Journal of Cryptographic Engineering
https://doi.org/10.1007/s13389-023-00340-2

RESEARCH ARTICLE l‘)

Check for
updates

Leaking secrets in homomorphic encryption with side-channel attacks
Furkan Aydin' . Aydin Aysu’

Received: 22 June 2023 / Accepted: 31 October 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract

Homomorphic encryption (HE) allows computing encrypted data in the ciphertext domain without knowing the encryption
key. It is possible, however, to break fully homomorphic encryption (FHE) algorithms by using side channels. This article
demonstrates side-channel leakages of the Microsoft SEAL HE library. The proposed attack can steal encryption keys during
the key generation phase by abusing the leakage of ternary value assignments that occurs during the number theoretic transform
(NTT) algorithm. We propose two attacks, one for —00 flag non-optimized code implementation which targets addit ion and
subtraction operations, and one for -03 flag compiler optimization which targets guard and mul_root operations.
In particular, the attacks can steal the secret key coefficients from a single power/electromagnetic measurement trace of
SEAL’s NTT implementation. To achieve high accuracy with a single-trace, we develop novel machine-learning side-channel
profilers. On an ARM Cortex-MA4F processor, our attacks are able to extract secret key coefficients with an accuracy of 98.3%
when compiler optimization is disabled, and 98.6% when compiler optimization is enabled. We finally demonstrate that our
attack can evade an application of the random delay insertion defense.

Keywords Homomorphic encryption - SEAL - Number theoretic transform - Compiler optimizations - Side-channel attacks -

Machine learning

1 Introduction

Fully homomorphic encryption (FHE) allows arbitrary com-
putations on encrypted messages without the need for decryp-
tion [15]. FHE is useful, e.g., for cloud computing where the
untrusted cloud can compute on encrypted data and the user,
who holds the secret key, can decrypt the returned result.
Therefore, HE preserves the privacy and confidentiality of
data while allowing computations in untrusted environments.
Although FHE is an evolving approach with mathematically
provable security guarantees, their physical implementations
can have vulnerabilities. For example, the first successful
physical side-channel attack on FHE [3] has recently been
demonstrated, revealing the encrypted message by exploiting
the side-channel leakage of Gaussian sampling operations.
In this work, we reveal new side-channel vulnerabilities
of Microsoft SEAL—an FHE software library [30]. SEAL

B Furkan Aydin
faydn@ncsu.edu

Aydin Aysu
aaysu@ncsu.edu

Department of Electrical and Computer Engineering, North
Carolina State University, Raleigh, NC, USA

Published online: 12 January 2024

is a high-profile target that has recently gained significant
recognition in the literature and has been used in many
applications [4, 12, 22]. Our attack focuses on the num-
ber theoretic transform (NTT) function of SEAL executed
during the key generation. We first show that the NTT pro-
cesses ternary values (—1, 0, or +1) that correspond to the
secret key coefficients. Then, we build a side-channel attack
that can extract this information from NTT operations. The
challenge in attacking this stage is being limited to a single-
trace measurement. We address this challenge by developing
a multi-stage neural network based side-channel classifier.
Finally, we implement a defense based on random delay
insertion for the NTT and assess its effectiveness against our
single-trace attacks.

In this work, we also analyze the effect of compiler opti-
mizations on the side-channel leakage of SEAL’s NTT. In
the ARM compiler, there are different optimization levels for
the target ARM-MA4F processor: —00, —01, —02, and —03.
Our first attack focuses on addition and subtraction
operations of the SEAL’s NTT code with complied —00,
which corresponds to no optimization at all. This setting is
commonly used when attempting a constant-time implemen-
tation in order to avoid the compiler optimizing the loops

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-023-00340-2&domain=pdf

Journal of Cryptographic Engineering

Edge Device
D
\ //Q\ b
Adversary apie to configure secret \ P “
key during training
WANYARSAS -
Train and test [Elskisierses

Goal:
find secret key
with a single power
measurement

power traces

Fig. 1 Homomorphic encryption functions at the edge device and the
cloud. The public key (pk) encrypts the message (m) to generate the
ciphertext (c¢) and the secret key (sk) decrypts the received homomor-
phically evaluated ciphertext (¢ ’)—both operations execute on the edge

and ruining the developer’s work [8]. In terms of perfor-
mance, settings from -01 to -03 indicate varying degrees
of optimization. The setting -03 provides the highest level
of optimization. Therefore, we also analyze SEAL’s NTT
implementation with -O3 optimization level in this work.
However, our previously shown side-channel leakages do not
exist with -03 flag compiler optimization. Despite compiler
optimizations eliminating previous side-channel leakages,
we demonstrate new side-channels that occur during guard
and mul_root operations in SEAL’s NTT implementation.

Our work is different from earlier single-trace side-
channel attacks on the NTT [12, 20, 25, 27]. The timing
leakage analysis by Drucker et al. achieves a low success
rate of 9% [12] because the attack only focuses on branch
executions of butterfly in NTT. This attack is inapplicable
to SEAL because its butterfly unit is constant time. Kim et
al. propose an ML-based side-channel attack on NTT [20].
The attack exploits Montgomery reduction operation that
does not exist in SEAL’s NTT. Primas et al. abuse timing
side-channel leakage from DIV instruction used to perform
modular reduction—this vulnerability is also absent in SEAL
[27]. Pessl et al. improve the attack of Primas et al. [25].
This attack may target constant-time NTT implementations
as in SEAL but scale inefficiently for large polynomials used
in FHE. Our proposed attack is simpler and more efficient
compared to this attack because it specifically targets ternary
value assignments.

The proposed attacks in this work are also different from
the earlier single-trace analysis of FHE [3] because the ear-
lier attack focuses on Gaussian sampling operations that are
replaced in SEAL v3.6. By contrast, our target is another
operation and it is shown on the latest version of SEAL
to date (v4.1). Moreover, our single-trace attack is fun-
damentally different from multi-trace attacks, which can

@ Springer

@
c=Enc(pk,m)

m’=Dec(sk,c’)

Perform key generation,
encryption, decryption operations

Cloud

Encrypted data
—
("—f ?{ 5
Encrypted data S

(c’) Perform computation
(evaluation) on data
without knowing secret key

device, while homomorphic evaluations execute in the cloud. Our attack
executes on the edge devices with obtained physical measurements
when the keys are getting generated

target FHE’s decryption operations. We do not address such
attacks on decryption in this study since they are relatively
straightforward extensions of the recent multi-trace analysis
of lattice-based cryptography [29, 31]. Single-trace attacks
are known to break defenses such as masking that are built
for such multi-trace attacks [27].

