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Neural speech tracking has advanced our understanding of how our brains rapidly
map an acoustic speech signal onto linguistic representations and ultimately meaning.
It remains unclear, however, how speech intelligibility is related to the corresponding
neural responses. Many studies addressing this question vary the level of intelligibility by
manipulating the acoustic waveform, but this makes it difficult to cleanly disentangle the
effects of intelligibility from underlying acoustical confounds. Here, using magnetoen-
cephalography recordings, we study neural measures of speech intelligibility by manipu-
lating intelligibility while keeping the acoustics strictly unchanged. Acoustically identical
degraded speech stimuli (three-band noise-vocoded, ~20 s duration) are presented twice,
but the second presentation is preceded by the original (nondegraded) version of the
speech. This intermediate priming, which generates a “pop-out” percept, substantially
improves the intelligibility of the second degraded speech passage. We investigate how
intelligibility and acoustical structure affect acoustic and linguistic neural representa-
tions using multivariate temporal response functions (mTRFs). As expected, behavioral
results confirm that perceived speech clarity is improved by priming. mTRFs analysis
reveals that auditory (speech envelope and envelope onset) neural representations are
not affected by priming but only by the acoustics of the stimuli (bottom—up driven).
Critically, our findings suggest that segmentation of sounds into words emerges with
better speech intelligibility, and most strongly at the later (~400 ms latency) word pro-
cessing stage, in prefrontal cortex, in line with engagement of top—down mechanisms
associated with priming. Taken together, our results show that word representations
may provide some objective measures of speech comprehension.

speech intelligibility | MEG | TRF | neural tracking | vocoded speech

When we listen to speech, our brains rapidly map the acoustic sounds into linguistic
representations while recruiting complex cognitive processes to derive the intended mean-
ing (1, 2). A fundamental goal in auditory neurophysiology is to understand how the
brain transforms the acoustic signal into meaningful content. Along this avenue, a large
body of research has demonstrated that neural responses time lock to different features of
the speech signal (“neural speech tracking”) (2, 3). These features have primarily included
acoustic features like the speech envelope and envelope onset but more recently also include
linguistic units such as word onsets, phoneme onsets and context-based measures along
different levels of the linguistic hierarchy. However, it remains unclear how these neural
tracking measures are affected by intelligibility.

Neural tracking measures of intelligibility have often been investigated using experi-
mental designs that manipulate intelligibility by altering the underlying acoustical struc-
ture, such as through time compression (4, 5), disruption of spectro-temporal details
(6-8), and time reversal (4, 9). While these studies successfully demonstrate differences
in cortical tracking responses, interpreting these findings is not straightforward, as the
observed changes in the neural response may arise from the alterations in the acoustic
waveform (bottom—up), rather than the intelligibility change itself (top—down).
Intelligibility-related neuromarkers derived from neural responses play a crucial role in
advancing our understanding of the neurophysiology of the speech understanding. They
would contribute to the clinical evaluation of auditory function across diverse clinical
populations and aid in the hearing device evaluation (10). In situations where obtaining
verbal responses is challenging, such as with infants or individuals with cognitive disabil-
ities, as well as when subjective estimates are affected by individual differences, neuro-
markers of intelligibility would offer a noninvasive and objective means to investigate the
underlying neural processes.

In this study, we disentangle intelligibility from any underlying acoustical confounds
by using single instances of noise-vocoded speech combined with a priming paradigm.
Noise-vocoded speech greatly reduces intelligibility by removing spectral details but still
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preserving the slow temporal envelope and is often used as a
surrogate for speech perception by cochlear implant patients (11).
It is generated by processing the original speech signal through
a multi-frequency-channel vocoder, where higher numbers of
channels retain more intelligibility due to the retention of more
spectral information. With a sufficiently low number of channels,
most vocoded speech is largely unintelligible without practice.
In the current study, we used three-band noise-vocoded speech.
Magnetoencephalography (MEG) data were recorded from
young adult participants (V = 25) as they listened to a passage
of noise-vocoded speech, first before any priming (PRE), followed
by listening to the original, nondegraded version of the same
passage to invoke priming (CLEAN), and then finally listening
to the same noise-vocoded speech passage as before (POST),
repeated for 36 trials (Fig. 14). At the end of each vocoded speech

A

passage, participants were asked to rate the perceived speech clar-
ity on a scale from 0 to 5. Compared to previous studies (12—15)
using a similar paradigm with shorter sentences (<5 s), the cur-
rent study uses much longer passages (~20 s), making it chal-
lenging to rely solely on short-term memory to understand POST
vocoded speech.

To characterize how different speech features are tracked in the
cortical response, we utilized multivariate temporal response func-
tion (mTRF) analysis (16-18), as illustrated in Fig. 1B. Similar
to conventional event-related potentials (ERPs), TRFs are used to
assess how the brain reacts to different speech features over time.
In contrast to ERPs, which rely on averaging numerous short
responses to determine the brain’s reaction to given stimulus, TRFs
enable the examination of brain’s responses to continuous speech,
as well as simultaneous responses to multiple speech features (1).
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Experimental methodology, spectro-temporal characteristics of the speech stimuli, analysis framework, and behavioral results. (4, Top) Participants
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listened to 36 audiobook passages in vocoded and clear speech conditions. Each trial consisted of presentation of the same passage in vocoded format (PRE),
clear format (CLEAN), and identical vocoded format (POST). At the end of each vocoded speech passage, participants rated the speech clarity on a scale from
0 to 5. (Bottom) Spectrograms and temporal envelopes (overlaid in pink) of vocoded and clear speech. Most spectral and fine temporal details of the vocoded
speech are lost (e.g., the pronounced vertical striping), but the broad temporal envelopes of the clear and vocoded speech are very similar. (B) Multivariate
temporal response function (mTRF) analysis of MEG and predictor variables illustrated with sample of stimuli. Individual TRFs represent the brain’s responses
to the corresponding speech representations at different time lags. (C) Linear mixed effects model (LMEM) predicted speech clarity ratings (0 to 5) for PRE and
POST vocoded conditions. Perceived clarity of the vocoded speech is significantly improved after the clear speech priming. (D) LMEM model predicted speech
clarity ratings for PRE1 and PRE2 vocoded conditions in the control study. In the control study, subjects listened to the vocoded speech passages without
priming, where the two vocoded speech presentations are denoted by PRE1 and PRE2. Perceived clarity of the second presentation is enhanced compared to
first presentation, but the improvement is smaller compared to that with priming. *P < 0.05, **P < 0.01, ***P < 0.001
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We included three classes of speech features for which to extract
responses: acoustic, sublexical, and lexical. The specific features
employed were speech envelope, envelope onset, phoneme onset,
and word onset, to cover a range of neural responses from acoustic
processing to lexical-level processing.

