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Abstract—Battery energy storage systems (BESSs) are gaining
attention due to reduced costs and high flexibility, but developing
accurate models for operation presents challenges. This paper
introduces a model for the charging and discharging processes
via a single current decision variable, approximates the relation
between the open circuit voltage and the state of charge with
linear functions, and presents an optimization model with bilinear
constraints for identifying optimal BESS operational strategies.
A transformation technique is introduced to manage the bilinear
constraints, transforming the model into an exponential optimiza-
tion problem with linear constraints. A new sequential linear
and quadratic programming approach is developed, with proven
convergence. Preliminary experiments demonstrate the efficacy
and efficiency of this approach.

Index Terms—Battery Energy Storage, Electricity Market,
Energy Arbitrage Model, Nonconvex Quadratic Programming.

I. INTRODUCTION

To maintain power system reliability and flexibility amidst
the rise of renewable energy, energy storage has become
crucial for managing dynamic changes caused by wind and
solar energy [1]. Battery energy storage systems (BESSs)
are favored options due to their versatility and advantages.
Unlike geographically constrained options like pump storage
and compressed air storage, batteries can be installed in both
power generation and distribution systems. Moreover, the cost
of battery energy storage has significantly decreased [2].

Research often uses an optimization model to describe
battery storage operations, with separate variables for charging
and discharging processes [3]. Complementarity conditions
are applied to prevent simultaneous charging and discharging,
modeled using bilinear constraints [4] or binary variables [5].
Eliminating these constraints for a convex optimization model
was investigated in the literature, but the approaches can yield
impractical, infeasible solutions [3].

Researchers [6] and [7] have explored detailed battery
energy storage models, highlighting the dependency between
open circuit voltage (OCV) and state of charge (SOC). The
OCYV, symbolizing the voltage difference at the open circuit,
relies on the SOC. For this paper, we presume this relationship
is governed by the open-circuit voltage dependency function
(OCVDF). Numerous non-linear and non-convex OCVDF for-
mulations are presented in the literature [6], [8]-[12], leading

to complex non-convex BESS optimization models that pose
significant computational challenges. However, the comple-
mentary conditions are neglected and the non-linearity and
non-convexity introduced by the OCVDF are not addressed in
the literature.

The main goal of this work is to address the above-
mentioned major challenges in the BESS optimization models.
To address the first major challenge, we will review the basic
BESS optimization model widely used in the literature using
two charging/discharging power variables. By exploring the
physical principles in the process of battery charging and
discharging, we propose to use only a single current variable
(i¢) to model both the charging and discharging processes in
the BESS. Specifically, 7; > 0 indicates that the battery is in
the charging process and ¢; < 0 indicates that the battery is in
the discharging process. Consequentially, such a formulation
ensures that both charging and discharging won’t happen
simultaneously, which provides a natural way to model the
charging/discharging process of the battery. Mathematically
speaking, this also allows us to get rid of the complimentary
conditions (i.e., pfpf = 0) in most existing optimization
models in the literature and thus help to substantially simplify
these models.

To address the second challenge, we observe that one
major nonlinearity and non-convexity stem from the OCVDF
when the detailed BESS optimization model is applied [11].
However, as pointed out by [13], normally, the state of charge
is operated in the range [20%, 80%] because the lifetime of the
battery will be reduced significantly when it is operated outside
such a range. When the SOC is restricted to the range, we can
use some linear functions to obtain a very good approximation
to the original nonlinear OCVDF (g(s)). This can be verified
from our experiment. For example, if we use the OCVDF
defined in [14] as the original OCVDF and apply the least
squares method in Banach space [15] to obtain the linear
approximate function, then we need to solve the following
optimization problem to estimate the two parameters ¢y and
c1 in the approximate linear function.

min  L(g) = / (3(s) — a(s))%ds;

Susg 2
s.t. g(s) =co+cs.
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The following figure shows the original OCVDF g(s) and its
linear approximation g(s).
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Fig. 1: The OCVDF and its linear approximation

