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Networks allow us to describe a wide range of interaction phenomena that occur
in complex systems arising in such diverse fields of knowledge as neuroscience,
engineering, ecology, finance, and social sciences. Until very recently, the primary
focus of network models and tools has been on describing the pairwise relationships
between system entities. However, increasingly more studies indicate that polyadic
or higher-order group relationships among multiple network entities may be the key
toward better understanding of the intrinsic mechanisms behind the functionality of
complex systems. Such group interactions can be, in turn, described in a holistic manner
by simplicial complexes of graphs. Inspired by these recently emerging results on the
utility of the simplicial geometry of complex networks for contagion propagation and
armed with a large-scale synthetic social contact network (also known as a digital twin)
of the population in the U.S. state of Virginia, in this paper, we aim to glean insights
into the role of higher-order social interactions and the associated varying social group
determinants on COVID-19 propagation and mitigation measures.
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Complex networks provide us a versatile machinery of methods to elucidate and
systematize a wide variety of disparate phenomena arising anywhere from social
communications to human brain connectome to power grids to digital asset transactions.
Until very recently, the tools of complex networks have predominantly focused on the
description of dyadic, or pairwise interactions among nodes, for example, information
propagation between two persons on a social media platform or transaction volume
between two blockchain addresses. However, the emerging results in various domains
of knowledge increasingly more often indicate that group interactions, that is, polyadic
relationships among multiple constituents of the complex system, are the key toward
better understanding the intrinsic mechanisms behind the system functionality (1–3).
For instance, in ecology, two species may influence a focal species in an interactive
manner, and as shown by Gibbs et al. (4), such higher-order relationships may bring
a new light to modeling species coexistence, equilibrium dynamic, and the associated
biodiversity of the ecosystem. In neuroscience, Herzog et al. (5) found that higher-order
functional connectivity in brain networks may play the important complementary role in
differentiating various neurodegenerative conditions such as dementia and Alzheimer’s
disease. As one could expect, money laundering schemes are inherently based on complex
multi-entity relationships aiming to obfuscate fraudulent behavior, and identification
of such recurrent transaction patterns is one of the primary approaches in deterring
ransomware and other malicious activity in both the traditional finance and the ecosystem
of digital assets (6). In turn, some recent results of social networks suggest that integration
of polyadic relationships into the link prediction tools can noticeably enhance the
algorithm performance, even in the case when the goal is only to predict the traditional
dyadic links between two nodes (7). This phenomenon can be explained by the critical
role that groups such as family, friends, and co-workers play in the message-passing
mechanisms of social interactions. Not surprisingly, a similar phenomenon has been also
documented in the analysis of contagion dynamics (8–11). Such important higher-order
group interactions can be described in a holistic and mathematically rigorous manner by
simplicial complexes (1, 12). The alternative, yet closely connected approaches to model
the polyadic relationship is via hypergraphs (13–15) which, however, may arguably be
viewed as somewhat less tractable, or via heuristics of network motifs (16–18). While
offering important insights into the role of group interactions, these approaches for
integrating higher-order properties into the analysis of disease propagation on social
networks either tend to be restricted by considering a constant fixed transmission
rate, thereby, limiting the impact of variability among social individual and group
determinants or by focusing on simpler compartmental models on small-scale social
networks (8, 12, 14, 19), thereby not explicitly accounting for the interplay between the
impact of polyadic social interactions and the recovery rate.
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Why Higher-Order Interactions Matter for Pathogen
Spread? Over the last two decades, epidemiologists have
considered the independent cascade models for between-host
transmission. This modeling approach is attractive for several
reasons, including its simplicity and mathematical tractability.
An elegant generalization of this approach has been developed by
Dodds and Watts (20), which includes the independent cascade
model and complex contagion models (21) as special cases.
Such a generalized contagion model incorporates three important
components: i) the number of viral particles transmitted from
person a to person b; ii) the total dose received by an individual
due to multiple contacts, and iii) time within which this dose is
received. However, all these models are inherently linear and do
not take into account higher-order interactions. Nevertheless, it is
important to note that the model of Dodds and Watts (20) leads
to several insights regarding the minimum quantity of infectious
particles required to establish infection, and as discussed and
summarized by Van Damme (22), this minimum quantity is
pathogen dependent. Remarkably, this phenomenon may result
in a number of new important implications for modeling spread
of the infectious diseases, in light of the recent results on the
relationship between the dose received by an individual through
social interactions and the risk of infection.

In particular, in a set of the most recent papers (23–25),
authors point out that the risk of infection and the severity
due to COVID-19 is likely to be dependent on inoculum: the
viral dose received by an individual via interactions with other
infected individuals that leads to an infection. In simpler terms,
it means that if you and your neighbors are all together roughly
at the same time then you are likely to get a higher dosage. The
three components studied by Dodds and Watts (20) are relevant
here. Experimental results discussed in refs. 22 and 23 point to
the evidence that the probability of an individual getting infected
is higher in large gatherings. One way, of course, to capture the
impact of large gatherings is to use the model of Dodds and
Watt (20). An alternate way to describe the dosage due to multi-
party interactions is to develop a model that captures the fact
that a node u and its neighbors are all there at the same time.
That would give us the triad or higher-order structures and the
substructures, so each has a force of infection but the force is
amplified by the simultaneous presence at the same location.
Mathematically, such interaction substructures can be described
by simplicial complexes. Hence, for instance, a triangle (i.e., a
2-simplex) would capture close proximity between more than
three individuals simultaneously within a short period of time.
As a result, we can model the concentration of viral particles in
a given unit of time. A natural question would be then: Can
a simpler linear model capture the intended effect? This does not
appear to be the case. In other words, a fixed set of weights cannot
capture these higher-order interactions. Let us consider a simple
example, where nodes a, b, and c form a triangle. Our goal is to
capture the force of infection of b and c on a. Let us use {0, 1} to
represent the state of the node (1 is infected and 0 otherwise). If
both b and c are infected, the total force of infection due to b and
c is proportional to 2 in a linear additive model. Using simplicial
complexes, this would be proportional to 3. No assignment of
weights edges on (a, b) and (a, c) can represent this additional
force of infection. Moreover, we provide several toy examples in
SI Appendix, section 2 to illustrate why higher-order interactions
matter.