We first determined whether each of these features are repre-
sented in the cortical response by evaluating the explained response
variability for each of the speech conditions (PRE, POST, and
CLEAN). Then, we investigated how the cortical representations
of the different speech features are modulated by intelligibility
(PRE vs. POST) and by acoustics (vocoded PRE and POST vs.
CLEAN) at different auditory processing stages, by comparing
the TRF peak amplitudes and explained variability. To further test
whether differences in PRE vs. POST may be attributable to intel-
ligibility, as opposed to mere passage repetition, a control study
was conducted involving 12 subjects who listened to the same
passages but in a different order without priming (i.e., PREI,
PRE2, and CLEAN). All analyses were performed on source-
localized brain responses and were restricted to temporal, frontal,
and parietal brain regions.

Results and Discussion

Behavioral Performance Increases with Speech Priming. We first
determined the extent to which the speech priming (perceptual
learning) affected the speech intelligibility between PRE and POST
vocoded conditions using perceived speech clarity ratings. A linear
mixed effect model (LMEM) was modeled with perceived clarity
rating as the dependent variable, condition as a fixed effect, and
random intercept and slopes for condition by subject as random
effects [clarity rating ~ 1 + condition + (1 + condition|Subject)]. As
illustrated in Fig. 1C, the fixed effects of condition revealed that
rated speech clarity in the POST vocoded condition is improved
compared to PRE (increase = 1.81, SE = 0.16, P < 0.001). In
the control study (Fig. 1D) where the CLEAN speech was only
presented after the second vocoded speech presentation, perceived
clarity ratings did show significant improvement in clarity even
without the clean speech priming (increase = 0.52, SE = 0.10,
P < 0.001). However, the effect was substantially smaller than
the priming effect (PRE2-PRE1 vs. POST-PRE = -1.28, P, <
0.001), suggesting that priming has a substantially larger impact
on speech clarity relative to acoustical learning without priming.

This result supports the idea that presentation of the clear
speech, which provides information regarding both the linguistic
content (i.e., words, content) and physical acoustical structure
(i.e., thythm, pace) of the degraded speech, facilitates (a top—down
influence on the) understanding of POST vocoded speech. Thus,
in agreement with previous studies, speech that is acoustically
identical but initially unintelligible can be made intelligible
through perceptual learning (12, 14, 15, 19-23).

Neural Responses to Acoustic Features Do Not Index Speech
Intelligibility, only Acoustics. To test the extent to which each
of the acoustic features is represented in the brain and for each
condition, we first compared the predictive power, measured as the
explained variability (R°) of the full model against a reduced model
that excluded the predictor of interest (see Fig. 2 B and C, right
column, brain plots). This prediction accuracy analysis revealed
that both acoustic envelope and envelope onset significantly
contribute to the model’s absolute predictive power for all
three conditions, PRE (envelope: ¢, = 6.5, P < 0.001, onset:
b = 0.2, P < 0.001), POST (envelope: ¢, = 7.3, P < 0.001,
onset: £, = 5.9, P < 0.001), and CLEAN (envelope: #,,,. = 6.3,
P <0.001, onset: £, = 7.24, P < 0.001). These findings suggest

PNAS 2023 Vol.120 No.49 e2309166120

that acoustic features are processed irrespective of the stimuli
intelligibility. The anatomical distribution of significant acoustic
feature processing for each condition was observed in locations
spreading spatially from Heschl’s gyrus to superior temporal gyrus
(STG) and much of temporal lobe. This distribution was bilateral,
and also dominantly in the right hemisphere except for clean
speech envelope and vocoded speech envelope onset processing
[(left vs. right hemisphere) envelope: PRE_#,,,. = -5.35, P=0.02,
POST 7, = -5.25, P = 0.004, CLEAN /... = 3.3, P = 0.41,
envelope onset: PRE_¢,,, = -4.27, P=0.02, POST _¢,,,. = -3.46,
P=0.39, CLEAN_¢,,,. = -4.68, P = 0.006]. This pattern of source
localization, including right-hemisphere dominance, suggests that
the processing of these speech features relies heavily on bottom—
up-driven mechanisms (24, 25).

In order to determine whether the processing of acoustic features
differed based on speech intelligibility (PRE vs. POST) or acoustics
of the stimuli (vocoded vs. clean speech), we compared the model
improvements between speech conditions for each acoustic feature
individually. Pairwise mass-univariate-related samples # test revealed
that there is no significant difference between PRE vs. POST voc-
oded speech with respect to both envelope (z,,,. = -3.9, P = 0.57)
and envelope onset (7, = 4.39, P=0.09). In contrast, the variance
explained due to envelope processing was significantly stronger for
vocoded speech compared to clean speech (%, = 6.8, P < 0.001),
and the opposite for envelope onset processing (2, = -7.44,
P < 0.001), suggesting that auditory responses are mainly driven
by the manipulations in the stimuli.