An earlier version of this article has been published in the
proceedings of the 2022 Workshop on Attacks and Solutions
in Hardware Security [1]. The major contributions of the
conference edition were:

e We reveal a new single-trace side-channel leakage of
SEAL. We show the processing in NTT function leaks
information about the ternary values that can lead to
recovering the secret keys in FHE. This vulnerability
exists in the latest version (v4.1) of SEAL as of date.

e Toeffectively extract the side-channel information from a
single-trace measurement, we propose a two-stage neural
network-based side-channel profiler. We use two dis-
tinct ML classifiers and ensemble results by multiplying
guessing scores to improve the guessing success.

e We perform the proposed attack on the ARM Cortex-
MA4F running SEAL software. The results show that our
proposed attack extracts each secret key coefficient with
98.3% accuracy.

e We evaluate random delay insertion countermeasure. We
show that random delay insertion defense is susceptible
to attacks.

This journal article enhances our prior work in several
aspects as outlined below:

e We demonstrate a novel side-channel leakage of SEAL
when compiler optimization -03 flag is enabled. The

Journal of Cryptographic Engineering

guard and mul_root operations (at lines 3 and 10 in
Fig. 8) read data from memory via load (1drd) instruc-
tions, which can leak secret information in NTT function.
As of date, this vulnerability exists in the latest version
(v4.1) of SEAL.

e We evaluate the proposed attack on the ARM Cortex-
MA4F running SEAL software. We compile the implemen-
tation using gcc-arm-none-eabi with optimization
flag -03. Based on the results, our proposed attack is
more effective in extracting each secret key coefficient
than our previous attack. We can reveal each secret key
coefficient with 98.6% accuracy.

The remainder of the paper is organized as follows. Sec-
tion2 provides background information about FHE, NTT,
and our threat model. Section3 then introduces the pro-
posed ML-based side-channel attack with compiler optimiza-
tion level -00. Section4 presents the proposed ML-based
side-channel attack with compiler optimization level -03.
Section 5 evaluates attack results and countermeasures. Sub-
sequently, Sect. 6 discusses drawbacks of our attack. Finally,
Sect.7 concludes the work.

2 Preliminaries

This section provides background information about FHE,
NTT, ML-based side-channel attacks and threat model.

2.1 Fully homomorphic encryption (FHE)

FHE schemes are characterized by four primary functions:
key generation, encryption, evaluation, and decryption. Fig-
ure 1 illustrates an example structure of FHE. The key
generation generates secret and public keys.

The encryption uses the public key to encrypt user’s mes-
sage. The evaluation takes the encrypted message and uses
the public evaluation key to perform homomorphic opera-
tions over the encrypted message. The encrypted messages
can be processed by others who do not know the secret
key. Decryption takes the secret key and evaluation output
to recover the resulting plaintext value.

There are various software and hardware implementa-
tions of FHE such as SEAL [30], SEAL-Embedded [24],
HElib [16], HEAAN [7], and PALISADE [26]. We specif-
ically focus on SEAL which is compatible with SEAL-
Embedded—the first FHE library targeted for embedded
devices. While SEAL can support BFV [13] and CKKS [7]
schemes of FHE, SEAL-Embedded only supports the CKKS
scheme. In this work, our target scheme is CKKS since it is
supported by both SEAL and SEAL-Embedded libraries.

CKKS scheme of FHE is constructed based on the Ring
Learning with Errors (RLWE) problem [7]. An RLWE sam-

{0, 1, g-1} = x[0]
{0, 1, g-1} — y[0]
{0,1,0-1} — x[1]
{0,1, g-1} = yl1l
{0, 1, g-1} = x[2]
{0,1,¢-1} = vi2]

{0, 1, g-1} — x[3]

{0,1, g-1} = V(3]

Fig. 2 The first few stages of the NTT. Each stage of NTT consists
of multiple butterfly operations. Twiddle factors w are constant in each
stage. NTT inputs of SEAL CKKS scheme can be 0, 1, or g-1

ple b = as+e is built by sampling a from R, (which is the
residue ring of R modulo g), noise e sampling over R, and
secret key s is chosen from a key distribution over R. In
SEAL’s CKKS scheme, R; is used as secret key distribution.
In other words, the secret key is produced from a ternary dis-
tribution sampling over {—1, 0, 1} where modulus 7 is to be
the power of two. This generated secret key is then converted
to the NTT domain before performing decryption operations.

SEAL and SEAL-Embedded have several parameter set-
tings [24, 30]. In this paper, we have targeted 128-bit security
level and n = 4096 which is the default setting of SEAL-
Embedded.

2.2 Number theoretic transform (NTT)

NTT is basically a form of fast Fourier transform (FFT) over
finite field. It is used to improve the performance of poly-
nomial multiplication. Its representation is denoted as x =
NTT(x) € Z;’ where x = (xo, ..., Xs-1) € R, denotes vectors
of polynomials over R,. Its formulation is X; = Z?;éx "
where w is fixed n’s primitive root of unity. The powers of w
are called twiddle factors. In our target library configuration,
modulus degree 7 is 4096. SEAL has 4 prime modulus using
n = 4096 for key generation. Prime modulus (g) is 109 (30 +
30+ 30+ 19) bits, and its coefficient values are 0Ox3ED00001,
0x3ED30001, 0x3ED60001, and 0x66001.

Although secret key coefficients can be equal to -1, 0,
or 1, these values are converted to {0, 1, g-1} form before
NTT operations. SEAL uses primes at most 30-bits; there-
fore, NTT inputs can be equal to 0, 1, or 0x3ED00000.