Inspired by these ideas and armed with the digital twin of the
population in the state of Virginia, here we make the next step
toward a fundamental understanding of the relationships between

the level of dose and risk of infection. In particular, we combine
the techniques from simplicial geometry of complex networks,
epidemiology, and statistics, to shed more light on the following
research four questions: (Q1) How can one combine in a holistic
manner both the key individual and group characteristics in
modeling contagion propagation? (Q2) How do the higher-order
group interactions impact the transmission rate? (Q3) How can
the transmission likelihood between an infected individual and
a susceptible individual be inferred based on their varying social
group determinants? (Q4) What role do the higher-order social
interactions play in selecting intervention strategies?

1. Background on Simplicial Complex

Let G = (V , E) be an attributed graph, where V is a set of
nodes (|V| = N ) and E is a set of edges (|E | = M ). Let duv
be the distance on G defined as the shortest path between nodes
u and v, u, v ∈ V , and A ∈ RN×N be a symmetric adjacency
matrix such that Auv = !uv if nodes u and v are connected
and 0, otherwise (here, !uv is an edge weight and !uv ≡ 1
for unweighted graphs). Furthermore, D represents the degree
matrix with Duu =

∑
v Auv, corresponding to A.

Definition 1.1: (Simplicial Complexes) Let V be a finite set
of vertices. A k-simplex Sk is a subset of V of cardinality k + 1
(we do not allow Sk to be a multi-set, i.e., there are no repeated
elements in Sk). A simplicial complex (SC) X is a set of simplices
with the property that if S ∈ X , then all subsets of S are also
in X .

Hence, nodes of G are 0-simplices, edges are 1-simplices, and
triangles are 2-simplices. Fig. 1 shows a toy example of k-simplex,
where k = {0, 1, 2, 3}. For a k-simplex of k > 0, we can also
define its orientation by (arbitrary) selecting some order for its
nodes, and two orderings are said to be equivalent if they differ
by an even permutation. As a result, for a given k-simplex Sk

with orientation [i0, i2, . . . , ik], any face of Sk is assigned its own
orientation (or “identifier”) [i0, i1, . . . , ij−1, ij+1, . . . , ik] (i.e., we
omit the j-th element).

2. Simplicial Complex-Based Susceptible
Infectious Recover (SIR)
To illustrate the role that polyadic interactions play in the
propagation of the infectious agent on social networks, without
loss of generality, we start by integrating the higher-order
characteristics into the basic Susceptible Infectious Recover (SIR)
model. (It is important to note that the proposed simplicial
approach is not restricted to SIR and it can be combined with
a general class of complex mechanistic models. We present
more details on the potential generalizations in the subsequent
sections.) In a classic SIR model (referred to as base SIR), the
dynamics of the system at each timestamp can be described by
the following system of equations, i.e.,

Fig. 1. A toy example of simplicial complexes in different dimensions.
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dS
dt

= −
�SI
N

,
dI
dt

=
�SI
N
− 
I,

dR
dt

= 
I,

where an individual can be in one of the three states: (S)
susceptible, (I) infected and can infect susceptible nodes, and (R)
recovered at any given time step t. Here, � and 
 are the transition
rate and recovery rate from S to I , and I to R, respectively. Unlike
the above equation-based SIR model, in graph-based SIR models,
we take into account the contact patterns between individuals
by simulating the spread of a disease over a contact network.
Specifically, each individual becomes a node in the network and
the edges represent the associated connections between people
(e.g., social contacts or physical proximity). In addition, similar to
ref. 26, the model can be further expanded by adding a vaccinated
state where the increment of the vaccinated pool depends on the
effectiveness of the vaccine (e.g., the number of vaccine doses).
We leave the exploration of the impact of vaccination and the
comparison between a cumulative number of people exposed and
the cumulative amount of vaccine for the spread of infection for
future work.

In particular, we consider two graph-based SIR models, i.e., i)
regular SIR and ii) simplicial complex-based SIR (called SC-
SIR) for regular contact and family-based contact networks
respectively. The main difference between the two SIR models
is that the SC-SIR model considers additional/hidden infection
transmission from high-dimensional simplicial complexes (e.g.,
filled triangles). Next, to integrate both the individual and group
characteristics into the analysis of contagion propagation (i.e.,
our research Q1), we introduce different channels of infection
for a susceptible node u in the SC-SIR model. That is, as shown
in Fig. 2, the node u is in contact with one (Fig. 2 A–D) or
more (Fig. 2E) infected nodes through links (1-simplices), and
it becomes infected with probability � at each time step through
each of these links. In Fig. 2 E and F, the node u is involved
in a 2-simplex (triangle). In Fig. 2 C and D, one of the nodes
of the 2-simplex is not infected, so node u can only receive the
infection from the (red) link, with probability �. In Fig. 2F, the
two other nodes of the 2-simplex are infected. Hence, node u
can get the infection through both two 1-simplices (links) with
probability � and the 2-simplex with additional probability Δ�.
Fig. 2G shows a filled triangle that represents all three nodes
are infection status in the 2-simplex. Algorithm 1 outlines the
pseudo-code for our proposed SC-SIR model (moreover, we also
provide the pseudo-code of a variant of SC-SIR model, please

A B C D

E F G

Fig. 2. Susceptible and infected nodes are colored in black and blue,
respectively; (A–G) show different channels of infection for a susceptible
node u (i.e., the left bottom node) in the SC-SIR model. See more detailed
descriptions in Section 2.

Algorithm 1: SC-SIR
Input: Network G = (V , E); transmission probability from
a 0-simplex �, transmission probability from a 2-simplex Δ�,
recovery rate 
 ; S0, I0, R0: the numbers of initially susceptible
nodes, initially infected nodes, and initially recovered nodes,
respectively.
Output: ST , IT , RT : the numbers of susceptible nodes, infected
nodes, and recovered nodes at time T respectively.

