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Abstract

Despite hundreds of methods published in the literature, fore-
casting epidemic dynamics remains challenging yet impor-
tant. The challenges stem from multiple sources, including:
the need for timely data, co-evolution of epidemic dynamics
with behavioral and immunological adaptations, and the evo-
lution of new pathogen strains. The ongoing COVID-19 pan-
demic highlighted these challenges; in an important article,
Reich et al. did a comprehensive analysis highlighting many
of these challenges.

In this paper, we take another step in critically evaluating ex-
isting epidemic forecasting methods. Our methods are based
on a simple yet crucial observation — epidemic dynamics
go through a number of phases (waves). Armed with this
understanding, we propose a modification to our deployed
Bayesian ensembling case time series forecasting framework.
We show that ensembling methods employing the phase in-
formation and using different weighting schemes for each
phase can produce improved forecasts. We evaluate our pro-
posed method with both the currently deployed model and
the COVID-19 forecasthub models. The overall performance
of the proposed model is consistent across the pandemic but
more importantly, it is ranked third and first during two crit-
ical rapid growth phases in cases, regimes where the per-
formance of most models from the CDC forecasting hub
dropped significantly.

Introduction

The COVID-19 pandemic has severely impacted global eco-
nomic, social, and health. The Delta and Omicron variants
have exceeded records for fatalities, case counts, and hospi-
talizations in the US and worldwide. The global economic
impact is in trillions of dollars. More than 588M confirmed
infections and 6.5M deaths have been reported worldwide,
with the United States reporting over 1M deaths. We have
seen different epidemic dynamic trajectories and mortality
in various countries.

A highlight of the pandemic has been the near real-time
availability of the incidence data, which has been crucial in
understanding its dynamics. The availability of such data has
been a breakthrough but has also raised the expectations to
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develop high-quality forecasts related to the pandemic. Sev-
eral teams have engaged in forecasting these dynamics and
have collectively worked towards refining and communicat-
ing their short-term forecasts (1—4 weeks) to public health
agencies through initiatives such as CDC COVID-19 Fore-
cast Hub' (Cramer et al. 2021) and the European COVID-19
Forecast Hub? (since the goal and setup of both the groups
are alike, we refer to them as The Hub henceforth). The Hub
allows teams to provide probabilistic forecasts for a range
of targets, incident cases, deaths, cumulative deaths, and
incident hospitalizations. We have been one of the teams,
contributing forecasts since July 2020 and have focused on
incident cases and hospitalizations at a granular level. We
employ an ensemble (Adiga et al. 2021) of statistical, deep
learning, and mechanistic models for forecasting multiple
targets.

Over the last decade, as a part of developing forecasting
methods for diseases such as influenza and dengue, it has
been shown that ensemble-based forecasting methods tend
to have better performance compared to individual model
forecasts (Reich et al. 2019; Yamana, Kandula, and Shaman
2017). The Hub has also been aggregating using a simple
median-based ensemble of all model forecasts and has ex-
perimented with a trained ensemble (Cramer et al. 2021).
Simultaneously, evaluation reports prepared by The Hub in-
dicate that the ensemble models have been among the top-
performing models(Delphi 2021).

Despite providing a stable performance, compared to in-
dividual models, an ensemble model’s forecast quality de-
pends on its constituent models’ quality. Despite the efforts
of the forecasting community, there needs to be a greater
understanding of disease dynamics as teams have strug-
gled to predict the onset, growth rate, peak size, and du-
ration of the various waves. Achieving good forecasting
accuracy during the growth or surge phase is of high im-
portance as it enables the effective allocation of medical re-
sources which are strained during these times. Hence, the
ensemble models have suffered from outlying forecasts and
have failed to predict the local peaks (Ray et al. 2021), a
trend we have also observed in our ensemble model fore-
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casts.

In these efforts, all the models face several challenges,
some that have persisted since the beginning of the forecast-
ing period. Important challenges include: (¢) Irregular up-
dates, (¢7) Non-stationarity of the time series, and (z¢7) Co-
evolution of pandemics with social, biological, and viral dy-
namics.

