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SUMMARY

Rooted and ranked phylogenetic trees are mathematical objects that are useful in
modelling hierarchical data and evolutionary relationships with applications to many fields
such as evolutionary biology and genetic epidemiology. Bayesian phylogenetic inference
usually explores the posterior distribution of trees via Markov chain Monte Carlo meth-
ods. However, assessing uncertainty and summarizing distributions remains challenging for
these types of structures. While labelled phylogenetic trees have been extensively studied,
relatively less literature exists for unlabelled trees that are increasingly useful, for exam-
ple when one seeks to summarize samples of trees obtained with different methods, or
from different samples and environments, and wishes to assess the stability and general-
izability of these summaries. In our paper, we exploit recently proposed distance metrics of
unlabelled ranked binary trees and unlabelled ranked genealogies, or trees equipped with
branch lengths, to define the Fréchet mean, variance and interquartile sets as summaries
of these tree distributions. We provide an efficient combinatorial optimization algorithm
for computing the Fréchet mean of a sample or of distributions on unlabelled ranked
tree shapes and unlabelled ranked genealogies. We show the applicability of our summary
statistics for studying popular tree distributions and for comparing the SARS-CoV-2 evolu-
tionary trees across different locations during the COVID-19 epidemic in 2020. Our current
implementations are publicly available at https://github.com/RSamyak/fmatrix.

Some key words: Binary tree; Combinatorial optimization; Evolutionary tree; Fréchet mean; Summarizing tree;
Unlabelled tree.

1. INTRODUCTION

Phylogenetic trees are used to represent the ancestral relationships of individuals from a
sample of molecular sequences or phenotypic traits, from a population. These individuals
can be viral sequences from infected hosts as in viral phylodynamics, species as in phylo-
genetics, individuals from a single species as in population genetics or cells such as in cancer
evolution. The estimated tree is of interest because it provides information about whether
genes are under selection (Yang et al., 2018), and about the past evolutionary dynamics of
the sample’s population. For example, in the context of viral phylodynamics, the tree pro-
vides information about the past transmission history and pathogenesis (Volz et al., 2013).

Distance-based summaries of labelled tree structures have been extensively studied in the
last few decades (Hillis et al., 2005; Chakerian & Holmes, 2012; Benner & Bacak, 2014;
Willis & Bell, 2018; Brown & Owen, 2020). These summaries rely on metrics of labelled
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trees such as the Billera-Holmes—Vogtmann or BHV distance (Billera et al., 2001) and it
is usually assumed that all sampled trees have the same set of leaves, i.e., labels. Kuhner &
Yamato (2014) presented a comparison of different distances on such space.

In this article, we are interested in summarizing different tree structures, namely those that
are ranked and unlabelled. These trees are useful in the study of the ancestral relationships
of a sample of objects that are exchangeable. One potential area of application is in the
study of cancer evolution where the tree represents the evolutionary history of many cells
in a patient’s tumour. We may want to summarize many such trees, each tree inferred from
a different patient, in order to find a representative tree and to quantify how much variation
or heterogeneity is present across patients with the same type of cancer or across different
types of cancer. Similar types of questions have been studied assuming a coarser type of
tree structure (Govek et al., 2018).

While summarizing real-valued parameters is straightforward, summarizing a sample of
unlabelled discrete structures is more challenging. Recently proposed distance metrics on
the space of unlabelled ranked evolutionary trees enable quantitative comparisons of evo-
lutionary trees of different sets of organisms living at different geographic locations and
different time periods. These metrics have been used for visual comparison of empirical
posterior distributions via multi-dimensional scaling, for summarizing empirical distri-
butions via medoids, and for a two-sample permutation test of equality in distribution
(Kim et al., 2020). However, the calculation of medoids and the permutation test are com-
putationally expensive and their statistical properties are unknown. At present, we are not
aware of any other method applicable for summarizing distributions of unlabelled ranked
trees.

In this article, we use the previously defined distance metrics on unlabelled ranked evo-
lutionary trees to understand distributional properties of some popular tree models and to
summarize samples of trees. Tree samples can either be obtained from the posterior dis-
tribution for a given sample of molecular sequences such as those obtained with BEAST
(Suchard et al., 2018), or trees independently obtained in different studies. To summarize
samples and populations of unlabelled ranked evolutionary trees, we define the sample
and population Fréchet means, variances and interquartile sets, in terms of the recently
proposed distances. We compare these summaries to other measures of centrality and dis-
persion on the same space. In particular, the fact that the Fréchet mean is not restricted to the
sample provides a clear advantage over the medoid, for example when summarizing theo-
retical distributions.

One of the main contributions of the present work is to establish the bijection between
the space of unlabelled ranked tree shapes and the space of triangular matrices of integer
values that satisfy a set of linear constraints. This allows us to formulate the problem of
finding the Fréchet mean as an integer programming problem and to better understand the
properties of the metric space. We show that the computational complexity of the Fréchet
mean is independent of N, the number of trees, and instead depends only on n, the number
of leaves of the trees. For large n, we rely on stochastic combinatorial optimization and
propose a simulated annealing algorithm for estimating the Fréchet mean. A key aspect of
the algorithm is the definition of a novel Markov chain that efficiently explores the space.
Our algorithms are applicable to the discrete space of tree topologies only, as in Fig. 1(a),
and to the mixed space of tree topologies and branch lengths, as in Fig. 1(b). They are also
applicable to trees whose samples are all obtained at the same time-point and to trees with
time-stamped leaves, as in Fig. 1(c).

We apply our methods to the standard Kingman coalescent and the Blum—Frangois
family of tree distributions. As a real data example, we analyse the posterior distributions of
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Fig. 1. Tree examples: (a) isochronous ranked tree shape, or topology only; (b) isochronous ranked genealogies,
or ranked tree shape with branching times; and (c) heterochronous ranked genealogy with different sampling
times (dotted lines).

evolutionary trees inferred from SARS-CoV-2 molecular sequences from the states of Cali-
fornia, Texas, Florida and Washington. We obtain Fréchet mean trees for different samples
and display multi-dimensional scaling plots to visualize intrastate and interstate variability.

We have developed an R package, fmatrix, available at https://github.com/
RSamyak/fmatrix, which implements the various methods discussed in this paper. The
package is compatible with phylodyn (Karcher et al., 2017), an R package for phylo-
dynamic simulation and inference, and ape (Paradis & Schliep, 2019), an R package to
handle phylogenetic trees (R Development Core Team, 2024).

All omitted proofs are given in the Supplementary Material.