1: for t = 1, 2, · · · , T do
2: for i = 1, 2, · · · , N do
3: Compute N (t)

I (ui) and Q(t)
I (ui)

4: if Status(t)[ui] == S then

5: �(t)
S,ui
∼ U (0, 1) F Stochastic individual

characteristics of node u associated at timestamp t

6: if �(t)
ui < 1− (1− �)N (t)

I (ui) then
7: Status(t)[ui] = I

8: else if �(t)
ui < 1− (1− Δ�)Q(t)

I (ui) then
9: Status(t)[ui] = I

10: else if Status(t)[ui] == I then

11: �(t)
I,ui
∼ U (0, 1) F Stochastic individual

characteristics of the infected node u related to its recovery
rate at timestamp t

12: if �(t)
ui < 
 then

13: Status(t)[ui] == R
14: St = {Status(t) == S}, It = {Status(t) == I }, Rt =
{Status(t) == R}

refer to SI Appendix, section 7). Given a contact network G, we
assume that a node comes into contact with all its neighbours
at each timestamp. For the sake of simplicity, we omit the
timestamp t in the following discussion. More specifically, at
each timestamp, the susceptible individual u will become infected
from 2 contagion channels, i.e., i) 1-hop infected neighbors
with a transmission probability 1 − (1 − �)NI (u) (here NI (u)
denotes the number of 1-hop neighbors of the node u who are
infected), and ii) infected higher-order structures (in this study
we consider 2-simplices) which contain two infected individuals
with a transmission probability 1− (1− Δ�)QI (u) (here QI (u)
denotes the number of 2-simplices which involve the susceptible
node u and two other infected nodes). In our implementation,
for the target susceptible node u at timestamp t, we first generate
a random probability �(t)

S,u from a uniform distribution U (0, 1)

Fig. 3. Transmission of the COVID-19 virus over the contact network.
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Fig. 4. Illustration of the activity-driven contact network construction in one activity location in one county, VA. In this toy example, we i) identify individuals
active in a particular shopping mall on date t (for instance, we identified five such individuals), ii) compute the duration of contact between any two individuals,
iii) establish the actual connections between two individuals based on the predefined threshold �, and iv) build the corresponding contact network on the
date t.

and compare it with the probability 1 − (1 − �)NI (u) of being
infected by the 1-hop neighbors. If �(t)

S,u < 1 − (1 − �)NI (u),
then the susceptible node u becomes infected. Otherwise, we
compare �(t)

S,u with the probability 1− (1−Δ�)QI (u); similarly,

if �(t)
S,u < 1−(1−Δ�)QI (u), then the susceptible node u becomes

infected. (Here, �(t)
S,u may be viewed as stochastic individual

characteristics of node u at timestamp t, while �(t)
I,u may be

viewed as the individual characteristics of the infected node u
related to a recovery rate at timestamp t.) To study diffusion
among higher-order substructures of G, we now form a real-
valued vector space Ck which is endowed with basis from the
oriented k-simplices and whose elements are called k-chains.
Diffusion through higher-order graph substructures can be then
defined via linear maps among spaces Ck of k-chains on G. Fig. 3
visualizes how the infected nodes can infect their neighbouring
nodes, changing their state from S to I . Note that, similarly to
refs. 27–30, to capture the real-time evolution of the spread and
to enhance the explainability of the obtained results, the above
simplicial framework can be extended to a case of the time-
varying model where transmission and recovery rates evolve over
time (31).

Furthermore, to address our research Q3, in the proposed SC-
SIR model, we infer the transmission rate between an infected
individual u and a susceptible individual v based on their social
determinants. In particular, given a contact network G, we can
extract demographic featuresX ∈ RN×F of individuals including
age, gender, and their household locations. In this case, we first
compute the similarity simuv between nodes u and v. There are

Fig. 5. Illustration of the activity-family-driven contact network construc-
tion. Specifically, equipped with the built the activity-driven contact network
(from Fig. 4), we can build the resulting activity-family-driven contact network
by adding additional connectivity information (i.e., connections between
family members) for each individual based on their household information.

many ways to obtain simuv, and we list two options here, in which
xu and xv are feature vectors of nodes u and v, i.e.,

• Cosine similarity. It uses the cosine value of the angle between
two vectors to measure the similarity

simuv =
xu · xv

|xu||xv|
. [1]

• Heat Kernel. The similarity between two nodes u and v, where
� is the time parameter in heat conduction equation

simuv = exp
(
−
||xu − xv||2

�

)
. [2]

By definition, �̃ represents the attribute-based likelihood that a
disease is transmitted from an infect node u to a susceptible node
v per unit time. Given the pre-defined transmission rate �, we can
infer the attribute-based transmission rate �̃ can be expressed as

�̃uv = simuv · �. [3]

Hence, the susceptible individual u will become infected from
1-hop infected neighbors, where NI (u) = {v1, v2, . . . , vNI (u)},

with a transmission probability 1 − ΠNI (u)
i=1 (1 − �̃uvi). Note

that, we can fit the classic SIR model to real data to estimate
� or we can select � via the cross-validation (see more details
in SI Appendix, section 9) and we provide transmission rates of
the SC-SIR model comparison in SI Appendix, section 6 and
Table S5. See SI Appendix, section 1 and Table S1 for a full
glossary.

3. Experiments
A. Contact Network Construction. In this project, we study
a synthetic social contact network of the U.S. state of
Virginia. This dataset is characterized by the following summary
of network statistics as follows, i.e., population—7,908,211,
households—3,206,012, residence locations—3,206,012, and
activity locations—729,228. Our goal is to forecast the number
of positive COVID-19 cases at the county-level. For a target
county, we first build the synthetic social contact network based
on the longitude and latitude of households and activity locations
(or we can use the ADCW ID* to select the target county). This
is done to ensure that the targeted county is less impacted by
external mobility as, for example, occurs in large metropolitan
areas and university campuses. Now, we turn to the construction
of a synthetic social contact network for the county ci.

