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A B S T R A C T

The implementation of passive-seismic monitoring is essential for the geological carbon storage projects. For
secure and continuous observing of induced passive-seismic events by CO2 injecting, a ground geophone
network would be required. By determining the ideal number of seismic stations within a regular network,
recent research has enhanced monitoring capabilities while also accommodating budgetary limitations. The
primary objective of the optimal placement strategy for the surface geophone network is to create a cost-
effective monitoring system. Given the cost limitations, a restricted quantity of sensors can be deployed at each
location to maximize monitoring performance. To address this challenge, our approach involves the P-median
stochastic programming formulation. The formulation aims to minimize the expected value of a monitoring
target metric, which ultimately results in the optimal placement of detectors exhibiting superior expected
behaviors. Our methodology is designed to choose the arrangement of detectors with best performance to
improve both the early alarm detection time and localization capabilities of the sensor network. We utilize
site-specific passive-seismic scenarios that capture the uncertainty in the characteristics of carbon leakage.
The sensor grids provided by the optimization method invariably improve the capacity to detect passive-
seismic events in comparison to sensors positioned in a regular grid configuration. We test the effectiveness
of our approach on synthetic data based on a carbon storage site named Kimberlina. In conclusion, our
approach provides a cost-effective solution for the optimal placement of sensors to achieve superior monitoring
performance for the detection of passive-seismic events. The incorporation of site-specific scenarios with
stochastic uncertainty coverage allows for more accurate and reliable results, leading to better decision-making
for long-term geological carbon storage.

1. Introduction

Geological carbon dioxide (CO2) sequestration is a promising op-
tion for mitigating the increase in atmospheric CO2 and reducing
the associated global climate change impacts. However, one of the
principal issues of geological sequestration is the potential for CO2
leakage, which needs to be resolved. According to Ellsworth (2013),
injecting CO2 into subsurface reservoirs during geological CO2 se-
questration can cause geological strain and result in passive-seismic
events around the intended carbon storage areas. Induced seismicity
in CO2 geological storage is a primary concern, where CO2 injection
and pressurization can trigger events ranging from minor tremors to
potentially damaging earthquakes, posing risks to infrastructure and
reservoir integrity. These seismic activities can induce ground motion,
stress changes, and potential leakage pathways within the storage
reservoir, emphasizing the importance of maintaining reservoir and
caprock integrity. Even minor seismic events can displace the ground,
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affecting surface infrastructure such as wellheads and pipelines, neces-

sitating stability measures. Additionally, seismic events may lead to

pressure changes within the reservoir, impacting CO2 behavior, thus

highlighting the need for proper pressure management. Regulatory

oversight mandates thorough risk assessments and monitoring for CO2

storage projects to ensure compliance with safety standards. Further-

more, addressing public concerns and building trust through effective

communication and community engagement is crucial for gaining ac-

ceptance of CO2 geological storage projects. Monitoring passive-seismic

events can be critical in ensuring the secure and long period of ge-

ological sequestration of carbon. Monitoring passive-seismic events

during carbon sequestration can aid in visualizing the CO2 plume’s

movement (Yin et al., 2021; Goertz-Allmann et al., 2017), examining

stress changes within the reservoir, and identifying potential pathways

for CO2 leakage, such as fractures and faults (Maxwell and Urbancic,
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2001; Miyazawa et al., 2008; Verdon et al., 2012; Hu et al., 2023;
Jin et al., 2021). In practice, a single downhole array of geophones
with weak passive-seismic monitoring performance is commonly used
due to cost limitations. Nevertheless, for monitoring CO2, a surface
seismic station network with higher performance and regular spacing
has been employed in the field (Boullenger et al., 2015; Kaven et al.,
2015; Stork et al., 2018). The performance of locating passive-seismic
events hinges on the arrangement of seismic sensors in geospatial.
As a result, the optimal configuration of seismic sensor networks has
garnered significant attention in the field of passive-seismic monitor-
ing (Kijko, 1977; Rabinowitz and Steinberg, 1990; Steinberg et al.,
1995). A straightforward approach that can examine the number of
ground seismic detectors which give optimal performance for a grid
network with regular spacing was recently introduced by Chen and
Huang (2020). To achieve cost-effective passive-seismic monitoring,
this method utilizes the potential passive-seismic events sources sites
to select the optimal sensor placement strategy considering the bal-
ance between event localization accuracy and the total number of
seismic sensors. In summary, a key challenge in monitoring carbon
sequestration-induced passive-seismic events is to accurately observe
large areas at high monitoring performance with a minimal sensor
budget. Thus, the optimal placement of passive-seismic sensors is con-
sidered one of the crucial techniques for identifying potential leakage
during carbon sequestration.