2. PRELIMINARIES

Ranked unlabelled trees or ranked tree shapes are rooted binary trees, with an increas-
ing ordering of the interior nodes, as in Fig. 1(a). They are unlabelled in the sense that the
external nodes, i.c., leaves, are unlabelled. However, we rank the internal nodes, starting at
the root with label 2. A ranked unlabelled tree, additionally equipped with the vector of
branching times is called a ranked genealogy; see Fig. 1(b). We use the two terms coales-
cent times and branching event times interchangeably. We call a tree isochronous if all the
leaves are sampled at the same time, usually assumed to be sampled at time 0, such as in
Fig. 1(a)—(b). In applications of rapidly evolving pathogens such as the influenza A virus,
molecular sequences, which are the leaves of the tree, are sampled at different times, as in
Fig. 1(c), and these trees are called heterochronous.

Kim et al. (2020) showed that an isochronous ranked tree shape with n tips can be
uniquely encoded as a triangular matrix of integers, called an F-matrix, as follows. Let ;1
denote the time of the branching event at node i, let I; = (1;_1, u;) denote the time interval
between the two subsequent nodes 7 and i + 1, and let u,, = 0 at the leaves. The correspond-
ing F-matrix is an (n — 1) x (n — 1) triangular matrix of nonnegative integers. The diagonal
elements of the F-matrix indicate the number of branches at each time interval. The off-
diagonal element F;;, 2 < j < i < n — 1, represents the number of branches extant at
I; = (uj41,u;) that do not bifurcate during the interval (u; 1, u;). Figure 2 shows all ranked
tree shapes with five leaves (first row) and their corresponding F-matrix encodings (second
row). Kim et al. (2020) constructed an injective map from the space of trees to the space
of F-matrices. The following theorem establishes the bijective relationship and defines the
space of [F-matrices as the space of triangular matrices of integers subject to a set of specific
linear constraints.
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Fig.2. All ranked tree shapes with n = 5 leaves. The second row shows the corresponding F-matrices represen-
tation of the ranked tree shape of the first row, and the third row shows their corresponding functional code
representations; see the Supplementary Material.

THEOREM 1. The space of ranked tree shapes with n leaves T, is in bijection with the space
Fnof (n—1) x (n— 1) F-matrices, which are lower triangular square matrices of nonnegative
integers that obey the following constraints.

(1) The diagonal elements are F;; =i+ 1 fori=1,...,n—1 and the subdiagonal elements
are Fiy1;=ifori=1,...,n—2
(i) Theelements F;1, i =3,...,n—1, inthe first column satisfy max{0, F;_11—1} < F;| <
Fi11.
(i) All other elements Fiy, i=4,...,n—landk =2,...,i— 2, satisfy the inequalities

maX{O Flk 1 ks

} <F
Fig—1<Fi<F_i
Fipn+Fgx—Ficgj—1 = 1< Fip < Fij1 +Fio1,— Fio1k-1.

g

The definition of the F-matrix in Theorem 1 allows us to enumerate in a constructive way
all elements in the space. For example, for n = 5, the first two diagonals of the F-matrices are
fixed, see Theorem 1(i), and the rest of the elements satisfy /3 € {0, 1}, max{0, F3 — 1} <
Fy1 < F31 and max{0, Fy 1, F41 — F31 + 1} < Fap < min{2, F4 | — F31 + 2}. The second
row of Fig. 2 shows all possible F-matrices for n = 5 following these constraints.

Using the F-matrix encoding, Kim et al. (2020) proposed to compute the distance between
two trees as the distance between two matrices. In particular, we use the distance

1/2
d(y1,y2) = d(F1, ) = {Z ((F1)y— <Fz),-,-}2] (1
i

for y; and y,» € 7T,, with corresponding F-matrices /] and F», and the distance on ranked
genealogies

1/2
d(G, Gy) = [Z [P — (Fz),-,-(Wz»j}z] (2)

i
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for G1 and G, € G, with corresponding F-matrices F] and F», where W[ and W, are weight
matrices constructed using the respective branching event times uy = (uk . Uk p—1, - - - Uk.1)
of the kth tree, k = 1,2, with (W)); = luj — u i+11; see Fig. 1(b).

For defining a distance on the space of heterochronous ranked tree shapes or genealogies,
see Fig. 1(c), Kim et al. (2020) proposed supplementing the F-matrix with additional rows
for sampling events. The heterochronous distances are then computed analogously to the
isochronous distances, as the Euclidean distances between the extended F-matrices of the
same size, as detailed in § 3 of the Supplementary Material of Kim et al. (2020). For improv-
ing computational efficiency when computing pairwise distances among a large number of
trees, we modify the distance slightly and consider all trees together when adding additional
rows to the F-matrix. Further details can be found in the Supplementary Material.

3. CENTRAL SUMMARIES

3.1. Set-up

Let y1,...,ym € T, be m ranked tree shapes with n leaves independently drawn from
a common probability distribution. We are interested in summarizing such samples and
identifying a representative tree of the sample. Similarly, given a probability distribution
over the space of ranked tree shapes, we are interested in knowing what is the expected tree
of that distribution.

Current practices for summarizing labelled trees include reporting a majority-rule con-
sensus tree, a maximum clade credibility tree and a median tree based on metrics on labelled
trees (Benner & Bacak, 2014; Brown & Owen, 2020). The majority-rule consensus tree is
obtained by choosing partitions with probability greater than 0.5 from the list of observed
partitions and it is usually annotated with marginal probabilities of each partition as a mea-
sure of uncertainty (Cranston & Rannala, 2007). The maximum clade credibility tree is the
tree with the maximum product of clade probabilities and it is arguably the most used central
summary of labelled trees.

The concept of consensus partition is not applicable for ranked tree shapes since they do
not have labels. Instead, we can rely on the proposed distance in the same line as the median
tree for labelled trees. In fact, we can use the distance to define a loss function and approach
the problem of finding a representative tree as the one that minimizes the expected squared
loss. This decision theoretic solution corresponds to finding the Fréchet mean. The Fréchet
mean is the tree in the space that has the minimum average or expected squared distance to
the sample and, hence, it provides a natural notion of a central tree. We extend this notion
to ranked genealogies, including heterochronous genealogies.

Kim et al. (2020) used the same distance function to find the medoid, that is, the set of
trees in the sample that has the minimum distance to all trees in the sample. The Fréchet
mean instead is not restricted to be in the sample. For population distributions of trees, the
medoid and the Fréchet mean are equivalent. We discuss their differences further in this
section and in § 6.

3.2. The Fréchet mean

We first consider the metric spaces (7, d), where d is given in (1), and let © denote a finite
probability mass function on 7,; then the barycentre of u, also called the Fréchet mean tree
(Fréchet, 1948), is any element T € 7, such that

T € argmin Z d(x,y)z,u(y). (3)
YT yeT,
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Since 7, is finite, we immediately have the existence of the minimizer in (3). Uniqueness
may not be guaranteed, as, though the objective function is convex, the space is discrete. As
we will show in § 6, this is the case when u corresponds to the coalescent model on ranked
tree shapes. In this case, all Fréchet means are close to each other.