*https://www.adci.com/adc-worldmap.
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Table 1. Summary of counties in the State of Virginia
Dataset Population Density Diversity Med. age People fully vaccinated Health ranking Time range

Albemarle 113,535 157 0.379 39.4 87.47% 6/133 03/02/2022–03/31/2022
Charlotte 11,448 24 0.464 51.3 54.90% 118/133 12/22/2021–01/20/2022
Clarke 14,726 84 0.673 48.1 68.52% 19/133 02/10/2022–03/11/2022
Culpeper 53,596 141 0.452 39.8 65.24% 39/133 07/25/2021–08/23/2021
Hanover 111,603 236 0.269 42.7 76.96% 12/133 12/22/2021–01/20/2022
Highland 2,226 5 0.049 59.5 59.67% 66/133 12/22/2021–01/20/2022
Prince Edward 21,932 62 0.502 32.1 46.20% 92/133 12/22/2021–01/20/2022

S1 Using the latitude and longitude of each household (or the
ADCW ID), we find the county where it is located. Hence,
we can obtain household location IDs (hid ci ), person IDs
(pid ci

w ; whose households are located in the county ci), activity
location IDs (alid ci ) within the target county ci. Moreover, in
the “Activity Location Assignment” file, we also have timing
information about the start time (i.e., the start time of activity
in seconds since midnight Sunday/Monday) and during (i.e.,
duration of the activity in seconds) of each activity, and there
are four types of activities—shopping, school, college, and
religion.

S2 Based on the information obtained in the S1, for each activity
location alid ci

j ∈ alid ci , we can extract i) individuals who
are involved in an activity in the county ci but do not live
in the county ci (denoted as pid ci

w/o), ii) total duration of a
person (who can be either pid ci

w or pid ci
w/o) in the activity

location alid ci
j . For the sake of simplicity, we use pid ci to

denote individuals in the county ci.
S3 To build a synthetic social contact network of the county ci

based on its activity locations, we treat individuals pid ci as
nodes and connect two individual nodes uci and vci with an
edge if the length of time two individuals spend in the same
activity location is longer than � hours (where 1 ≤ � ≤ 24).
As we know, the closer the individuals are to each other or
the longer the individuals are in contact, the higher the risk
of transmission. We call this graph Gci

A the activity-driven
contact network. Fig. 4 illustrates an example of activity-
driven contact network construction.

S4 In addition, to involve family-wise information in the contact
network construction, we connect two individuals if they
have the same household ID. We thus obtain a new contact

network, i.e., an activity-family-driven contact network. Fig. 5
depicts an activity-family-driven contact network based on an
activity-driven contact network from S3.

We apply our proposed activity-driven contact network
construction and activity-family-driven contact network con-
struction strategies on seven counties in the state of Virginia, i.e.,
Albemarle county, Charlotte county, Clarke county, Culpeper
county, Henrico county, Highland county, and Prince Edward
county. Table 1 presents basic county-level properties for
the seven counties, and a specific one-month time period of
COVID-19 transmission prediction for each county. Moreover,
to better analyze the COVID-19 virus spreading, we consider
building activity-driven contact and activity-family-driven con-
tact networks with different connection densities. Specifically,
inspired by ref. 32, we set the contact time � (in hours) to be
� > 8 h and � > 12 h. That is, we consider the lengths of
time that two people come into contact with each other to be
8 and 12 h, which intuitively may be interpreted as the time
spent together during normal business hours and time spent
with families, respectively. Note that the actual time intervals
for COVID-19 transmission may be lower, which will result
in denser contact networks. However, the selected � thresholds
do not affect the generality of the proposed methodology
and are chosen for illustrative purposes only. Hence, for each
county, we can generate four types of contact networks, i.e.,
Activity-Driven Contact Network8,h (G8 h

A ), Activity-Family-
Driven Contact Network8,h (G8 h

A&F ), Activity-Driven Con-
tact Network12 h (G12 h

A ), and Activity-Family-Driven Contact
Network12 h (G12 h

A&F ). Tables 2 and 3 show the summary statistics
of the activity-driven contact network and activity-family-driven

Table 2. Summary of the synthetic social contact networks (with contact time> 8 h) in seven counties
Network Avg. Avg.

type # Nodes # Edges # Triangles Avg. deg. density Avg. C kavg/kmax household Avg. age

Albemarle G8h
A 27,988 307,082 284,678 21.944 7.841× 10−4 5.821× 10−1 16.539/210 2.036 34.101

G8h
A&F 55,698 362,949 307,074 13.033 2.339× 10−4 6.548× 10−1 9.901/210 2.266 31.326

Charlotte G8h
A 3,484 23,571 20,758 13.531 3.885× 10−3 5.793× 10−1 10.481/86 2.377 35.524

G8h
A&F 7,812 35,704 28,292 9.141 1.170× 10−3 7.407× 10−1 7.249/86 2.795 35.316

Clarke G8h
A 3,804 35,999 33,021 18.927 4.977× 10−3 5.743× 10−1 14.002/123 2.090 35.941

G8h
A&F 8,010 45,701 38,016 11.411 1.425× 10−3 6.900× 10−1 8.630/123 2.430 34.009

Culpeper G8h
A 14,001 282,153 269,343 40.305 2.879× 10−3 5.908× 10−1 30.239/206 2.010 33.201

G8h
A&F 27,979 311,830 280,391 22.290 7.960× 10−4 6.647× 10−1 16.802/206 2.291 30.152

Hanover G8h
A 28,819 459,960 435,851 31.921 1.107× 10−3 5.804× 10−1 23.923/221 1.923 34.460

G8h
A&F 58,986 515,855 462,866 17.491 2.965× 10−4 6.564× 10−1 13.169/221 2.148 31.641

Highland G8h
A 1,306 9,948 8,843 15.234 1.167× 10−2 7.841× 10−1 14.442/76 2.240 41.546

G8h
A&F 1,585 11,240 9,571 14.183 8.953× 10−3 7.222× 10−1 12.732/76 2.513 40.903

Prince Edward G8h
A 6,394 86,934 81,169 27.192 4.253× 10−3 5.619× 10−1 20.074/144 2.098 32.031

G8h
A&F 13,397 103,628 91,204 15.470 1.155× 10−3 6.916× 10−1 11.616/144 2.466 30.568
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Table 3. Summary of the synthetic social contact networks (with contact time> 12 h) in seven counties
Network Avg. Avg.