Figure?2 illustrates the first few stages of NTT. NTT
consists of log, n stages. In each stage, there are butterfly
operations that consist of modular multiplication, addition,
and subtraction. SEAL uses the Harvey butterfly structure
instead of Cooley-Tukey (CT) [9] and Gentleman-Sande
(GS) [14]. NTT has x and y input coefficients. The x coef-

@ Springer

Journal of Cryptographic Engineering

1 |void transform_to_rev

2 | (ValueType *values, int log_n,

3 | const RootType *roots,

4 | const ScalarType *scalar = nullptr) const{
5 size_t n = size_t(1l) << log_n;

6 RootType r;

7 ValueType u, v;

8 ValueType *x = nullptr;

9 ValueType *y = nullptr;

10 std::size_t gap = n >> 1;

11 std::size_t m = 1;

12 -

13 for (std::size_t i = 0; i < m; i++){
14 r = *++roots;

15 x = values + offset;

16 y = X + gap;

17 for (std::size_t j = 0; j < gap; j+=4){
18 u = arithmetic_.guard(*x);

19 v = arithmetic_.mul_root(*y, r);
20 *X++ = arithmetic_.add(u,v);

21 *y++ = arithmetic_.sub(u,v);

22

23 }

24 offset += gap << 1;

25 }

26

27 |}

Fig.3 SEAL’s NTT implementation. The highlighted code lines show
the lines we target

ficients go to guard function in SEAL which performs a
reduction before addition and subtraction opera-
tions of each butterfly. The y coefficients go to mul_root
function which multiplies y coefficients with twiddle factors
before addition and subtraction operations of each
butterfly.

2.3 Threat model

This work presents an attack on the NTT operation of
SEAL CKKS scheme’s key generation to extract secret key
coefficients which are invoked by NTT. Figure 1 illustrates
that there are edge devices that compute encryption and
decryption and a cloud server that computes homomorphic
evaluation. Our threat model assumes the adversary has
access to the edge device. Therefore, the adversary can cap-
ture multiple power traces for building a “profile” of the
leakage. We also assume that the adversary knows the exe-
cuted SEAL code’s version and its parameters. Therefore,
the adversary can build ML models offline by configuring the
device with different keys. During the attack, however, the
adversary tries to extract the secret key using only a single-
trace that is captured from the victim’s device. Since the key
generation will occur only once for each session, the adver-
sary is limited to a single power measurement.

@ Springer

3 Proposed attack with compiler
optimization level -00

This subsection presents the proposed attack and related
challenges for compiler optimization disabled settings. We
discuss target operations and demonstrate vulnerabilities
within the implementation of the target operations.

3.1 Target operations and vulnerabilities

Our proposed attack focuses on the NTT which takes SEAL’s
secret key as input and converts them to the NTT domain dur-
ing the key generation of FHE. Figure3 shows the related
code scripts of SEAL’s NTT implementation. x and y
pointers correspond to secret key coefficients, and r value
corresponds to the twiddle factors. The inner loop performs
the butterfly operations of NTT. In each iteration of the inner
loop, 4 butterfly operations are executed. The gap value is
initially equal to 2048 for SEAL’s NTT with n=4096. There-
fore, there are 2048 butterfly operations in each stage of NTT.

The first arithmetic operation of NTT is modular reduction
operation—guard which is shown in line 18 of Fig.3. x
input coefficients first go through the guard function in line
18 of Fig.3. It contains a simple conditional statement that
checks whether x input is greater than two times modulus
(2g) or not. If the x coefficient is greater than 2¢, it performs
areduction. However, NTT inputs are alwaysin {0, 1,¢- 1} <
24 in the first stage of NTT. Therefore, this guard operation
does not change the input values. After the guard operation,
y coefficient and twiddle factor (r) go through mul_root
function in line 19 of Fig.3. The twiddle factors are public
values and pre-calculated before the NTT operations. Also,
they are smaller numbers in the first few stages of the NTT.
Since the twiddle factor is updated outside of the inner loop,
it is constant in the inner loop. After the multiplication of
the twiddle factor and y coefficient, the outputs (u and v) of
guard and mul_root operations go through addition
and subtraction operations in line 20 and 21 of Fig.3,
respectively.

Our attack targets the addition and subtraction operations
highlighted in red color in Fig.3. Since NTT’s input coef-
ficients can be 0, 1, or g-1, there are only 9 possible input
pairs (i.e., cases). For both addition and subtraction
operations, their inputs (u and v) in lines 18 and 19 of Fig. 3
depend on NTT’s inputs (x and y). Hence, there are 9 distinct
inputs for both addition and subtraction operations.

3.2 Determining point of interest (POI) regions

A major challenge in performing our proposed attack is find-
ing the points of interest (POI) region of addition and
subtraction operations of each butterfly of NTT. To

Journal of Cryptographic Engineering

@«
S

)

\< case-3

/ g
o /,/\v/\\ // \\/v‘ —case-2
’ \

J
|
8
g
i

@
3

s

£ i
o | i
o K|
s ™ 1/\/
o f
oo

©

- =4

o

>

-100
0

500 1000 1500 2000 2500
Number of Samples

(@)

0 © case-1
5 o case-2

case-3
© case-4

case-5
* case-6
© case-7
© case-8

» case-9
-40 -30 -20 -10 0 10 20 30 -40 -30 -20 -10 0 10 20 30

Principal Component 1 Principal Component 1

(b) ()

Principal Component 2

Principal Component 2

Fig. 4 a An example of averaged power trace corresponds to an
addition operation in the butterfly operation, b principal compo-
nent analysis (PCA) scores for power traces with the samples from 200
to 350 correspond to addition operations, ¢ PCA scores for power
traces with samples from 200 to 350 correspond to subtraction opera-
tions

identify POI regions, we use ML and pre-processing tech-
niques.

Our attack first divides traces into small sampling win-
dows. Each window contains a fixed portion of trace samples,
and they are labeled as 0 or 1 depending on whether it
includes sample points corresponding to the power samples
of additionand subtraction operations or not. Power
samples in each window and their corresponding labels are
fed to the ML for the training. During the test, power samples
in each window are fed to our ML classifier in their natural
sequence to identify POI regions corresponding to sequen-
tial arithmetic operations of NTT. Then, Pearson correlation
coefficient [5] is used to validate POI regions.

The number of power samples in each window affects
ML results. When the window size is smaller than the power
samples corresponding to the target arithmetic operations, at
least one correct guess for the guess of target trace samples
can be determined. Therefore, we select the window size as
1000 for both addition and subtraction operations.