For the metric spaces (G, d) with d given in (2), and v a probability measure on G, such
that

f d(x,y)? dv(y) < oo,

n

the Fréchet mean genealogy is any element G € G, such that

G € argmin / d(G, H)*> dv(H). 4)
Geg, Heg,

In the Supplementary Material we show that in the special case when isochronous
genealogies G = (F,u) have densities of the form dv(G) = u(F) ]_[;-:11 S | upp)d),
that is, the tree topology and the branching event times are independent, the Fréchet mean
G = (F,m) can be obtained by setting i = E[u] and then finding the tree topology that
satisfies (4). In evolutionary biology applications, this assumption corresponds to neutral
evolution in a closed population (Wakeley, 2008). This is the case, for example, in the stan-
dard coalescent with variable population size (Slatkin & Hudson, 1991). This appealing
computational property is not only due to the independence assumption, but is also due to
the nature of the Euclidean distance, which allows for such separation.

The empirical Fréchet mean of a given sample y1, ..., y,, from the metric space (7, d) is
obtained by taking u in (3) to be the empirical measure. The mean of a sample 41,..., A,
from (G, d) is obtained analogously, where v in (4) is taken to be the empirical measure.

The cardinality of the space 7, grows superexponentially with n, [T, ~ 2(2/7)" ' - nl,
hence, finding the Fréchet mean is computationally challenging for large n. An alternative
summary of centrality is the in-sample version of the empirical Fréchet mean, also called
the medoid or restricted Fréchet mean:

m
T sample ¢ aremin Zd(x, yj)z,
XE{Y 1Y} j=1

m
(_;in sample € arg min Zd(gv h])z
gelhy,....,hm} j=1

This may be reasonable for spaces with a large number of leaves when direct computation
of the Fréchet mean is not possible. However, constraining ourselves to stay only within the
sample may be undesirable; see § 6 for further discussion.

3.3. Mixed integer programming

The Fréchet mean defined in (3) is the minimizer of a simple quadratic objective function
subject to linear constraints over integer variables; hence, this problem can be framed as a
mixed integer programming problem. Moreover, in the case when w is a probability measure
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Fig. 3. Running time. Exact computation for the Fréchet mean under the Yule model using gurobi, plotted
against the dimension of the F-matrices. Computations were performed on a laptop with an Intel® i7 processor.

on 7, or, equivalently, on F,, then the Fréchet mean F is given by

Feargmin } % (Fu— H)*iu(H)
Fern HeF, ki

= argmin Z Z (Ff — 2FHy) i (H)
Fen Her, ki

= arg minZ(F,%, — 2F My)),
FG]‘—n k,l

where My, = Y ye 7, Hir - w(H). That is, once the means My, are computed, the rest of
the problem no longer involves the m samples. That is, the problem scales with the num-
ber of leaves n, but not with the number of samples m. This is particularly important when
summarizing samples obtained through Markov chain Monte Carlo, since m is usually of
high order. We use gurobi (Gurobi Optimization, 2020), a standard mixed integer pro-
gramming solver, to directly perform the optimization. The implementation of the code is
available in the R package fmatrix (R Development Core Team, 2024).

This method works well for a small number of leaves n, such as n = 20, but it quickly
becomes impractical with larger n. Figure 3 shows how the computation time grows expo-
nentially in n. For larger n, we resort to stochastic combinatorial optimization algorithms
that scale well at the expense of solution guarantees, as discussed in § 3.4.

3.4. Simulated annealing algorithm

When the number of leaves is large, the mixed integer programming solution is compu-
tationally demanding and often unfeasible. A simple technique that works well is simulated
annealing (Kirkpatrick et al., 1983), which is a general-purpose stochastic algorithm for
optimizing an objective function over a potentially large discrete set. Simulated annealing
explores the ranked tree shape space via a Metropolis—Hastings algorithm. We trade the
guarantee of an exact solution for computational tractability.
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In order to implement the simulated annealing algorithm, we define two Markov chains
on the space of ranked tree shapes, one for isochronous and one for heterochronous trees.
The details of the Markov chains can be found in §3.5. The two Markov chains are then
used as proposal distributions in the Metropolis—Hastings step of the simulated annealing
algorithm.

In the case of the Fréchet mean, simulated annealing aims to minimize the energy func-
tion E(x) = Y ", d(x, y)? for a sample of trees {yi}iL, over x € T,. This problem is
equivalent to finding the maximum of exp{—E(x)/R} at any given temperature R > 0. We
then define a sequence of monotone decreasing temperatures { R} such that limy_, o, R =
0. For example, R; = ¥ Ry for some high initial temperature Ry, and & < 1. This is called
the exponential cooling schedule. Then, at each temperature, the simulated annealing algo-
rithm consists of Metropolis—Hastings steps that target m;(x) o exp{—FE(x)/R;} as the
stationary distribution. As the number of steps increases, 7, (x) puts more and more of
its probability mass in the set of global maxima. Simulated annealing differs from descent
algorithms by allowing transitions to higher-energy states at higher temperatures, in order
to avoid being stuck at local maxima.

In our implementations, Algorithm 1 below, for isochronous and heterochronous
Fréchet means, the Metropolis—Hastings transition kernels are symmetric and, hence, the
Metropolis—Hastings acceptance probability of moving from xj;_; to xj is given by

E E(x_
(Xk) n (XK 1)}/\1'
Ry Ry

ak:exp{—

Algorithm 1. Fréchet mean of a sample of ranked unlabelled trees via simulated
annealing.

Require: T1,..., T, sample of ranked unlabelled trees or, equivalently,
M = (1/m) Y, T;, starting position T O initial temperature Ry > 0, decay
parameter « € (0, 1).
Define the energy function E(T) = > 7", d(T, T, )2; with d a metric defined in § 2.
k<0
repeat
S < random neighbour of 7. Generate the proposal using Definition 2 or 4
below for isochronous and heterochronous trees, respectively.
if runif(l) < exp[—{E(S) — E(T%®)}/Ry] then
T*+D S (accept)
else
7D 7" (reject)
end if
Ry < aRy (reduce temperature)
k<—k+1
until convergence of 7%

The temperature schedule in simulated annealing needs to be specified and affects the
time taken for convergence of the algorithm. Theoretical convergence guarantees exist for
the logarithmic cooling schedule Ry = Ro{1 + o log(1 + k)}~! with sufficiently high initial
temperature and appropriately chosen «; see Chapter 3 of Aarts & Korst (1988). However,
this schedule is prohibitively slow for most problems. In practice, we observe that the expo-
nential cooling schedule with o chosen very close to 1 performs reasonably well; see the
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Supplementary Material. The benefits of simulated annealing are its easy implementation
and the design of the algorithm that allows getting out of local optima.