Optimizing sensor placement is a type of facility location problem
(FLP), which has been extensively studied in various applications,
such as methane sensor placement (Zi et al., 2022), water sensor
placement (Berry et al., 2005), and wireless sensor placement (Ling
et al., 2022; Younis and Akkaya, 2008; Liu et al., 2022). Optimizing
sensor placement with respect to event impact is frequently modeled
as a mixed-integer linear programming P-median formulation (Karatas
et al., 2016). In the P-median formulation, the placement of sensors is
optimized to minimize event impact measures, such as damage cost.
The event cost is usually proportionate with the time taken to detect
the event after it occurs, which is referred to as the first detection
time. This formulation was originally proposed to address water sensor
placement problems (Berry et al., 2005), and has since been used in
the optimization of petrochemical facilities’ gas sensor placement and
in monitoring site-scale methane emissions in various studies, such as
Legg et al. (2012), Benavides-Serrano et al. (2016), Klise et al. (2020),
and Zi et al. (2022).

In this paper, our proposed approach involves using a ray-tracing
simulation tool and an open-source, modern-MILP-solver-based, pack-
age called Chama to perform sensor placement optimization. The pro-
posed sensor placement scheme is designed to address two key prob-
lems: optimizing the early detection time and accurately localizing the
source. The optimization problem’s solution has two general parts. In
the first part, passive-seismic wave propagation simulation and data
collection are performed based on the possible passive-seismic source
location data and the history of the geophysical survey. In the second
step, a mixed-integer linear programming (MILP) solver is utilized to
solve the problem within a provided detector cost. To consider the
impact of uncertainty, both the physical simulation and data-driven
scheme employ multiple simulations, referred to as passive-seismic
events, to represent the potential distribution of passive-seismic events
under varying conditions. In terms of contributions. As far as the
authors are aware, this is the first study to employ a MILP formula-
tion in passive-seismic monitoring. Also, this paper provides a simple
open-source passive-seismic sensor placement scheme based on readily
available tools, allowing researchers and practitioners to easily use or
modify it for their own projects or research. Finally, this paper presents
an experiment that studies the effectiveness of the proposed stochastic
optimal design of passive-seismic surveillance using synthetic data for
the Kimberlina. According to Chen and Huang (2020), Kimberlina is
a site under consideration as a possible demonstration field for the

National Risk Assessment Partnership (NRAP) initiative project. The
NRAP’s goal is to build a risk assessment procedure for CCUS.

In addition to the current challenges in CO2 sequestration, there
is growing interest in injecting CO2 into deep marine sediments to
create stable CO2 hydrate for long-term storage. This approach intro-
duces new challenges, including monitoring CO2 leakage in marine
environments and detecting seismic events during injection. Addressing
these issues in future research will make our methods more widely
applicable (Liu et al., 2023). Additionally, researchers can adapt our
algorithms to detect seismic events during methane (CH4) extraction
from methane hydrate-bearing sediments. This can be valuable in
regions like the Gulf of Mexico, Alaska, Japan, and China, where ge-
ological conditions vary significantly. These future research directions
expand the potential applications of our approach Ren et al. (2022).

The remaining portion of this paper is organized in the subsequent
manner. Section 2 provides a comprehensive explanation of the prob-
lem statement and formulation. Section 3 introduces the stochastic
optimization approach for passive-seismic sensor placement. In Sec-
tion 4, we present optimization results are presented using a synthetic
dataset of passive-seismic events created from previous geophysical
surveys. Finally, Section 5 summarizes the key findings and conclusions
of this paper.