Summary of contributions. In this paper, we will provide
a systematic evaluation of the currently deployed system de-
scribed in (Adiga et al. 2021) and understand the influence
of individual models on the ensemble’s performance at dif-
ferent phases or contexts in the pandemic. Using this knowl-
edge, we propose a training scheme that enables the model
to leverage the context-specific historical performance of in-
dividual methods leading to improved forecast performance
of the ensemble at critical phases. Although we analyze the
efficacy of the proposed training method using our BMA
model, the training scheme is fairly generic and can be ap-
plied to the likes of COVID-19 Forecasthub ensemble mod-
els. These new methods and insights have been obtained
through popular artificial intelligence techniques such as
Shapley value analysis and ensembling methods. Our con-
tributions consist of two key components:

Analyzing pandemic dynamics and performance of meth-
ods (Section ). Our deployed model (Adiga et al. 2021)
in The Hub (listed as UVA-ENSEMBLE) employs Bayesian
Model Averaging (BMA) ensembling technique to suitably
combine probabilistic forecasts from autoregressive models,
filtering methods, deep neural networks, and compartmen-
tal models. A retrospective analysis of our model’s perfor-
mance indicates that the BMA has a performance close to
The Hub’s ensemble model. However, these evaluations only
provide the relative performance of the methods and, in gen-
eral, do not offer insights about absolute forecasting qual-
ity. By systematically evaluating the performance of mod-
els across the forecasting weeks, we are able to establish a
model’s relative influence during different phases of the pan-
demic. Specifically, we determine the influence of the model
on the BMA’s performance at different forecasting weeks
— we observe that a method assigned high weights by the
ensemble does not necessarily translate to improved perfor-
mance.

Our analysis of the performance of models across dif-
ferent forecasting weeks indicates that: (z) compartmental
models are useful during growth and decline phases but
tend to over-predict during the surge and decline phases;
(#17) purely data-driven models like LSTMs have a latency
in picking up the change in phases, but can quickly learn the
patterns and (z¢¢) Statistical AR methods or Kalman filters
based methods show superior performance during time of
relative steady phase of the pandemic.

Development of new phase-informed methods.(Section )
Based on these insights, we propose an improvement to our
BMA model training technique — these improvements are
based on assessing the current phase of the pandemic. First,
we categorize the ground truth data of the pandemic into
phases and then detect changes in those phases. The three
important phases are surge (or growth), plateau, and decline.
We then modify our ensembling technique to employ train-
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ing data from historically similar phases experienced during
the forecasting period. We conduct detailed retrospective
analysis to show that the new methods lead to improved
performance at a critical phase, the surge phase, com-
pared to existing methods. Our analysis shows that the
proposed model has consistent performance across the
pandemic. More importantly, it performs significantly
well compared to The Hub models during the Delta
wave’s surge period (median ranking of 4) and the Omi-
cron wave’s surge phase (median ranking of 1), regime
where the performance of most models from the CDC
forecasting hub dropped significantly.