type # Nodes # Edges # Triangles Avg. deg. density Avg. C kavg/kmax household Avg. age

Albemarle G12h
A 2,359 3,887 2,373 3.295 1.398× 10−3 3.473× 10−1 2.790/30 2.081 34.945

G12h
A&F 40,456 60,529 32,082 2.992 7.397× 10−5 7.448× 10−1 2.937/30 2.476 27.598

Charlotte G12h
A 307 329 137 2.143 7.004× 10−3 3.119× 10−1 1.893/7 2.511 35.358

G12h
A&F 6,159 12,565 7,753 4.080 6.626× 10−4 8.702× 10−1 4.040/7 3.100 33.384

Clarke G12h
A 330 385 181 2.333 7.092× 10−3 2.521× 10−1 2.009/12 2.030 38.558

G12h
A&F 5,980 10,209 5,831 3.414 5.711× 10−4 6.098× 10−1 3.373/12 2.730 30.687

Culpeper G12h
A 1,146 2,144 1,389 3.742 3.268× 10−3 3.558× 10−1 3.108/16 2.105 33.825

G12h
A&F 20,591 32,355 17,682 3.142 1.526× 10−4 7.470× 10−1 3.073/16 2.537 26.195

Hanover G12h
A 2,312 4,271 2,733 3.695 1.599× 10−3 3.724× 10−1 3.090/17 2.013 33.002

G12h
A&F 44,011 61,012 30,611 2.772 6.299× 10−5 7.470× 10−1 2.711/17 2.348 27.837

Highland G12h
A 496 816 469 3.290 6.647× 10−3 4.802× 10−1 2.730/14 2.100 57.900

G12h
A&F 1,106 2,178 1,250 3.938 3.564× 10−3 6.533× 10−1 3.354/14 2.721 39.083

Prince Edward G12h
A 641 1,539 1,119 4.802 7.503× 10−3 3.640× 10−1 3.970/22 2.129 32.062

G12h
A&F 10,065 18,426 10,938 3.661 3.638× 10−4 7.974× 10−1 3.573/22 2.771 28.002

contact network of each county with the contact time � > 8 h
and � > 12 h, respectively. (Here Avg. C denotes the average
clustering coefficient, and kavg and kmax denote the average
and maximal core number of each node, respectively). Figs. 6
and 7 show the visualization of activity-driven and activity-
family-driven contact networks with the contact time � > 12 h
of Albemarle county, Charlotte county, and Culpeper county,
where the nodes are color coded to emphasize their degrees (the
higher the degree of the node, the more red it is). Our data are
available at https://github.com/SCPNAS/SC-SIR-Data.git. For
the visualizations of other counties, see SI Appendix, section 8
and Figs. S7 and S8.

B. Results. We illustrate the utility of our proposed SC-SIR
model in application to predict the number of COVID-19
infections among seven counties in Virginia. The data on the
numbers of COVID-19 cases (i.e., used as ground truth) are
obtained from NYTimes† via its COVID-19 data-gathering
operations, and the original data have been collected by the
Centers for Disease Control and Prevention.‡

The prediction periods of all seven counties are listed in
Table 1. Prediction performance is measured by the Root Mean
Square Error (RMSE). We also perform a one-sided two-sample

t-test between the best result and the best performance achieved
by the runner-up, where *, **, and *** are P-value < 0.1, 0.05,
and 0.01 (i.e., denote significant, statistically significant, highly
statistically, and significant results, respectively. We compare the
prediction performance with the SIR model. The best results
are bold. Furthermore, we also apply the SIR and SC-SIR
models on G8 h

A , G8 h
A&F , G12 h

A , and G12 h
A&F , respectively. Note that,

in our study, we calibrate the hyperparameters (including the
transmission probabilities and recovery rate) for all models using
grid-search cross-validation, and we use k-fold cross-validation
(where k = 5).

The prediction performances on Activity-Driven Contact
Network8 h and Activity-Family-Driven Contact Network8 h are
reported in Table 2. We observe that

• Compared with the SIR model, the proposed SC-SIR always
delivers better performance on all datasets. Especially, com-
pared with the SIRA

G , SC-SIRAF
G achieves maximum relative

improvements of 94.556% on Culpeper county, 62.444% on
Albemarle county, and 60.038% on Highland county. The
results demonstrate the effectiveness of SC-SIR.

• SC-SIRAF
G consistently outperforms SIRAF

G , and SC-SIRA
G

consistently outperforms SIRA
G on all the datasets, indicating

A Albemarle county B Charlotte county C Culpeper county

Fig. 6. Visualization of activity-driven contact networks with the contact time � > 12 h of (A) Albemarle county, (B) Charlotte county, and (C) Culpeper county.
The higher the degree of the node, the more red it is.

†https://www.nytimes.com/interactive/2023/us/covid-cases.html.
‡https://covid.cdc.gov/covid-data-tracker/#datatracker-home.
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Fig. 7. Visualization of activity-family-driven contact networks with the contact time � > 12 h of (A) Albemarle county, (B) Charlotte county, and (C) Culpeper
county. The higher the degree of the node, the more red it is.

the effectiveness of the higher-order interactions representation
learning in SC-SIR.

• Comparing SC-SIRAF
G and SC-SIRA

G , we observe that the
SC-SIR model on the activity-family-driven contact network
always shows better results than the SC-SIR model on the
activity-driven contact network. This further confirms the
importance of accounting for family factors in analysis of
contagion dynamics such as COVID-19 virus.

Moreover, we found that there is a high correlation between
higher-order structural features and the ratio of the infection
rate (for both the node-wise infection rate and the higher-order
infection rate) to the recovery rate. In particular, the higher
the ratio of the number of triangles to the number of nodes,
the higher ratio of the infection rate to the recovery rate is. A
well-informed ratio of the infection rate to the recovery rate is
important to establish the speed of spread and the effectiveness
of interventions.