3.3 Exploiting side-channel leakages

The power consumption of the processed data depends on
the inputs and operations. To perform a side-channel attack,
the adversary needs to model the power consumption of the
device. The most well-known power models are Hamming
weight, Hamming distance, and identity. According to the
used model type, labels of power consumption data can be
different. Since there are only 9 possible input pairs of the
NTT, we used the identity model and labeled data from 1 to
9.

Figure4a shows an example of averaged power traces
for all 9 input cases of the addition operation. The red

g output,
'.g outputz_’ ﬁ
/ ¥~ ! 3
ol a .
X Input Hidden Output e Predicted
@ Layer Layers Layer o |—P Coefficient
) .
Y . Power £ Pair
g V‘\\, output; - ug_,
= > output,

Input I-:Iidde:n Output
Layer Layers Layer

Fig. 5 ML pipeline. Two distinct ML classifiers take the power
measurements corresponding to the addition and subtraction
operations in the NTT. The estimated results are then ensembled to
predict the NTT’s secret key coefficients

dashed rectangle—power samples from 200 to 350 in Fig.4a
indicate the highest leakage points—in other words, the
power consumption difference for different cases in this
region is highest. We use PCA [18] to see the variation of
9 different input pairs. Figure4b and c¢ shows the princi-
pal component analysis (PCA) scores for power traces with
samples from 200 to 350 corresponding to addition and
subtraction operations, respectively. Different colors
indicate that data for each pair are grouped in a specific region
which means it is not impossible to identify all input pairs
statistically.

Our ML-based attack takes the whole power consump-
tion trace corresponding to the target addition and
subtraction operations rather than a specific portion of
trace, automatically analyzes all samples of traces, and dis-
tinguishes the power traces for all 9 cases.

3.4 Ensembled ML-based side-channel attack

Our proposed attack uses two distinct ML classifiers to esti-
mate input pairs of NTT separately for the addition and
subtractionoperations. Figure 5 shows our ML pipeline.
Each ML classifier takes power traces corresponding to
addition and subtraction operations and generates
guessing scores. Table 1 shows an example of guessing
scores. There are 9 possible guess scores for both addition
and subtraction operations. The sum of the scores is 1
for both addition and subtraction operations. The
correct pair is 5 in this example. The highlighted line shows
that ML classifiers for addition operations guess case-2
with 0.5236 accuracy and ML classifiers for subtraction
operations guess case-5 with 0.8339 accuracy. To decide
which guessing is correct, our proposed attack ensembles
the results by multiplying both guessing scores in each row
in Table 1. The highest guessing score in the ensembled result
column shows the correct guess which is case-5 in Table 1.
Section 5.2 will further provide the hyperparameters of our
attack and the attack results.

@ Springer

Journal of Cryptographic Engineering

Table 1 An Example of

Guessing Scores Case Score for addition Score for subtraction Ensembled result

1 1.3448¢ 09 1.1463¢79° 1.5415¢~15
2 0.5236 0.1470 0.0769

3 4.1054¢~04 8.3409¢ 04 3.4242¢=97
4 5.1324¢%° 4.3093¢~07 2211771
5 0.4755 0.8339 0.3965

6 2.9400e% 0.0066 1.9546e=97
7 5.7768¢ 08 3.6251¢79° 2.0942¢~13
8 4.9694¢~04 0.0109 5.4059¢0¢
9 7.1847¢ 00 7.7821e 04 5.5912¢7%9

Correct pair: 5

1]...

2 | {

3 | _Zl4arithmetic_addRyS_:
4 push {r4, r5, r7}

5 sub sp, #12

6 add r7, sp, #0

7 str r®, [r7, #4]

8 str rl, [r7, #0]

9 return a + b;

10 1ldr r3, [r7, #4]
11 ldrd 1r0, ri1, [r3]
12 1ldr r3, [r7, #0]
13 ldrd r2, r3, [r3]
14 adds r4, ro, r2

15 adc.w r5, r1, r3

16 mov r2, r4

17 mov r3, r5

18 |3}

19 |...

20 | {

21 | _Z1l4arithmetic_subRyS_:
22 stmdb sp!, {r4, r5, r7, r8, r9}
23 sub sp, #12

24 add r7, sp, #0

25 str r®, [r7, #4]
26 str rl, [r7, #0]
27 return a+two_times_modulus_-b;
28 1ldr rl, [r7, #4]
29 1ldrd r4, r5, [ri1]
30 1ldr rl, [pc, #44]
31 1ldrd rd, r1, [ri1]
32 adds r2, rd4, ro

33 adc.w r3, r5, rl

34 1ldr rl, [r7, #0]
35 1ldrd r®, rl, [ri]
36 subs.w r8, r2, r0

37 sbc.w r9, r3, ril

38 mov r2, r8

39 mov r3, r9

40 |}

41

Fig. 6 Assembly code for addition and subtraction operations in
SEAL’s NTT implementation when compiler optimization is disabled

@ Springer

1 | #define SEAL_COND_SELECT(cond,if_true,

2 if_false) (cond ? if_true:if_false)

3 ...

4 | uint64_t guard(const uint64_t &a) const {

5 return SEAL_COND_SELECT (a>=two_times_modulus_,
6 a-two_times_modulus_, a);

7 |}

8 | ...

9 |uint64_t mul_root(const uint64_t &a,

10 const MultiplyUIntModOperand &r) const {

11 return multiply_uint_mod_lazy(a, r, modulus_);
12 |3}

13 | ...

14 | uint64_t multiply_uint_mod_lazy(uint64_t x,
15 MultiplyUIntModOperand vy,

16 const Modulus &modulus) {

17 unsigned long long tmpl;

18 const uint64_t p = modulus.value();

19 multiply _uint64_hw64(x, y.quotient, &tmpl);
20 return y.operand * x - tmpl * p;

21 |}

22

Fig. 7 The guard and mul_root functions in SEAL’s NTT imple-
mentation. Highlighted code shows secret key coefficients that go to
functions as parameters

4 Proposed attack with compiler
optimization level -03

This section presents why previous side-channel leakages
do not exist when compiler optimization with -03 flag is
enabled. We demonstrate a new side-channel leakage that
exists even when compiler optimization is enabled. We also
present our ML-based side-channel attack.

4.1 Why previous side-channel leakages do not exist

Compiler optimization (-03 flag) improves the perfor-
mance of the code. It performs several optimizations such as
common subexpression elimination, loop invariant motion,
constant folding, tailcall optimization and tail recursion,
conditional execution or branch elimination, function inlin-

Journal of Cryptographic Engineering

1 ..