Using the result shown in § 3.3, we can replace the energy function E(T) = Y 1*, d(T, T))>
by E(T)=|F - M |12, where M is the Euclidean mean F-matrix.

For both isochronous and heterochronous genealogies, and motivated by the result in § C
of the Supplementary Material, our algorithm first finds the average branching, or coales-
cent, event times and then finds the tree topology via Algorithm 1. Calculating the average
branching event times is not trivial in the case of heterochronous genealogies. We rely on
augmenting the F and W matrices, as explained in the Supplementary Material. In the case
of heterochronous genealogies, the Markov chain used is conditioned on a fixed set of coa-
lescent and sampling times. We analyse the computational performance of the simulated
annealing algorithm in the Supplementary Material.

3.5. A Markov chain on the space of ranked tree shapes

In this section, we describe the Markov chains used in our simulated annealing algorithm.
We now drop the F-matrix representation of ranked tree shapes and instead use two string
representations of the spaces of isochronous and heterochronous ranked tree shapes. We
use the string representations to define two Markov chains on the corresponding spaces.

An isochronous ranked tree shape is encoded as a string of n — 1 integers ¢ =
(t1, 12, ..., t,—1), Where #;. indicates the parent node of the internal node with ranking k + 1,
ke {l,....n—1}. It is assumed that the first integer 71 of the string representation is 1, for
the parent of the root node. Figure 2 shows the string encodings of each of the five ranked
tree shapes at the bottom. The string representation was introduced earlier as the functional
code for binary increasing trees (Donaghey, 1975). The set of all string representations of
n — 1 elements is in bijection with the space of isochronous ranked tree shapes of n leaves
and the space of binary increasing trees of n — 1 nodes (Stanley, 1999).

To recover the tree T from the encoding ¢, we can proceed in a generative fashion: we start
at the root that has label 2, and proceed by bifurcating the leaves in the order determined by
t. The space of strings ¥, is the set of all 7 strings of length n — 1 defined as follows.

DEFINITION 1 (ISOCHRONOUS STRING REPRESENTATION). A string t of nonnegative integers
that encodes an isochronous ranked tree shape has the following defining properties:

) n=1
(1) fori>1,2<1t; <1
(i) no entry of t can appear more than twice.

DEFINITION 2 (MARKOV CHAIN ON ISOCHRONOUS STRINGS). Let t € X, be a string encoding
an isochronous ranked tree shape as described in Definition 1. We define a Markov chain on
Ty as follows.

(1) Pick an element i € 2, ..., n uniformly at random.
(1) Pick the value of t; uniformly at random from the allowable choicesin 2, ... ,1i, i.e., from
those choices that do not already appear twice among t_;.

An example transition of the Markov chain of Definition 2 is depicted in Fig. 4.

PROPOSITION 1. The Markov chain on isochronous strings, Definition 2, is ergodic with uni-
form stationary distribution on the space of strings of length n — 1, or, equivalently, on the
space of ranked tree shapes with n leaves.
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Fig.4. An example transition under the Markov chain of Definition 2 from (1,2,2,3,4) to (1,2,3,3,4). The
subtree of node 4 is plucked from under node 2 and planted under node 3.

Proof. Let t be an arbitrary element of T,,. We show that ¢ is path connected to t* =
(1,2,...,n— 1). This string corresponds to the most unbalanced tree, also called the cater-
pillar or the comb tree. Since the Markov chain is symmetric, * is path connected to
every element of T, as well and, hence, the chain is irreducible. The following path has
all transitions with positive probability:

0
= Z( ) = (latza 1‘3" . '5[11—25 t}’l—l)’
[(1) = (15t29 137 .. 'all’l—Zan - 1)7

[(2) = (1,12,[3,...,1/1_2,”_ 1)’

" = 1,6,3,....n—2,n—1),
"2 = 1,2,3,....n—2,n—1) = r*.

Note that £ > @*D s always a valid transition due to Definition 1(iii). O

This representation can be extended to heterochronous trees as well, with additional
entries indicating the sampling events. We define these strings in the following way.

DEFINITION 3 (HETEROCHRONOUS STRING REPRESENTATION). A heterochronous ranked tree
shape with n leaves is encoded as a pair of strings (t,0), each of length 2n — 1. As before, t
is a string of nonnegative integers that indicates the parent nodes of internal nodes, coalescent
events, however, t now also includes the parent nodes of all leaves. The sequence order is given
by the time they are created and o is a 0-1 string that indicates whether the corresponding node
is internal (1) or a leaf (0). These strings have the following defining properties.

N n=1o0=1
(i) fi:oi=1}l=n—1,
(i) [{i: o =0} = n;
(iv) each element of {2, ...,n} occurs exactly twice in t;

(V) foreachi>1,2<6;<1+ ZJZ;} oj.

For example, the string representation of the ranked tree shape of Fig. 1(c) is (¢ =
123442365567788, o = 111100101100000). The string t, = (¢;: o; = 1) is a valid string
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encoding of an isochronous ranked tree shape. In addition, this representation can also
admit extensions to multifurcating trees, which we leave for future study.

DEFINITION 4 (MARKOV CHAIN ON HETEROCHRONOUS STRINGS). Let (t,0) be a pair of
strings encoding a heterochronous ranked tree shape as described in Definition 3. We define
a Markov chain on the space of such strings, conditional on o a fixed sequence of sampling
and coalescent events, with transitions as follows.

(1) Pick two distinct element i,j € 2, ...,2n — 1 uniformly at random.
(1) Swap t; and t;. If the result is a valid heterochronous string, accept the move; otherwise,
reject the move.

PROPOSITION 2. The Markov chain on heterochronous strings, Definition 4, with a given
sequence of sampling and coalescence events is symmetric, aperiodic and irreducible.

Proof. Let (¢,0) be the encoding of an arbitrary heterochronous ranked tree shape.

We first define (¢, o) that is the analogue of the caterpillar or the most unbalanced tree,
but with the given o. Let #; = (ff: 0; = 1) be equal to (1,2,...,n — 1), and let t* , =
(t7: 0; = 0) be equal to (2,3,...,n — 1,n,n). We can follow a similar method as in the
isochronous case and show that ¢ is path connected to #* by a sequence of steps with positive
probability. Note that 7 has length 2n — 1.