As we’ll demonstrate later, even a linear OCVDF leads to
a non-convex quadratic programming with linear and bilinear
constraints (BLCQP) model for BESS optimization, posing
significant computational challenges. To manage these bilinear
constraints, we propose a novel nonlinear transformation,
converting the original BLCQP into an equivalent exponential
optimization problem with solely linear constraints (LCEO).
We adapt the conventional sequential quadratic programming
method to devise a sequential linear/quadratic programming
(SLQP) for the reformulated LCEO model and establish
convergence. Numerical experiments validate the effectiveness
of our new BESS model and the efficiency of the SLQP
algorithm.

This paper is organized as follows. In Section II, we first
describe the basic BESS optimization model in the literature
and simplify the model. In Section III, we introduce a non-
linear transformation technique to reformulate the model as
an equivalent LCEO. In Section IV, we describe the SLQP
approach for the LCEO and establish the convergence of
SLQP. In Section V, we present a case study to demonstrate
the efficacy of our new models and techniques. In Section VI,
we conclude the paper by summarizing the topics discussed.

II. BATTERY ARBITRAGE OPTIMIZATION MODEL IN
ELECTRICITY MARKET

In the literature [3], [6], [8], the essential part of BESS
power arbitrage model (PAM) can be extracted as follows:

(PAM) min Z A (p§ = ) (1a)
PEPES T

s.t. pt'pt =0,VteT; (1b)

0<p*<PEVtET, (1c)

0<pl<PiVteT, (1d)

s<s <stVteT; (le)

ECst11 ECst+pfnCA];§A,Vt e7T. (1)

In the electricity market, the BESS owners use the PAM to
help them make decisions. In this PAM, the objective function
is to minimize the costs (or maximize the profits equivalently)

of the BESS in the electricity market. This PAM includes the
complementary constraints (1b), the charging/discharging rates
limits (1c-1d), the operational ranges constraints (le) and the
state of charge balance (1f), where E'C' is the capacity and
A is the time granularity. This PAM has been widely used in
different power system applications such as unit commitment,
economic dispatch, transmission planning, etc. However, this
model ignores the relationship between the state of charge
and voltage of the storage and thus significantly simplifies the
battery energy storage physical operation process. As pointed
out by Arroyo et al. in [3], this simplified model may lead
to infeasible dispatch strategies for the field operations of the
BESS.

A. Physical Model

In this section, we propose a brand new BESS schedule
model based on equivalent circuit model by using the funda-
mental physical laws. In the following, we always assume the
time span we study is 7 = {1,2,3,...,T}.
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Fig. 2: Equivalent Circuit

Figure 2 shows the circuit of BESS. Let R be the equivalent
resistance. When BESS is in the discharging status, we have
the following equations.

d_ td | -
vfc = ou’ Jrsz;
outdd

pt_vt L -

When BESS is in the charging status, we have the following
equations.

oc,c __ out,c
vyt = — iR

= 0
Now, we use general formulation to characterize both the
charging and discharging status. The positive value of current
1 represents that the battery is charging. Then negative value
of current ¢ represents that the battery is discharging. Then we
have.

v = v — i R; (2a)
ot = 2%, (2b)

Using this general formulation, we may express the objec-
tive function (1a) in PAM as Y, .+ \pf™* = 3, o7 A (0% +
i? R), and eliminate the complimentary constraint (1b). By us-
ing the equivalent circuit model (2a) - (2b), we can reformulate
the PAM as the voltage (V) current (I) arbitrage model (VIAM)
as follows.

(VIAM) min

’U?C it,St

Z)\t v + 2 R)

teT

(3a)
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s.t. ECstH = ECs; + v A,Yt € T; (3b)
=g(st),Vt € T; (30)

S$1 = 8741 =8; 3d)
d<s <s"UVteT; (3e)
—It<i, <I°VteT. (3)

Notice in this VIAM model, we consider the dependency
of OCV on SOC by constraint (3c). We also replace the
limits of charging/discharging power rates with the limits of
charging/discharging current rates, this corresponds to con-
straint (3f). We note in VIAM model, in order to compare the
solution quality, we assume that the SOC levels s equal at
the beginning and the end of the studied time interval T, i.e.,
$1 = sT41. A specific choice is s; = sp4+; = § = 0.5. Under
such an assumption, the profit comes only from the trading of
electricity.