We then investigated how the brain responds to acoustic speech
representation at different cortical processing stages with an ampli-
tude analysis of the TRF waveforms. In analogy to the ERP P1-N1
peaks at the corresponding latencies, the envelope TRF showed
two main peaks (Fig. 2A4), a positive polarity peak at ~50 ms latency
followed by a negative polarity peak ~100 ms, known as the
M50z and M100 g, respectively (1, 17). Analogous to these
envelope peaks, envelope onset responses also showed two main
peaks at ~75 ms and ~130 ms, consistent with previous studies
(1, 26). The M50 g and M 100 peaks can be ascribed to different
auditory cortical processing stages with the corresponding latencies
(27). It has been suggested that the early M50 peak dominantly
reflects the neural encoding of low-level processing, e.g., physical
acoustic of the stimuli (28, 29), whereas the M100-; peak reflects
additional higher-level processing, e.g., selective attention (17, 28,
30). Using a paired samples 7 test, we investigated the extent to which
these peak amplitudes are affected by the intelligibility and acoustic
characteristics of the stimuli (Fig. 2 B and C). In line with the pre-
diction accuracy results above, we failed to find an effect of intelli-
gibility for the neural responses to acoustic features (both envelope
and envelope onset) for both the M50 [envelope:
P=0.63, envelope onset: = 0.80) and M 100y, peaks (envelope:
P =0.71, envelope onset: P = 0.29)], but TRF peak amplitudes
were significantly affected by the differences in acoustics for both
the M50 gy (PRE vs. CLEAN: envelope P < 0.001, envelope onset
P < 0.001) and M100y; peaks (PRE vs. CLEAN: envelope
P = 0.03, envelope onset P = 0.003); effect sizes are reported in
SI Appendix, Table S1. These results support the previous finding
that such low-frequency auditory cortical responses are not neces-
sarily driven by the intelligibility or the linguistic content of the
stimuli but rather reflect the sensitivity to differences in sensory input
(12, 15, 20, 23). Some prior studies using similar experimental par-
adigms have instead reported stronger envelope tracking for trials
associated with better speech intelligibility. These studies used dif-
ferent neural tracking indices, either more complex (23, 31),
more robust against low neural SNR (speech envelope reconstruc-
tion rather than TRF analysis) at the expense of less temporal
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Fig. 2. Neural responses to envelope, envelope onset, and phoneme onset. (A) TRFs from a representative subject in source space, visualized as a single
time series using principal component analysis (PCA). The TRFs exhibit an early peak (positive polarity peak marked by <) and late peak (negative polarity peak
marked by x). (B-D, Left) Bar plots (mean + standard error (SE)) compare the measured peak amplitudes in the denoted time window (for left (LH) and right (RH)
hemispheres separately) for envelope, envelope onset, and phoneme onset, respectively. Individual subject data points are shown for both vocoded conditions
with each subject’s data points connected by lines (see S/ Appendix, Fig. S1A for CLEAN speech individual data points). Peak amplitudes were extracted as the
maximum peak of the sum of absolute current dipole strengths across sources with a specific polarity, where the polarity was determined from the current
directions from the original source TRFs. (Right) Brain plots show cortical regions where the given speech feature significantly improves the model fit over and
beyond other speech features in the model. Vertical significance brackets indicate significant differences between conditions, and horizontal significance brackets
below brain plots indicate lateralization differences. The dashed lines within the bars represent the noise floor, where peaks for a noise model were extracted
using the same steps as above. Significant differences were found between vocoded vs. clean passages, but no differences were observed between PRE vs. POST.

resolution (13), ECoG-based high gamma responses (20) or did
not yield a clear relationship (22). Differences from the current
findings may be due to several factors, including differences in the
neural measures employed or high gamma responses reflecting dif-
ferent neural sources compared to MEG or electroencephalography
(EEG). A simpler explanation, however, may be to ascribe such
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differences to the employment here of higher-level linguistic feature
encoding (e.g., lexical segmentation responses), which allow a finer-
grained analysis of which aspects of the speech tracking responses
are due to acoustic vs. higher-level features. As can be seen from
the present results, envelope and envelope onset are very sensitive
to changes in the sensory input, and any changes there associated
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with speech intelligibility may be very subtle. Indeed, improved
data processing techniques and further refinements in acoustic
neural indices might well alter uncover changes with the intelligi-
bility for the lower-level acoustic responses. Additionally, several
studies reporting increased intelligibility associated with increased
cortical speech tracking relied on changing the corresponding
underlying acoustics, creating a confound (6, 13).

The M504; peak of the envelope response was significantly
stronger for vocoded speech compared to clean speech, whereas
this effect was reversed for the envelope onset response (S Appendix,
Table S1), suggesting that distinct mechanisms are involved in
envelope and envelope onset processing. Analysis of the ratio of
M50 between envelope and envelope onset comparison across
conditions provided additional support for the reliability of this
reversing effect (PRE vs. POST: #,, = 0.53, P = 0.56, PRE vs.
CLEAN: 7,,= -6.25, P < 0.001). This finding for the early enve-
lope TREF peak is consistent with previous studies (8, 22, 32, 33),
where it was proposed that this effect is modulated by task demand
(22) or sensory gain of acoustic properties (8); this early peak is
too early to be modulated by attention (17). Instead, we propose
that the higher envelope TRF amplitudes observed for vocoded
speech are a result of its low spectral variability, which leads to
higher levels of synchronization along the tonotopic axes, resulting
in stronger MEG responses. In contrast, reduced vocoded speech
envelope onset tracking can be attributed to the loss of salient
acoustic onsets in vocoded speech, a result of the loss of spectro-
temporal details intrinsic to the process of vocoding (Materials
and Methods, Predictor Variables).