2. Method

2.1. Problem statement

The problem of placing passive-seismic sensors is a real-world exam-
ple of location planning problems, which involves identifying suitable
locations for facilities that offer necessary services. Location planning
problems encompass various industries, such as healthcare, food ser-
vice, retail, and emergency response, and may involve determining
optimal locations for hospitals, restaurants, stores, and fire stations.
This paper focuses on utilizing passive-seismic sensors as facilities
to provide carbon-leakage-related event monitoring. The objective is
to optimize the design of sensor networks that can quickly detect
and accurately locate such events while minimizing the number of
sensors used under various environmental conditions. The goal is to
achieve this with an unknown leakage event using the least amount
of sensor budget available. Few studies have been conducted to solve
this problem, and the most recent study considered comparing dif-
ferent sensor numbers and regular grid sensor networks’ performance
to determine the optimal sensor number. The paper employs the P-
median formulation in addressing the passive-seismic sensor placement
problem. Specifically, its objective is to ascertain the ideal positioning
of P facilities to diminish the average distance between a demand node
and the facility’s location.

2.2. Problem formulation

In this section, we first introduce a novel P-median MIP formulation
for optimizing the placement of sensors in passive-seismic monitor-
ing applications aiming at minimizing detection time. Table 1 pro-
vides the notations’ summary employed in this problem. The proposed
formulation can be expressed as follows:

min
𝑦𝑙

∑

𝑒∈𝑒

𝑝𝑒

∑

𝑖∈L𝑒

𝑑′
𝑒,𝑖
𝑥𝑒,𝑖, (1)

subject to

𝑦𝑙 ∈ {0, 1} ∀ 𝑙 ∈ L, (2)

∑

𝑙∈L

𝑐𝑖𝑦𝑙 ≤ 𝑐, (3)

0 ≤ 𝑥𝑒,𝑖 ≤ 1 ∀ 𝑒 ∈  , 𝑖 ∈ 𝐿𝑒. (4)
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∑

𝑖∈L𝑒

𝑥𝑒,𝑖 = 1 ∀ 𝑒 ∈  , (5)

𝑥𝑒,𝑖 ≤ 𝑦𝑖 ∀ 𝑒 ∈  , 𝑖 ∈ 𝐿𝑒, (6)

The optimization approach we propose is designed to enhance the
detection time of passive-seismic scenarios by optimizing the position-
ing of sensors. The Eq. (1) is the objective function which represents
the expected damage impact of all passive-seismic events, where the
impact is assumed to be proportionated to the time at which the seismic
event is first detected. In the equation, 𝑥𝑒,𝑖, being a binary indicator,
represents whether location 𝑖 is the first to detect event 𝑒, and 𝑦𝑙 is
an additional binary variable that denotes whether a sensor is placed
at location 𝑙. It should be noted that while multiple sensors might be
activated by a passive-seismic event, only one is considered to be the
first to detect it. Additionally, 𝑑𝑒,𝑖 represents the damage coefficient
associated with event 𝑒 at location 𝑖, and 𝑝𝑒 denotes the probability
of event 𝑒 occurring. The sets 𝐿, 𝐿𝑒, and  correspond to the collection
of all possible sensor locations, the set of sensors triggered by event 𝑒,
and the set of all events, respectively.

To ensure the decision variable 𝑦𝑙 is binary, Eq. (2) is used as a
constraint, and Eq. (3) provides a cost constraint of the highest number
of sensors. In this equation, 𝑐𝑖 represents the cost of sensor 𝑖, and 𝑐

denotes the allocated budget for sensors. Constraints (6) and (5) serve
to guarantee that every passive-seismic event is noticed by at no less
than one sensor and that a place 𝑖 is only able to be the sonnest one
to catch a passive-seismic occurrence 𝑒 if a sensor is installed at place
𝑖. To simplify computation, Eq. (4) relaxes the binary integer decision
variable to real numbers, but it will converge to either 0 or 1 after
solving the problem.