As shown in the survey papers [9]-[12] and the refer-
ences therein, the OCVDF ¢(s) is usually highly nonlinear
and non-convex. The non-linearity and non-convexity in both
the constraint functions and the objective function pose a
tremendous computational challenge to even obtain a local
optimal solution. To tackle such a challenge, we propose
to approximate the OCVDF g(s) by some relatively simple
functions. In this paper, we will consider the scenario where
the OCVDF g¢(s) is approximated by a linear function and
discuss how to solve the resulting bilinear optimization model
in the following section.

III. A NON-CONVEX QUADRATIC PROGRAMMING MODEL
AND REFORMULATION TECHNIQUES

In this section, we consider a special case of VIAM model
(3a) where the OCVDF g(s) is a linear function. This leads
to a non-convex quadratic programming model with linear
and bi-linear constraints (BLCQP). We then introduce a novel
nonlinear transformation to reformulate the original BLCQP
model as another equivalent optimization problem with linear
constraints and exponential objective function (LCEO).

A. A Quadratic Programming Model Based on Linear Approx-
imation of OCVDF

In this subsection, we discuss how to solve model (3a)
where the OCVDF is linear or approximated by an linear
function. Let g(s) = ¢o + ¢1s denote the linear approximate
function. By applying the relation defined by constraint (3b)
to the function g(s), we obtain a new constraint as follows

(50 4+ = 0f
g(St EC

= gse) + 1=
gist “EC EC

g(st4+1) = v7%¢)

’Ut ’Lt

A
= glse) + 1 9(s)in

Let g' = co + c15 and g = ¢y + 15, be the lower and
upper bound for the linear OCVDF ¢(s), then we can replace

the box constraint (3e) on SOC by that of OCVDF g(s). For
notational convenience, let
gt =g9g(st), YteT.

T=0C g:g(g)v

A
Eica
Then we obtain the following quadratic programming model
with linear and bi-linear constraints (BLCQP):

(BLCQP) I?lqnz Me(geic + i2R) (4a)
TieT

St ger1 = g + TG, Vt € T (4b)

91 = gr+1 = G; (4¢)

g <g<g“VtET; (4d)

—It<g, <I°VteT. (4e)

We have
Theorem 1. Model (4) is equivalent to model (3).

Proof. The sufficiency follows from our deduction of the
BLCQP model and thus it remains to prove the necessity.
Suppose that g; is a feasible solution to model (4a). Since
g(s) is a linear bijection, its inverse function g~* exists and is
also linear. By applying ¢~ to both sides of constraint (4b),
we obtain

_ _ . _ T .
9 gr1) = 97 (gt + Tarie) = g7 M (ge) + o g,

which is equivalent to constraint (3b). Therefore, we obtain a
solution s; = g~*(g¢),Vt € T to model (3a). This completes
the proof of the theorem. O

Note that in model (4a), there are some non-convex
quadratic (or bilinear) terms in both objective function and
constraint (4b). This implies that it is still nontrivial to solve
model (4a) due to the presence of the non-convex quadratic
functions.

B. A Nonlinear Transformation

In this subsection we introduce a nonlinear transformation
to simplify the bilinear constraints in model (4a). For this, we
note that in the constraint (4b), if we take the logarithm on
both sides, we obtain:

log(gs+1) = log(g:) + log(1 + 7is),Vt € T.

Let

yr = log(gt), z¢ = log(1 4 7iy),Vt € T, %)

we can rewrite the constraint (4b) as
Yer1 = Yt + 2, Yt € T.