Related Work

Epidemic forecasting has been a subject of active research
over the last decade. Given the large number of papers writ-
ten on this topic, we will provide references to surveys and
papers that are most closely related — see (Nsoesie et al.
2014; Chakraborty et al. 2018; Wang et al. 2021, 2020;
Rosenfeld and Tibshirani 2021; Bertozzi et al. 2020) and pa-
pers cited therein for recent work, challenges and progress.
The compartmental models have been the most common
framework during this pandemic, primarily because they
are versatile enough to incorporate evolving aspects of dis-
ease dynamics. In The Hub, most models are variants of the
Susceptible-Infectious-Recovered (SIR) (Anastassopoulou
et al. 2020), and a detailed description of the compartmen-
tal model variants is provided in (Adiga et al. 2020). The
details of the different models serving The Hub are avail-
able in (Hub 2020). Traditionally, statistical and other data-
driven methods have shown to be effective in epidemic
forecasting but also rely heavily on high-quality data. In
COVID-19 forecasting, linear models have mainly been re-
stricted to forecasting case trajectories at the national level
(Hernandez-Matamoros et al. 2020; Kufel et al. 2020). Mod-
elers have also considered complex systems, such as deep-
learning models. Specifically, Long Short-Term Memory
(LSTM) networks (Ramchandani, Fan, and Mostafavi 2020;
Rodriguez et al. 2020) and Graph Neural Network (GNN)
(Gao et al. 2020; Wang et al. 2021; Kapoor et al. 2020)
have been employed in COVID-19 forecasting. During the
early stages of the pandemic, despite the lack of data, LSTM
models were explored and shown to provide reasonable fore-
casts by incorporating auxiliary data. Finally, in the frame-
work of ensembling, Bayesian model averaging (BMA) is
a well-studied, practical framework for probabilistic fore-
cast averaging that, unlike the model selection, also takes
into account the uncertainty in predictions. Its application
to combining multiple weather models has been studied ex-
haustively by Raftery et al. (Raftery et al. 2005), while its ef-
fectiveness in weighting competing ILI forecasting models
has been demonstrated in (Yamana, Kandula, and Shaman
2017).

A Retrospective Analysis of BMA Ensemble
Forecasts

The constituent models in the currently deployed BMA en-
semble forecasting method include several standard statisti-



cal, deep learning, and compartmental models. Specifically,
we employ AR model and its variants (AR, AR_spatial,
ARIMA), an LSTM model, an ensemble Kalman filter
(EnKF), and a compartmental model (SEIR). The forecasts
from these models are combined using a Bayesian model
averaging technique. We have purposely employed simple
models as their behavior is well studied and they also pro-
vide better explainability. A detailed description of the mod-
els is available in our work (Adiga et al. 2021).

Our primary effort over the pandemic has been focused on
making accurate high geographical resolution probabilistic
forecasts, i.e., at the US county level. We are one of the long-
standing models (team name: UVA-Ensemble) in The Hub,
providing forecasts for incident cases at the county-level,
and the model has provided relatively good performance.
We refer the reader to Section for a detailed comparison
of forecasting performance with other state-of-the-art mod-
els in The Hub. As mentioned previously, most models have
failed at important points in time, including our model and
this behavior warrants a thorough analysis. We focus on our
ensemble model and provide a detailed investigation of its
performance across different forecasting weeks.

Pandemic phases. Despite heterogeneity in the COVID-
19 time series, we broadly observe three phases and classify
the observed time period based on the rate of change of re-
ported cases: Surge (period of steep growth in cases), De-
cline, and Plateau. We want to note that the definitions of
phases are subjective (several exist®) and can be user anno-
tated or obtained through standard time-series change point
detection algorithms (Aminikhanghahi and Cook 2017). We
discuss a standard phase identification technique in Section .
Our primary purpose of phase classification is to capture dis-
tinct trends in the time series and leverage that information
to better train the BMA model.

Influence of Methods at Different Phases of the
Pandemic

Our preliminary analysis (Adiga et al. 2021), showed that
based on the average performance computed across all coun-
ties and all forecasting weeks, all methods were important.
We also observed that the dominant methods (methods as-
signed the highest weight) for a given location changed
across forecasting weeks. In the following sections, we in-
vestigate the influence of methods at different phases of the
pandemic.

Model ablation analysis Inspired by the concept of Shap-
ley value (Winter 2002) in game theory, we measure the con-
tribution of each method in the BMA ensemble using the ab-
lation analysis. Let N = {1,...,n} be the set of methods in
the BMA ensemble. A method ¢ influence in the ensemble
is governed by the performance of other methods feeding
into the BMA. For example, ¢, in the presence of a subset
of methods with historical performance inferior to it, will
receive high weights. On the other hand, its effect on the