2 return SEAL_COND_SELECT(...)

3 ldrd r5, r6, [r3, #-32]

4 cmp r5, r8

5 sbcs.w r1, r6, r9

6 bcc.n 0x8000372 ;jump to line 10
7 subs.w r5, r5, r8

8 sbc.w r6, r6, r9

9 return multiply_uint_mod_lazy(...)
10 ldrd r4, rl, [r2, #-32]

11

Fig. 8 Assembly code for guard and mul_root operations in
SEAL’s NTT implementation when compiler optimization (-03) is
enabled. Highlighted code shows the instruction that causes side-
channel leakage

ing, loop restructuring, instruction scheduling, etc.! Figure 6
shows the assembly code foradditionand subtraction
functions in SEAL’s NTT when compiler optimization is
disabled. Lines 10-13 and 28-31 of Fig. 6 show that
ldr and 1drd instructions load inputs from memory
into registers for addition and subtraction. ldr
and 1drd instructions load inputs of the addition and
subtraction functions from memory to registers. How-
ever, when compiler optimization is enabled, function inlin-
ing happens. Also, since the inputs of addition and
subtraction functions are already calculated during
guard and mul_root operations and result values are stored
to registers, 1dr and 1drd instructions do not exist. In this
regard, compiler optimization eliminates side-channel leaks
caused by loading data from memory to registers.

4.2 Target operations and vulnerabilities

When compiler optimization is enabled, vulnerabilities of
addition and subtraction functions in line 20-21 of
Fig.3 do not exist. Therefore, we analyzed the whole code
and found new vulnerabilities in NTT’s implementation. New
vulnerabilities happen due to guard and mul_root func-
tions in lines 18-19 of Fig.3. The guard and mul_root
functions take secret key coefficients of SEAL’s NTT as
inputs. The highlighted lines of Fig.7 and the correspond-
ing compiler-generated assembly code with -03 of Fig.8
show target inputs and instructions that cause side-channel
leakage. The 1drd instructions read data from memory and
load data to registers. Due to the fact that data in memory
are secret coefficients of SEAL’s NTT, the execution of these
1drd instructions results in side-channel leakage.

Before performing side-channel attacks, we need to find
the target POI regions of the power traces as in our earlier
attack. Therefore, we follow the same method explained in

1 https://developer.arm.com/documentation/102654/0100/Overview-
of-optimizations.

Voltage Drop (mV)

0 500 1000 1500 2000
Number of Samples
~ @
20 E 20
15 @15

0

=

o w o
g"

"

Principal Component 2
rincipal Compon

U
& o

1
20 15 -10 5 0o 5
Principal Component 1
b

=
1)
-
&
P

20 15 <10 5 0 5 10 15
Principal Component 1
(c)

Fig. 9 a An example of averaged power trace corresponds to a
mul_root operation, b PCA scores for power traces with the samples
that correspond to 1drd instruction in guard operations, ¢ PCA scores
for power traces with samples that correspond to 1drd instruction in
mul_root operations

Sect.3.2. Then, we perform PCA to observe variation of
data for each input. Figure9a shows an example of aver-
aged power traces for all 3 secret inputs of the mul_root
operation. The red dashed rectangle indicates power samples
that correspond to target 1drd instruction. Figure 9b and c
shows PCA scores for data that correspond to guard and
mul_root operations, respectively. There is not an insur-
mountable problem in identifying all secret input coefficients
statistically due to the different colors that indicate that the
data for each coefficient are grouped in a specific area.

4.3 ML-based side-channel attacks

We perform two different attacks to extract x and y input
coefficients of SEAL’s NTT. Our ML classifiers take power
traces corresponding to guard and mul_root operations,
respectively. Since each input coefficient can be 0, 1, or g -
1, there are only 3 possible guesses for each classifier. Since
ML classifiers guess directly x and y secret input coefficients
in SEAL’s NTT instead of input pairs, there is no need for
an ensembled ML-based side-channel attack as in the previ-
ous case. We have two different ML models for guard and
mul_root operations, respectively. Section 5.3 will further
provide the hyperparameters of our attack and the attack
results.

5 Experimental results

This section describes the measurement setup for our exper-
iments and evaluates the proposed attacks with and without
compiler-enabled settings and a well-known countermeasure
for NTT.

@ Springer

https://developer.arm.com/documentation/102654/0100/Overview-of-optimizations
https://developer.arm.com/documentation/102654/0100/Overview-of-optimizations

Journal of Cryptographic Engineering

Table2 Network Model

Structure and Parameters for Model for addition Model for subtraction

Addition and Layer type Output shape Params. # Output shape Params. #

Subtraction Operations in

NTT’s Butterfly Input (None, 2625, 1) 0 (None, 3230, 1) 0
Conv.1D-1 (None, 1314, 64) 320 (None, 1614, 64) 320
MaxPool.1D-1 (None, 657, 64) 0 (None, 807, 64) 0
Conv.1D-2 (None, 654, 128) 32896 (None, 804, 128) 32896
MaxPool.1D-2 (None, 327, 128) 0 (None, 402, 128) 0
Conv.1D-3 (None, 162, 128) 65664 (None, 399, 128) 65664
MaxPool.1D-3 (None, 162, 128) 0 (None, 199, 128) 0
BatchNorm (None, 162, 128) 512 (None, 199, 128) 512
Flatten (None, 20736) 0 (None, 25472) 0
Dropout (None, 20736) 0 (None, 25472) 0
Dense (None, 512) 10617344 (None, 512) 13042176
Output (None, 9) 4617 (None, 9) 4617

Total parameters for addition: 10,721,353
Total parameters for subtraction: 13,146,185

5.1 Evaluation setup

Our evaluation setup uses a development board which
contains a 32-bit ARM Cortex-M4F STM32F4171G micro-
controller operating at 12 MHz. Due to our proposed attack
focusing on the NTT, we only compile the SEAL’s NTT
code rather than the SEAL’s entire code. We compile the
code using gcc-arm-none-eabi compiler with -00 and
-03 flags. The total memory requirement of the implemented
NTT codes is around 75KB RAM and 315KB flash data
storage. Since our device supports up to 196KB RAM and
1024KB flash memory, we do not use any external storage.
We collect power measurements with a LeCroy WaveRunner
8104 model oscilloscope (with a 1 GS/s sampling rate) using
a Riscure current probe.?