Let 19 = ¢. We obtain 1 by swapping two terms of 7/~1 such that the last i terms of ¢
and ¢* are equal. Explicitly, let j be the largest element in 2, . .., 2n—i such that £ = i
We can swap t](.’_ and tzln__ ;»since 75, . is the maximum allowable entry at position 27 — i,
and hence tgn__li) < t](.’_l), which satisfies Definition 3(v). The remaining conditions under
Definition 3 are not affected by the transitions. Iteratively, we obtain t?"~1 = ¢*,

Since the Markov chain is symmetric, we see that ¢* will be path connected to every ¢ as
well, and the Markov chain is irreducible. The chain is aperiodic since we can pick a pair
with the same label with positive probability. O

4. TOTAL ORDER IN THE SPACE OF RANKED TREE SHAPES

The histogram is another important summary of distributions. However, in order to have
a meaningful comparison of histograms across distributions, we need to define a total order
in the space of trees. Such an ordering roughly corresponds to a one-dimensional projection
of the space. As we will show in the next section, this ordering is also useful for summarizing
credible and interquartile balls.

The total order we propose is based on the distance to a reference ranked tree shape,
for example, the Fréchet mean Tk of the Kingman model (Kingman, 1982), which is a
commonly used neutral model for evolution, together with a lexicographic order in the
F-matrix representation. We construct our ordering in such a way that the most unbalanced
tree Tyunp, also called the caterpillar tree, and the most balanced tree T3, are two poles of
the order, and the Fréchet mean Tk lies somewhere in between those two poles.

We have three main reasons for choosing Ty, and Ty, to be the two poles of the ordering.
(i) The two unique extremes in the lexicographic order correspond to precisely these two
trees. (i) The maximum d distance between two ranked tree shapes is uniquely achieved
between these two trees. (iii) The notion of tree balance is important in phylogenetics and
evolutionary biology (Mooers & Heard, 1997; Yanget al., 2018; Lemant et al., 2022). Several
tree balance statistics have been proposed (Fischer et al., 2021) and used in several ways,
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including the testing for natural selection and for model fit (Kirkpatrick & Slatkin, 1993;
Yang et al., 2018).

PROPOSITION 3. The ranked tree shape at maximum d distance to the unbalanced tree

Tunb € T is Tya with the F-matrix encoding §iven in(5). That is, Fig?al) = max{0,2j — i+ 1}
fori=1,....n—1landj=1,...,i andFi?al =0fori=1,....n—landj=1i,...,n—1:

. _ . _
13 13
02 4 12 4

plab _ [0 1 35 and F@» — |1 235 )
0024 6 1234 6
0000 -+ n—2 nl (1234 - n—2 n]

Proof. First, the most unbalanced tree has the F-matrix encoding given by F) in (5),
that is, Fi(;mb) =jfori=2,...n—landj=1,....i— l,Fl.(;nb) =0fori=1,...,n—1and
j=i+1,...,n— 1 (upper triangle) and Fi(,?nb) =i+ 1fori=1,...,n— 1 (diagonal). For
any F € F;, the values in each row are nondecreasing to the right, i.e., F;; < Fj ;1 (Theo-
rem 1(ii1)), and the values in each column are nonincreasing, i.e., F;; > Fiy1; (Theorem 1(ii)
and (iii)). Second, Fl-(;-mb) > Ff Y forall F € F,andi,j <n—1,thatis, F (“nbg has the largest
d; and d, norms. Third, F' S?a < Fijforall F e Fyandi,j < n—1,thatis, F (®al) has the

smallest d; and d» norms. Moreover, F. S.’al) < Fl-(;mg) for all i,j < n — 1 and the pair: Ty
and Ty, have the largest d; and > distances among all pairwise distances in 7j,. O

While the caterpillar tree, the tree with one cherry and one internal node that subtends
two leaves, is the unique tree widely recognized as the most unbalanced tree, there is no
consensus notion of a unique most balanced tree (Fischer et al., 2021). The ranked tree
shape corresponding to F®3 is here called the most balanced ranked tree shape for ease of
interpretation. However, there may be arguably many more similarly balanced trees in the
population.

We now define the signed distance as the distance to a reference ranked tree shape T
with an additional sign depending on whether the tree is closer to the most unbalanced or
to the most balanced tree. The distance to a reference ranked tree shape alone induces a
partial order. Moreover, Kim et al. (2020) showed that balanced trees are closer to other
balanced trees than to unbalanced trees and, similarly, that unbalanced trees are closer to
other unbalanced trees than to balanced trees in the d distance. This makes our proposed
signed distance to the mean a natural tree balance index (Fischer et al., 2021).

DEFINITION 5 (SIGNED-DISTANCE FUNCTION TO T). Let f(x): T, — RT and T € Ty, be a
reference ranked tree shape such that

fo = |74 D) i dOx Tunp) < d(x, T,
d(xa T) de(x’ Tunb) > d(x7 Tbal)
The signed distance induces a partial order on 7,; however, since many ranked tree shapes
can have the same signed distance to 7', many pairs of trees will be incomparable. We say
that T ~ T belongs to the same equivalence class if f(71) = f(T>). When a set of ranked
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tree shapes belong to the same equivalence class, we order the ranked tree shapes in the
equivalence class according to their lexicographic order using a vectorized F representation
as follows.

DEFINITION 6 (LEXICOGRAPHIC ORDER). Let

FO — (gD O g g0 pO
(Fll’ 21’""Fl,n—l’F2,27F2,3"" n—1,n— 1)

be the column-vectorized representation of T € T,, and let

Q2 _ 7@ 72 (2) 2 (2) (2)
F (FII’FZI"‘ Fln 1’F22’F23"' F —1,n— 1)
be the column-vectorized representatton of T> € Tp. We say that Ty <iex T if FV = F® or
the first nonvanishing difference F - F; 2 js positive fori=1,....m, m=nn—1)/2.

For example, 7(W0) <. 7®aD apg 7nb) < 7 < 702 for any T € 7,. We note
that <. is not the only possible lexicographic order; for example, a row-vectorized rep-
resentation of 7' € 7, can be replaced in Definition 6 to generate another ordering. Any
such order provides a consistent way for comparing histograms across different tree models
on the same space; see, for example, the third row of Fig. 6 below. However, the column-
vectorized representation has some biological meaning, as earlier columns correspond to
descendants from early in the branching process. For example, consider the first column
of a 4 x 4 F-matrix. The lexicographic order, only considering the first column, will be
(2,1,0,0,...) <x (2,1,1,0,...) <iex (2,1,1,1,...). This corresponds to the following
biological relationship: trees where the earliest born branches split early are placed before
trees where those branches split later.

Although the lexicographic order is a total order, we propose to order all ranked tree
shapes in the space according to their signed distance to Tx and to only use the lexicographic
order within equivalence classes as follows.

DEFINITION 7. We say that Ty < T> if f(T1) < f(T) orif f(T1) = f(T3) and T <Xiex 1.

PROPOSITION 4. The order induced by < of Definition T on Ty, is a total order.