In addition to the detection time, passive-seismic source localization
error is another commonly used performance metric for monitoring the
sensor network (Chen and Huang, 2020). The present study introduces
a bi-level mixed-integer programming formulation for the P-median
problem that is aimed at minimizing the inversion errors associated
with passive-seismic source localization. As in previous sections, Ta-
ble 1 provides a summary of the notation employed in this problem.

min
𝑥𝑖

∑

𝑒∈𝑒

𝑝𝑒𝑀𝑆𝐸(𝑠′
𝑒
, 𝑠̂𝑒), (7)

subject to

𝑠̂𝑒 = arg min
𝑠𝑒

𝑀𝑆𝐸(𝑡𝑜𝑏𝑠, 𝑡), (8)

𝑡 =  (𝑦, 𝑣, 𝑠𝑒), (9)

∑

𝑖∈I

𝑐𝑖𝑦𝑖 ≤ 𝑐, (10)

𝑦𝑖 ∈ {0, 1} ∀ 𝑖 ∈ I. (11)

The outer objective function, as given by Eq. (7). The objective
is to minimize the anticipated value of the consequence metric for the
sensor network, which is the passive-seismic source inversion errors.
Here, 𝑠𝑒 represents the spatial location of the passive-seismic source
for event 𝑒, 𝑠̂𝑒 is the predicted seismic source spatial location for event
𝑒 obtained through the inversion algorithm, and 𝑠′

𝑒
is the ground truth

for the seismic source spatial location for event 𝑒. The inner objective
function, given by Eq. (8), solves the source inversion problem and
obtains the optimal estimated source localization that minimizes the
mean square error between the observed seismic signal’s first arrival
time and the simulated seismic signal’s first arrival time using the
estimated source localization. The inversion problem aims to locate
the source location with a ray tracing forward operator  , subsurface
velocity model 𝑣, and network trail design 𝑦. Eq. (9) provides a forward
simulation operator that takes the sensor network, velocity, and source
location and outputs simulated seismic event observation first arrival

Table 1
Tables of symbols.

Symbol Meaning

𝑒 ∈  The collection of all events.
𝐿 The group of all potential sensors.
𝐿𝑒 The set of sensors that can detect event 𝑒
𝑝𝑒 The probability of event 𝑒 taking place
𝑑𝑒,𝑖 The damage coefficient for passive-seismic event 𝑒 at location 𝑖

𝑥𝑒,𝑖 Binary variable indicating if location 𝑖 first detects event 𝑒
𝑦𝑙 Binary variable indicating sensor presence at location 𝑙

𝑐𝑖 The expense associated with sensor 𝑖

𝑐 The allocation of funds for the sensors
𝑠𝑒 Passive-seismic source spatial location for event 𝑒
𝑠̂𝑒 Predicted passive-seismic source spatial location

for event 𝑒 with heuristic optimization
𝑠′
𝑒

Passive-seismic source spatial location ground truth for the event 𝑒
𝑡𝑜𝑏𝑠 Observation of passive-seismic wave-arrival time.
𝑡 Measurement of passive-seismic wave-arrival time.
 Ray tracing forward operator.
𝑣 Subsurface velocity model.

Algorithm 1 Stochastic passive-seismic sensor placement detection
time optimization algorithm

Input subsurface velocity model, events positions, number of sensor
grid and strata layers: 𝑣𝑝, 𝑛, 𝑠𝑒 and 𝑙𝑑𝑒𝑝𝑡ℎ𝑠
Set the best placement to empty list: 𝑥𝑏𝑒𝑠𝑡
Initialize events impact to empty list: 𝑖𝑚𝑝𝑙𝑖𝑠𝑡
Set min objective value to infinity: 𝑜𝑏𝑗𝑚𝑖𝑛 = 𝑖𝑛𝑓

Create all sensor candidate matrix 𝐷 of size 𝑛 × 𝑛

#Physical-based passive-seismic Wave Propagation Simulation
for each 𝑠𝑒 event position of events do

Simulate the impact (detection time of all sensor candidates) using
the forward model: 𝑡 =  (𝐷, 𝑣, 𝑠𝑒)

Append simulated impact to events impact list
end
Initialize sensor cost list, event probability, and sensor budget:
𝑠𝑒𝑛𝑠𝑜𝑟𝑐𝑜𝑠𝑡, 𝑝𝑒 and 𝑐