3https://www.cde.gov/flu/pandemic-resources/planning-
preparedness/global-planning-508.html
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BMA can be insignificant in the presence of a better per-
forming set of models. In order to understand the influence
of 7 across all such groups, we consider all possible subsets
that can be generated from the N — 1 methods and train the
BMA on each subset. The influence of 7 is determined by
comparing the performance with and without the inclusion
of 7 in the subsets. Since each county is trained indepen-
dently in our framework, we determine the influence of 7 for
each county c and define the payoff set function at time ¢
as vo!(S) = w, for S C N, where y*! is the
ground truth for ¢ at time ¢ and f*(S) is the forecast ob-
tained from the BMA ensemble when S set of methods are
incorporated into BMA. Then the expected marginal contri-
bution of a method ¢ can be defined by the average change
in the v using the set of methods S, if 7 is included with S
in the BMA ensemble. The average ablation score is defined
as: ¢ = - ZS(;é@)CN\{i} [vet(SU{i}) —vt(9)].
This equation is similar to the Shapley values used in co-
operative game theory. However, the Shapley values place
certain constraints that are violated by our payoff function.

Results In Figure 1, we present the observed ¢! values for
i € {AR, ARIMA, AR _spatial, EnKF, LSTM and SEIR}.
Note that negative ¢ values for a method ¢ indicate an over-
all reduction in the MAPE, when i is included with a subset
of methods S in the ensemble. In particular, ARIMA and
LSTM get the most significant negative values throughout
the observed time period. The SEIR has variable perfor-
mance from around July 2021 to September 2021. During
the beginning of the surge phase, the SEIR models are typ-
ically able to capture the rapid increase in cases, but in the
subsequent weeks, tend to overestimate the growth. Due to
their superior performance during the past weeks they still
get assigned high weights thus leading to inferior perfor-
mance of the BMA. Owing to their construction, the SEIR
model can match the exponential growth observed during
the surge phase.

Proposed Method - Phase Informed Ensemble

Motivated by the fact that the performance of the ensem-
ble is influenced by different models in different phases, we
propose a method to supply the phase information during
the BMA ensemble training. In the BMA framework, we in-
dependently train a single BMA to calibrate forecast ensem-
bles per county. Considering K models per county, the BMA
assumes that the conditional density of y given the fore-
casts f1,..., fx generated from models My, Mo, ..., Mk
is given by

K
PWlfL, fareeo o fr) =Y wign(ylfr),

k=1

(D

where wy, is the posterior probability of the &' model’s fore-
cast being the best one, and g (y| fx) is the conditional den-
sity of y given fi. With normal approximation for the con-
ditional density i.e. y|fr, ~ N (fx,02), (1) is a finite mix-
ture of Gaussians, and we proceed to determine the weights
wg, and oy. Given the distribution (1), the weights and vari-
ance parameters are obtained as the maximum likelihood
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Figure 1: Understanding the influence of models through ablation analysis.

estimate using the standard expectation-maximization (EM)
algorithm (Raftery et al. 2005), which alternates between the
E-step and the M-step with the updates for wj, and oy, in the
4™ iteration given by the (E-step)

i—1 i—1
Z(j) w,(j )g(yt|fk,t>0](cj ))
kit — i i )
S wd Vgl fie oY)
and (M-step)
Wl — 1 ) 02 _ Yier Pty = fre) @
|T| teT /b ZtET Zkvt

In the existing framework (Adiga et al. 2021), T corre-
sponds to the previous N contiguous weeks of training sam-
ples, that is, for a forecast week T', T = {T — 1,T —
2,---,T — N}. Given the highly nonstationary data, it is to
be noted that in our training, in order to ensure that the most
recent trend is captured, we consider only the most recent NV
weeks and not the entire set of historical forecasts.

Through the analysis in Section we observed that differ-
ent methods influence the ensemble’s performance at differ-
ent phases. The issue of picking the best performing method
is particularly more pronounced during a surge or decline
phase. A major drawback of the existing approach where the
BMA weights (wy,) are determined by the individual model
performance over the past N weeks, without considering the
phase, is the latency in picking the best performing method.