Compared to vocoded speech, both envelope and envelope
onset in clean speech exhibited stronger M100 4 peak ampli-
tudes. This suggests that the observed differences in vocoded vs.
clean speech for the M50z and M 100 g are due to different
underlying brain processes, where the M504 depends more
strongly on the physical acoustics while M100g also reflects
higher-level processing (17, 28, 30). However, to the extent
M100-gp peak is indicative of higher-level processing, it is a strik-
ing finding that it is not influenced by intelligibility.

Responses to Phoneme Onsets. Although phoneme onsets
(Fig. 2D) significantly contributed to the model’s predictive power
in each speech condition (PRE: z,,,. = 4.9, P< 0.001, POST: ¢, =
5.4, P < 0.001, CLEAN: z,,,. = 6.8, P < 0.001), no significant
differences were detected between the conditions. Consistent
with previous studies (1), the phoneme onset TRF showed two
main peaks, an early positive polarity peak ~ 80 ms and a late
negative polarity peak ~150 ms, which were comparable to the
envelope onset peaks. The amplitude of the early peak showed
no difference between PRE vs. POST (P = 0.68) nor vocoded vs.
clean speech (P = 0.28), indicating that these early responses are
not modulated by either acoustics or intelligibility. However, the
late negative polarity peak was stronger in clean speech compared
to vocoded speech (CLEAN vs. PRE: P = 0.003, CLEAN vs.
POST: P < 0.001, PRE vs. POST: P = 0.31), indicating that this
late processing stage is affected by the physical acoustics. Phoneme
onset processing originated bilaterally from areas including primary
auditory cortex and was right lateralized for clean speech (z,,,, =
-4.39, P<0.02), supporting previous results that phoneme onset
processing occurs early in the auditory processing hierarchy and
may reflect more acoustic processing than linguistic. These results
are aligned with a previous EEG study (23) that investigated the
impact of perceived intelligibility on phoneme-level processing
(a more complex measure does show effects of priming in the
delta band). Thus, despite the sublexical or linguistic nature of
the phoneme onset feature, the neural responses suggest that, as a
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neural measure, it functions more like an auditory (or intermediate
auditory-linguistic) measure.

Neural Responses to Lexical Segmentation Indexes Speech
Intelligibility. In the current study, we incorporated a lexical feature
to extend the investigation of the effects of intelligibility with
respect to neural speech representation: the word onset response.
Prediction accuracy analysis revealed that the word onset responses
significantly explain additional variability in the measured neural
response over and beyond acoustic and phoneme onset features,
across all three speech conditions (PRE: ¢, = 4.6, P < 0.001,
POST: ¢, =4.6,P<0.001, clean: z,,,. = 5.1, < 0.001). The word
onset TRFs (Fig. 34) showed two main peaks, an early positive
polarity peak (~100 ms) and a substantially later negative polarity
peak (~400 ms). The late peak is comparable to the latency and
polarity of classical N400 responses (9, 34, 35), a potential marker
of complex language processing, and so will be referred to here
as the N400 . Interestingly, the peak amplitude comparison
(Fig. 3B) revealed that the intelligibility of the speech modulates
both early (P = 0.02; Cohen’s d = 0.39) and late peak amplitudes
(P<0.001;d=0.82), withasubstantially greater effect size observed
for the late peak. Comparing clean vs. vocoded speech, we found
that the clean speech TRF amplitudes are stronger compared to
vocoded speech for both early (?<0.001) and late peak responses
(PRE vs. CLEAN: P < 0.001; d = 1.20, POST vs. CLEAN:
P =0.04; d = 0.40). Additionally, the late peak amplitude of POST
is significantly closer to that of CLEAN than the corresponding
amplitude of PRE is to CLEAN, suggesting that the late word onset
responses of POST are more similar to CLEAN than those of PRE.

Because prediction accuracy, as implemented above, integrates
over a longer time window (-200 to 800 ms), it is not able to
disentangle specific contributions to the prediction accuracy and
source localizations of each processing stage. To address this, we
conducted a separate analysis on the explained variability, focusing
on early (50 to 300 ms) and late (330 to 650 ms) processing stages
separately (Fig. 3 Band D). As can be seen from Fig. 3D, predic-
tion accuracy comparisons between PRE vs. POST revealed that,
during the early processing stage, neural processing is significantly
stronger in POST compared to PRE in the STG (2 = 0.01).
Notably, at the late processing stage, this effect was extended to
the left prefrontal cortex (PFC) (P < 0.001). Additionally, the
comparison between vocoded and clean speech revealed that, at
the early processing stage, clean speech elicited stronger neural
responses across much of the temporal lobe (P < 0.001) and
toward the late stage, significant differences were confined primar-
ily to both left STG and PFC (2 < 0.001).

This key finding suggests that responses to word onset can serve
as an index of speech intelligibility independent of the acoustics.
Neural tracking of word onsets represent both bottom—up and top—
down processes (18, 36, 37). The early word onset peak may dom-
inantly reflect bottom—up driven mechanisms such as acoustics at
word boundaries and automatic word segmentation, but neverthe-
less does show significant changes after priming. The ~400 ms
latency peak, however, is too late to be solely modulated by acoustics
and could incorporate higher-order word segmentation, semantic
integration and other top—down processes (5, 37). When the voc-
oded speech is unintelligible, neither the words nor word boundaries
are clear, resulting in weaker synchronized neural responses at the
word onsets. As a result of priming, however, the brain has been
provided with additional information (perhaps in the form of new
priors) regarding the cues for words, enabling higher intelligibility
and the concomitant word boundaries, enabling the emergence of
word onset responses. These responses are smaller compared to those
of clean speech, as might be expected due to less precise time-locking
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late processing stage this effect was extended to left PFC. Peak amplitude enhancement is not observed for mere passage repetition (in the control study) in

either early or late responses.

associated with still-present word boundary uncertainty. The ana-
tomical distribution of the early processing stage, bilateral STG,
may reflect a mix of both unaccounted-for auditory responses and
also the expected higher-level lexical processing, while the late pro-
cessing stage's activation of left lateralized PFC may link to the
engagement of top—down mechanisms. Such prefrontal activation
is consistent with functional MRI studies using a similar paradigm
that found more activation in prefrontal and cingulate cortices with
increased speech intelligibility (21). The current study expands on
this result by leveraging MEG’s superior temporal resolution to
show that these processes specifically occur in a time-locked manner:
corresponding to the N400 4 peak, with a~400 ms post-word-onset
latency, and the same polarity as the N400.