Proof. To show antisymmetry, the only way that 7y < T, and T, < T is that f(T]) =
f(T») and T <jex T> and T» <jex T1. This occurs only if F(V = F®_ The bijection of
Theorem 1 then implies that 77 = T5. Transitivity and convexity follow directly from the
transitivity and convexity of < and <ey. O

5. MEASURES OF DISPERSION

In this section we define and discuss three notions for quantifying uncertainty or
dispersion in a distribution or a sample of ranked tree shapes, or ranked genealogies.

The Fréchet variance is a natural measure of dispersion for arbitrary probability metric
spaces. It measures the concentration around the Fréchet mean. The Fréchet variance of
y ~ n on T, with respect to the metric d is defined as

V= Zd(y, 7). w(y), where T = argmand(x y) ().

yeTn XTn ye,
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For a random sample y1, ..., v, € Ty, the sample Fréchet variance is given by

1 m _ _ . m
Vin = o 21: d(yi, T)2, where 7 = arg mmz d(x, yl-)z.
=

X€Tn izl

Similarly, the Fréchet variance of G ~ dv can be obtained by integrating over the probability
space of branching event times and ranked tree shapes.
Another scalar measure of dispersion is entropy (Mezard & Montanari, 2009):

H==>" @ -loglky].

y€Tn

Entropy is a function of the probability measure only and it does not depend on the metric d.
A measure with zero entropy is concentrated on a single point, and a large entropy indicates
greater uncertainty in the position of a random variable with the underlying measure. In
Fig. 7 below we compare entropy with Fréchet variance for a particular class of probability
models on ranked tree shapes. In this case, Fréchet variance shows more heterogeneous
behaviour across different models. We compare those two measures in more detail in § 6.

In many applications, a single mean value and the variance are not enough for summariz-
ing the distribution. Interquartiles and credible intervals are typically used to inform about
the concentration of the distribution around the central value for real-valued distributions.
The analogues in the space of ranked tree shapes are defined as follows.

A central interquartile ball of ranked tree shapes of level 1 — «, « € [0, 1], is the set

B2 {yeTh:dy.T)<e),

where ¢ is the smallest ¢ > 0 such that P{B.(T)} > 1 — «, where T is a point esti-
mate. Similarly, a level 1 — « credible ball is the set B.(T) where ¢ is the smallest e >
0 such that P{B(T) | D} > | —a.

Although credible and interquartile balls can be defined in a meaningful way in terms of
the d distance to the mean value, summarizing boundaries of such sets remains challenging.
One attempt to define boundaries for credible sets and interquartile sets is through a total
ordering on 7,. The boundaries of the set can then be taken to be the extreme points of the
set with respect to the ordering.

Having established the < order, we summarize credible balls and interquartile balls by
at most four ranked tree shapes and by at least two ranked tree shapes. Let B, (7)) denote
the interquartile or credible ball and T the Fréchet mean of the distribution. Then the set
of ranked tree shapes at the boundary of B,(T) will be partitioned into two sets, one with
positive signed distance to 7' and one with negative signed distance to 7'. If the cardinality
of the sets is greater than one, we then summarize each set by the smallest and the largest
ranked tree shapes in each set according to the < order. We show an example in § 6.

6. REsuLTS
6.1. Statistical summaries of Blum—Francois distributions on ranked tree shapes

We present and analyse summaries of a large family of ranked tree shape models called
the Blum-Frangois g-splitting model (Sainudiin & Véber, 2016). We start with the model
on ranked unlabelled planar trees; there is a distinction between the left and right offspring.
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Fig. 5. Approximated Fréchet means. Fréchet means are found via simulated annealing from a sample of N =

1000 trees with n = 100 leaves from the B-splitting distribution. Left to right: 8 = —0.99, —0.5, 0, 10. Simulated
annealing with exponential cooling schedule and decay parameter 0.9995, initial temperature 1000.
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Let niL and an denote the numbers of internal nodes in the left and right subtrees below

node i. In particular, if node 7 is a cherry, i.e., subtends two leaves, then nl-L = an = 0. Then,
a ranked unlabelled planar tree with 7 leaves has a probability mass function given by

n—1

P(Tplanar) = 1_[

i=1

BnF+B+1,nR+p+1)
BB+ 1,8+ 1) ’

where B(a,b) = fol x4 1(1 = x)»~1dx is the beta function and 8 € [—1,00). A ranked
tree shape T obtained by ignoring the distinction between left and right subtrees then has
probability mass function

n—1 L R
o lc By +B+1,n"+B+1)
P =2 l_[ BB+1,8+1)

i=1

b

where c¢ is the number of cherries in 7. The 8 parameter controls the level of balanced-
ness of the distribution. In particular, when 8 = 0, the corresponding distribution P(7") =
on—l-c /(n— 1)!is the coalescent distribution on ranked tree shapes, also known as the Yule
distribution.

The first row of Fig. 6 below shows the exact Fréchet means of the ranked tree
shape distributions with nine leaves under the Blum-Frangois distribution with 8 €
{—0.99, —0.5, 0, 10}. For small values of 8, the distribution generates unbalanced trees and,
for large values of B, the distribution generates balanced trees. When g = 0, there are two
means very close to each other, which are depicted in the Supplementary Material. In this
case, the distance between the two means is d = 1.41, the second smallest value possible. For
ranked tree distributions with n = 100 leaves, we simulated N = 1000 ranked tree shapes
and found the Fréchet mean via the simulated annealing of § 3.4. The resulting means are
shown in Fig. 5 for 8 € {—0.99, —0.5,0, 10}.

To show the utility of summarizing central interquartile balls, we calculated the 95%
interquartile ball of the Blum—Frangois distribution with 8 = 0 and n = 9 tips. The ball is
centred in one of the Fréchet means: the one on the right of Fig. 1 in the Supplementary
Material. The 95% quartile of the distance to the mean is 16, and 41 ranked tree shapes are
at a distance of 16 to the mean in the boundary of the ball. Panels (B)-(C) of Fig. 2 in the
Supplementary Material show the two trees at the signed distance of —16 to the mean with
minimum and maximum lexicographic order, respectively. Panels (D)—(E) of Fig. 2 in the
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Fig. 6. Summarizing Blum—Frangois distributions on ranked tree shapes. Blum-Frangois distributions on
ranked tree shapes with n = 9 leaves. The columns correspond to g = —0.99, —0.5, 0 (coalescent), 10, respec-
tively. Row 1: Fréchet mean of the distribution. Row 2: probability mass function of trees, arranged in increasing
order of probability. Row 3: probability mass function of trees, arranged in the signed-distance order of Defi-
nition 7, with Fréchet mean (solid line) of the distribution and interquartiles (dashed lines). Row 4: histogram
of the distance to the Kingman Fréchet mean, with the median (solid line) and interquartiles (dashed lines)
of the distance to the mean. Row 5: histogram of the signed distance to the Kingman Fréchet mean, with
the median (solid line) and interquartiles (dashed lines) of the signed distance. Row 6: multi-dimensional
scale (MDS) of the tree distribution, where each dot represents a tree coloured by its probability mass, with
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202 UYoJelN 0Z U0 Josn [LNNODDY ONITIIE] Aleiqr meT AusioAun piojuels Ad L8EEYLL/LLL/L/L L L/RIRINEABWOIG/ W00 dNo olWapede/:Sd)Y WOy POpeojumod