Our ML setup is a workstation with 64 GB of random
access memory (RAM), an NVIDIA 1080Ti graphics card,
and an Intel i7 9700K processor. We use tensorFlow-gpu
2.8.0 as the backend, with a keras-gpu 2.8.0 front end to
train and evaluate ML models.

5.2 Evaluation results with compiler optimization
level -00

To evaluate our proposed ML-based side-channel attack, we
collect a total of 90000 power traces. We use 63000, 13500,
and 13500 power traces for training, validation, and testing,
respectively.

As ML model, we used a convolutional neural network
(CNN) architecture which is similar to the work in [19, 21].
Table 2 shows the details of network structures and parame-
ters. There are 3 convolutional and 3 max-pooling layers in

2 https://www.riscure.com/product/current-probe.

@ Springer

Accuracy (%)
o
[t}

0.86 — Training G 0.86 — Training
0.84 — validation|| < 0.84 — Validation
5 10 15 20 25 0 5 10 15 20 25

Number of Epochs Number of Epochs
(a) (b)

Fig. 10 a Training and b validation accuracy vs number of epochs for
ML models of addition and subtraction operations, respec-
tively

total, sequentially as a max-pooling layer after each convolu-
tional layer. After third convolutional and max-pooling layer,
there is a batch normalization layer to prevent overfitting on
the training. Also, there is a dropout layer that drops connec-
tions between neurons with a probability of 0.5 following the
batch normalization. The model uses a flatten layer to con-
vert data into a fully layer. There are 2 fully connected layers,
including the output layer which has 9 neurons. Output layer
uses Softmax activation function [6], whereas the remaining
layers use RELU activation functions [23].

In our proposed attack, feeding the power samples to ML
classifiers in the correct order is crucial. If ML classifiers
are fed with random train and test data sets, the guess-
ing scores of ML classifiers can correspond to different
input pairs of NTT. To solve this issue, we first random-
ize power traces corresponding to both addition and
subtraction operations at the same time. Then, we split
traces for training and testing. Finally, ML classifiers are
fed the power traces sequentially. In this way, each guessing
score for both addition and subtraction operations
matches with their corresponding input pair.

Figure 10a and b shows the results of the classification
of the models trained with the power traces correspond-

https://www.riscure.com/product/current-probe

Journal of Cryptographic Engineering

case_1
case_2 496 33
case_3 49 1 2
w
& case 4 | 15
©
E case_5 4 3 450 2 92 2
-
Q
o case_6 4 1 494 2 8
[}
e
& case 7 2
case_8 14 69 5
case_9 2 39
Total

99.0% 99.7% 99.5% 99.9% 96.7% 99.6% 99.9% 91.3% 99.0% [98.3% g?]rerse:tRano
1.7%

1.0% | 0.3% | 0.5% | 0.1% | 3.3% | 0.4% | 0.1% | 8.7% | 1.0%

Wrong
Guess Ratio

A 1 > B S © 1 > 9
PR Sl Sl 2 S

True class

Fig. 11 Confusion matrix of ensembled ML-based side-channel attack
with 25 epochs

3 : J -
8 0.95 — Train 3 0.95 — Train
< 094 — validation|| < 0.94 — Validation
0.93 n n s L 0.93
5 10 15 20 25 0 5 10 15 20 25
Number of Epochs Number of Epochs
(a) (b)

Fig. 12 a Training and b validation accuracy vs number of epochs for
ML models of guard and mul_root operations, respectively

ing to addition and subtraction operations. When
the number of epochs increases, training accuracy converges
slowly and reaches around 93% and 95% for ML models of
addition and subtraction operations, respectively.

Figure 11 shows the confusion matrix of our proposed
ensembled ML-based side-channel attack with 25 epochs
and 63000, 13500, and 13500 power traces, respectively,
for training, validation, and testing. When we individually
perform ML-based side-channel attacks for addition and
subtraction operations, the correct guess ratios are 92%
and 94%, respectively. With our ensembled ML-based side-
channel attack, the total correct guess ratio increases to
98.3%.

5.3 Evaluation results with compiler optimization
level -

Since we have only three possible guesses (three labels), we
use a total of 30000 power traces to evaluate our proposed
ML-based side-channel attack on guard and mul_root
operations, respectively. We use 21000, 4500, and 4500
power traces for training, validation, and testing, respectively.

Our ML models are based on the CNN architecture, as
presented in Sect.5.2. The network structure is similar to
the network structure that is shown in Table 2. The main

a2 a3

(=] [S)

S]

(9} [0}

] jo]

2 =

i<k hsi

g C t 2 C t

& orrec & orrec
98.5% 99.1% 98.9%] 98.8% Guess Ratio 99.7% 99.9% 99.7% | 99.8% Guess Ratio

S W e
0.9% | 1. 1 2% 0.1% o. 29'
m- Guess Ratio ° Guess Ratio
True class True class
a) b)

Fig. 13 Confusion matrix of ML-based side-channel attack with 25
epochs for a guard and bmul_root operations

1 | for(std::size_t j = 0; j < gap; j+=4) {
2 delay_function();

3 u = arithmetic_guard(*x);

4 delay_function();

5 v = arithmetic.mul_root(*y, r);
6 delay_function();

7 *X++ = arithmetic_.add(u, v);

8 delay_function();

9 *y++ = arithmetic_.sub(u, v);
10

11 |}

I

ig. 14 Random delay insertion between arithmetic operations in NTT

difference is that the output layer contains only three nodes
in our new attack network because ML classifiers predict
directly secret input coefficients of NTT which can be 0, 1,
orqg- 1.

Figure 12a and b shows the results of the classification
of the models trained with the power traces corresponding
to addition and subtraction operations. When the
number of epochs increases, training accuracy converges
and reaches 100% for both ML models of guard and
mul_root operations.