We identify and address this issue by designing a BMA
ensemble that uses the knowledge of the relevant phase
to get improved weights. On that note, for a weekly case
counts time series, we first segment the ground truth week
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indices into surge (S), decline (D), and plateau (P) phases.
Let Ts, Tp, and Tp be the set of all week indices cor-
responding to the surge, decline, and plateau, respectively.
The phase-informed BMA then considers all the historical
forecasts made by individual methods during the specified
phase for training the weights. That is, for a particular phase
r € {5, D, P}, estimation of weights and variance in (2)
(M-Step) can be modified as

G _ 1
wk,r |7;|

G G2 er, it = fir)?
Z Rty Oppr — .

3
ZteTr 2kt ®

teT,

We next discuss the phase segmentation technique that en-
ables us to determine 7.

Real-Time Phase Segmentation To segment the whole
time series into different phases, we first approximate the
nonlinear time series with a piece-wise linear function. We
use a standard R package segmented (Muggeo 2008) to
estimate multiple break-points.

Note that, in real-time forecasting, since we obtain a new
data point each week, the phase segments must be rees-
timated. Given the new data point, we would want to re-
fine our estimates of phases and ensure that they stay the
same. Hence, we apply the segmentation each week, only
on data starting from the most recent two break-points. The
algorithm is described in Algorithm 1. Using the estimated
break-points {b1, ..., b, } with Algorithm 1 for the ground
truth y1,...,y:, we classify the time interval between any
two consecutive break-points as a surge (S), decline (D),
or plateau (P) phase. We employ a simple criterion for the
phase classification, which defines a time interval (by, br11]



Algorithm 1: Recursive Piece-wise linear fit

Input: Ground truth y1, ..., yr
Output: Set of break-points {b1, bz, ..., bm}

1: Start with w = 15

2: Get a piece-wise fit for yi,y2,...
b < b0 <o < b

: B(w) = {bgw), e b,(::)}

cwhilew +1 <t <Tdo

Get a piece-wise fit for {y; : bfft__ll)f2 < s < t} with break-

points bgt) < bét) << bgft)

by = maxB(t — 1), b5 = maxB(t — 1) \ b7

B(t) < (Bt — 1)\ {b1,b3}) U b1, b}

: end while

: return the final set of break-points B(7")
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Figure 2: A piece-wise linear fit and phase classification for
USA case counts obtained with Algorithm 1 and phase seg-
mentation scheme.

as a surge (or decline) phase if there is at least a 10% incre-
ment (or at least a 10% reduction) in the case count from the
start of the time interval by, to end of the interval by, and
plateau phase otherwise. Figure 2 shows an example of the
estimated break-points and the phase identification for the
national-level case counts for January 2020 to July 2022.

Results

Sample Forecasts of Phase-Informed Forecasts In Fig-
ure 3, we show forecasts provided by the phase-informed
BMA (PI-BMA) and the non-phase-informed BMA (BMA)
for two US counties. In these forecasts, we observe that dur-
ing the inflection points (change from surge to decline), the
BMA typically over-predicts (cf. Figures 3a and 3b) while
the PI-BMA is able to forecast the trajectory relatively well.
These are examples but a comparison of performance be-
tween BMA and PI-BMA is discussed next.

A comparison of BMA and PI-BMA In all our analysis,
we consider aggregate performance across three regimes, (7)
Overall—80 forecasts weeks (1 August 2020 — 1 January
2022), (i7) Delta wave surge region (15 July 2021 — 15 Au-
gust 2021), and (z¢%) Omicron wave (15 December 2021 —
15 January 2022). The latter two regimes are specifically
considered as these correspond to the surge phases where
most models failed to forecast the rapid increase in cases
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Figure 3: Examples comparing PI-BMA forecasts (red line)
with the deployed BMA forecasts (green line) for two US
counties (a) Virginia Beach (Virginia) and (b) Miami-Dade
(Florida). A visual inspection of these examples show that
PI-BMA when compared to BMA is able to capture inflec-
tion regions better.