Neural Responses to Contextual Word Surprisal. One additional
analysis was conducted, leveraging context-based speech
representations (including those from large language models)
that have recently gained popularity in the field of neural speech
and language processing and may represent aspects of semantic
integration and speech comprehension (2, 37—41). Contextual
word surprisal was additionally included as a separate predictor,
estimated using a generative pretrained large language model
(GPT-2) (42), which quantifies how surprising a word is given the
previous context. Analysis revealed that contextual word surprisal
responses show similar effects of intelligibility to those observed
in word onset responses for the late processing stage (S Appendix,
Fig. S1B) (P = 0.03). The ecarly processing stage, however, was
not significantly stronger in POST compared to PRE (2= 0.93).
The significant response to a context-based speech representation
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is evidence for comprehension-linked processing, in addition to
and beyond mere lexical segmentation, especially at the late stage.

Neural Responses to Passage Repetition. Finally, to strengthen
the support for the idea that the observed differences in PRE vs.
POST word onset responses are indeed linked to intelligibility
itself and are not just a side effect of passage repetition increasing
familiarity, we repeated the same analysis but for the control study
(Fig. 3C). Ciritically, there was no word onset response change
from PREI to PRE2 for either the early (P = 0.34) or late peaks
(P = 0.74). Word onset TRF peak amplitudes were significantly
larger for CLEAN speech compared to PRE1 or PRE2 (early:
P < 0.001, late: P < 0.001). Furthermore, the increase in word
onset TRF peak amplitudes from PRE to POST in the main study
were significantly larger than changes from PRE1 to PRE2 in the
control study (PRE2-PRE1 vs. POST-PRE: early = -0.25, P,,,,, =
0.02, late = -0.25, P,,,,, = 0.006). These results add further support
to the idea that, improvements in intelligibility also generate
increased neural responses to lexical segmentation feature over
and beyond any acoustical learning.

The null results observed in the comparison between PRE and
POST for auditory and phoneme responses might potentially arise
from a cancellation of enhancement and suppression effects linked
with priming, prediction, and repetition (14). The control study,
aimed at assessing effects of repetition without involving priming,
however, did not reveal significant differences between PRE1 and
PRE2 responses for both early (envelope: P=0.001, onset: 2= 0.59,
phoneme onset: 2= 0.11) and late components (envelope: = 0.94,
onset: P = 0.10, phoneme onset: P = 0.52), except for the early
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envelope response (Fig. 4 A-C). Early envelope responses were
significantly enhanced for PRE2 compared to PRE1 (= 0.001).
The observed differences between envelope and envelope onset
responses suggest that distinct neural mechanisms underlie these
responses. Thus, while neural responses often exhibit suppression
with repetition (43), this was not seen in our control study (repe-
tition effects are typically investigated using shorter and more
predictable stimuli (44), which contrast with the unintelligible and
longer (~20 s) passages used in the current study). Therefore, dif-
ferences in envelope responses between PRE1 and PRE2 are not
primarily driven by suppressive repetition effects but perhaps due
to a consequence of change in task or cognitive processing
demands. These distinctions together suggest that the effects of
repetitions may be minimal in the current findings.

Additional Analysis. Previous studies have indicated different roles
for delta and theta band responses with respect to intelligibility
and perceived clarity, with theta band responses showing links
to clarity, and delta band responses to comprehension (6, 45).
Therefore, we investigated whether the observed lexical-level
changes with intelligibility in the low-frequency neural response
(1 to 10 Hz) are specific to a neural frequency band. For this
post hoc analysis, word onset predicted neural response spectral
power in each band was compared between speech conditions. Our
results showed that both delta and theta band predicted response
power increases from PRE to POST, with similar effect sizes (delta:
f5=2.50, P=0.02,d = 0.51, theta: 7, = 2.40, P= 0.02, d = 0.49).
'Thus, neither single interpretation of increased clarity vs. increased
intelligibility can be given more prominence than the other.

In the present work, speech intelligibility is manipulated using
a priming paradigm, where a perceptual pop-out effect modifies
the perceived clarity of speech in addition to its intelligibility. It
should be acknowledged that this approach is still subject to con-
founding factors, specifically those associated with predictive pro-
cessing mechanisms and acoustical learning. Consistent with
predictive coding theories, previous studies have seen that neural
responses to degraded speech tend to be suppressed with better
speech clarity (14, 23, 46). Conversely, it has also been proposed
that activation of higher-order brain areas, which may exhibit less
neural activity when speech clarity is compromised, can lead to a
generally enhanced neural activation for intelligible speech (13,
23). Similarly, predictability in speech may amplify the synchro-
nization of neural responses with speech, resulting in larger
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entrainment responses (6). Our findings align more closely with
the latter perspective. Additionally, exposure to clear speech may
induce changes in bottom—up processes that would facilitate the
comprehension of degraded speech (13), perhaps including mod-
ifications to centrally maintained auditory filters at the subcortical
and cortical level. Consequently, it is challenging to disentangle
the precise neural mechanisms underpinning speech intelligibility
from those intertwined with predictive processes.

