enhancement of the valley Hall angle. Our work
opens a new approach to generate valley polarization in
realistic valleytronic systems.
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