Table 5 presents the overall prediction performances, which are
the averaged RMSE of our SC-SIR and SIR models on Activity-
Driven Contact Network12 h and Activity-Family-Driven Con-
tact Network12 h datasets. We can observe that i) the SC-SIRAF

G
always significantly outperforms the SIRA

G model, ii) the average
improvement of SC-SIRAF

G over SIRA
G on contact network with

the contact time � > 12 h (i.e., 81.862%) is almost two
times higher than that of SC-SIRAF

G over SIRA
G on contact

network with the contact time � > 8 h (i.e., 44.464%),
iii) the performances of SIR and SC-SIR models on activity-
family-driven contact networks are consistently better than their
performances on activity-driven contact networks. In addition,
as shown in Tables 4 and 5, we find that the performances of our
SC-SIR model on contact networks with contact time � > 8 h

are generally better than the performances of our SC-SIR model
on contact networks with contact time � > 12 h (except for
Charlotte and Clarke counties), which indicates that the network
density strongly impacts the performance of the SC-SIR model
to predict epidemic spread. In light of the research Q2, these
phenomena can be explained by the additional transmission
channels which are introduced by the group interactions, and
such new channels allow us to better capture heterogeneous
properties of contagion dynamics.

Furthermore, we rank the improvements of our SC-SIR model
on activity-family-driven contact networks with the contact times
� > 8 h and � > 12 h. We observe that the gains of the SC-SIR
model over the SIR model are related to the average density and
average household size. For instance, the improvement of the
SC-SIR over the SIR model in Hanover county is always lower
than that of in other counties due to Hanover county exhibiting
the lowest average density and the average number of people per
household. Additionally, Tables 4 and 5 indicate that the SC-SIR
model yields better prediction performance (i.e., smaller RMSE
values) on Albemarle, Clarke, and Culpeper counties.
• Contact time > 8 h: Culpeper > Albemarle > Highland >

Charlotte > Clarke > Prince Edward > Hanover;
• Contact time > 12 h: Highland > Charlotte > Clarke >

Albemarle > Culpeper > Prince Edward > Hanover.
Figs. 8 and 9 show the prediction performance (i.e., the fraction
of population infected at each timestamp) of the proposed
SC-SIR model compared to the SIR model on activity-driven
contact networks and activity-family-driven contact networks
of seven counties, with the contact time � > 8 h and
� > 12 h, respectively. Detailed experimental results on seven
counties are presented in SI Appendix, section 9 and Tables S7–
S12. Besides, we also provide the performance comparison in

Table 4. Performance comparison (RMSE) between SIR and SC-SIR on contact networks (where contact time> 8 h)
in seven counties

Activity-driven contact network8 h Activity-family-driven contact network8 h

County SIRA
G SC-SIRA

G SIRAF
G SC-SIRAF

G Improvements %

Albemarle 1.595× 10−3 6.792× 10−4 7.903× 10−4 ∗∗∗6.407× 10−4 62.444
Charlotte 4.677× 10−3 4.567× 10−3 3.615× 10−3 ∗∗3.215× 10−3 31.259
Clarke 1.254× 10−3 1.079× 10−3 1.453× 10−3 9.738× 10−4 22.344
Culpeper 7.456× 10−4 6.136× 10−4 8.305× 10−4 ∗∗∗4.059× 10−4 94.556
Hanover 1.941× 10−3 2.168× 10−3 1.576× 10−3 ∗∗1.570× 10−3 19.114
Highland 5.809× 10−3 4.734× 10−3 2.542× 10−3 ∗∗2.322× 10−3 60.028
Prince Edward 2.279× 10−3 1.926× 10−3 2.370× 10−3 ∗∗1.789× 10−3 21.501
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Table 5. Performance comparison (RMSE) between SIR and SC-SIR on contact networks (where contact time> 12 h)
in seven counties

Activity-driven contact network12 h Activity-Family-driven contact network12 h

County SIRA
G SC-SIRA

G SIRAF
G SC-SIRAF

G Improvements %

Albemarle 1.706× 10−3 1.163× 10−3 9.096× 10−4 ∗∗6.623× 10−4 61.178
Charlotte 8.963× 10−3 7.390× 10−3 4.693× 10−3 ∗∗∗2.884× 10−3 67.823
Clarke 2.523× 10−3 2.380× 10−3 1.278× 10−3 ∗∗8.189× 10−4 67.543
Culpeper 1.264× 10−3 1.642× 10−3 9.352× 10−4 ∗∗5.077× 10−4 59.834
Hanover 2.962× 10−3 3.547× 10−3 2.511× 10−3 ∗∗1.609× 10−3 45.679
Highland 1.435× 10−2 1.434× 10−2 5.021× 10−3 ∗∗∗4.567× 10−3 218.258
Prince Edward 5.070× 10−3 4.072× 10−3 2.878× 10−3 ∗∗2.397× 10−3 52.722

Pearson correlation coefficient in SI Appendix, section 5 and
Table S4.

To better evaluate the effectiveness of our SC-SIR model,
we compare the SC-SIRG with the SIR ODE model on the
activity-family-driven contact network with the contact time
� > 8 h, i.e., SIRODE. Table 6 suggests that our SC-SIRG
always outperforms SIRODE. This observation indicates that
modeling local graph structures and higher-order interactions
is vital for understanding epidemic spreading. Furthermore, we
present additional experiments on time-varying contact networks
and apply the proposed SC-SIR model on contact networks
with different sliding time windows (SI Appendix, sections 3
and 4). Note that while we currently focus on point forecasting,
the proposed simplicial approach can be expanded to the
probabilistic forecasting of the infection spread by using, for
example, various forms of Kalman filters, Bayesian techniques,
multi-model integration, and other ensemble based approaches
(33–38). The resulting simplicial-based probabilistic forecasts
can be evaluated using the weighted interval score (WIS) or other
versions of proper scoring rules (39–43).