Moreover, constraint (4c) can be rewritten as y; = Yr4
equivalently. Recall that g4 = e¥% and i@y = £ t_l, we
reformulate the objective function by using constraint (4b),

and new variables v, 21,

(gt + ZfR) = )\t(gw% R)

A MR
_ i(eytﬂ —e¥t) + tf( 2t _ 1)2

T
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Let

y =log(g1) = log(gr+1) = log(9);
y' =log(g"), y* = log(g");
=log(1 — 7I%), 2* = log(1 + 7I°).
Using the new variables y; and z; as defined in (5), we can

recast model (4a) as the following optimization problem with
linear constraints (LCEO):

(LCEO) I{HZI}Z M ve 4 At (e = 1) (6a)
teT

St Yry1 =Yt + 21, VL €T (6b)

Y1 = (6¢)

Yyr+1 =Y; (6d)

Y <y <y VteT; (6e)

A<y <t VteT. (6f)

We remark that compared with the original bilinear optimiza-
tion model (4), model (6) has only linear constraints with an
exponential objective function. Notice that if

et >

1
Atm1 > Ay, > vteT,

then model (6) becomes a convex optimization problem.
Particularly, because e** > e* = 1—711 4. the relation et > %
is usually satisfied in our problem setting due to the fact that
7I?% is much smaller than 1. It is also worth mentioning that
when the prices remain invariant, i.e., Ay = Ay = --- = Ap,
then model (6) has a trivial optimal solution (y; = yo = -+ =
yr,z1 = 29 = --- = zp = 0). This implies that a flat price
dynamic will lead to less profit in the BESS.

IV. A SEQUENTIAL LINEAR/QUADRATIC PROGRAMMING
APPROACH

In this section, we propose a sequential linear/quadratic
programming approach (SLQP) for the reformulated LCEO
model introduced in the previous section and establish its
convergence.

To start, we mention that the solution (y(©),2(®)) = (y; =
Yo =+ =Yry1,21 = 29 = --- = zp = 0) is feasible for the
LCEO and it strictly satisfies the two box constraints.

Suppose at the current iterate k, a feasible solution
(y™*), (%)) is available. For every t € T, let

A1 — A MR

fi(y) = %eyta fa(ze) = %(ezt - 1%
A1 — A R

fil) = S () = T (26— 2%
A1 — A¢ MR

{/(yt) — %eyz é/(Z ) t (4 2z¢ 6“).

As pointed out in the previous subsectlon, the function f5(z)
is convex w..t. z; as e*t > % under the setting for the
problem in this paper. Therefore, we can approximate fa2(z;)
in a neighborhood of zF via its Taylor expansion as follows:

Rl +d) = faeh) + (et + ECD ey,

Since the function f;(y;) is only convex when A;_1 > A, and
non-convex when A;_; < \;, we suggest to approximate f1(.)

in some neighborhood of yt(k) via the following function

ey _ | A+ Fydht + 80 (kb2
Flwitdy)= { fik) + s

To find a search direction (d’yﬂd’;), we propose to solve the

If Adp_12> Mg
Otherwise.

following convex quadratic optimization problem
}{1111 Z flyf + dt ")+ falzf +di") (7a)
dy*dz" teT
st dythF =dik 4 dbt vt e T (7b)
dy* = 0; (7¢)
dithk = o; (7d)
yh<yr+diF <yt vte T (Te)
< zf + dtz’k <z VteT. (71)

Theoretically, the above problem is polynomially solvable.
Once a search direction is identified, we need to find a step
size « satisfying the following relation to ensure sufficient
descent:

S AW+ adit) + fo(sf + adtF) ®)
teT

<Y AW+ fa(z) +

«
3 (g + f(=5)deh).
teT

We point out that in the LSP algorithm 1, « is first set as

Algorithm 1 Line Search Procedure (LSP)

Input: fi, fo, f1, f5, y*, 2* d’C d¥, e>0,0<n<1.
Output: Stepsize a*.