Figure 13a and b shows the confusion matrix of our ML-
based side-channel attack with 25 epochs for guard and
mul_root operations, respectively. When we individu-
ally perform ML-based side-channel attacks for guard and
mul_root operations, the correct guess ratios are 98.8%
and 99.8%, respectively. Since we target directly x and y
secret input coefficients in SEAL’s NTT, there is no need
for an ensembled ML-based side-channel attack. We con-
sider the worst-case scenario to state our attack success rate
for NTT’s each secret coefficient. To calculate the worst-case
guess rate, we sum up the wrong guess rates (1.2% and 0.2%),
which equals 1.4%. As a result, the total attack success rate
for NTT’s each secret coefficient is 98.6%.

5.4 Random delay insertion countermeasure
Random delay insertion method which generates random

delays in embedded software increases the attacker’s uncer-
tainty about the location of the target operation [10, 11]. To

@ Springer

Journal of Cryptographic Engineering

implement this countermeasure into NTT, we write a delay
function that selects a random number between 0 and pre-
selected threshold value and generates a delay depending on
the selected random number. During the delay duration, NOP
executes in the processor. We add the delay function between
each arithmetic operation of NTT shown in Fig. 14.

To evaluate the random delay insertion countermeasure,
we find the position of target operations with ML and then
perform the side-channel attack to extract the NTT’s secret
key. Our attack first divides the power traces into equal trace
windows and then labels the power traces in binary format
like in Sect.3.2. For example, power trace windows corre-
sponding to the addi t ion operation are labeled as 1 and the
remaining trace windows are labeled as 0. ML takes power
traces and labels to build ML models. Since ML can estimate
wrong results and false positives, the selection of window size
by dividing power traces is very crucial. We select the size of
window as 1000 that is smaller than the size of power traces
corresponding to the target operations. Since the sample size
is 2625 for addition and 3230 for subtraction oper-
ation, there are 3-4 and 4-5 sequential windows labeled as 1
foreach additionand subtraction operation, respec-
tively. ML estimates at least one correct guess for each target
point. Then, target POI regions are identified using these ML
guess results. Therefore, this countermeasure is not resistant
to side-channel attacks.

6 Discussions

In this work, we set the operating frequency of the device
to 12 MHz. If we increase the operating frequency, the
noise of the platform will increase. Hence, attacking may
require a great number of traces to build ML models. There
are multiple prior works [2, 17] which demonstrate single-
trace side-channel attacks with lower frequencies, including
8 MHZ to attack on NTT [25].

SEAL supports different configurations with different
parameters. Our attack focuses on its 128-bit security level
with n = 4096. However, depending on the selected con-
figuration setting, there will be a different number of NTT
operations and prime modulus. Therefore, we have to build
new ML models to perform the attack.

Since the goal of our work is to expose side-channel vul-
nerabilities of the SEAL and perform a single-trace attack on
it, we did not concentrate on implementing a resistant coun-
termeasure to our attack. Shuffling countermeasures can be
considered a secure defense mechanism to protect the NTT
[28]. We intend to implement it in the future.

@ Springer

7 Conclusions

In this work, we propose new single-trace side-channel
attacks on an FHE library, SEAL, with real power mea-
surements. Our first proposed attack exploits leakage of
additionand subtraction operations of SEAL’'s NTT
with compiler optimization -00 level—non-optimized code
implementation used, e.g., for constant-time enforcement
in cryptography. Specifically, we demonstrate a vulnera-
bility in the NTT a side-channel leakage coming from the
NTT’s addition and subtraction operations and per-
form an ensembled ML-based side-channel attack on it.
We show that we are able to extract SEAL’s secret key
coefficients with ensembled ML-based side-channel attack
with 98.3% accuracy. The second attack targets guard
and mul_root operations with compiler optimization -03
level. We show that the side-channel leakage coming from
the NTT’s addition and subtraction operations does
not exist when compiler -O3 optimization is enabled. We
demonstrate our second attack can extract SEAL’s secret key
coefficients with a 98.6% accuracy by targeting guard and
mul_root operations in SEAL’s NTT. Furthermore, we
evaluate random delay insertion countermeasure and show
that the random delay insertion countermeasure is not a
suitable countermeasure to protect the NTT against our ML-
based attacks.

Acknowledgements This research is based upon work supported by
the National Science Foundation under the Grants No. CNS 2137283—
Center for Advanced Electronics through Machine Learning (CAEML)
and its industry members.

Declarations

Ethical approval We contacted the Cryptography and Privacy Research
Group at Microsoft Research to report our preliminary findings and
disclosed this paper before publication.

References

1. Aydin, E,, Aysu, A.: Exposing side-channel leakage of seal homo-
morphic encryption library. In: Proceedings of the 2022 workshop
on attacks and solutions in hardware security (ASHES), pp 95-100
(2022). https://doi.org/10.1145/3560834.3563833

2. Aydin, F., Aysu, A., Tiwari, M., et al.: Horizontal side-channel
vulnerabilities of post-quantum key exchange and encapsulation
protocols. ACM Trans Embedded Comput. Syst. 20(6), 1-22
(2021). https://doi.org/10.1145/3476799

3. Aydin, F., Karabulut, E., Potluri, S., et al.: RevEAL: Single-
trace side-channel leakage of the SEAL homomorphic encryption
library. In: 2022 Design, Automation and Test in Europe Con-
ference & Exhibition (DATE), 99-117 (2022), https://doi.org/10.
23919/DATES4114.2022.9774724

https://doi.org/10.1145/3560834.3563833
https://doi.org/10.1145/3476799
https://doi.org/10.23919/DATE54114.2022.9774724
https://doi.org/10.23919/DATE54114.2022.9774724

Journal of Cryptographic Engineering

4.

10.

11.

12.

13.

14.

15.

17.

18.

19.