C. Mitigation Strategies. We now investigate the sensitivity of
the proposed SC-SIR model to various mitigation strategies.
In particular, we consider scenarios where more central nodes
(individuals) are targeted to receive a vaccine, to quarantine or
are persuaded to wear masks (44, 45). More specifically, we treat
a mitigation strategy as a predefined fraction of nodes removed.
For instance, if the �% nodes are selected in the decreasing order
of their degree or betweenness, the resulting mitigation strategy
is called a degree-based strategy or betweenness-based strategy,
respectively. We consider two types of mitigation strategies,
i.e., degree-based strategy and simplicial complex-based strategy.
Similar to the degree-based strategy, for the proposed simplicial
complex-based strategy, we first compute the amount of k-
simplices (where k = {1, 2, . . . }) a node belongs to, and then
rank all the nodes in descending order of the number of k-
simplicies and select top �% influential nodes are considered
as the most influential nodes under this strategy. We conduct
experiments of the SC-SIR under three scenarios, i.e., without
mitigation, degree-based mitigation, and simplicial complex-
based mitigation. Specifically, for each mitigation, we remove

A Albemarle county B Charlotte county C Clarke county D Culpeper county

E Hanover county F Highland county G Prince Edward county

Fig. 8. Prediction performance comparison of SC-SIR and SIR models on activity-driven contact networks (G8h
A ) and activity-family-driven contact networks

(G8h
A&F ) with the contact time � > 8 h of seven counties, i.e., (A) Albemarle, (B) Charlotte, (C) Clarke, (D) Culpeper, (E) Hanover, (F ) Highland, and (G) Prince Edward.
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A Albemarle county B Charlotte county C Clarke county D Culpeper county

E Hanover county F Highland county G Prince Edward county

Fig. 9. Prediction performance comparison of SC-SIR and SIR models on activity-driven contact networks (G12h
A ) and activity-family-driven contact networks

(G12h
A&F ) with the contact time � > 12 h of seven counties, i.e., (A) Albemarle, (B) Charlotte, (C) Clarke, (D) Culpeper, (E) Hanover, (F ) Highland, and (G) Prince

Edward.

the nodes with top �% node degree scores or top �% amount of
k-simplices (here, we set k to be 2). Table 7 shows the performance
comparisons of our SC-SIR and SIR models under three scenarios
(i.e., without mitigation, degree-based mitigation, and simplicial
complex-based mitigation) on all seven counties. As Table 7
suggests, compared with the SIR, the SC-SIR model can get better
performances on all scenarios. Moreover, through comparing the
performances of SIRd

G and SIRsc
G (i.e., the SC-SIR models under

degree-based and simplicial complex-based mitigation strategies
respectively), the results demonstrate that SIRsc

G achieves better
performance across all counties except for Albemarle county. In
light of the research Q4, these findings suggest that, first, the
higher-order interactions play an important role in the COVID-
19 spread and, second, the simplicial complex-based approach
for disease control may be a competitive alternative for existing
mitigation strategies (44).

D. From SC-SIR to SC-SEIR. Both SIR and Susceptible-Exposed-
Infected-Recovered (SEIR) models are widely used in epidemi-
ology to describe the spread of infectious diseases. Different
from the SIR model, the SEIR model adds an additional
compartment, exposed, which represents individuals who have
been infected but are not yet infectious. Specifically, individuals
become exposed after exposure, and then become infectious after
a latent period during which the virus replicates in their bodies.
To study the effectiveness of our proposed simplicial complex-
based framework, in this section, we extend our SC-SIR to a
simplicial complex-based SEIR (i.e., SC-SEIRG ) model for the
long-term prediction. Moreover, instead of working on datasets

shown in Tables 2 and 3, we apply SC-SEIRG and SEIRG
models on specific activity-family-driven contact networks. From
the activity location assignment file, there are four different
types of activity locations, and then we build the activity-
family-driven contact network for each type of activity location
separately by using the contact network construction scheme
(following the section A and we set the contact time � > 8 h).
Hence, we obtain the i) shopping-family-driven contact network
(G8 h

Sho&F ), ii) school-family-driven contact network (G8 h
Sch&F ), iii)

college-family-driven contact network (G8 h
C&F ), and iv) religion-

family-driven contact network (G8 h
R&F ) for four types of locations

respectively. We then apply both SEIRG and SC-SEIRG models
to all the above specific contact networks in Albemarle county,
Charlotte county, and Hanover county. Tables 8–10 display the
overall prediction performances of our SC-SEIRG and SEIRG
models on specific contact networks of three counties from
01/22/2020 to 07/19/2020 (totaling 180 d). We observe that
the proposed SC-SEIRG model achieves better performance
across all three datasets. For instance, our SC-SEIRG on G8 h

R&F
delivers relative gains of 25.0%, 27.0%, and 8.62% on Albemarle
county, Charlotte county, and Hanover county respectively. To
sum up, our results indicate that information on higher-order
interactions is an important complementary asset leading to
improved predictive performance.

E. From SC-SIR to SC-SEIAR. In the real world, the spread of
COVID-19 includes not only symptomatic individuals, but also
those who do not show any symptoms (i.e., asymptomatic), Thus,
in this study, we also incorporate asymptomatic infections into

Table 6. The estimation comparison on seven counties between SIRODE and SC-SIRG
Model Albemarle Charlotte Clarke Culpeper Hanover Highland Prince Edward

SC-SIRG 6.407× 10−4 2.884× 10−3 8.189× 10−4 4.059× 10−4 1.570× 10−3 2.322× 10−3 1.789× 10−3
SIRODE 7.208× 10−4 9.679× 10−2 9.371× 10−4 4.137× 10−4 2.255× 10−3 2.330× 10−3 3.024× 10−3
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Table 7. Mitigation strategies comparison on seven counties
Without mitigation Degree-based mitigation (10%) Simplicial complex-based mitigation (10%)

County SIRG SC-SIRG SIRd
G SC-SIRd

G SIRsc
G SC-SIRsc

G

Albemarle 2.630× 10−3 2.239× 10−3 1.273× 10−3 1.161× 10−3 1.666× 10−3 1.416× 10−3

Charlotte 3.545× 10−3 3.418× 10−3 3.253× 10−3 3.230× 10−3 3.244× 10−3 3.166× 10−3