Begin

Set @ = Aymaz-

while f1(y* +adf) + fo (2" +adf) > fi(y*
S (f(y")dE + f3(=F)db) do

a=n-a.

end while

Output o = a.
End

)+ f2(2F)+

the maximal allowable step size a4, . In our experiments, we
choose a0 = 1. We have

Theorem 2. The line search algorithm 1 can always find a
step size « satisfying the inequality (8).

Now, we are ready to describe the following sequential
linear/quadratic programming (SLQP) approach for model (6)
as shown in Algorithm 2. To explore the conditions under
which the solution generated by the SLQP method is a local
minimum, we need to rewrite the two box constraints (6e-6f)
in the LCEO model as convex quadratic constraints. We can
also eliminate the decision variables {z; : t € T} in the LCEO
model via using the relation z; = 4,41 — y;. This leads to the
optimization model (9a).
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Algorithm 2 Sequential Linear/Quadratic Programming

Input: Parameters: \;, 7, R, 7, vy, y*, 2%, 2%, € > 0;
Output: Solution (g, 2).
Begin
Set k = 0;
Set yb =y, V1 <t<T+1,
Set 2F =0,V1 <t <T;
while k==0 or Hyk—yk_le + ||z’“—zk_1H2 > e do
Solve model (7) for (df,d¥);
Use Algorithm 1 to find a suitable step size a(*);
Update (y**! = 4% + a(k)d’;, 2R = 2k a(R) gy,
k=k+1;
end while
Output (z,9) = (z*), y(F)),
End

minz ueyt 4 Atif(eyt-%—l_yt _ 1)2 (92)
Yt T T
teT
st. Y1 =yYr+1 =19 (9b)
(ye —y)(ye —y") <OVt € T; (9¢)
(Yes1 — Yt — Zl)(yt—H —y—2")<0,vteT. (9d)

Now let us consider the following Lagrangian function for the
above problem:

A1 — A MR
L(Yt, Ves pts i) = Z A T %(eyt+1_yt _ 1)2
teT T T
+my —9) + 71 (yr+1 — )
+ > oy =) — )
teT
- Z V(Y1 = ye = 2) (Y1 — ye — 2%).
teT

where (v, pt, ¢) are the Lagrangian multipliers for constraints
(9b), (9c) and (9d), respectively. We introduce the following
regularity condition.

Condition 1 (Regularity). We say the solution (y*) satisfies
the regularity condition, if

_ 2
H =V, L(y,7,p,v) = 0,
where H is a tri-diagonal matrix whose elements are defined
as follows:

2Re2(We—1+ye)
T[At_lewt (2€yt
+ AtGQyt—lertJrl (2eyt+1 _ eyt)]

At—1 — A¢) e¥
+2Vt71+2yt+2pt+%

QAtReyzH—?yt (eyt, _ Qeyt+1)
2

Ht,t — _eyt—l)

Hypp1=Hipr = — 2

T

We have the following result.

Theorem 3. The SLQP algorithm 2 will generate a sequence
{(yF, 25} converging to a stationary point (y*,2*) of the
LCEO problem (6). Moreover, if (y*, z*) satisfies the regularity
condition 1, then (y*,z*) is a local minimum of LCEO

model (6).

V. EXPERIMENTAL RESULTS

In this section, we first describe the data set used in our
experiments, then run the simulation to validate the efficacy
of our new model and algorithms under different scenarios.
Finally, we report all the simulation results. We use the 5-
minute electricity price in year 2020 from MISO real-time
market. We use the battery data from Berrueta’s paper [14].

A. VIAM VS LECO Simulation Results

In this subsection, we compare the performance of the
LCEO model, the VIAM model with a linear OCVDF (VIAM-
L) and the VIAM model with a nonlinear OCVDF (VIAM-
NL). In our experiments, the scale of the problem, measured
by the cardinality of 7, is determined by the number of days
and price data resolution. For example, consider a scenario
where the time span is 7 days and the price data resolution
is 5-minutes, we have T' = 7 x 24 % 12 = 2016. To assess the
effect of the fluctuation in electricity price on the profit, we
solve the daily profits through the year 2020, and calculate
the mean and the standard deviation of the daily profits
from each model. Table I compares the performance of three
models (i.e., VIAM-L, VIAM-NL, and LCEO) in terms of the
profit based on the control strategy derived from the obtained
solution to the corresponding optimization model, where the
average profits and the standard deviations are computed for
a normalized battery with the capacity of 1 MW per day.