Statistical summaries of unlabelled trees 187

7.5 " "
3 —a— 5 —— 5
g
g =
250 - = 6 g - 6
151 =
5 —— 7 m —-— 7
0
= —- 3 - 3
2.5 1
- 9 —5—
0.0 1
-1 01 5 20 100 -1 01 5 20 100
p for the Blum—Frangois model p for the Blum—Frangois model

Fig. 7. Measures of dispersion. Fréchet variance and entropy for small » under the Blum-Frangois B-splitting
model. Although both statistics show similar trajectories across models, the Fréchet variance is more
differentiated across models than the entropy.

Supplementary Material show the two trees at the signed distance of 16 to the mean with
minimum and maximum lexicographic order, respectively.

Figure 6 shows different summaries of four Blum—Francois distributions on ranked tree
shapes with n = 9 leaves. The second row shows the probability mass function with trees
arranged in increasing order of probability. When analysing these plots, it is impossible to
assess whether the 8 = —0.5 distribution puts more probability mass on unbalanced trees
than balanced trees when compared to the 8 = 10 distribution since the x axes are not
comparable. The third row shows the probability mass functions with the x axes arrang-
ing trees in the signed-distance total order. Here, all x axes correspond to the same tree
arrangements. It is now clear that the 8 = —0.5 distribution assigns more probability mass
to unbalanced trees and the 8 = 10 distribution assigns more mass to balanced trees. This
is confirmed in the fifth row of Fig. 6. The histogram of the signed distance to the mean
is skewed to the right (balanced) when 8 = 10. Row four of Fig. 6 shows the histograms
of the distance to the mean. This one-dimensional summary of the tree distributions hin-
ders whether some distributions put more probability mass to different types of trees. For
example, the last three histograms of the fourth column look very similar. Finally, while the
multi-dimensional scale plots in the last row of Fig. 6 only explain about 53% of all pairwise
distances, the last panel shows the distinctions between the four probability mass distribu-
tions. Here, green dots correspond to the points whose [F-matrix is E(F) and do not lie in
tree space and red dots are the Fréchet means.

Figure 7 shows the exact Fréchet variance and entropy for n = 5,...,9 and 8 values
spaced out in [—1, co]. For 8 > 1, the variance and entropy remain relatively constant as
functions of B. The largest variance and entropy are obtained when 8 < 0. Variance and
entropy show similar trajectories across models; however, the variance is more differentiated
than the entropy for small values of 8.

6.2. Characterization of the mean Kingman tree
As stated in §3.3, under d, the population Fréchet mean is given by

F> = arg minZ{F,@ — 2F My},
Fe]—'n k,l
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where My, = E(Fy ;). If we know matrix M, we only need to search for ranked tree shapes
that are in a neighbourhood of M, see, for example, the large dots representing M and the
Fréchet mean in the last row of Fig. 6. In fact, the only data input needed using gurobi or
simulated annealing is M. Although there is no explicit formula for the Fréchet mean for the
distributions analysed here, there is an explicit formula for M for the Kingman/Yule coa-
lescent distribution; Blum—Frangois with 8 = 0. In Fig. 6, we visualize M and the Fréchet
mean in a multi-dimensional scale plot of the entire space.

THEOREM 2. Let F € F, be an F-matrix distributed according to the Blum—Frangois model
with B = 0, i.e., according to the Kingman/ Yule coalescent distribution; then

(1) the distribution of the ith row of F is independent of n;
(i) E[F;] =G+ D/i;
(ii1) we have

A2+ D G+ DGE—2/—1)
iz(i— 1) ii—1 ’

Var[Fii] =

(iv) we have

COVLEy s Finy]

J1G1+ D202 +2) + (1 + D — 22 — 2)] S
5 when iy = i2,j1 < 2,
o i =D
PG+ DG =) —i2+ 1) S
—— when iy > i2,j1 = Jo,
irip(ip — 1)
J2G2+ DIGE + DG +2) + (1 + DG — 2/ = 2)]
B Y (e T
G — i) +D[Aa -1 ji+1 S
+ — - - when iy > ip,j1 > Ja,
111> I — 1 I+ 1
J1G1+DIG2 + D@Ga +2) + (1 + DG — 272 — 2)]
o iG=D
(1 —i)hGi +Dipfp—-1 p+1 S
+ — - - when iy > iy, j1 < ja.
111> h—1 ir+1

The relevance of Theorem 2 is that, for the standard coalescent, one of the most popu-
lar models in population genetics (Wakeley, 2008), the Fréchet mean can be obtained for
any n, without the need for simulating a sample from the distribution as is done in Fig. 5.
Moreover, given a sample of [F-matrices, the sample average converges almost surely to M
by the law of large numbers. Theorem 2, together with the multivariate central limit theorem
(Hogg et al., 2019, Theorem 5.4.4) and Hotelling’s T-squared test, can be used to test
whether a random sample of ranked tree shapes follows the standard coalescent distribution
such as the Kingman/Yule model.

THEOREM 3 (CENTRAL LIMIT THEOREM FOR F-MATRICES). Let F!,..., F™ € F, be an inde-
pendent and identically distributed sample of F-matrices drawn from some distribution P. Let
F,, € RO=DX0=D be the matrix whose entries correspond to the sample average of F', ..., F™.
Then m'/*(E,, — M) 2 N(O, £), where the mean M € R"=D*0=1 js giyen by M;; = Ep[Fj]

i 2 2,
and the covariance tensor ¥ € RU=D"x0=D js aiyen by ikl = covpl[Fy, Fiyl.
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Proof. The proof follows directly from the multivariate central limit theorem, consider-
ing the F-matrices as elements of R"”~Dx=1 Since each entry of the F-matrices is bounded
in [0, ], all expectations are finite. O

COROLLARY 1. Consider the setting of Theorem 3, and assume that X is invertible. Let
A 2 2 .. .
Y € RU=DxX0=D po the empirical covariance tensor. We have

S7V2ml2(F, — M) 2 N, D),
where I € RO=D*x(=D% j¢ 1o identity tensor given by

L1 = lizk j=1-

The proof follows by the multivariate version of Slutsky’s theorem, using consistency of
the empirical covariance, and the fact that the function ¥ — £~!/2 is continuous when X
is an invertible covariance matrix.