Clarke 3.232× 10−3 3.034× 10−3 3.145× 10−3 2.834× 10−3 2.562× 10−3 2.516× 10−3

Culpeper 3.537× 10−3 2.809× 10−3 2.302× 10−3 2.143× 10−3 2.044× 10−3 1.823× 10−3

Hanover 2.147× 10−3 2.062× 10−3 1.864× 10−3 1.738× 10−3 1.667× 10−3 1.610× 10−3

Highland 1.003× 10−2 8.170× 10−3 9.123× 10−3 7.525× 10−3 6.734× 10−3 6.541× 10−3

Prince Edward 3.672× 10−3 3.618× 10−3 2.249× 10−3 2.054× 10−3 1.940× 10−3 1.872× 10−3

Table 8. Overall prediction performance of SEIRG and
SC-SEIRG on Albemarle county
Model G8h

Sho&F G8h
Sch&F G8h

C&F G8h
R&F

SC-SEIRG 0.232 0.678 0.072 0.168
SEIRG 0.253 0.712 0.086 0.210

Table 9. Overall prediction performance of SEIRG and
SC-SEIRG on Charlotte county
Model G8h

Sho&F G8h
Sch&F G8h

C&F G8h
R&F

SC-SEIRG 0.124 0.534 0.068 0.174
SEIRG 0.167 0.593 0.069 0.221

Table 10. Overall prediction performance of SEIRG and
SC-SEIRG on Hanover county
Model G8h

Sho&F G8h
Sch&F G8h

C&F G8h
R&F

SC-SEIRG 0.107 0.102 0.085 0.106
SEIRG 0.191 0.115 0.097 0.116

Table 11. Overall prediction performance of SEIARG
and SC-SEIARG on Albemarle county
Model G8h

Sho&F G8h
Sch&F G8h

C&F G8h
R&F

SC-SEIARG 0.213 0.576 0.072 0.136
SEIARG 0.251 0.649 0.074 0.198

SEIRG and introduce a model, namely SEIARG (Susceptible–
Exposed–Infectious–Asymptomatic–Recovered) model. Specifi-
cally, different from the SEIRG model, if susceptible persons
contact with asymptomatic and symptomatic infected people,
their status will change to exposed. Specifically, after the exposed
period, the probability of an exposed person entering into symp-
tomatic infected status is � and the probability of being exposed
into asymptomatic infected is � ′ (where � + � ′ = 1). Similar
to the SC-SEIRG model (see subsection D), in this subsection,
we develop a simplicial complex-based SEIAR (i.e., SC-SEIARG )
model for the COVID-19 transmission prediction on Albemarle,
Charlotte, and Hanover counties. In Tables 11–13, we show
the prediction performance of our SC-SEIARG and SEIARG
on three counties. Clearly, the proposed SC-SEIARG always
performs better than SEIARG on all datasets cross different types
of contact networks. Moreover, we observe that SC-SEIARG
achieves a better performance compared with the SC-SEIRG .
For example, on Charlotte county especially, SC-SEIARG yields
more than 3.57% relative improvements to the SC-SEIRG , hence
demonstrating the effectiveness of our method for the prediction
of COVID-19 cases.

Table 12. Overall prediction performance of SEIARG
and SC-SEIARG on Charlotte county
Model G8h

Sho&F G8h
Sch&F G8h

C&F G8h
R&F

SC-SEIRG 0.113 0.497 0.056 0.168
SEIARG 0.187 0.539 0.077 0.200

Table 13. Overall prediction performance of SEIARG
and SC-SEIARG on Hanover county
Model G8h

Sho&F G8h
Sch&F G8h

C&F G8h
R&F

SC-SEIARG 0.102 0.098 0.079 0.129
SEIARG 0.185 0.108 0.096 0.126

4. Conclusion and Discussion
The goal of this paper is to glean a better and more systematic
understanding of the potential role that various higher-order
social group interactions may play in contagion propagation—
a fundamental problem that has recently received a surge of
interest in a broad range of disciplines, from biosurveillance to
computer science. To design a more holistic approach to this
open problem and to learn the additional transmission routes,
we have capitalized on the emerging concepts of simplicial
models. Our results have confirmed the intuitive premise that
explicitly accounting for group (or more formally, polyadic)
interactions play an important role in both tracking the contagion
spread and developing more efficient mitigation strategies. In
particular, integrating simplicial complexes which describe such
higher-order social interactions has led to a reduction of RMSE
from 0.09% to 25.75% over seven counties in the state of
Virginia. This phenomenon has been found to manifest across
all considered types of mechanistic models, and, as it could be
expected, the impact of group interactions increases with the joint
time the group members spend together. Not surprisingly then,
family-driven activities have demonstrated the highest impact on
the contagion dynamics.

While the obtained results offer an important glimpse into
the hidden mechanisms behind contagion propagation on social
networks, this study is yet just one of the first steps toward
a better understanding of the key driving factors of spread
dynamics. In particular, little is known about uncertainty
propagation associated with simplicial models. One of the
promising approaches here is to use arbitrary polynomial chaos
expansion on simplicial complex-based mechanistic models,
thereby, extending the recent results of ref. 46. Furthermore,
it is important to investigate the critical time the group can
spend together in order to exhibit a substantial impact on the
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spread dynamics. Such impact in turn is closely related to the
imposed mitigation measures such as curfews, quarantines and
the associated mobility patterns (47–50). Finally, the higher-
order group interactions are to be systematically integrated
into the construction of synthetic social contact networks (51–
57) and, more generally, be accounted in digital twins of
population behavior. Needless to say, these implications and
open questions are valid way beyond biosurveillance and apply
to a wide range of problems, from information propagation
and signal processing (58, 59) to financial contagion and
fraud detection (60, 61) to resiliency of critical infrastructures
(62–64).

Finally, we would like to emphasize that all the discussed
models, from the independent cascade approaches to simplicial
ones, are simply mathematical abstractions for describing the
virus spread (65). Our premise is that the simplicial abstraction
and its systematic treatment under various realistic scenarios may
open a path for a better understanding of various yet largely
unexplained phenomena about the latent relationships between
the level of dose and risk of infection.

Data, Materials, and Software Availability. All study data are included in
the article and/or SI Appendix.
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