TABLE I: Solutions from VIAM and LECO Models

Days T Model AVG Profit  SD of Profit
VIAM-L 59.2439 66.6185
1 288 VIAM-NL  59.3645 66.8112
LCEO 59.2439 66.6186
VIAM-L 59.7943 33.5843
7 2016 VIAM-NL 599172 33.6756
LCEO 59.7943 33.5844
VIAM-L 60.2586 26.3356
30 8640 VIAM-NL  60.3769 26.3337
LCEO 60.2532 26.2712
VIAM-L 60.2586 13.4307
90 25920 VIAM-NL  60.3823 13.4425
LCEO 60.2532 13.426
VIAM-L 60.2614 13.5676
180 51840 VIAM-NL  60.3881 13.565
LCEO 60.2532 13.5666
VIAM-L 59.5409 NA
366 105408  VIAM-NL  59.6659 NA
LCEO 59.5409 NA

From Table I, we can observe that on average, the same
amount of profit can be made based on the optimal solutions
of both the LCEO and the VIAM-L models, while a slightly
higher profit can be made based on the optimal solution to
the VIAM-NL model. This shows that the usage of the linear
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approximation to the nonlinear OCVDF caused very few losses
in profit.

Figure 3 shows the average CPU time used to solve each
model versus the sizes of the solved instances in Julia. As we
can see from Figure 3, the VIAM-NL model always requires
the longest CPU time to solve, which indicates that the linear
approximation to the nonlinear OCVDF does help to reduce
substantially the difficulty of the underlying optimization
model. We also observe that in Figure 3, while the CPU
time used to solve each model increases as the problem size
increases, and the proposed SLQP approach for the LCEO
enjoys the slowest growth rate of the CPU time. Particularly,
for the largest instance with over 300,000 decision variables,
the CPU time used by the SLQP for the LCEO is less than
% of the CPU time used by IPOPT to solve the VIAM-L.
This indicates that the SLQP is more efficient for large scale
instances.

2000 o]
v/‘
1500 ) / ]
w .
E LCEO
= 1000+ . 1
g , VIAM-L
© .
.9 -~ VIAM-NL
500 . 1
P //‘
I e
OLe—— _‘.,,—,»-,v/.:,,/—w/ ) 1
! 7 30 90 180 366

Problem Size (days)

Fig. 3: Average CPU Time for VIAM and LECO Models

B. Impact of Price Dynamics on LECO Solutions

In this subsection, we discuss the impact of price dynamics
on the LCEO model solutions and profits. Figure 4 shows the
daily profits of a normalized battery under MISO and the daily
price dynamic in 2020. As shown in Figure 4, there is a high
volatility in the daily profits throughout the year.
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Fig. 4: Daily Arbitrage Profits in 2020

VI. CONCLUSION

In this paper, we proposed a new BESS optimization
model which naturally addresses the simultaneous charg-
ing/discharging problem by using a single current decision
variable. We also proposed to use some linear functions to

approximate the highly nonlinear OCVDF to simplify the
underlying BESS optimization model, which further leads to
the new BLCQP model. To deal with the bilinear constraints
in the BLCQP model, we introduced a novel reformulation
technique to recast it as another equivalent LCEO with only
linear constraints. A new SLQP approach is proposed for
the LCEO model and its convergence is established. Our
preliminary experiments illustrate that the optimal solution
from the new model provides a very good approximation to
the optimal solution of the BESS optimization model with the
original nonlinear OCVDF, and the proposed SLQP algorithm
is competitive with state-of-the-art optimization software such
as IPOPT.
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