Even though our analysis revealed effects of intelligibility on
the word onset responses, no significant trend was observed
between those neural measures and behaviorally measured per-
ceived speech clarity ratings within subjects. This might have been
expected since the neural measures must be calculated across mul-
tiple trials, and minimizing the effects of individual trials because
of the need to employ cross-validation, whereas the speech clarity
did vary substantially from trial to trial (S/ Appendix, Fig. S3). It
is unfortunate that estimating reliable TRFs from a single trial (in
particular, estimating peaks with reliable amplitude and latency)
is not feasible for only 20 s of data, cither for acoustic or linguistic
stimulus features. Similarly, the same limitation affects any analysis
of the relationship between learning over trials and the word onset
processing (i.e., early trails vs. late trials).

In conclusion, we investigated the extent to which neural meas-
ures of lexical processing correspond to speech intelligibility while
keeping the acoustical structure fixed. The neural measures associated
with word onset processing, especially those time-locked at N400 yp
latencies (with N400 polarity), increased substantially between first
exposure and after intelligibility-increasing priming. In contrast,
auditory and phoneme onset responses are influenced only by the
acoustics of the sensory input, not by intelligibility-boosting prim-
ing. It is crucial to exercise caution when interpreting auditory neural
responses in contexts where the acoustics of the sensory input differ.
Our key finding suggests that lexical segmentation responses increase
in the same context as speech intelligibility and show engagement
of top—down mechanisms. Together, these suggest that time-locked
neural responses associated with lexical segmentation may serve as
an objective measure of speech intelligibility.

Materials and Methods

Participants. A total of 25 native English speakers (age range 18 to 32 y,
15 males, 5 left-handed) participated in the main study. Data from two partici-
pants were excluded from the analysis due to excessive artifacts in the neural data.
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Twelve native English speakers (age range 19 to 27y, 5 males, 2 left-handed)
participated in the control study. All participants reported normal hearing and no
history of neurological impairments. The experimental procedures were approved
by the University of Maryland institutional review board and all participants pro-
vided written informed consent before the experiment and were compensated
for their time.

stimuli and Procedure. The stimuli were ~20 s long excerpts (18 st0 26 5), sam-
pled at 44.1 kHz, from the audiobook “The Botany of Desire” by Michael Pollan,
narrated by a male speaker. Talker pauses greater than 400 ms were shortened
to 400 ms and the excerpts were then low-pass filtered below 4 kHz using a
third-order elliptic filter.

Noise-vocoded speech segments for each excerpt were generated using a
custom python script. First, the frequency range 70 to 4,000 Hz was divided
into logarithmically spaced three bands (70 Hz to 432 Hz, 432 Hz to 1,402 Hz,
and 1,402 Hz to 4,000 Hz). For each band, an envelope-modulated noise band
was generated from band-limited white noise modulated by the envelope of
the band passed speech signal. The envelope of the band-passed speech signal
was extracted using the half-wave rectification of the band passed signal fol-
lowed by low pass filtering with a cutoff of 30 Hz. Finally, the modulated noise
bands were summed, and the normalized volume was adjusted to match that of
the original speech stimulus. Fig. 14 shows example spectrogram plots for the
original speech stimulus and vocoded speech stimulus, with the corresponding
envelope amplitudes overlaid.

Subjects listened to a total of 36 trials that preserved the storyline. A trial
consisted of noise-vocoded speech (PRE), followed by the same speech butin the
original clear form (CLEAN) and then the second presentation of noise-vocoded
speech (POST). All stimuli were presented diotically. At the end of each noise-
vocoded passage, participants were asked to rate the perceived speech clarity
("How much could you follow the passage on a scale of 0 to 5?"; 0-no words, 1-a
few words, 2—definitely some words, 3-lots of words but not most, 4-more than
half of all words, and 5-almost all words). The subjects were specifically instructed
notto consider the CLEAN speech passage while making their decisions. This rating
was used as a subjective measure of speech clarity. Intermittently, they were also
asked to repeat back some of the words they could follow from the vocoded speech
passage to ensure that the words they understood were actually from the passage.
As a means of motivating the subjects to engage in the task, a comprehension-
based question was asked at the end of the POST vocoded speech passage.

In the control study, stimuli, procedures and analyses were identical to those
used in the main study, with the exception that the order of each CLEAN and POST
vocoded speech was swapped. This resulted in a presentation order of PRE, POST,
and CLEAN for the control study, which are henceforth described as PRE1, PRE2,
and CLEAN, respectively, to emphasize that the clean speech was not presented
until after the second presentation of the vocoded speech.

MEG Data Acquisition and Preprocessing. Noninvasive neuromagnetic
responses were recorded using a 160-channel whole head MEG system (KIT,
Kanazawa, Japan), of which 157 channels are axial gradiometers and 3 mag-
netometers are employed as environment reference channels, inside a dimly lit,
magnetically shielded room (Vacuumschmelze GmbH & Co. KG, Hanau, Germany)
atthe Maryland Neuroimaging Center.The data were sampled at 1 kHz along with
an online low-pass filter with cut off frequency at 200 Hz and a 60-Hz notch filter.

During the task, subjects lay in the supine position and were asked to minimize
body movements as they listened and to keep their eyes open and fixate on a
cross at the center of screen. Sound level was calibrated to ~70 dB sound pressure
level using 500 Hz tones and equalized to be approximately flat from 40 Hz
to 4 kHz. The stimuli were delivered using Presentation software (http://www.
neurobs.com), E-A-RTONE 3 Atubes (impedance 50 ©) which strongly attenuate
frequencies above 4 kHz and E-A-RLINK (Etymotic Research, Elk Grove Village,
United States) disposable earbuds inserted into the ear canals.