# Optimize the Mix integer programming (MIP) problem with MIP
Solver
for each 𝑦𝑙 (combination of 𝑐 candidate locations) do

Simulate the earliest detection time using the current sensor place-
ment: 𝑑′

𝑒,𝑖
= argmin(𝑚𝑎𝑠𝑘𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ⊗ 𝑑𝑒)

calculate objective value:
𝑦𝑙 ∼ 𝑥𝑒,𝑖
𝑜𝑏𝑗 =

∑

𝑒∈𝑒

𝑝𝑒
∑

𝑖∈L𝑒

𝑑′
𝑒,𝑖
𝑥𝑒,𝑖

if 𝑜𝑏𝑗 < 𝑜𝑏𝑗𝑚𝑖𝑛 then
Update min objective value and best placement

end

end
Result: best placement

time. Constraint Eq. (10) offers a maximum threshold, 𝑐, on the permis-
sible quantity of detectors. To obtain a minimum objective function in
a standard MILP problem format, the objective function in Eq. (7) can
be transformed similarly to the first problem’s formulation presented
by Eqs. (1) to (4). This can be achieved by solving the inversion
optimization problem specified by Eqs. (8) and (9) using a trial sensor
design.

3. Solution

Following the math formulations mentioned in the last section, this
solution section is going to introduce the components and details of
the solution scheme. We leverage state-of-the-art optimization software
such as Chama, heuristic optimization techniques, and open-source
ray tracing physical numerical simulation models for sensor placement
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Fig. 1. Optimizing sensor placement for source localization in geologic carbon storage monitoring workflow.

Fig. 2. Passive-seismic event simulation and detection time distribution of one source
in the top-down view.

optimization, inversion, and forward problems. Building on the work
of Chen and Huang (2020), this paper offers a fresh perspective on
exploring the behavior of irregularly-spaced seismic sensors by focusing
on the mathematical space of sensor location combinations. To this
end, we consider all the discrete combinations of a given number of
sensors and propose a scheme based on the diagram shown in Fig. 2,
which contains three basic steps. The initial two stages, which involve
preparing the geospatial attributes of passive-seismic events for opti-
mization, are akin to the modeling procedures outlined in Klise et al.
(2020). We present innovative data-driven techniques for optimizing
the placement of passive-seismic sensors. Our approach involves utiliz-
ing a set of events generated with smoothed velocity model directly for
mixed-integer linear programming.

Our proposed solution framework for optimizing the detection time
problem consists of three core steps:

(1) Input of historical data: This stage involves acquiring and prepro-
cessing the required data for the proposed solution. First, po-
tential passive-seismic source locations, including wells, faults,
and tectonic stress concentration zones, are identified as the re-
gion of interest using available exploration records. The velocity
model is then defined using data collected from these records.
Finally, potential sensor candidate positions are selected from
a grid on the region’s surface, which is available for sensor
placement.

(2) Passive-seismic event simulation: This component of the frame-
work involves a physics-based simulation that models passive-
seismic events wave propagation in the subsurface across the
CO2 storage site using a wave propagation model based on
ray-tracing. Multiple events are simulated to account for the
uncertainty in passive-seismic event locations.

(3) Mixed-integer linear programming : The passive-seismic events sim-
ulated in this step follow the same data structure as the one used
in the initial formulation of the P-media model for the problem
of methane sensor placement (Klise et al., 2017). A standard
MILP solver can solve this optimization problem. We utilize
Chama, an open-source sensor placement optimization software
implemented in Python (Klise et al., 2017). Chama formulates
the optimization problem using Pyomo (Hart et al., 2017) and
solves it using the open-source GNU linear programming kit
(GLPK) (Makhorin, 2000).

Our proposed solution framework for the source localization op-
timization formula involves the same data preparation step as the
previous formula. However, due to the bi-level nature of this formula,
a standard optimization tool cannot be used directly to solve the
problem. Therefore, se put forward a methodology to resolve both the
localization inversion problem and the sensor placement optimization
problem in an iterative scheme, as illustrated in Fig. 1. The two core
steps of this solution scheme are:

(1) Passive-seismic source localization inversion: To evaluate the local-
ization performance with a given trial sensor network design, we
employ a heuristic inversion optimization method. Specifically,
we use the particle swarm optimization (PSO) algorithm, an
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Table 2
Sensors.