(Ray et al. 2021). In order to assess the performance of the
PI-BMA, we compare the median MAE obtained with BMA
and PI-BMA in different time periods. In Figures 4, we com-
pare the mean of the median (over all counties) MAE taken
across all three regimes. We observe that the PI-BMA model
has slightly smaller or comparable MAE in all three cases,
for both short term (1-week ahead) and long term (4-week
ahead) forecasts. We mostly consider median performance
as opposed to mean performance as the forecasts quality of
few counties with high levels of noise can be significantly
poor and can affect the aggregate performance of a model.

100
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Median MAE
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Figure 4: A comparison of BMA and PI-BMA based on the
median MAE across all counties.



Retrospective Evaluation: A Comparison with The
Hub Models

So far. over 100 models from dozens of teams have submit-
ted forecasts to The Hub, with the numbers varying every
week. Among the many teams, only a handful have been
consistently providing county-level forecasts. In order to
make a fair comparison, we only consider teams that have
been providing consistent forecasts across most counties and
targets since August 2020. It should be noted that across the
80 forecasting weeks, 15 models have provided a signifi-
cant number of forecasts. The model details are available in
(Hub 2020). As the pandemic progressed, we observed that
the number of models started to drop after July 2021. As
mentioned, the teams provide probabilistic forecasts in the
quantile format. In order to compare the forecast quantiles
of the different models, we use the Weighted Interval Score
(WIS), the de facto standard in the epidemiological forecast-
ing community for probabilistic forecast evaluation (Bracher
et al. 2020):

1
K+05

K
Z
2 2
— (e =)Ly <lp) + —(y —up)L(y > ug), 4
o 75

where y is the observed value (ground truth case count cor-
responding to a week) for a given location and date, F' is the
forecast defined in terms of the median m, upper quantiles
uy, and lower quantiles [; of the predictive distribution, re-
spectively. K = 3 is the number of intervals considered. 1
is the indicator function.

We first rank the performance of a model for each fore-
cast week and target horizon by considering its median WIS
score across all the counties (the model having the lowest
median score is ranked one). We next determine the me-
dian ranking of different models during different regimes,
and the results are shown in Figures 5a and 5b for 1 week
ahead and 4 weeks ahead forecast horizons, respectively.
The blue bars, which correspond to the median ranking com-
puted across all forecasting weeks, indicate that both BMA
(UVA-Ensemble) and PI-BMA are ranked around 6—7. Fo-
cusing on the more challenging target of 4-weeks ahead, we
observe that the PI-BMA is one the top-ranked models dur-
ing the critical phases of Delta wave surge (median rank-
ing of 4 out of 9) and Omicron wave surge (median rank-
ing of 1 out of 6). The PI-BMA’s performance indicates
that the model can effectively incorporate the phase informa-
tion and provide considerably better forecasts during critical
phases when compared to both BMA (UVA-Ensemble) and
the rest of the forecast hub models. It should be noted that
the COVIDhub ensemble and COVIDhub-trained_ensemble
use forecasts from highly tuned individual models but our
model is able to out perform them during the critical phases.
This validates the use of selective sampling of training data
by ensembling methods.

WIS, (F,y) = (up — lp)+

2

Conclusions

The paper undertakes a critical and comprehensive review
of several well-studied methods for forecasting COVID-19
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Figure 5: A comparison of several The Hub models perfor-
mance. The median ranking of models for (a) 1 week ahead
forecasts and (b) 4 week ahead forecasts computed across
different regimes. Blue bars show the median ranking of
models computed across all the forecasting weeks, orange
bars correspond to the median ranking of models computed
for the Delta wave’s surge phase, and green bars correspond
to the median ranking of models during the Omicron wave’s
surge phase. Rankings across different phases indicate that
the PI-BMA (red box) can provide significantly better fore-
casts, especially 4 weeks ahead, for critical surge phases cor-
responding to the Delta wave (median ranking of 4) and the
Omicron wave (median ranking of 1).

dynamics. Based on the analysis, we proposed a phase-
informed Bayesian ensembling method that significantly im-
proves forecast skills at important critical phases.
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