All data analyses were performed in mne-python 0.23.0 (47, 48) and Eelbrain
0.36 (49). Flat channels were excluded and the data were denoised using tem-
poral signal space separation (50). Then, the MEG data were filtered between
1 and 60 Hz using a zero-phase FIR filter (mne-python 0.23.0 default settings).
Independent componentanalysis (51) was then applied to manually remove arti-
facts such as eye movements, heartbeats, muscle artifacts, and singular artifacts.
The cleaned data were low-pass filtered between 1 and 10 Hzand downsampled
to 100 Hz for further analysis.
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Neural Source Localization. The head shape of each participant was digitized
using Polhemus 3SPACE FASTRAK three-dimensional digitizer. The position of
the participant's head relative to the sensors was determined before and after
the experiment using five head-position indicator coils attached to the scalp
surface and the two measurements were averaged. The digitized head shape
and the marker coils locations were used to coregister the template FreeSurfer
"fsaverage” (52) brain to each participant's head shape using rotation, translation,
and uniform scaling.

A'source space was formed by four-fold icosahedral subdivision of the white
matter surface of the fsaverage brain, with all source dipoles oriented perpen-
dicularly to the cortical surface. The source space data and the noise covariance
estimated from empty room data were used to compute the inverse operator
using minimum norm current estimation (53, 54). The analysis was restricted
to frontal, temporal, and parietal brain regions based on the "aparc” FreeSurfer
parcellation (55). Excluded brain regions are shaded in dark gray in the brain
plots (Figs. 2 and 3).

Predictor Variables. The speech signal was transformed into unique feature
spaces to represent different levels of the language hierarchy. These feature-based
model predictors can be categorized into three main groups: 1. acoustic (acoustic
envelope and acoustic onsets), 2. sublexical (phoneme onset), 3. lexical (word
onset, contextual word surprisal). All predictor variables were downsampled to
100 Hz.

Acoustic properties. The acoustic envelope predictor reflects instantaneous
acoustic power, and the acoustic onset reflects the salient transients, of the speech
signal. Both of these continuous representations were computed via a simple
model of the human auditory system using gammatone filters with Gammatone
Filterbank Toolkit 1.0 (56). A filterbank-based broad-band envelope extraction
method was used (instead of the conventional broad-band envelope extraction
method: absolute value of the Hilbert-transformed signal), as it has been shown
that the filterbank-based broad-band envelope increases the neural tracking of
the speech envelope (57). First, the gammatone spectrogram was generated with
cut-off frequencies from 20 to 5,000 Hz, 256 filter channels and 0.01 s window
length. Each frequency band was then resampled to 1,000 Hz and transformed
to log scale.Then, the envelope spectrogram was averaged across 256 channels,
resulting in a broad-band temporal acoustic envelope predictor.

The acoustic onset representations were computed on the gammatone acous-
ticenvelope spectrogram, by applying an auditory edge detection algorithm (58).
Similar to the acoustic envelope, the onset spectrogram was also averaged across
frequency bands.

Inorderto estimate differences in the acoustic feature predictors between clean
and vocoded speech, we used the linear-correlation coefficient r. We observed a
strong positive correlation between vocoded and clean passages for the envelope
(r=0.92,P <0.001),as expected from the method used to construct the vocoded
speech. However, this correlation was smaller for the envelope onset (r = 0.46,
P <0.001),since acoustic onsets are less well preserved than the explicitly copied
envelope temporal modulations in the noise-vocoded speech (59).

Sublexical properties. The Montreal Forced Aligner (60) was used to align the
speech acoustics with the words and phonological forms from a pronunciation
dictionary. The CMU Pronouncing Dictionary (http://www.speech.cs.cmu.edu/cgi-
bin/cmudict), excluding the stress information, was used as the pronunciation
lexicon. The pronunciation lexicon, transcriptions and audio file were aligned
using the "English” pretrained acoustic model. The annotations for phoneme and
word onsets were visualized in PRAAT(61) and manually adjusted appropriately.
The phoneme onsets predictor was represented as the impulses at the onset of
each phoneme.

Lexical properties. The word onsets were represented as unit impulses at the
onset of each word.

Contextual word surprisal was estimated using an open source transformer-
based (62) large language model (GPT-2) (42). We used gpt2-large pretrained
models implemented in the Hugging Face environment (63). The transcripts for
each passage were preprocessed by removing punctuation and capitalization
(places and names were retained). The model first tokenizes the words, where the
tokens could represent either words or subwords and then fed into the model.
The model outputs activation at each of the 36 layers in the network and we
used the final layer for the word surprisal calculation. The final layer includes
prediction scores given the previous context for each word in the passage over
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the vocabulary token. Here, the "context” refers to all the preceding tokens or
sequence of tokens at least 1,024 tokens long. The prediction scores were SoftMax
transformed to compute the probability. The current word probability was com-
puted by the probability of the corresponding token and for the words spanning
over multiple tokens, the word probability was computed by the joint probability
of the tokens. Contextual word surprisal was computed as the —log,(P,,,4|context)
and represented as an impulse at each word onset scaled by the corresponding
model surprisal of that word.

Despite the differences in acoustical features between the vocoded and clean
speech passages, sublexical and lexical feature time series were kept unchanged.

Computational Model. A linear forward modeling approach using Temporal
response functions (TRFs) was used to analyze the phase-locked neural responses
tovarious speech features simultaneously (17, 64). Analogous to the conventional
ERP, TRFs estimate how the brain responds to speech features over time, or from
the signal processing viewpoint, the brain'simpulse response to any given speech
feature. In contrast to ERPs, that rely on averaging (perhaps) hundreds of short
responses to estimate the brain responses to a given stimulus, TRF analysis allows
to determine the brain responses to long-duration continuous speech. Critically,
TRFs can also model simultaneous responses to multiple speech features (1),
mTRF.

Here, TRFs were estimated using the boosting algorithm, which minimizes the
1 error between the measured and predicted source current time course, over the
time lags —200 ms to 800 ms (using a basis of 50 ms width Hamming windows).
Fourfold cross-validation (two training sets, one testing set and one validation
set) was used to prevent overfitting and improve the generalized performance.
Prediction accuracy was estimated as the explained variance of the TRF model.
The subsequent statistical analysis was performed using each subject's average
TRFs and prediction accuracies across all cross-validation folds. In sum, optimal
TRFs were estimated for each subject, speech condition, and each source current
dipole including multiple speech features simultaneously.