Sensors Type Sensitivity

Point detector Ideal Seismometer 2000 V/m/s
Geophone-LGT4.5 Moving-coil 28.8 V/m/s
Broadband Seismometer-Geotech KS-1 Inertial 2400 V/m/s

open-source optimization method (de Rosa and Papa, 2019;
Kennedy and Eberhart, 1995).

(2) Sensor network design optimization: We also utilize the open-
source optimization method particle swarm optimization (PSO)
algorithm (de Rosa and Papa, 2019; Kennedy and Eberhart,
1995) for this purpose. Each step’s updated solution would be
input to the inversion solver as the input and be assessed the lo-
calization performance of each proposed placement strategy. Af-
ter the performance reach the convergency criteria, the iteration
stops, and the system provides the final optimal solution.

Algorithm 2 Stochastic passive-seismic sensor placement source
localization optimization algorithm

Input subsurface velocity model, events positions, and strata layers: 𝑣𝑝,
𝑠𝑒 and 𝑙𝑑𝑒𝑝𝑡ℎ𝑠
Set the best placement to empty list: 𝑥𝑏𝑒𝑠𝑡
Set min objective value to infinity: 𝑜𝑏𝑗𝑚𝑖𝑛 = 𝑖𝑛𝑓

Initialize sensor cost and sensor budget: 𝑠𝑒𝑛𝑠𝑜𝑟𝑐𝑜𝑠𝑡 and 𝑐

for each 𝑦𝑙 (combination of 𝑐 candidate locations) do
Initialize events impact to empty list: 𝑖𝑚𝑝𝑙𝑖𝑠𝑡
# evaluation of placement strategy
for each 𝑠𝑒 event position of events do

# Forward
Simulate the ground truth observation signal using the forward
model: 𝑡 =  (𝐷, 𝑣, 𝑠𝑒) (observation signal is first arrival detec-
tion time list of current sensor network)
# Inversion
Initial localization inversion solution space (boundary of possi-
ble source area)
Set the inversion initial solution
for each inversion iteration do

Simulate data using the current sensor placement and cur-
rent inversion solution: 𝑡 =  (𝑦, 𝑣, 𝑠̂𝑒)

# evaluation inversion optimization convergence criteria
if 𝑀𝑆𝐸(𝑡𝑜𝑏𝑠, 𝑡) < 𝜖 then

𝑖𝑚𝑝 = 𝑀𝑆𝐸(𝑠′
𝑒
, 𝑠̂𝑒)

Append simulated impact to 𝑖𝑚𝑝𝑙𝑖𝑠𝑡
end

end

end
Initialize event probability: 𝑝𝑒
# calculate objective value: localization expected errors
𝑜𝑏𝑗 =

∑

𝑒∈𝑒

𝑝𝑒𝑀𝑆𝐸(𝑠′
𝑒
, 𝑠̂𝑒)

if 𝑜𝑏𝑗 < 𝑜𝑏𝑗𝑚𝑖𝑛 then
Update min objective value and best placement

end

end
Result: best placement

4. Experiment

The empirical analysis presented in the following simulation section
is focused on the Kimberlina site. A site velocity model is constructed
using geological strata and historical seismic surveys (Walter and
Mooney, 1987; Birkholzer et al., 2011). This case study provides a rep-
resentative passive-seismic detection scenario for the advancement and

Fig. 3. Model of P-wave velocity at the Kimberlina site.

Fig. 4. The locations of sensor candidates (yellow dots) and passive-seismic events
(blue triangles) used in the synthetic study.

assessment of diverse sensor placement optimization techniques. The
simulation and optimization of this case study are conducted using the
ray-tracing-based passive-seismic simulation model (Cervenỳ, 2001),
the sensor placement optimization software called Chama, which is
open-source (Klise et al., 2020), and the open-source heuristic solver
Opytimizer (de Rosa and Papa, 2019)

4.1. Sensors discussion

The sensor utilized in our numerical simulation experiment is an
ideal point sensor, and its characteristics are detailed in Table 2.
We have also included two additional sensor types as practical ref-
erences. However, for the purposes of this theoretical research, we
exclusively consider standardized ideal sensors with exceptionally high
sensitivity. Among the cost-effective sensors commonly employed in
various environments is the moving-coil geophone (Zhang and Hu,
2010), exemplified by the LGT4.5 model, which boasts lower sensi-
tivity. Alternatively, there exists a more advanced option in the form
of the Broadband Seismometer (Ackerley et al., 2014), characterized
by heightened sensitivity. An instance of such a high-sensitivity point
sensor is the Geotech KS-1.