Although classic tests for neutrality under the coalescent rely on summary statistics
computed from observed molecular data (Tajima, 1989; Ferretti et al., 2010), it is well under-
stood that these tests can be obscured by other processes such as demography that affect
branch length distributions. To reduce this impact, tests based on phylogenetic tree topol-
ogy have been proposed (Drummond & Suchard, 2008; Yang et al., 2018). These tests rely
on one-dimensional tree summary statistics such as external tree length, assuming unit inter-
branching events, and the number of cherries. Here, we use Hotelling’s T-squared test for
assessing Hy: E[F] = M, where M corresponds to the expected F under the standard coa-
lescent. To show the applicability of the results in this section, we simulated 200 samples of
1000 ranked tree shapes with n = 25 tips from the Blum-Frangois distribution, each with
parameter 8 € (—1, 10]. Figure 8 shows the power of Hotelling’s T-squared test. We observe
that the test is valid at level 0.05 and also has good power away from g = 0.

6.3. Summaries of coalescent ranked genealogical distributions

To show the applicability of our simulated annealing algorithm for summarizing genealo-
gies, we simulated genealogies according to the neutral isochronous coalescent model with
variable population size. Here, the tree topology and the branching times are independent.
The ranked tree shape is distributed according to the Kingman/Yule/Blum—Frangois model
with 8 = 0, and the branching event times have the conditional density

B N [
Ne<ul-_1>exp{_(2> Ne<u>}

with u, = 0 and N,(¢) a nonnegative function that denotes the effective population size
(Slatkin & Hudson, 1991).

We simulated 1000 ranked genealogies according to the neutral coalescent model with
three different N,(¢) trajectories described in the Supplementary Material. We depict the
three distributions in a multi-dimensional scaling plot and show the Fréchet means and
medoids of each sample and the six central summaries are in the Supplementary Material,
together with the three posterior distributions of tree height. For the three distributions, the
medoid and the Fréchet mean are different. The main difference lies in the branch lengths:
Fréchet means use posterior mean tree heights, while medoids show more atypical heights;
in particular, the medoid tree under constant population size is much shorter than average.

Sluiz1 | ui, Ne(D)} =
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Estimated power (200 replicates)

Fig. 8. Estimated power of Hotelling’s T-squared test. Power is estimated using 200 replicates each of 1000 trees
with n = 25 sampled from the Blum—Frangois distribution with parameter 8. We use Hotelling’s T-squared test
statistic to test the null Hy: E[F] = M, where M corresponds to the expected F under the standard coalescent.

7. ANALYSIS OF SARS-CoV-2

We first use our method to find the posterior sample Fréchet mean genealogy of 100
SARS-CoV-2 molecular sequences publicly available in the GISAID EpiCov database (Shu
& McCauley, 2017) from the state of California, USA for the period of February 2020
to September 2020. The posterior distribution of genealogies is estimated with BEAST
(Suchard et al., 2018). Details of parameters and prior distributions selected for BEAST
analyses and data access acknowledgments can be found in the Supplementary Material. We
show the multi-dimensional scaling plot of the posterior samples and different central sum-
maries in the Supplementary Material. Both the Fréchet mean and the in-sample medoid are
designed to be central with respect to the d metric using F-matrices, whereas the maximum
clade credibility tree is not. Hence, it is not surprising that the maximum clade credibility
tree is further away from the centre as compared to the other point summaries. The Fréchet
mean is closer to the centre than the in-sample medoid.

In this study, we selected 100 sequences uniformly at random from the pool of avail-
able sequences in GISAID for the state of California during the first nine months of the
pandemic. Given that molecular sampling efforts increased during that time, our uniform
sampling would reflect the effects of such an effort. However, if sampling efforts were cen-
tred towards local outbreaks, genealogical posterior distributions from different uniform
subsamples could be very different and this would raise concerns about the representative-
ness of our results to the population. Here, we propose to compare several subposterior
genealogical distributions corresponding to different subsamples of molecular sequences
drawn uniformly at random in order to assess the stability of their sample Fréchet means.

To analyse the stability of the posterior Fréchet means, we selected three samples of
100 sequences uniformly at random from GISAID and compared their subposterior dis-
tributions. We estimated the three subposteriors with BEAST for each of the four states:
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Tree posterior distributions
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Fig. 9. Multi-dimensional scaling plot of multiple samples from California, Washington, Florida and Texas.

Three samples of 20 trees of n = 100 samples randomly chosen among GISAID sequences in February-May

2020 per location. The Fréchet means are calculated using average coalescent times and marked as large dots. The
shaded region corresponds to 50% credible convex hulls around the Fréchet means.

California, Washington, Texas and Florida. Details of parameters chosen for BEAST anal-
yses and data access acknowledgments can be found in the Supplementary Material. We
thinned subposterior samples to 20 trees, each with 100 tips, per subposterior.

Figure 9 shows the multi-dimensional scaling plot of the three subposteriors from each
state. The subposteriors of Washington state, light blue dots in Fig. 9, are more concen-
trated than any of the other three states. In this case, the posterior sample Fréchet means
are very close to each other and their posterior convex hulls overlap substantially, indicat-
ing stability of the posterior sample Fréchet mean. The posterior distributions of Florida,
marked in purple, are the second more concentrated: their three Fréchet means are close to
each other and their convex hulls overlap. In contrast, the posterior genealogical distribu-
tions of California are very different: their posterior sample Fréchet means are far from each
other and their convex hulls do not overlap. A similar pattern is observed in Texas. This large
heterogeneity observed in California and Texas may be the result of local outbreak sequenc-
ing efforts in the area. In these two cases, simple random subsampling from GISAID may
not lead to representative results.

8. DiIscussioN

For discrete tree topologies, the Fréchet mean ranked tree shape may not be unique. How-
ever, in our experience, we found the Fréchet means to be very close to each other. We
conjecture that the set of Fréchet means has a very small diameter, which will be explored
in future research. While the nonuniqueness of the Fréchet mean can be potentially prob-
lematic for hypotheses testing, we remark that the expected F-matrix, here denoted by M,
is unique and the limit of the sample mean F,, by the strong law of large numbers. In this
manuscript, we provided a central limit theorem result for F),, and analytical expressions
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for M and the variance of the ranked tree shape distribution under the standard Kingman
coalescent. Theoretical results of this kind for other distributions is left to future work.
Similarly, analyses of several test statistics based on the distances analysed here and Fréchet
means such as in Dubey & Miiller (2019) are the subject of future research.
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SUPPLEMENTARY MATERIAL

The Supplementary Material includes additional details of distance calculations and
simulated annealing, as well as proofs omitted from the main text.
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