Prior estimating TRFs, predictors (speech features), and neural responses were
z-score normalized, so that they can be compared between subjects and condi-
tions. To visualize the TRFs over each Region of Interest (ROI) (temporal, frontal
and parietal) as a single time series with the current direction, TRFs over ROls were
simplified using principal component analysis. Examples of the first principal
component are shown in Figs. 24 and 3A.

TRF Peak Amplitude Extraction. The TRFs showed prominent peaks at differ-
ent latencies. Based on the TRFs across subjects, we identified time windows of
interestand polarity for each peak; envelope TRF: P1(30to 140 ms)and N1(90 to
200 ms), envelope onset TRF: P1(30to 140 ms)and N1 (90 to 200 ms), phoneme
onsetTRF: P1(30 to 140 ms)and N1 (90 to 240 ms), word onset and contextual
word surprisal TRFs: P1 (50 to 300 ms)and N1(330to 650 ms), where P1and N1
represent the polarity of the current estimate, positive and negative respectively,
in the time windows specified above. The average TRF response for each subject
and condition were obtained as the sum of absolute current dipoles across the
ROI. TRF peaks for each subject and condition were picked by searching for the
maximum peak in the average TRF, that aligned with the current direction from
the original source TRFs. The polarity of the source TRFs were determined by the
current direction relative to the cortical surface at the transverse temporal region.
If none of the peaks satisfied the polarity constraint, the minimum of the average
TRFs in the given time window was used as the peak amplitude.

To aid the TRF peak evaluations, TRF peak amplitude noise floor was measured
on noise model TRFs. The noise model TRFs were generated by mismatching the
predictors and neural data and estimating the TRFs with the same parameters
used in the TRF estimation. These noise model TRFs were then subjected to the
same peak-picking algorithm as described above to measure the noise model
TRF peak amplitudes for each subject. The TRF peak amplitude noise floor for each
peakand condition is calculated as the mean noisy peak amplitude across subjects
and represented by dashed lines in the bar plots (Figs. 2 and 3).This noise floor
serves as a reference for evaluating the significance of the observed TRF peaks.

Quantification and Statistical Analysis. Statistical analysis was performed
in Rversion 4.0 (65) and Eelbrain. The significance level was set at & = 0.05.
LMEM analysis was performed to evaluate the trends in behavioral meas-
ures. For the LMEM analysis, the Ime4 (version 1.1-30) (66), ImerTest (version
3.1-30) (67), and buildmer (version 2.4) (68) packages in R were used. The
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best-fit model from the full models were determined using the buildmer
function. The assumptions of mixed effect modelling, linearity, homogeneity
of variance, and normality of residuals, were checked per each best fit model
based on the residual plots. Reported effect sizes represent the changes in the
dependent measure when comparing one level of an independent variable to
its reference level. P-values were calculated using Satterthwaite approximation
for degrees of freedom (69, 70).

To compare the predictive power of two models, such as the full model vs.
reduced or PRE vs. POST, the difference in explained variability at each source
dipole was calculated. Significant differences between the two models were tested
while controlling for multiple comparisons, using one-tailed paired-sample t test
with threshold-free cluster enhancement (TFCE) (71) and with a null distribution
based on 10,000 random permutations of the condition labels. The largest t-value
and the corresponding Pvalue are reported in results. To visualize the model fits
in meaningful units, they were scaled by the largest explanatory power of the full
model across subjects, allowing expression as a % of the full model. The model
comparison plots (predictive power of each feature) reported in Figs. 2 and 3 are
masked by significance to emphasize how each feature contributes to the model.

Lateralization tests were performed to estimate any hemispheric asymmetry
in speech feature processing. To accomplish this, the predictive power was first
transferred to a common space by morphing the source data to the symmetric
"fsaverage_sym" brain, followed by morphing the right hemisphere to the left
hemisphere. Once the data were put in the common space, a two-tailed paired
sample t test with TFCE was used to test for significant differences between the
left and right hemispheres.

TRF peak amplitudes between conditions were compared using paired-sample
t test. TRF peak amplitude comparisons between main study and control study
were performed using two-sample randomization (permutation) test using
EnvStats (Version 2.7) (72) R package. The effect sizes for paired or independent
sample t tests were calculated using Cohen’s d (73)(d), where d = 0.2 indicates
a small effect, d = 0.5 indicates a moderate effect, and d = 0.8 indicates a large
effect.

To test the changes in spectral power in delta and theta bands, the predicted
responses were subjected to power spectral analysis. Spectral power estimates
were averaged across trials, frequency (delta: 1to 4 Hzand theta: 4 to 8 Hz), and
source data. Spectral power estimates were compared across conditions using a
paired-sample t test.

The number of subjects for the control study was determined using a power
analysis (power.t.test function in R). This analysis was focused on the word onset
late responses to detect an effect of priming. Analysis indicated that a sample
size of nine subjects is sufficient to detect the desired effect with a power of 0.8.
We instead included twelve subjects in the control experiment, exceeding the
minimum necessary sample size determined by the power analysis.

Handedness. In our study, data from all participants were analyzed, regardless of
their handedness, as we did not have any specific hypothesis related to handed-
ness. Nevertheless, to examine any potential influence, we compared the results
before and after excluding the data from the five left-handed participants. This
comparison revealed that exclusion of left-handed participants did not affectany
of the findings of significance for PRE vs. POST or PRE vs. CLEAN comparisons. For
the POST vs. CLEAN comparison, no findings of significance were affected except
forthe late word onset responses, where significance was lost when left-handed
subjects were excluded.

Data, Materials, and Software Availability. The raw MEG data, behavioral
responses, stimulus materials, and analysis codes are available at DOI: 10.5061/
dryad.shcc2frd6 (74).
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