4.2. Simulations setting

Fig. 4 depicts a simulation volume in three dimensions (3D). The
simulation domain is a cubic region with dimensions 10,000 m ×

10,000 m × 4000 m. This area encompasses 35 potential source points
(blue triangles), which correspond to locations where passive-seismic
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Fig. 5. The sensor placements obtained using two different approaches: stochastic
optimization and regular grid methods.

Table 3
Localization testing.

Methods Mean square error

Stochastic optimized network 95.257 m
Regular grid network 324.318 m

events could occur in the target carbon injection reservoir at an approx-

imate depth of 2100 m. These points represent faults and fractures that

may release carbon plumes. Candidate sensor locations at the surface

(yellow circles) are represented as grid points where sensors can be

installed for monitoring purposes.

In the physical simulation component, we utilized the Ray Tracing

model (Cervenỳ, 2001) model for the passive-seismic waves’ propa-

gation. We performed the first arrival time picking processing using

the modified energy ratio (MER) method (Han, 2010). We simulated

a single passive-seismic event scenario (one event source point) for a

5-second record using a 2-millisecond time sampling step with a Ricker

wavelet as the source wavelet, for each passive-seismic event. If an

event failed to be detected, we set its missing impact to 50 s. To provide

an example of a passive-seismic event, Fig. 2 shows the top view of

the event measurement scenario and determines the initial arrival time

of the passive-seismic wave in proximity to the source location. The

time at which the candidate sensor detects the signal is influenced by

the source positions, the geology model, the sensor’s positions, and the

velocity model, according to the physical model.

To capture the uncertainty of passive-seismic event source locations,

we simulated multiple events as a set. By increasing the number of

simulation scenarios and event diversity, we can capture the distribu-

tion of all uncertainties based on the law of large numbers. In this case

study, we generated a passive-seismic event set with 35 sources based

on the fixed Kimberlina velocity model and layered geological model

(see Fig. 3). These source locations were sampled from the Pond-Poso

Creek fault shape, one of the major faults in the area, at the target

reservoir depth of 2100 m, as shown in Fig. 4.

In this case study, we defined candidate sensor locations by em-

ploying a uniform grid across the entire model domain. The grid had

a spacing of 1000 m in both the x-axe and y-axe, 1 m along the 𝑧-

axis, commencing from a below-ground elevation of −2 m. This setting

results in 121 candidate sensors arranged in an 11 × 11 grid. The

overall budget allocated to sensors is defined as 9000, with each sensor

having an ideal active threshold cost of 1000.