Boemer, F., Lao, Y., Cammarota, R., et al.: nGraph-HE: a graph
compiler for deep learning on homomorphically encrypted data. In:
Proceedings of the 16th ACM International Conference on Com-
puting Frontiers, pp 3—-13 (2019)

Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a
leakage model. In: international workshop on cryptographic hard-
ware and embedded systems (CHES), pp 16-29 (2004)
Campbell, D., Dunne, R., Campbell, N.A.: On the pairing of the
softmax activation and cross—entropy penalty functions and the
derivation of the softmax activation function. In: Australian Con-
ference on Neural Networks, pp 181-185 (1997)

Cheon, J., Kim, A., Kim, M., et al.: Homomorphic encryption for
arithmetic of approximate numbers. In: international conference on
the theory and application of cryptology and information security
(ASIACRYPT), pp 409-437 (2017)

Colombier, B., Grosso, V., Cayrel, P.L., et al.: Horizontal correla-
tion attack on classic McEliece. IACR Cryptol. ePrint Arch., Report
2023/546 (2023)

Cooley, J., Tukey, J.W.: An algorithm for the machine calculation
of complex Fourier series. Math. Comput. 19(90), 297-301 (1965)
Coron, J.S., Kizhvatov, L.: An efficient method for random delay
generation in embedded software. In: international workshop on
cryptographic hardware and embedded systems (CHES), pp 156—
170 (2009)

Coron, J.S., Kizhvatov, I.: Analysis and improvement of the random
delay countermeasure of CHES 2009. In: international workshop
on cryptographic hardware and embedded systems (CHES), pp
95-109, (2010)

Drucker, N., Pelleg, T.: Timing leakage analysis of non-constant-
time NTT implementations with Harvey butterflies. In: interna-
tional symposium on cyber security, cryptology, and machine
learning (CSCML), pp 99-117, (2022)

Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic
encryption. IACR Cryptology ePrint Archive, Report 2012/144
(2012)

Gentleman, W., Sande, G., Rohatgi, P.: Fast fourier transforms: for
fun and profit. In: in fall joint computer conference (AFIPS), pp
563-578, (1966)

Gentry, C.: Fully homomorphic encryption using ideal lattices. In:
proceedings of the forty-first annual ACM symposium on theory
of computing, pp 169-178 (2009)

Halevi, S., Shoup, S.: Algorithms in HElib. In: Advances in Cryp-
tology - CRYPTO 2014 - 34th annual cryptology conference, pp
554-571 (2014)

Huang, W.L., Chen, J.P., Yang, B.Y.: Power analysis on NTRU
Prime. IACR Trans. Cryptogr. Hardw. Embedded Syst. (TCHES)
2019(1), 123-151 (2019). https://doi.org/10.13154/tches.v2020.
i1.123-151

Jolliffe, I.T.: Principal Component Analysis, pp. 1-488. Springer,
New York, NY (2002)

Kashyap, P., Aydin, F., Potluri, S., et al.: 2Deep: Enhancing
side-channel attacks on lattice-based key-exchange. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. (TCAD) 40(6), 1217-
1229 (2020). https://doi.org/10.1109/TCAD.2020.3038701

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Kim, I., Lee, T., Han, J., et al.: Novel single-trace ML profiling
attacks on NIST 3 round candidate Dilithium. [ACR Cryptol. ePrint
Arch., Report 2020/1383 (2020)

Kim, J., Picek, S., Henuser, A., et al.. Make some noise. unleash-
ing the power of convolutional neural networks for profiled
side-channel analysis. JACR Trans. Cryptogr. Hardw. Embed-
ded Syst. (TCHES) 2019(3), 148-178 (2019). https://doi.org/10.
13154/tches.v2019.i3.148-179

Li, Q., Huang, Z., Lu, W,, et al.: HomoPAI: A secure collaborative
machine learning platform based on homomorphic encryption. In:
2020 IEEE 36th international conference on data engineering, pp
1713-1713 (2020)

Nair, V., Hinton, G.: Rectified linear units improve restricted Boltz-
mann machines. In: International Conference on Machine Learning
(ICML), pp 807-814 (2010)

Natarajan, D., Dai, W.: SEAL-embedded: a homomorphic encryp-
tion library for the internet of things. TACR Trans. Cryptogr. Hardw.
Embedded Syst. 2021(3), 756-779 (2021)

Pessl, P., Primas, R.: More practical single-trace attacks on the
number theoretic transform. In: international conference on cryp-
tology and information security in Latin America (LATINCRYPT),
pp 130-149 (2019)

Polyakov, Y., Rohloff, K., Ryan, G.W., et al.: PALASIDE lattice
crypto library. https://gitlab.com/palisade/palisade-release/blob/
master/doc/palisade_manual.pdf (2022)

Primas, R., Pessl, P., Mangard, S.: Single-trace side-channel attacks
on masked lattice-based encryption. In: international workshop on
cryptographic hardware and embedded systems (CHES), pp 513—
533 (2017)

Ravi, P, Poussier, R., Bhasin, S., et al.: On configurable SCA coun-
termeasures against single trace attacks for the NTT. pp 123-146
(2020a)

Ravi, P, Roy, S., Chattopadhyay, A., et al.: Generic side-channel
attacks on CCA-secure lattice-based PKE and KEMs. IACR Trans.
Cryptogr. Hardw. Embedded Syst. (TCHES) 2020(3), 307-335
(2020)

SEAL.: Microsoft SEAL (release 4.1). https://github.com/
Microsoft/SEAL, Microsoft Research, Redmond, WA (2022)
Zheng, X., Wang, W.W.A.: First-order collision attack on protected
NTRU cryptosystem. Microprocessors & Microsyst. 37(6-7), 601—
609 (2013)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

@ Springer

https://doi.org/10.13154/tches.v2020.i1.123-151
https://doi.org/10.13154/tches.v2020.i1.123-151
https://doi.org/10.1109/TCAD.2020.3038701
https://doi.org/10.13154/tches.v2019.i3.148-179
https://doi.org/10.13154/tches.v2019.i3.148-179
https://gitlab.com/palisade/palisade-release/blob/master/doc/palisade_manual.pdf
https://gitlab.com/palisade/palisade-release/blob/master/doc/palisade_manual.pdf
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL

	Leaking secrets in homomorphic encryption with side-channel attacks
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Fully homomorphic encryption (FHE)
	2.2 Number theoretic transform (NTT)
	2.3 Threat model

	3 Proposed attack with compiler optimization level -O0
	3.1 Target operations and vulnerabilities
	3.2 Determining point of interest (POI) regions
	3.3 Exploiting side-channel leakages
	3.4 Ensembled ML-based side-channel attack

	4 Proposed attack with compiler optimization level -O3
	4.1 Why previous side-channel leakages do not exist
	4.2 Target operations and vulnerabilities
	4.3 ML-based side-channel attacks

	5 Experimental results
	5.1 Evaluation setup
	5.2 Evaluation results with compiler optimization level -O0
	5.3 Evaluation results with compiler optimization level -03
	5.4 Random delay insertion countermeasure

	6 Discussions
	7 Conclusions
	Acknowledgements
	References