4.3. Results discussion

In this section, we engage in a comprehensive discussion to assess
the effectiveness of sensor placements derived through various method-
ologies in the context of passive seismic event monitoring. Our primary
focus centers on the comparison between our innovative stochastic
sensor placement network and the conventional regular grid sensor
network. This comparative analysis encompasses two critical facets:
the optimization of detection time and the enhancement of source
localization accuracy. Our observations, as depicted in Fig. 6, shed
light on the performance contrast as we progressively allocate a larger
sensor budget. Notably, the stochastic optimal sensor placement con-
sistently outshines its regular grid counterpart. This performance edge
demonstrates the practical viability and efficiency of our approach.
Furthermore, our deliberations, encapsulated in Table 3, emphasize the
significance of source localization precision. Here, too, our stochastic
optimization method emerges as the victor, clearly surpassing the
performance metrics of the conventional regular grid sensor placement
strategy. Drawing inspiration from the insights gleaned from state-of-
the-art research, particularly the work of Chen and Huang (2020), we
delve into the notion of the optimal trade-off point. In this context,
our findings provide compelling evidence that our stochastic optimiza-
tion method enhances this pivotal point, thereby offering a notably
improved performance, as visually conveyed in Fig. 6. For instance,
when we allocate a budget of nine sensors, our stochastic optimization
method yields an expected minimal detection time of 0.8 s, a substan-
tial 20% improvement compared to the regular grid method’s 1.046 s.
As we further scrutinize our results, we observe a consistent trend
aligning with existing literature. The relationship between the number
of seismic stations and location accuracy exhibits varying degrees of
improvement, with the margin of performance enhancement dimin-
ishing as more sensors are incorporated into the network. In addition
to our extensive evaluation of detection time optimization, we extend
our analysis to assess the localization optimization performance of our
proposed method. The results, as presented in Table 3, unequivocally
affirm the superiority of our stochastic approach. With the same alloca-
tion of nine sensors, our network generates an impressive localization
accuracy of 95.257 m, while the regular grid network trails behind
with a substantially higher localization error of 324.318 m. To visually
encapsulate our findings, Fig. 5 offers a compelling representation of
the sensor networks, highlighting the efficacy of our stochastic method
for both detection time optimization and source localization when
juxtaposed with the conventional regular grid sensor network. The
sensor placements obtained using two different approaches, stochastic
optimization, and regular grid methods, are evaluated to satisfy the
same detection time requirement of less than 0.81 s. Our analysis
reveals that the stochastic optimization method while meeting the
identical detection time criteria, leads to a reduced sensor budget with
only 4 sensors required while 25 are required for the grid method as
shown in Fig. 7. This result demonstrates the cost-saving potential of
the stochastic optimization approach in comparison to the conventional
regular grid method. These collective insights underscore the remark-
able potential and practicality of our innovative sensor placement
strategy in the domain of passive seismic event monitoring.

5. Conclusion

We devised a stochastic optimization approach to design an optimal
seismic network for monitoring passive-seismic events during CO2 in-
jection and storage. This is the first formal math formulation for a data-
driven sensor placement solution for a passive-seismic sensor placement
problem. Our methodology optimizes the expected earliest detection
time or expected localization accuracy by designing optimized seis-
mic stations surrounding the area of interest at the surface, where
the injection and storage of CO2 may trigger passive-seismic events,
potentially leading to severe consequences. The seismic sensor number
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Fig. 6. A comparison between the total number of seismic stations and the expected
detection time using two different methods. The black lines represent the outcomes
obtained with the stochastic optimization method, while The red lines correspond to
the results obtained using regular grid sensor networks, both using P-wave arrival times.

Fig. 7. The sensor placements obtained using two different approaches to satisfy the
same detection time requirement: stochastic optimization and regular grid methods.

is altered to determine the earliest detection time via first arrival travel
times. Our experiments demonstrate that the stochastic optimization
placement strategy has a relatively robust performance compared to a
regularly-spaced sensor network when varying the sensor numbers. In
specific monitoring regions, adjusting the sensor location can further
improve localization accuracy to ensure high monitoring performance
with the most efficient cost. In this showcase, we make the assumption
that all interesting seismic events can be accurately captured within
the experimental region and that the first-arrival time picking is ideal.
Our proposed methodology Could be utilized for different passive-
seismic monitoring sites with more sophisticated passive-seismic event
simulation tools.

6. Future work

Recent advances in carbon capture and storage (CCS) propose inject-
ing CO2 into deep marine sediments, forming stable CO2 hydrates for
long-term storage. This introduces the need to monitor CO2 leakage and
seismic events during multiphase injection. Integrating this background
into our introduction, citing relevant references, is planned (Liu et al.,
2023; Ren et al., 2022).

Our future work will prioritize addressing geological uncertainty.
Current research lacks real-world geological complexity. We aim to in-
corporate geological uncertainty, drawing from recent advanced
drilling studies (Caers et al., 2022; Hall et al., 2022) and Bayesian
approaches (Thibaut et al., 2022). It is also interesting to utilize
advanced machine learning algorithms like reinforcement learning to
solve more complex mixed integer programming when scaling up the
problem and facing nonlinear high-dimension issues Sang et al. (2022),
Tsai et al. (2022).
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